JP2003142904A - Transmission line - Google Patents
Transmission lineInfo
- Publication number
- JP2003142904A JP2003142904A JP2001337340A JP2001337340A JP2003142904A JP 2003142904 A JP2003142904 A JP 2003142904A JP 2001337340 A JP2001337340 A JP 2001337340A JP 2001337340 A JP2001337340 A JP 2001337340A JP 2003142904 A JP2003142904 A JP 2003142904A
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- transmission line
- dielectric substrate
- characteristic
- surface ground
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Waveguides (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高周波回路を構成
する伝送線路に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission line that constitutes a high frequency circuit.
【0002】[0002]
【従来の技術】図7は高周波伝送線路として従来から用
いられているコプレーナガイド伝送線路の構成例を示す
図であり、(a)は平面図、(b)は(a)のb−b線断面図で
ある。図7において、1は誘電体基板、2は誘電体基板
1の表面に形成された信号線としての中心導体、3はそ
の中心導体2の両側に形成された表面接地導体、5は誘
電体基板1の裏面に形成された裏面接地導体、6は表面
接地導体3と裏面接地導体5を電気的に接続するビアホ
ールである。一般に、高周波になると、コプレーナガイ
ド伝送線路では、誘電体基板1の表面と裏面の接地導体
3、5の間で高次伝搬モードが発生し、該伝送線路の特
性が劣化する。2. Description of the Related Art FIG. 7 is a diagram showing a configuration example of a coplanar guide transmission line that has been conventionally used as a high-frequency transmission line. (A) is a plan view, (b) is a line bb of (a). FIG. In FIG. 7, 1 is a dielectric substrate, 2 is a center conductor as a signal line formed on the surface of the dielectric substrate 1, 3 is a surface ground conductor formed on both sides of the center conductor 2, and 5 is a dielectric substrate. A back surface ground conductor formed on the back surface of 1 and 6 are via holes for electrically connecting the front surface ground conductor 3 and the back surface ground conductor 5. Generally, at high frequencies, in the coplanar guide transmission line, a higher-order propagation mode is generated between the ground conductors 3 and 5 on the front surface and the back surface of the dielectric substrate 1, and the characteristics of the transmission line deteriorate.
【0003】そこで、図7に示す従来のコプレーナガイ
ド伝送線路では、ビアホール6により、両面の接地導体
3、5間を接続して、高次伝搬モードを抑圧する構造と
していた。Therefore, in the conventional coplanar guide transmission line shown in FIG. 7, the via conductors 6 are used to connect the ground conductors 3 and 5 on both sides to suppress the higher-order propagation mode.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、図7の
コプレーナガイド伝送線路においては、ビアホール6の
形成工程における製造精度により、ビアホール6間(図
7(a)の上下方向)のピッチに制限が生じ、また、複数
のコプレーナガイド伝送線路を配置した図8に示すよう
な誘電体基板においては、ビアホール6の配置によって
伝送線路間(図8の左右方向)のピッチが制限され、高
密度化が困難であった。However, in the coplanar guide transmission line of FIG. 7, the pitch between the via holes 6 (vertical direction in FIG. 7A) is limited due to manufacturing accuracy in the process of forming the via holes 6. Further, in a dielectric substrate as shown in FIG. 8 in which a plurality of coplanar guide transmission lines are arranged, the pitch between the transmission lines (left and right direction in FIG. 8) is limited by the arrangement of the via holes 6, and it is difficult to increase the density. Met.
【0005】さらに、従来のコプレーナガイド伝送線路
では、誘電体基板の材料、厚さが一定の場合、中心導体
の幅、中心導体と表面接地導体とのギャップおよび導体
厚によって線路の特性インピーダンスを求めて回路設計
を行っているが、この際、ビアホールは考慮されていな
い。実際には、ビアホールの有無、さらに、ビアホール
のピッチによって、電磁界の分布が異なることとなる。
このことは、厳密には、特に高周波領域では、各々のケ
ースに応じて、3次元空間のフルウェーブ解析より特性
インピーダンスを求めることを意味し、設計コストが増
大する。Further, in the conventional coplanar guide transmission line, when the material and thickness of the dielectric substrate are constant, the characteristic impedance of the line is obtained by the width of the center conductor, the gap between the center conductor and the surface ground conductor, and the conductor thickness. The circuit is being designed by using a via hole, but the via hole is not taken into consideration. Actually, the distribution of the electromagnetic field varies depending on the presence or absence of via holes and the pitch of the via holes.
Strictly speaking, this means that the characteristic impedance is determined by full-wave analysis in a three-dimensional space in accordance with each case, especially in the high frequency region, and the design cost increases.
【0006】本発明は、斯かる実情に鑑みてなされたも
ので、その目的は、高周波での信号の反射やクロストー
ク等による特性劣化を抑圧した伝送線路を提供しようと
するものである。The present invention has been made in view of the above circumstances, and an object thereof is to provide a transmission line in which characteristic deterioration due to reflection of signals at high frequencies and crosstalk is suppressed.
【0007】[0007]
【課題を解決するための手段】請求項1に係る発明は、
誘電体基板の表面に中心導体と該中心導体の両側に位置
する表面接地導体が各々形成され、前記誘電体基板の裏
面に裏面接地導体が形成され、且つ前記表面接地導体と
前記裏面接地導体が電気的に導通されている伝送線路に
おいて、前記誘電体基板の表裏間を貫通し且つ前記中心
導体の延伸方向に沿った方向に延びる導体壁を形成し、
該導体壁により前記表面接地導体と前記裏面接地導体を
電気的に導通させたことを特徴とする伝送線路とした。The invention according to claim 1 is
A center conductor and surface ground conductors located on both sides of the center conductor are respectively formed on the surface of the dielectric substrate, a back surface ground conductor is formed on the back surface of the dielectric substrate, and the surface ground conductor and the back surface ground conductor are In a transmission line that is electrically conducting, forming a conductor wall that penetrates between the front and back surfaces of the dielectric substrate and extends in a direction along the extending direction of the central conductor,
A transmission line is characterized in that the front surface ground conductor and the back surface ground conductor are electrically connected by the conductor wall.
【0008】請求項2に係る発明は、請求項1に係る発
明の伝送線路を前記誘電体基板に複数並列に形成したこ
とを特徴とする伝送線路とした。According to a second aspect of the present invention, a plurality of transmission lines according to the first aspect of the present invention are formed in parallel on the dielectric substrate.
【0009】[0009]
【発明の実施の形態】本発明の伝送線路は、通常のコプ
レーナガイド伝送線路構造に加えて、基板の表面と裏面
にある接地導体をつなぐために、導体壁(グランド板)
を設けた構造を有する。これにより、電磁波高次モード
の発生を抑えるとともに、高周波での信号の反射やクロ
ストーク等による伝搬特性劣化を改善することができる
ようにした。BEST MODE FOR CARRYING OUT THE INVENTION In addition to the usual coplanar guide transmission line structure, the transmission line of the present invention has a conductor wall (ground plate) for connecting the ground conductors on the front and back surfaces of the substrate.
Is provided. This makes it possible to suppress the generation of higher-order electromagnetic waves and improve the deterioration of propagation characteristics due to reflection of signals at high frequencies and crosstalk.
【0010】[第1の実施形態]図1は本発明の第1の
実施形態のコプレーナガイド伝送線路を示す図であり、
(a)は平面図、(b)は(a)のb−b断面図である。図1に
おいて、1は誘電体基板、2は誘電体基板1の表面に形
成された信号線としての中心導体、3はその中心導体2
の両側に形成された表面接地導体、5は誘電体基板1の
裏面に形成された裏面接地導体、4は表面接地導体3と
裏面接地導体5を電気的に接続する導体壁(グランド
板)である。この導体壁4は、誘電体基板1の表裏間を
貫通し且つ中心導体2の延伸方向に沿った方向に延びて
いる。[First Embodiment] FIG. 1 is a diagram showing a coplanar guide transmission line according to a first embodiment of the present invention.
(a) is a plan view and (b) is a bb sectional view of (a). In FIG. 1, 1 is a dielectric substrate, 2 is a central conductor as a signal line formed on the surface of the dielectric substrate 1, and 3 is a central conductor 2 thereof.
5 is a surface ground conductor formed on both sides of the back surface ground conductor formed on the back surface of the dielectric substrate 1, and 4 is a conductor wall (ground plate) for electrically connecting the surface ground conductor 3 and the back surface ground conductor 5. is there. The conductor wall 4 penetrates between the front and back of the dielectric substrate 1 and extends in the direction along the extending direction of the center conductor 2.
【0011】誘電体基板1の基板厚を0.15mm、そ
の比誘電率を4.7、中心導体2の線幅を0.19m
m、中心導体2と表面接地導体3との間のギャップを
0.1mm、中心導体2、表面接地導体3および裏面接
地導体5の導体厚を0.01mm、導体壁4の厚さを
0.1mmとし、誘電体基板1の両面の接地導体3、5
と導体壁4をI字形状に接続した構造とし、特性インピ
ーダンスが50Ω付近になる寸法とした。なお、本実施
形態では、上記の条件としたが、他のパラメータを変え
ずに、導体壁4を図1(a)、(b)において左右に移動させ
た構造(必要に応じて表面接地導体3の左右の端部まで
も移動可能)とすることにより、特性インピーダンスを
調整することも可能である。The substrate thickness of the dielectric substrate 1 is 0.15 mm, its relative permittivity is 4.7, and the line width of the central conductor 2 is 0.19 m.
m, the gap between the center conductor 2 and the surface ground conductor 3 is 0.1 mm, the conductor thickness of the center conductor 2, the surface ground conductor 3 and the back surface ground conductor 5 is 0.01 mm, and the thickness of the conductor wall 4 is 0. 1 mm, ground conductors 3 and 5 on both surfaces of the dielectric substrate 1
The conductor wall 4 and the conductor wall 4 were connected in an I shape, and the characteristic impedance was about 50Ω. In the present embodiment, the above conditions are used, but the structure in which the conductor wall 4 is moved to the left and right in FIGS. 1A and 1B without changing the other parameters (the surface ground conductor if necessary) It is also possible to adjust the characteristic impedance.
【0012】図2に、図1の構造のコプレーナガイド伝
送線路の構造と図7で説明した従来のビアホールを用い
たコプレーナガイド伝送線路の構造を数値解析した結果
のSパラメータのS21(透過)特性の周波数特性を示
す。ここで、実線は図1の実施形態のコプレーナガイド
伝送線路の構造の場合である。点線と破線は、図7の従
来のビアホールを用いたコプレーナガイド伝送線路の構
造の場合であり、各々、ビアホールの間隔が、3mmと
2mmの結果である。なお、従来のコプレーナガイド伝
送線路については、誘電体基板厚、比誘電率、導体厚お
よびギャップは、本実施形態の場合と同じ値としたが、
中心導体の線幅については、特性インピーダンスを50
Ω付近とするため、0.21mmとした。FIG. 2 is a S21 (transmission) characteristic of the S parameter as a result of numerical analysis of the structure of the coplanar guide transmission line having the structure of FIG. 1 and the structure of the conventional coplanar guide transmission line using the via hole described in FIG. Shows the frequency characteristics of. Here, the solid line is the case of the structure of the coplanar guide transmission line of the embodiment of FIG. The dotted line and the broken line show the case of the structure of the conventional coplanar guide transmission line using via holes in FIG. 7, and the results are 3 mm and 2 mm, respectively, between the via holes. Regarding the conventional coplanar guide transmission line, the dielectric substrate thickness, the relative permittivity, the conductor thickness and the gap have the same values as in the case of the present embodiment.
Regarding the line width of the center conductor, the characteristic impedance is 50
In order to make the value around Ω, it was set to 0.21 mm.
【0013】この図2の特性より、本実施形態の構造で
は良好なS21特性を示しているのに対して、従来構造
の場合は各ビアホール間隔に対応した周波数で特性劣化
が生じていることがわかる。From the characteristics shown in FIG. 2, the structure of the present embodiment exhibits a good S21 characteristic, whereas the conventional structure has characteristic deterioration at a frequency corresponding to each via hole interval. Recognize.
【0014】従来のビアホールによる表裏面間の接地導
体の接続では、不要な共振モードを抑圧するために、動
作周波数に応じて半波長以下のビアホール間隔が必要な
ことから、高周波になるに従いビアホール間隔を狭く
し、密にビアホールを形成することが必須となるが、こ
のことは、ビアホールの製造精度が要求されることとな
り、製造コストの増加を招くこととなる。さらに、信号
の伝搬方向に対して垂直な断面構造がビアホールの有無
によって異なるため、断面構造によって求められる特性
インピーダンスの計算が困難である。In the conventional connection of the ground conductor between the front surface and the back surface by the via hole, the via hole interval of a half wavelength or less is required according to the operating frequency in order to suppress the unnecessary resonance mode. It is indispensable to make the via holes narrower and to form the via holes densely. However, this requires the manufacturing accuracy of the via holes and increases the manufacturing cost. Furthermore, since the sectional structure perpendicular to the signal propagation direction differs depending on the presence or absence of a via hole, it is difficult to calculate the characteristic impedance obtained by the sectional structure.
【0015】これに対して、本実施形態では、誘電体基
板1の表面接地導体3と裏面接地導体5とを面状に連続
接続する導体壁4を備えるので、ビアホールが不要とな
り、動作周波数の変化により、ビアホール間隔を変える
必要はなくなる。さらに、信号の伝搬方向に対して垂直
な断面構造が均一であるため、特性インピーダンスも2
次元断面形状のみから計算できる。On the other hand, in this embodiment, since the conductor wall 4 for continuously connecting the surface grounding conductor 3 and the backside grounding conductor 5 of the dielectric substrate 1 in a plane shape is provided, the via hole is not necessary and the operating frequency is reduced. The change eliminates the need to change the via hole spacing. Furthermore, since the cross-sectional structure perpendicular to the signal propagation direction is uniform, the characteristic impedance is 2
It can be calculated only from the dimensional cross-sectional shape.
【0016】また、従来のコプレーナガイド伝送線路で
は、構造的には基板厚、中心導体線幅、中心導体と表面
接地導体間のギャップ、中心導体厚によって特性インピ
ーダンスが求められていたが、本実施形態では、さら
に、導体壁4の位置も特性インピーダンスを定めるパラ
メータとなるため、設計の自由度が増加するとともに、
広い周波数帯域をカバーする伝送線路特性を実現するこ
とができる。In the conventional coplanar guide transmission line, the characteristic impedance was found structurally by the substrate thickness, the center conductor line width, the gap between the center conductor and the surface ground conductor, and the center conductor thickness. In the form, the position of the conductor wall 4 is also a parameter that determines the characteristic impedance, so that the degree of freedom in design increases and
Transmission line characteristics covering a wide frequency band can be realized.
【0017】[第2の実施形態]図3は本発明の第2の
実施形態の伝送線路を示す図であり、(a)は平面図、(b)
は(a)のb−b線断面図である。図1に示したものと同
じものには同じ符号を付けている。ここでは、中心導体
2が2個の場合、つまり2つの伝送線路を並列化した場
合を示した。[Second Embodiment] FIGS. 3A and 3B are views showing a transmission line according to a second embodiment of the present invention, in which FIG. 3A is a plan view and FIG.
FIG. 6B is a sectional view taken along line bb of (a). The same components as those shown in FIG. 1 are designated by the same reference numerals. Here, the case where the number of the central conductors 2 is two, that is, the case where two transmission lines are parallelized is shown.
【0018】図4は、図3のコプレーナガイド伝送線路
の構造と図8に示した従来のコプレーナガイド伝送線路
の構造を数値解析したSパラメータのS21特性を示す
図であり、実線が図3の構造のS21特性、破線が図8
の構造のS21特性である。また、図5は図3の構造の
伝送線路のS11(反射特性)、S31(近端クロスト
ーク特性)、S41(遠端クロストーク特性)を示す図
である。さらに図6は図8の従来構造の伝送線路のS1
1,S31,S41を示す特性である。ここで、中心導
体線幅、中心導体と表面接地導体間のギャップ、基板厚
等のパラメータは、第1の実施形態で示した値を用い、
中央の表面接地導体3’の幅は0.1mmとした。ま
た、図8の従来型のコプレーナガイド伝送線路の場合、
ビアホール6の間隔(図8(a)の上下方向間隔)は3m
mとした。FIG. 4 is a diagram showing the S21 characteristic of the S parameter obtained by numerically analyzing the structure of the coplanar guide transmission line of FIG. 3 and the structure of the conventional coplanar guide transmission line shown in FIG. 8, and the solid line of FIG. The S21 characteristic of the structure, the broken line in FIG.
It is the S21 characteristic of the structure of. 5 is a diagram showing S11 (reflection characteristic), S31 (near end crosstalk characteristic), and S41 (far end crosstalk characteristic) of the transmission line having the structure of FIG. Further, FIG. 6 shows S1 of the transmission line of the conventional structure of FIG.
It is a characteristic showing 1, S31, and S41. Here, for the parameters such as the width of the center conductor, the gap between the center conductor and the surface ground conductor, and the substrate thickness, the values shown in the first embodiment are used
The width of the center surface grounded conductor 3'was 0.1 mm. Also, in the case of the conventional coplanar guide transmission line of FIG.
The distance between the via holes 6 (the vertical distance in FIG. 8A) is 3 m.
m.
【0019】図4より、図2で示した単一中心導体の伝
送線路の場合と同様に、図8の従来構造の伝送線路で
は、24GHz付近と47GHz付近で、ビアホール間
隔に起因する特性劣化が生じていることが判る。さら
に、図5と図6を比べると,本発明による構造の特性
(図5)では、50GHzまでの広帯域に渡って、S1
1、S31、S41の全てが−20dB以下の良好な特
性を示しているのに対し、従来構造の特性(図6)で
は、数GHz付近からS11が−20dBを超えてお
り、全体の特性も本発明に比べて劣化していることがわ
かる。From FIG. 4, as in the case of the transmission line having a single center conductor shown in FIG. 2, in the transmission line of the conventional structure shown in FIG. 8, characteristic deterioration due to the via hole spacing occurs near 24 GHz and 47 GHz. You can see that it is happening. Further, comparing FIG. 5 with FIG. 6, it can be seen that the characteristics of the structure according to the present invention (FIG. 5) show that the S1
While all of 1, S31, and S41 show good characteristics of -20 dB or less, in the characteristics of the conventional structure (Fig. 6), S11 exceeds -20 dB from around several GHz, and the overall characteristics are also It can be seen that it is deteriorated as compared with the present invention.
【0020】なお、本発明の伝送線路は、上述の図示例
にのみ限定されるものではなく、本発明の要旨を逸脱し
ない範囲内において種々変更を加え得ることは勿論であ
る。The transmission line of the present invention is not limited to the above-mentioned illustrated examples, and it goes without saying that various modifications can be made without departing from the scope of the present invention.
【0021】[0021]
【発明の効果】以上説明したように、本発明のコプレー
ナガイド伝送線路によれば、従来のコプレーナガイド伝
送線路に比べて、広帯域に渡って一定な特性インピーダ
ンスを有し、かつ、中心導体間のピッチを狭めて高密度
な配線を実現でき、高周波での信号の反射やクロストー
ク等による特性劣化を抑圧できるという優れた効果を奏
し得る。As described above, according to the coplanar guide transmission line of the present invention, as compared with the conventional coplanar guide transmission line, the coplanar guide transmission line has a constant characteristic impedance over a wide band and between the center conductors. It is possible to achieve an excellent effect that the pitch can be narrowed to realize high-density wiring, and characteristic deterioration due to reflection of signals at high frequencies and crosstalk can be suppressed.
【図1】 本発明の第1の実施形態の1個の中心導体を
有するコプレーナガイド伝送線路を示す図で、(a)は平
面図、(b)は断面図である。1A and 1B are diagrams showing a coplanar guide transmission line having a single central conductor according to a first embodiment of the present invention, in which FIG. 1A is a plan view and FIG. 1B is a sectional view.
【図2】 図1のコプレーナガイド伝送線路と従来の図
7のコプレーナガイド伝送線路のSパラメータのS21
特性を比較した特性図である。2 is an S-parameter S21 of the coplanar guide transmission line of FIG. 1 and the conventional coplanar guide transmission line of FIG.
It is a characteristic diagram which compared the characteristic.
【図3】 本発明の第2の実施形態の2個の中心導体を
有するコプレーナガイド伝送線路を示す図で、(a)は平
面図、(b)は断面図である。3A and 3B are diagrams showing a coplanar guide transmission line having two central conductors according to a second embodiment of the present invention, where FIG. 3A is a plan view and FIG. 3B is a sectional view.
【図4】 図3のコプレーナガイド伝送線路と従来の図
8のコプレーナガイド伝送線路のSパラメータのS21
特性を比較した特性図である。4 is an S-parameter S21 of the coplanar guide transmission line of FIG. 3 and the conventional coplanar guide transmission line of FIG.
It is a characteristic diagram which compared the characteristic.
【図5】 図3のコプレーナガイド伝送線路のSパラメ
ータのS11,S31,S41特性の特性図である。5 is a characteristic diagram of S11, S31, and S41 characteristics of the S parameter of the coplanar guide transmission line of FIG.
【図6】 従来の図8のコプレーナガイド伝送線路のS
パラメータのS11,S31,S41特性の特性図であ
る。6 is an S of the conventional coplanar guide transmission line of FIG.
It is a characteristic view of S11, S31, S41 characteristic of the parameter.
【図7】 従来の1個の中心導体を有するコプレーナガ
イド伝送線路を示す図で、(a)は平面図、(b)は断面図で
ある。7A and 7B are views showing a conventional coplanar guide transmission line having one central conductor, in which FIG. 7A is a plan view and FIG. 7B is a sectional view.
【図8】 従来の2個の中心導体を有するコプレーナガ
イド伝送線路を示す図で、(a)は平面図、(b)は断面図で
ある。8A and 8B are diagrams showing a conventional coplanar guide transmission line having two center conductors, FIG. 8A being a plan view and FIG. 8B being a sectional view.
1:誘電体基板 2:中心導体 3、3’:表面接地導体 4:導体壁(グランド板) 5:裏面接地導体 6:ビアホール 1: Dielectric substrate 2: Center conductor 3, 3 ': Grounded conductor 4: Conductor wall (ground plate) 5: Backside ground conductor 6: Beer hole
───────────────────────────────────────────────────── フロントページの続き (72)発明者 新井 芳光 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 5J014 CA00 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Yoshimitsu Arai 2-3-1, Otemachi, Chiyoda-ku, Tokyo Inside Telegraph and Telephone Corporation F-term (reference) 5J014 CA00
Claims (2)
の両側に位置する表面接地導体が各々形成され、前記誘
電体基板の裏面に裏面接地導体が形成され、且つ前記表
面接地導体と前記裏面接地導体が電気的に導通されてい
る伝送線路において、 前記誘電体基板の表裏間を貫通し且つ前記中心導体の延
伸方向に沿った方向に延びる導体壁を形成し、該導体壁
により前記表面接地導体と前記裏面接地導体を電気的に
導通させたことを特徴とする伝送線路。1. A center conductor and surface ground conductors located on both sides of the center conductor are respectively formed on a surface of a dielectric substrate, a back surface ground conductor is formed on a back surface of the dielectric substrate, and the surface ground conductor is In the transmission line in which the back-side ground conductor is electrically conducted, a conductor wall that penetrates between the front and back surfaces of the dielectric substrate and extends in a direction along the extension direction of the center conductor is formed, A transmission line, wherein a front-side ground conductor and the back-side ground conductor are electrically connected to each other.
板に複数並列に形成したことを特徴とする伝送線路。2. A transmission line comprising a plurality of the transmission lines according to claim 1 formed in parallel on the dielectric substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001337340A JP2003142904A (en) | 2001-11-02 | 2001-11-02 | Transmission line |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001337340A JP2003142904A (en) | 2001-11-02 | 2001-11-02 | Transmission line |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003142904A true JP2003142904A (en) | 2003-05-16 |
Family
ID=19151996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001337340A Pending JP2003142904A (en) | 2001-11-02 | 2001-11-02 | Transmission line |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003142904A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005286436A (en) * | 2004-03-26 | 2005-10-13 | Kyocera Corp | Wiring board for high frequency |
JP2005331531A (en) * | 2004-05-18 | 2005-12-02 | Ngk Insulators Ltd | Optical waveguide device |
JP2009124072A (en) * | 2007-11-19 | 2009-06-04 | Mitsubishi Electric Corp | High-frequency module |
CN101295808B (en) * | 2007-04-29 | 2012-07-25 | 倪其良 | Design method of wideband filter capable of changing category and frequency modulation |
US10734711B2 (en) | 2016-02-15 | 2020-08-04 | Kathrein-Werke Kg | Shaft antenna system for mobile communication |
-
2001
- 2001-11-02 JP JP2001337340A patent/JP2003142904A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005286436A (en) * | 2004-03-26 | 2005-10-13 | Kyocera Corp | Wiring board for high frequency |
JP2005331531A (en) * | 2004-05-18 | 2005-12-02 | Ngk Insulators Ltd | Optical waveguide device |
CN101295808B (en) * | 2007-04-29 | 2012-07-25 | 倪其良 | Design method of wideband filter capable of changing category and frequency modulation |
JP2009124072A (en) * | 2007-11-19 | 2009-06-04 | Mitsubishi Electric Corp | High-frequency module |
US10734711B2 (en) | 2016-02-15 | 2020-08-04 | Kathrein-Werke Kg | Shaft antenna system for mobile communication |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7336142B2 (en) | High frequency component | |
JP4462758B2 (en) | High frequency wiring board | |
JP2000269707A (en) | Coplanar line | |
JP2006024618A (en) | Wiring board | |
JP2004320109A (en) | High-frequency transmission line and high-frequency substrate | |
JPH06236788A (en) | Socket | |
EP1798806B1 (en) | Apparatus for Converting Transmission Structure | |
JP2010192987A (en) | Coaxial connector and connection structure between coaxial connector and coplanar waveguide | |
US4211986A (en) | Strip line coupler having spaced ground plate for increased coupling characteristic | |
JPH08510624A (en) | Transmission line and its design method | |
JP4629013B2 (en) | High frequency circuit board | |
JP2003142904A (en) | Transmission line | |
JP5519328B2 (en) | High-frequency transmission line substrate | |
CA1256557A (en) | Sandwich-wire antenna | |
JPH08162812A (en) | High frequency coupler | |
JP2000165116A (en) | Directional coupler | |
JP4381701B2 (en) | Connection structure between coaxial connector and multilayer board | |
JP2004247980A (en) | Connection structure and method of transmission line | |
US12087993B2 (en) | Broadband and low cost printed circuit board based 180° hybrid couplers on a single layer board | |
JP4392018B2 (en) | Improved directional coupler | |
JP2018182422A (en) | Substrate integrated waveguide | |
JPH05335815A (en) | Waveguide-microstrip converter | |
US4224584A (en) | Directional microwave coupler | |
JPH08162810A (en) | Strip line waveguide conversion circuit | |
TWI757979B (en) | Circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041116 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050329 |