[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003142736A - Mounting method of semiconductor light emitting device - Google Patents

Mounting method of semiconductor light emitting device

Info

Publication number
JP2003142736A
JP2003142736A JP2002293997A JP2002293997A JP2003142736A JP 2003142736 A JP2003142736 A JP 2003142736A JP 2002293997 A JP2002293997 A JP 2002293997A JP 2002293997 A JP2002293997 A JP 2002293997A JP 2003142736 A JP2003142736 A JP 2003142736A
Authority
JP
Japan
Prior art keywords
side electrode
layer
light emitting
auxiliary
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002293997A
Other languages
Japanese (ja)
Other versions
JP3938350B2 (en
Inventor
Yukio Shakuda
幸男 尺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2002293997A priority Critical patent/JP3938350B2/en
Publication of JP2003142736A publication Critical patent/JP2003142736A/en
Application granted granted Critical
Publication of JP3938350B2 publication Critical patent/JP3938350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify wiring work by reducing the number of wire bonding for the mounted member of a semiconductor light emitting device. SOLUTION: The semiconductor light emitting device 1 is provided with an element main body 2 and a sub-mount member 11. The element main body 2 is constituted so that respective semiconductor layers 4, 5 and 6 are formed on the surface of a transparent insulating substrate 3, and an N-side electrode 9 as well as a P-side electrode 10 are formed on predetermined places of respective layers. The sub-mount member 11 is provided with an auxiliary N-side electrode layer 15 formed so as to be insulated to the surface of a conductive substrate 12, and an auxiliary P-side electrode 14 formed so as to be conducted. The sub-mount member 11 and the element main body 2 are constituted integrally so that the surface side of the sub-mount member 11 is opposed to the surface side of the element main body 2 mutually, and the N-side electrode layer 15 is conducted while the auxiliary P-side electrode layer 14 is conducted to the P-side electrode 10. The semiconductor light emitting device 1, constituted in such a manner as described above, is mounted on the mounted member 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願発明は、半導体発光素子のマ
ウント方法に関し、特に発光作用を行わせるための素子
本体に対してサブマウント部材を付加的に取り付けて構
成される半導体発光素子を用いたマウント方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for mounting a semiconductor light emitting device, and more particularly, to a semiconductor light emitting device constructed by additionally attaching a submount member to a device body for performing a light emitting action. Regarding mounting method.

【0002】[0002]

【従来の技術】近年においては、有機金属化学気相成長
法(以下、MOCVD法という)を利用して、サファイ
ア基板上に窒化ガリウム系化合物半導体の結晶を成長さ
せることなどにより、高輝度特性を備えた青色発光用の
半導体発光素子が開発されるに至っている(たとえば特
許文献1参照)。
2. Description of the Related Art In recent years, high brightness characteristics have been obtained by growing a crystal of a gallium nitride compound semiconductor on a sapphire substrate by utilizing a metal organic chemical vapor deposition method (hereinafter referred to as MOCVD method). A semiconductor light emitting device for emitting blue light has been developed (see Patent Document 1, for example).

【0003】[0003]

【特許文献1】特開平5−152609号公報[Patent Document 1] Japanese Unexamined Patent Publication No. 5-152609

【0004】上記高輝度の青色発光用半導体発光素子
は、図9に示すように、透明のサファイア基板70上に
GaNのバッファ層71を成長させ、このバッファ層7
1の表面上に、N型半導体層72(GaN層、AlGa
N層)、発光層73(InGaN層)、およびP型半導
体層74(AlGaN層、GaN層)を積層状に成長さ
せたものである。そして、上記N型半導体層72におけ
るGaN層と、P型半導体層74におけるGaN層と
に、N側電極75およびP側電極76がそれぞれ形成さ
れる。
In the high-luminance semiconductor light emitting device for blue light emission, as shown in FIG. 9, a GaN buffer layer 71 is grown on a transparent sapphire substrate 70, and the buffer layer 7 is formed.
N-type semiconductor layer 72 (GaN layer, AlGa
The N layer), the light emitting layer 73 (InGaN layer), and the P-type semiconductor layer 74 (AlGaN layer, GaN layer) are grown in a laminated shape. Then, an N-side electrode 75 and a P-side electrode 76 are formed on the GaN layer in the N-type semiconductor layer 72 and the GaN layer in the P-type semiconductor layer 74, respectively.

【0005】一方、被マウント部材である図示例のリー
ドフレーム77に対する上記半導体発光素子の取り付け
構造は、上記N側電極75およびP側電極76を双方共
に、ワイヤ78,79を用いてリードフレーム77のN
側端子部77aとP側端子部77bとにそれぞれボンデ
ィングされた状態にある。そして、このように取り付け
られた半導体発光素子は、同図に矢印で示すように、上
記電極76の配設側の面から光を発するように構成され
ている。
On the other hand, in the mounting structure of the semiconductor light emitting element to the lead frame 77 of the illustrated example which is a mounted member, the lead frame 77 is formed by using wires 78 and 79 for both the N side electrode 75 and the P side electrode 76. N
The side terminal portion 77a and the P side terminal portion 77b are bonded to each other. The semiconductor light emitting element thus mounted is configured to emit light from the surface on the side where the electrode 76 is disposed, as indicated by the arrow in the figure.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記従来の
半導体発光素子は、リードフレーム等の被マウント部材
における2箇所に対してワイヤボンディングを施す必要
があり、その搭載作業あるいは結線作業の工程数が増加
するなどして、作業の煩雑化ならびに複雑化を余儀なく
されているのが実情であった。
By the way, in the above-mentioned conventional semiconductor light emitting device, it is necessary to perform wire bonding at two points on a mounted member such as a lead frame, and the number of steps for mounting or connecting the wires is reduced. The actual situation is that the number of operations has become complicated and complicated.

【0007】また、この種の半導体発光素子は、電極の
配設面側から光から発せられる構成であることから、図
10に示すように、発光領域A内に電極76が存在して
おり、この電極76の配設箇所は非発光部となる。した
がって、実質的発光領域は上記電極76に相当する分だ
け狭くなり、図示例のものでは、素子全体中に占める実
質的発光領域は全表面積の1/2以下になる。この結
果、上述のように高輝度特性を備えているにも拘らず、
十分な発光量を得ることができず、各種表示ボード等へ
の使用時における高い明度の要請に応じることが困難に
なるという問題を有している。
Further, since the semiconductor light emitting device of this type has a structure in which light is emitted from the side where the electrodes are arranged, as shown in FIG. 10, the electrode 76 exists in the light emitting region A, The location where the electrode 76 is provided becomes a non-light emitting portion. Therefore, the substantial light emitting region is narrowed by the amount corresponding to the electrode 76, and in the example shown in the figure, the substantial light emitting region in the entire device is ½ or less of the total surface area. As a result, despite having the high brightness characteristic as described above,
There is a problem that it is difficult to obtain a sufficient amount of light emission, and it becomes difficult to meet the demand for high brightness when used for various display boards and the like.

【0008】本願発明は、上述の事情のもとで考え出さ
れたものであって、半導体発光素子の被マウント部材に
対するワイヤボンディングの個数を削減して、その結線
作業を簡便に行えるようにするとともに、半導体発光素
子における実質的発光領域を可及的に増大させて十分な
発光量の確保および明度の向上を図ることができる半導
体発光素子のマウント方法を提供することをその課題と
する。
The present invention has been devised under the circumstances described above, and reduces the number of wire bonds to a mounted member of a semiconductor light emitting element so that the connection work can be performed easily. At the same time, it is an object of the present invention to provide a method for mounting a semiconductor light emitting element, which can increase a substantial light emitting region in the semiconductor light emitting element as much as possible to secure a sufficient amount of light emission and improve brightness.

【0009】[0009]

【発明の開示】上記の課題を解決するため、本願発明で
は、次の技術的手段を講じている。
DISCLOSURE OF THE INVENTION In order to solve the above problems, the present invention takes the following technical means.

【0010】すなわち、本願の請求項1に記載した発明
は、半導体発光素子の被マウント部材へのマウント方法
であって、上記半導体発光素子は、透明の絶縁性基板の
表面上にN型半導体層、発光層、およびP型半導体層を
形成し、かつ上記P型半導体層の表面にP側電極が形成
され、上記N型半導体層における露出表面部にN側電極
を形成して構成される素子本体と、導電性基板の表面に
対して絶縁状態となるように形成された補助N側電極層
および導通状態となるように形成された補助P側電極層
を有するサブマウント部材と、を備えるとともに、上記
サブマウント部材と上記素子本体とが、上記サブマウン
ト部材と上記素子本体との双方の表面側を相互に対向さ
せるとともに、上記補助N側電極層と上記N側電極との
間および上記補助P側電極層と上記P側電極との間がそ
れぞれ導通状態となるように一体化させられて構成され
ており、上記のように構成された半導体発光素子を被マ
ウント部材にマウントすることを特徴としている。
That is, the invention described in claim 1 of the present application is a method for mounting a semiconductor light emitting element on a mounted member, wherein the semiconductor light emitting element is an N-type semiconductor layer on the surface of a transparent insulating substrate. A light emitting layer and a P-type semiconductor layer are formed, a P-side electrode is formed on the surface of the P-type semiconductor layer, and an N-side electrode is formed on an exposed surface portion of the N-type semiconductor layer. A main body and a submount member having an auxiliary N-side electrode layer formed so as to be insulated from the surface of the conductive substrate and an auxiliary P-side electrode layer formed so as to be in a conductive state. The submount member and the element body face each other on the surface sides of the submount member and the element body, and between the auxiliary N-side electrode layer and the N-side electrode and the auxiliary. The side electrode layer and the P-side electrode are integrally formed so as to be in a conductive state, respectively, and the semiconductor light emitting device configured as described above is mounted on a mounted member. There is.

【0011】また、本願の請求項2に記載した発明は、
上記請求項1に係る発明において、上記サブマウント部
材の補助N側電極層および補助P側電極層の表面部分は
絶縁層で覆われており、この絶縁層には上記双方の補助
電極層にそれぞれ独立して通じる各貫通孔が穿設され、
かつ上記絶縁層の表面側には各貫通孔を介して上記双方
の補助電極層にそれぞれ導通状態となる各付着用金属層
が相互に独立して形成されているとともに、この各付着
用金属層は、上記素子本体の双方の電極に対して接合付
着された状態となるように構成されていることを特徴と
している。
The invention described in claim 2 of the present application is
In the invention according to claim 1, the surface portions of the auxiliary N-side electrode layer and the auxiliary P-side electrode layer of the submount member are covered with an insulating layer, and the insulating layer is formed on each of the auxiliary electrode layers. Each through hole that communicates independently is drilled,
In addition, on the surface side of the insulating layer, the respective adhering metal layers that are in a conductive state with the both auxiliary electrode layers are formed independently of each other through the through holes, and the respective adhering metal layers are formed. Is characterized in that it is bonded and attached to both electrodes of the element body.

【0012】上記請求項1に記載した発明によれば、リ
ードフレーム等の被マウント部材のP側端子部に対し
て、上記半導体発光素子のサブマウント部材をボンディ
ングすることにより、素子本体のP側電極は、サブマウ
ント部材の補助P側電極層から導電性基板を介して上記
リードフレーム等の被マウント部材のP側端子部に導通
した状態となる。したがって、素子本体のP側電極に対
するワイヤボンディングが不要になり、この種の半導体
発光素子のマウント作業あるいは結線作業が簡便化され
るという利点が得られる。
According to the invention described in claim 1, by bonding the submount member of the semiconductor light emitting element to the P side terminal portion of the mounted member such as a lead frame, the P side of the element body is bonded. The electrodes are electrically connected from the auxiliary P-side electrode layer of the submount member to the P-side terminal portion of the mounted member such as the lead frame via the conductive substrate. Therefore, there is no need for wire bonding to the P-side electrode of the element body, and there is an advantage that the mounting work or connection work of this type of semiconductor light emitting device is simplified.

【0013】さらに、上記素子本体からの発光は、両電
極の配設面とは反対側の面であるサファイア基板の裏面
からなされることになり、従来のようにP側電極が発光
を阻害することはなくなる。これにより、サファイア基
板の裏面の大半が実質的発光領域となり、十分な発光量
を確保できるとともに、この種の半導体発光素子の使用
時における高い明度の要請に応じることが可能になる。
Further, the light emission from the element body is performed from the back surface of the sapphire substrate, which is the surface opposite to the surface where both electrodes are arranged, and the P-side electrode hinders light emission as in the conventional case. Things will disappear. As a result, most of the back surface of the sapphire substrate becomes a substantial light emitting region, a sufficient amount of light emission can be secured, and it is possible to meet the demand for high brightness when using this type of semiconductor light emitting device.

【0014】また、上記素子本体の発光層からサブマウ
ント部材側に発せられた光は、サブマウント部材の表面
の補助電極層等で反射することになるので、上記素子本
体におけるサファイア基板の裏面からのトータル発光量
は、上記の反射光をも含んでさらに増大し、より高い明
度を得ることが可能になる。
Since the light emitted from the light emitting layer of the element body to the submount member side is reflected by the auxiliary electrode layer on the surface of the submount member, the light is emitted from the back surface of the sapphire substrate in the element body. The total amount of light emitted by is further increased including the above-mentioned reflected light, and higher brightness can be obtained.

【0015】また、上記請求項2に記載した発明によれ
ば、上記サブマウント部材の両電極の表面部分を覆って
いる絶縁層のさらに表面側に独立して形成されている各
付着用金属層を、上記素子本体の両電極に接合付着させ
るだけで、上記サブマウント部材の両補助電極を上記素
子本体の両電極に対して導通状態にできるようになる。
したがって、上記サブマウント部材と上記素子本体との
電気的接続作業が簡単に行えるとともに、その相対的位
置誤差についても厳格な制約が緩和され、位置決めある
いは位置合わせの自由度が増大する。
Further, according to the invention described in claim 2, each metal layer for adhesion is formed independently on the surface side of the insulating layer covering the surface portions of both electrodes of the submount member. It is possible to bring both auxiliary electrodes of the submount member into conduction with both electrodes of the element body simply by bonding and attaching to both electrodes of the element body.
Therefore, the electrical connection work between the submount member and the element body can be easily performed, and the strict restriction on the relative position error is relaxed, and the degree of freedom in positioning or alignment is increased.

【0016】[0016]

【実施例の説明】以下、本願発明の好ましい実施例を、
図面を参照しつつ具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments of the present invention will be described below.
A specific description will be given with reference to the drawings.

【0017】図1は本願発明の第1実施例に係る半導体
発光素子の構成要素である素子本体を示す概略縦断正面
図、図2はその概略平面図、図3は上記半導体発光素子
の構成要素であるサブマウント部材を示す概略縦断正面
図、図4はその概略平面図、図5は上記半導体発光素子
の全体構成ならびにリードフレームへの取り付け状態を
示す概略縦断面図である。
FIG. 1 is a schematic vertical sectional front view showing an element body which is a constituent element of a semiconductor light emitting element according to the first embodiment of the present invention, FIG. 2 is a schematic plan view thereof, and FIG. 3 is a constituent element of the semiconductor light emitting element. 4 is a schematic vertical sectional front view showing the submount member, FIG. 4 is a schematic plan view thereof, and FIG. 5 is a schematic vertical sectional view showing the overall configuration of the semiconductor light emitting element and a mounting state to a lead frame.

【0018】図1に示すように、第1実施例に係る半導
体発光素子1の素子本体2は、基本的には、絶縁基板で
あるサファイア基板3上に、N型半導体層4と、発光層
5と、P型半導体層6とを備えて構成される積層部7を
形成したものである。詳細には、上記積層部7は、透明
または半透明のサファイア基板3の表面上に窒化ガリウ
ム(GaN)のバッファ層8を成長させ、その表面側
に、下層部分から順に、N型GaNの層41と、N型A
0.2 Ga0.8 Nの層42と、発光層としてのIn0.15
Ga0.85Nの層5と、P型Al0.2 Ga0.8 Nの層61
と、P型GaNの層62と、を形成したものである。そ
して、上記発光層5からは、青色に対応した波長(好ま
しくは470nm)の光が発せられるようになってい
る。
As shown in FIG. 1, the device body 2 of the semiconductor light emitting device 1 according to the first embodiment basically comprises an N-type semiconductor layer 4 and a light emitting layer on a sapphire substrate 3 which is an insulating substrate. 5 and a P-type semiconductor layer 6 are formed to form a laminated portion 7. Specifically, the laminated portion 7 has a buffer layer 8 of gallium nitride (GaN) grown on the surface of the transparent or semi-transparent sapphire substrate 3, and an N-type GaN layer is sequentially formed on the surface side from the lower layer portion. 41 and N type A
layer 42 of 0.2 Ga 0.8 N and In 0.15 as a light emitting layer.
Ga 0.85 N layer 5 and P-type Al 0.2 Ga 0.8 N layer 61
And a P-type GaN layer 62. The light emitting layer 5 emits light having a wavelength corresponding to blue (preferably 470 nm).

【0019】加えて、上記N型GaNの層41およびN
型Al0.2 Ga0.8 Nの層42には、Siが添加され、
P型Al0.2 Ga0.8 Nの層61およびP型GaNの層
62には、Mgが添加されているとともに、上記In
0.15Ga0.85Nの層5にはZnが添加されている。そし
て、上記In0.15Ga0.85Nの層5におけるInのGa
に対する組成比(混晶比)を増加させた場合には、この
層5から発せられる光の波長が長くなるとともに、上記
Znの添加量を増加させた場合には、上記組成比を増加
させた場合よりもさらに光の波長が長くなるという特性
を備えている。なお、上記各層の厚みは、下層側から各
層41、42、5、61、62のそれぞれの順に、たと
えば3μm、300nm、50nm、300nm、15
0nmに設定されている。
In addition, the N-type GaN layer 41 and N
Si is added to the layer 42 of the type Al 0.2 Ga 0.8 N,
Mg is added to the P-type Al 0.2 Ga 0.8 N layer 61 and the P-type GaN layer 62.
Zn is added to the layer 5 of 0.15 Ga 0.85 N. Then, the Ga of In in the layer 5 of In 0.15 Ga 0.85 N is
When the composition ratio (mixed crystal ratio) is increased, the wavelength of light emitted from the layer 5 becomes longer, and when the addition amount of Zn is increased, the composition ratio is increased. It has the characteristic that the wavelength of light becomes longer than in the case. The thickness of each layer is, for example, 3 μm, 300 nm, 50 nm, 300 nm, 15 in the order of the layers 41, 42, 5, 61, 62 from the lower layer side.
It is set to 0 nm.

【0020】上記図示例の素子本体2は、最終的に単一
のチップとして得られるたとえば平面視が一辺0.5m
mの正方形状のものであるが、実際の製造に際しては、
MOCVD法により上記図示例の構造のものを所定面積
のウエハとして一括して形成した後、ダイシングにより
上記単一のチップに分割することにより得られる。
The element body 2 of the illustrated example is finally obtained as a single chip, for example, 0.5 m on a side in plan view.
Although it is a square shape of m, in the actual manufacturing,
It is obtained by collectively forming a wafer having a predetermined area as a wafer having a predetermined area by the MOCVD method and then dividing the wafer into the single chips by dicing.

【0021】そして、上記N型半導体層4におけるGa
N層41のエッチングにより除去した露出表面部にN側
電極9が形成され、P型半導体層6におけるGaN層の
表面部にP側電極10が形成されている。なお、このN
側電極9とP側電極10とは、概略的には、図2に示す
ような平面視形状とされた上で配設されている。
Then, Ga in the N-type semiconductor layer 4 is
The N-side electrode 9 is formed on the exposed surface portion of the N layer 41 removed by etching, and the P-side electrode 10 is formed on the surface portion of the GaN layer in the P-type semiconductor layer 6. In addition, this N
The side electrode 9 and the P-side electrode 10 are roughly arranged in a plan view shape as shown in FIG.

【0022】一方、図3に示すように、この第1実施例
に係る半導体発光素子1のサブマウント部材11は、不
透明の導電性を有するシリコン基板12の表面にSiO
2 でなる絶縁酸化皮膜13を形成し、その中央部をエッ
チングで除去して補助P側電極層14を形成し、かつそ
の外周側における上記酸化皮膜13の表面部に補助N側
電極層15を形成したものである。この双方の補助電極
層14,15は、AuとSnとの合金あるいはインジウ
ム系の合金を使用して蒸着により形成したものであり、
後述するように電極とハンダ用メタルとを兼用するもの
である。
On the other hand, as shown in FIG. 3, the submount member 11 of the semiconductor light emitting device 1 according to the first embodiment has SiO 2 on the surface of an opaque conductive silicon substrate 12.
The insulating oxide film 13 of 2 is formed, the central portion thereof is removed by etching to form the auxiliary P-side electrode layer 14, and the auxiliary N-side electrode layer 15 is formed on the outer peripheral surface of the oxide film 13. It was formed. Both auxiliary electrode layers 14 and 15 are formed by vapor deposition using an alloy of Au and Sn or an indium alloy.
As will be described later, the electrode also serves as a solder metal.

【0023】そして、上記補助P側電極層14と補助N
側電極層15とは、概略的には、図4に示すような平面
視形状とされた上で配設されている。加えて、同図に示
すように、シリコン基板12の一側部には、2箇所の補
助N側電極層15に導通される帯状の補助N側電極層1
5aが、上記絶縁酸化皮膜13の表面部に形成されてい
る。
Then, the auxiliary P-side electrode layer 14 and the auxiliary N
The side electrode layer 15 is generally arranged in a plan view shape as shown in FIG. In addition, as shown in the same figure, on one side of the silicon substrate 12, a strip-shaped auxiliary N-side electrode layer 1 that is electrically connected to the auxiliary N-side electrode layers 15 at two locations.
5a is formed on the surface of the insulating oxide film 13.

【0024】次に、上記の構成を備えた素子本体2とサ
ブマウント部材11とを接合一体化させて半導体発光素
子1を製造する方法、ならびにこれによって得られる半
導体発光素子1の構成について説明する。
Next, a method for manufacturing the semiconductor light emitting device 1 by joining and integrating the device body 2 and the submount member 11 having the above-described structures, and the structure of the semiconductor light emitting device 1 obtained by the method will be described. .

【0025】まず、上記素子本体2とサブマウント部材
11とを別々に製作した後に、この両者の表面側どうし
を対向させて配置し、素子本体2のN側電極9およびP
側電極10に対してそれぞれ、サブマウント部材11の
補助N側電極層15および補助P側電極層14をハンダ
付けする。このはんだ付け作業は、上記サブマウント部
材11の双方の補助電極層15,14がハンダ用メタル
を兼用していることから、これらの補助電極層15,1
4を適宜溶融固化させることにより行われる。
First, after the element body 2 and the submount member 11 are separately manufactured, the surface sides of the element body 2 and the submount member 11 are opposed to each other, and the N-side electrodes 9 and P of the element body 2 are arranged.
The auxiliary N-side electrode layer 15 and the auxiliary P-side electrode layer 14 of the submount member 11 are soldered to the side electrodes 10, respectively. In this soldering work, since both auxiliary electrode layers 15 and 14 of the submount member 11 also serve as soldering metal, these auxiliary electrode layers 15 and 1 are used.
4 is melted and solidified appropriately.

【0026】この結果、図5に示すように、素子本体2
のサファイア基板3の裏面3aから矢印で示すように光
が発せられる状態になる。加えて、上記素子本体2のP
側電極10はサブマウント部材11のシリコン基板12
に導通状態となる一方、素子本体2のN側電極9は上記
シリコン基板12に対して絶縁状態となる。なお、図1
に示す素子本体2の積層部7の高さ寸法は、図5に示す
積層部7の高さ寸法と比較して、説明の便宜上、長尺に
なっている。
As a result, as shown in FIG.
Light is emitted from the back surface 3a of the sapphire substrate 3 as indicated by an arrow. In addition, P of the element body 2
The side electrode 10 is the silicon substrate 12 of the submount member 11.
On the other hand, the N-side electrode 9 of the element body 2 is electrically insulated from the silicon substrate 12 while being electrically conductive. Note that FIG.
The height dimension of the laminated portion 7 of the element body 2 shown in FIG. 2 is longer than the height dimension of the laminated portion 7 shown in FIG. 5 for convenience of explanation.

【0027】そして、上記のようにして得られた半導体
発光素子1をリードフレーム16上に搭載するには、同
図に示すように、リードフレーム16のP側端子部16
aの上面部に上記サブマウント部材11の下面が導通状
態になるようにボンディングされるとともに、サブマウ
ント部材11の上記帯状の補助N側電極層15aとリー
ドフレーム16のN側端子部16bとの間にワイヤボン
ディングが施される。
To mount the semiconductor light emitting device 1 obtained as described above on the lead frame 16, as shown in FIG.
The upper surface of a is bonded so that the lower surface of the submount member 11 is conductive, and the strip-shaped auxiliary N-side electrode layer 15a of the submount member 11 and the N-side terminal portion 16b of the lead frame 16 are connected. Wire bonding is performed between them.

【0028】これにより、上記素子本体2のP側電極1
0は、導電性シリコン基板12を通じてリードフレーム
16のP側端子部16aに導通状態とされ、かつ上記素
子本体2のN側電極9は、ワイヤ17を通じてリードフ
レーム16のN側端子部16bに導通状態とされる。こ
の後は、上記半導体発光素子1の外周部を樹脂封止する
ことなどによって、青色発光用のLEDランプが得られ
る。
As a result, the P-side electrode 1 of the element body 2 is
0 is electrically connected to the P-side terminal portion 16a of the lead frame 16 through the conductive silicon substrate 12, and the N-side electrode 9 of the element body 2 is electrically connected to the N-side terminal portion 16b of the lead frame 16 through the wire 17. To be in a state. After that, by sealing the outer peripheral portion of the semiconductor light emitting element 1 with a resin or the like, an LED lamp for blue light emission is obtained.

【0029】このような構成とすることにより、素子本
体2の透明サファイア基板3の裏面3aにおけるN側電
極9の形成箇所以外の領域が発光領域となり、上記裏面
3aの全面積の約75%が発光領域として利用される。
したがって、従来のように電極による発光阻害が激減さ
れ、十分な発光量および高い明度を有する発光デバイス
が得られることになる。
With such a structure, a region other than the location of the N-side electrode 9 on the back surface 3a of the transparent sapphire substrate 3 of the element body 2 becomes a light emitting region, and about 75% of the total area of the back surface 3a is formed. It is used as a light emitting area.
Therefore, the light emission inhibition due to the electrodes is drastically reduced as in the conventional case, and a light emitting device having a sufficient light emission amount and high brightness can be obtained.

【0030】加えて、上記素子本体2の発光層5から下
方に向かって発せられた光は、不透明のサブマウント部
材11(補助電極層14,15)で反射された後、サフ
ァイア基板3の裏面3aから外方に向かって照射される
ことになるので、光の利用効率が向上するという利点も
得られる。
In addition, the light emitted downward from the light emitting layer 5 of the element body 2 is reflected by the opaque submount member 11 (auxiliary electrode layers 14 and 15) and then the back surface of the sapphire substrate 3. Since the light is emitted outward from 3a, there is an advantage that the utilization efficiency of light is improved.

【0031】さらに、上記サブマウント部材11を使用
したことにより、P側電極10に対するワイヤボンディ
ングが不要になり、結線作業の簡便化ならびに製作容易
化が図られることになる。
Further, since the submount member 11 is used, wire bonding to the P-side electrode 10 is not required, so that the connection work can be simplified and the production can be facilitated.

【0032】次に、本願発明の第2実施例を、図6、
7、8を参照しつつ説明する。なお、以下の第2実施例
の説明に際して、上述の第1実施例と共通の構成要件に
ついては同一符号を付してその説明を省略する。
Next, a second embodiment of the present invention will be described with reference to FIG.
This will be described with reference to 7 and 8. In the following description of the second embodiment, constituent elements common to those of the above-described first embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0033】この第2実施例に係る半導体発光素子1が
上述の第1実施例と異なる点は、図6および図7に示す
ように、素子本体2の表面全域をCVD法を用いてSi
2やSi3 4 等からなる絶縁層18で覆うととも
に、この絶縁層18にN側電極9およびP側電極10に
それぞれ通じる貫通孔19,20を穿設し、かつ上記絶
縁層18の表面部にAuとSnとの合金あるいはインジ
ウム系の合金等でなる金属層21,22を相互に独立し
て形成した点にある。この場合、上記各貫通孔19,2
0には、上記各金属層21,22が埋設されることにな
るので、上記一方の金属層21は上記N側電極9に導通
した状態になり、他方の金属層22は上記P側電極10
に導通した状態になる。
The semiconductor light emitting device 1 according to the second embodiment is different from the first embodiment described above in that, as shown in FIGS. 6 and 7, the entire surface of the device body 2 is formed by the Si method using the CVD method.
The insulating layer 18 made of O 2 , Si 3 N 4 or the like is covered, and the insulating layer 18 is provided with through holes 19 and 20 communicating with the N-side electrode 9 and the P-side electrode 10, respectively. The point is that the metal layers 21 and 22 made of an alloy of Au and Sn or an indium alloy are independently formed on the surface portion. In this case, the through holes 19 and 2
Since the respective metal layers 21 and 22 are embedded in 0, the one metal layer 21 is brought into conduction with the N-side electrode 9 and the other metal layer 22 is connected to the P-side electrode 10.
It will be in the state of conducting to.

【0034】なお、サブマウント部材11の構成は、図
7に示す各金属層21,22の平面視における形状およ
び配設状態に対応して補助N側電極層15と補助P側電
極層14とが形成されており、その他の部分、たとえば
補助N側電極層15がSiO 2 等の絶縁性皮膜13を介
して形成されている点などについては上述の第1実施例
と同一の構成である。
The structure of the submount member 11 is as shown in FIG.
7 and the shape of each metal layer 21 and 22 in plan view
And the auxiliary N-side electrode layer 15 and the auxiliary P-side electrode depending on the arrangement state.
The polar layer 14 is formed, and other portions, for example,
The auxiliary N-side electrode layer 15 is SiO 2Insulating film 13 such as
Regarding the points which are formed by
It has the same configuration as.

【0035】そして、上記素子本体2とサブマウント部
材11とは、両者の表面側どうしが対向配置された状態
で、図8に示すように各金属層21,22と各補助電極
層15,14とが接合一体化されることにより、半導体
発光素子1が得られる。また、図示の構成によっても、
上記素子本体2のP側電極10はリードフレーム16の
P側端子部16aに導電性シリコン基板12を介して導
通状態とされ、かつ上記素子本体2のN側電極9はリー
ドフレーム16のN側端子部16bにワイヤ17を介し
て導通状態とされる。
As shown in FIG. 8, the element body 2 and the submount member 11 are arranged so that their front surface sides face each other, and the metal layers 21 and 22 and the auxiliary electrode layers 15 and 14 are arranged as shown in FIG. The semiconductor light emitting device 1 is obtained by joining and integrating and. In addition, according to the illustrated configuration,
The P-side electrode 10 of the element body 2 is electrically connected to the P-side terminal portion 16a of the lead frame 16 via the conductive silicon substrate 12, and the N-side electrode 9 of the element body 2 is on the N side of the lead frame 16. The terminal portion 16b is electrically connected via the wire 17.

【0036】そして、この場合には、各金属層21,2
2と各補助電極層15,14との位置合わせが容易に行
えることから、これらの両層の接合作業(ハンダ付け作
業)、ひいては素子本体2とサブマウント部材11との
接合作業が極めて簡便に行えることになる。
In this case, the metal layers 21 and 2 are
Since the position of 2 and each auxiliary electrode layer 15 and 14 can be easily aligned, the joining work (soldering work) of these two layers, and by extension, the joining work of the element main body 2 and the submount member 11, is extremely simple. You can do it.

【0037】また、この第2実施例によっても、上記第
1実施例と同様に、十分な発光量を確保できることは言
うまでもない。
It is needless to say that the second embodiment can secure a sufficient amount of light emission as in the first embodiment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の第1実施例に係る半導体発光素子の
構成要素である素子本体を示す概略縦断正面図である。
FIG. 1 is a schematic vertical sectional front view showing an element body which is a constituent element of a semiconductor light emitting element according to a first embodiment of the present invention.

【図2】上記第1実施例に係る素子本体の概略平面図で
ある。
FIG. 2 is a schematic plan view of the element body according to the first embodiment.

【図3】上記第1実施例に係る半導体発光素子の構成要
素であるサブマウント部材の概略縦断正面図である。
FIG. 3 is a schematic vertical sectional front view of a submount member which is a constituent element of the semiconductor light emitting device according to the first embodiment.

【図4】上記第1実施例に係るサブマウント部材の概略
平面図である。
FIG. 4 is a schematic plan view of a submount member according to the first embodiment.

【図5】上記第1実施例に係る半導体発光素子の全体構
成ならびにその被マウント部材への取り付け状態を示す
概略縦断側面図である。
FIG. 5 is a schematic vertical cross-sectional side view showing an overall configuration of the semiconductor light emitting device according to the first embodiment and a mounting state thereof to a mounted member.

【図6】本願発明の第2実施例に係る半導体発光素子の
構成要素である素子本体を示す概略縦断正面図である。
FIG. 6 is a schematic vertical sectional front view showing an element body which is a constituent element of a semiconductor light emitting element according to a second embodiment of the present invention.

【図7】上記第2実施例に係る素子本体の概略平面図で
ある。
FIG. 7 is a schematic plan view of an element body according to the second embodiment.

【図8】上記第2実施例に係る半導体発光素子の全体構
成ならびにその被マウント部材への取り付け状態を示す
概略縦断側面図である。
FIG. 8 is a schematic vertical cross-sectional side view showing the overall configuration of the semiconductor light emitting device according to the second embodiment and its attachment state to a mounted member.

【図9】従来の半導体発光素子の全体構成ならびにその
被マウント部材への取り付け状態を示す概略縦断側面図
である。
FIG. 9 is a schematic vertical cross-sectional side view showing an entire configuration of a conventional semiconductor light emitting element and a mounting state of the semiconductor light emitting element on a mounted member.

【図10】従来の半導体発光素子の概略平面図である。FIG. 10 is a schematic plan view of a conventional semiconductor light emitting device.

【符号の説明】[Explanation of symbols]

1 半導体発光素子 2 素子本体 3 透明絶縁性基板(サファイア基板) 4 N型半導体層 5 発光層 6 P型半導体層 9 N側電極 10 P側電極 11 サブマウント部材 12 導電性基板(シリコン基板) 14 補助P側電極層 15 補助N側電極層 16 リードフレーム(被マウント部材) 1 Semiconductor light emitting element 2 element body 3 Transparent insulating substrate (sapphire substrate) 4 N-type semiconductor layer 5 Light emitting layer 6 P-type semiconductor layer 9 N side electrode 10 P side electrode 11 Submount member 12 Conductive substrate (silicon substrate) 14 Auxiliary P-side electrode layer 15 Auxiliary N-side electrode layer 16 Lead frame (mounted member)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体発光素子の被マウント部材へのマ
ウント方法であって、 上記半導体発光素子は、透明の絶縁性基板の表面上にN
型半導体層、発光層、およびP型半導体層を形成し、か
つ上記P型半導体層の表面にP側電極が形成され、上記
N型半導体層における露出表面部にN側電極を形成して
構成される素子本体と、導電性基板の表面に対して絶縁
状態となるように形成された補助N側電極層および導通
状態となるように形成された補助P側電極層を有するサ
ブマウント部材と、を備えるとともに、上記サブマウン
ト部材と上記素子本体とが、上記サブマウント部材と上
記素子本体との双方の表面側を相互に対向させるととも
に、上記補助N側電極層と上記N側電極との間および上
記補助P側電極層と上記P側電極との間がそれぞれ導通
状態となるように一体化させられて構成されており、 上記のように構成された半導体発光素子を被マウント部
材にマウントすることを特徴とする、半導体発光素子の
マウント方法。
1. A method of mounting a semiconductor light emitting element on a mount member, wherein the semiconductor light emitting element is formed on a surface of a transparent insulating substrate with N
-Type semiconductor layer, light-emitting layer, and P-type semiconductor layer are formed, a P-side electrode is formed on the surface of the P-type semiconductor layer, and an N-side electrode is formed on an exposed surface portion of the N-type semiconductor layer. And a submount member having an auxiliary N-side electrode layer formed so as to be insulated from the surface of the conductive substrate and an auxiliary P-side electrode layer formed so as to be in a conductive state, And the submount member and the element body face each other on the surface sides of the submount member and the element body, and between the auxiliary N-side electrode layer and the N-side electrode. And the auxiliary P-side electrode layer and the P-side electrode are integrally formed so as to be electrically connected to each other, and the semiconductor light emitting device configured as described above is mounted on a mounted member. This A method for mounting a semiconductor light emitting device, comprising:
【請求項2】 上記半導体発光素子における上記サブマ
ウント部材の補助N側電極層および補助P側電極層の表
面部分は絶縁層で覆われており、この絶縁層には上記双
方の補助電極層にそれぞれ独立して通じる各貫通孔が穿
設され、かつ上記絶縁層の表面側には各貫通孔を介して
上記双方の補助電極層にそれぞれ導通状態となる各付着
用金属層が相互に独立して形成されているとともに、こ
の各付着用金属層は、上記素子本体の双方の電極に対し
て接合付着された状態となるように構成されている、請
求項1に記載の半導体発光素子のマウント方法。
2. The surface portions of the auxiliary N-side electrode layer and the auxiliary P-side electrode layer of the submount member in the semiconductor light emitting element are covered with an insulating layer, and the insulating layer covers both of the auxiliary electrode layers. Each through-hole communicating with each other is bored, and each metal layer for adhesion, which is electrically connected to both of the auxiliary electrode layers, is independently formed on the surface side of the insulating layer through each through-hole. 2. The mount for a semiconductor light emitting device according to claim 1, wherein the mounting metal layers are formed so as to be in a state of being bonded and attached to both electrodes of the device body. Method.
JP2002293997A 2002-10-07 2002-10-07 Mounting method of semiconductor light emitting device Expired - Fee Related JP3938350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293997A JP3938350B2 (en) 2002-10-07 2002-10-07 Mounting method of semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293997A JP3938350B2 (en) 2002-10-07 2002-10-07 Mounting method of semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19422494A Division JP3627822B2 (en) 1994-08-11 1994-08-18 Semiconductor light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003142736A true JP2003142736A (en) 2003-05-16
JP3938350B2 JP3938350B2 (en) 2007-06-27

Family

ID=19197230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293997A Expired - Fee Related JP3938350B2 (en) 2002-10-07 2002-10-07 Mounting method of semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3938350B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7671468B2 (en) 2005-09-30 2010-03-02 Tdk Corporation Light emitting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7671468B2 (en) 2005-09-30 2010-03-02 Tdk Corporation Light emitting apparatus

Also Published As

Publication number Publication date
JP3938350B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
JP3627822B2 (en) Semiconductor light emitting device and manufacturing method thereof
US10825962B2 (en) Thin film light emitting diode
US5557115A (en) Light emitting semiconductor device with sub-mount
JP4325412B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
KR102086365B1 (en) Semiconductor light emitting device
JP2021534573A (en) Luminescent device
US20120313115A1 (en) Light emitter device packages, modules and methods
US20100320491A1 (en) Semiconductor light emitting device and method of fabricating the same
JP2001217461A (en) Compound light-emitting device
US20020117676A1 (en) Light-emitting diode and its manufacturing method
JP2007335462A (en) Semiconductor compound element, and its fabrication process
JPH11354836A (en) Full color semiconductor light emitting device
JP2003031852A (en) Semiconductor light emitting device and its manufacturing method
JP3938337B2 (en) Semiconductor light emitting device and manufacturing method thereof
JPH10321915A (en) Light-emitting semiconductor element
JP3938350B2 (en) Mounting method of semiconductor light emitting device
KR100407773B1 (en) GaN LIGHT EMITTING DEVICE AND THE PACKAGE THEREOF
US12107201B2 (en) Semiconductor light emitting device and method of manufacturing the same
KR101115533B1 (en) Flip chip Light-emitting device and Method of manufacturing the same
JP2004200277A (en) Compound light emitting element
KR20230020470A (en) Light emitting device and method of manufacturing the same
JP2006093295A (en) Semiconductor device and its manufacturing method
KR20140013688A (en) Semiconductor light emitting device and method of manufacturing the same
JP2000244011A (en) Semiconductor element
KR20140013690A (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060119

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees