[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003037198A - Package for housing semiconductor element - Google Patents

Package for housing semiconductor element

Info

Publication number
JP2003037198A
JP2003037198A JP2001224254A JP2001224254A JP2003037198A JP 2003037198 A JP2003037198 A JP 2003037198A JP 2001224254 A JP2001224254 A JP 2001224254A JP 2001224254 A JP2001224254 A JP 2001224254A JP 2003037198 A JP2003037198 A JP 2003037198A
Authority
JP
Japan
Prior art keywords
copper
semiconductor element
heat dissipation
composite material
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001224254A
Other languages
Japanese (ja)
Inventor
Seigo Matsuzono
清吾 松園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001224254A priority Critical patent/JP2003037198A/en
Publication of JP2003037198A publication Critical patent/JP2003037198A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that it is difficult for the package for housing a semiconductor element comprising a conventional heatsink base to reliably disperse heat since the thermal conductivity of the heatsink base is low. SOLUTION: The package for housing a semiconductor element comprises a heatsink base 3 provided with a placement part on which a semiconductor element 4 is placed, an insulating frame 1 fitted to the upper surface, and a lid 2 fitted to the upper surface of the insulating frame 1. The heatsink base 3 comprises a composite material layer 3a in which the porous body of tungsten or molybdenum is impregnated with copper and a copper layer 3b formed on its upper and lower surfaces. 30 μm<=t2<=300 μm while t2<=0.15×t1, where t1 is thickness of the composite material layer 3a and t2 is thickness of the copper layer 3b. Thus, the high heat of the semiconductor element 4 is efficiently dispersed and the thermal expansion factor of the heat sink base 3 is allowed to approach the insulating frame 1, for reliable junction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体素子収納用パ
ッケージに関し、特にガリウム砒素(GaAs)・イン
ジウム燐(InP)・シリコン(Si)等の高発熱の半
導体素子が搭載される放熱特性に優れた高信頼性用途の
半導体素子収納用パッケージに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a package for accommodating semiconductor elements, and more particularly to a semiconductor element package having high heat generation such as gallium arsenide (GaAs), indium phosphide (InP), silicon (Si), etc. The present invention relates to a semiconductor element housing package for high reliability use.

【0002】[0002]

【従来の技術】従来、半導体素子を収容するための半導
体素子収納用パッケージは、一般に酸化アルミニウム質
焼結体・ムライト質焼結体・ガラスセラミックス焼結体
等の電気絶縁材料からなり、上面に半導体素子を収容す
るための凹部を有する絶縁基体と、この絶縁基体の凹部
から外表面にかけて被着導出されたタングステン・モリ
ブデン・マンガン・銅・銀等の金属粉末から成る複数個
の配線導体と、蓋体とから構成されており、絶縁基体の
凹部底面に半導体素子をガラス・樹脂・ロウ材等の接着
剤を介して接着固定するとともにこの半導体素子の各電
極をボンディングワイヤを介して配線導体に電気的に接
続し、しかる後、絶縁基体に蓋体をガラス・樹脂・ロウ
材等から成る封止材を介して接合させ、絶縁基体と蓋体
とからなる容器内部に半導体素子等の発熱部品を収容す
ることによって製品としての半導体装置となる。
2. Description of the Related Art Conventionally, a semiconductor element housing package for housing a semiconductor element is generally made of an electrically insulating material such as an aluminum oxide sintered body, a mullite sintered body, a glass ceramic sintered body, and the like. An insulating base having a recess for accommodating a semiconductor element, and a plurality of wiring conductors made of metal powder such as tungsten, molybdenum, manganese, copper, and silver deposited and led from the recess of the insulating base to the outer surface, It is composed of a lid and a semiconductor element is adhered and fixed to the bottom surface of the recess of the insulating substrate with an adhesive such as glass, resin or brazing material, and each electrode of this semiconductor element is connected to a wiring conductor through a bonding wire. After electrically connecting and then joining the lid to the insulating base through a sealing material made of glass, resin, brazing material, etc., inside the container consisting of the insulating base and the lid A semiconductor device as a product by housing the heat-generating component such as a semiconductor element.

【0003】この従来の半導体素子収納用パッケージ
は、絶縁基体を構成する酸化アルミニウム質焼結体の熱
伝導率が低い(約15W/mK)ため、絶縁基体に収容さ
れる半導体素子が作動時に多量の熱を発生した場合、そ
の熱を大気中に良好に放散させることができず、その結
果、半導体素子はその発生する熱によって高温となリ、
半導体素子に熱破壊を起こさせたり、特性に熱変化を与
え誤動作を生じるという欠点を有していた。
In this conventional package for accommodating semiconductor elements, since the aluminum oxide sintered body constituting the insulating base has a low thermal conductivity (about 15 W / mK), a large number of semiconductor elements are housed in the insulating base during operation. When the heat is generated, the heat cannot be satisfactorily dissipated into the atmosphere, and as a result, the semiconductor element is heated to a high temperature due to the generated heat,
The semiconductor device has the drawbacks of causing thermal damage to the semiconductor element and causing thermal changes in characteristics to cause malfunction.

【0004】そこで、高発熱の半導体素子を収容する半
導体素子収納用パッケージにおいては、絶縁基体を介し
て半導体素子の熱を良好に放散させるために、銅−タン
グステン・銅−モリブデンといった複合金属材料からな
る放熱部品が半導体素子の真下に位置するように設けら
れている。
Therefore, in a semiconductor element housing package for housing a semiconductor element with high heat generation, a composite metal material such as copper-tungsten or copper-molybdenum is used in order to dissipate the heat of the semiconductor element well through the insulating substrate. The heat dissipation component is provided so as to be located directly below the semiconductor element.

【0005】例えば、銅−タングステン複合材料からな
る放熱部品はタングステンと銅がマトリクス状に構成さ
れているが、銅−タングステン複合材料の熱伝導率は比
率により異なるが、一般的に150乃至200W/mK程度で
ある。
For example, a heat dissipation component made of a copper-tungsten composite material is composed of tungsten and copper in a matrix, and the thermal conductivity of the copper-tungsten composite material varies depending on the ratio, but is generally 150 to 200 W / It is about mK.

【0006】しかしながら、パワーICや高周波トラン
ジスタ等の大電流を必要とする半導体素子の発展に伴っ
て、半導体素子の発熱量は年々増加する傾向にあり、現
在では250W/mK以上の熱伝導率を持つ放熱部品が求
められている。
However, with the development of semiconductor elements such as power ICs and high frequency transistors that require a large current, the amount of heat generated by the semiconductor elements tends to increase year by year, and at present, a thermal conductivity of 250 W / mK or more is obtained. There is a demand for a heat dissipation component.

【0007】この問題を解決するために、特開平6−26
8115号公報には、半導体装置用放熱基板として、モリブ
デンから成る第1の部材(基材)と銅からなる第2の部
材とのクラッド材でC.M.C.(Cu/Mo/Cu)
構造のものが開示されている。このC.M.C.構造の
クラッド材からなる半導体装置用放熱基板の熱伝導率は
200W/mK以上と非常に高い。
To solve this problem, Japanese Patent Laid-Open No. 6-26
In Japanese Patent Laid-Open No. 8115, a clad material of a first member (base material) made of molybdenum and a second member made of copper is used as a heat dissipation substrate for a semiconductor device. M. C. (Cu / Mo / Cu)
Structures are disclosed. This C. M. C. The thermal conductivity of the heat dissipation substrate for semiconductor devices made of the clad material of the structure is
Extremely high at over 200 W / mK.

【0008】また、特開平6−268117号公報には、タン
グステン−銅合金およびモリブデン−銅合金からなる群
より選ばれた少なくとも一種の金属材料からなる第1の
部材(基材)の両主面に銅を主材料とする金属材料から
なる第2の部材が熱間一軸加圧法または圧延法のいずれ
かで接合された半導体装置用放熱基板が提案されてお
り、この半導体装置用放熱基板では250W/mK以上の
熱伝導率を達成している。
Further, in Japanese Patent Laid-Open No. 6-268117, both main surfaces of a first member (base material) made of at least one metal material selected from the group consisting of tungsten-copper alloy and molybdenum-copper alloy. There is proposed a heat dissipation board for a semiconductor device in which a second member made of a metal material having copper as a main material is joined by either a hot uniaxial pressing method or a rolling method. / MK or higher thermal conductivity is achieved.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、特開平
6−268115号公報や特開平6−268117号公報に開示され
た半導体装置用放熱基板は、熱伝導率が約250W/mK
と非常に高いが、製造方法として圧延法や熱間一軸加工
法により基材層と銅層とを張り合せているため、これを
半導体素子収納用パッケージの放熱基体として絶縁枠体
を接合すると、接合時の熱応力により基材層と銅層との
界面にクラックが発生し易いという問題点がある。
However, the heat dissipation substrate for a semiconductor device disclosed in JP-A-6-268115 and JP-A-6-268117 has a thermal conductivity of about 250 W / mK.
Although it is very high, since the base material layer and the copper layer are laminated by a rolling method or a hot uniaxial processing method as a manufacturing method, when the insulating frame is joined as a heat dissipation base of the package for storing a semiconductor element, There is a problem that cracks are likely to occur at the interface between the base material layer and the copper layer due to thermal stress at the time of joining.

【0010】また、銅層と基材層との間に界面が存在す
るために、両層の接触抵抗により、熱伝導率が低下する
こととなるといった問題点がある。
Further, since there is an interface between the copper layer and the base material layer, there is a problem that the thermal conductivity is lowered due to the contact resistance of both layers.

【0011】本発明は上記従来の技術における問題点に
鑑み案出されたものであり、その目的は、放熱基体を銅
−タングステンまたは銅−モリブデンを溶浸法により両
面を銅層で形成することにより、半導体素子の発生した
熱を絶縁体に良好に放散させることができ、かつ、銅層
を熱間一軸法や圧延等の張合せではない溶浸法による銅
層を形成しているために、絶縁体と放熱基体を強固に信
頼性よく接合させることが可能な半導体素子収納用パッ
ケージを提案することにある。
The present invention has been devised in view of the above-mentioned problems in the prior art, and an object thereof is to form a heat dissipation substrate with copper layers on both sides by an infiltration method of copper-tungsten or copper-molybdenum. As a result, the heat generated by the semiconductor element can be satisfactorily dissipated to the insulator, and the copper layer is formed by the infiltration method that is not the hot uniaxial method or the lamination such as rolling. Another object of the present invention is to propose a package for accommodating a semiconductor element capable of firmly and reliably joining an insulator and a heat dissipation base.

【0012】[0012]

【課題を解決するための手段】本発明の半導体素子収納
用パッケージは、上面に半導体素子が載置される載置部
を有する放熱基体と、該放熱基体の上面に前記載置部を
囲繞するように取着された絶縁枠体と、該絶縁枠体の上
面に取着される蓋体とから成る半導体素子収納用パッケ
ージであって、前記放熱基体は、タングステンまたはモ
リブデンの多孔質体に銅を含浸させて成る複合材料層と
その上下面に形成された銅層とから成るとともに、前記
複合材料層の厚みをt1、前記銅層の厚みをt2とした
とき、30μm≦t2≦300μmかつt2≦0.15×t1で
あることを特徴とするものである。
A package for accommodating a semiconductor element according to the present invention surrounds a heat dissipating base having a mounting portion on which a semiconductor element is mounted and an upper surface of the heat dissipating base surrounding the mounting portion. A semiconductor element housing package comprising an insulating frame body attached as described above and a lid body attached to the upper surface of the insulating frame body, wherein the heat dissipation base is a porous body of tungsten or molybdenum and copper. 30 μm ≦ t2 ≦ 300 μm and t2, where a composite material layer impregnated with and copper layers formed on the upper and lower surfaces thereof are used and the thickness of the composite material layer is t1 and the thickness of the copper layer is t2. It is characterized in that ≦ 0.15 × t1.

【0013】また、本発明の半導体素子収納用パッケー
ジは、上記構成において、前記複合材料層は、タングス
テンまたはモリブデンの多孔質体に10乃至25重量%の銅
を含浸させて成ることを特徴とするものである。
In the package for storing a semiconductor element of the present invention, in the above structure, the composite material layer is formed by impregnating a porous body of tungsten or molybdenum with 10 to 25% by weight of copper. It is a thing.

【0014】また、本発明の半導体素子収納用パッケー
ジは、上記構成において、前記絶縁枠体は、熱膨張係数
が6乃至8ppm/℃(室温〜800℃)のセラミックス
から成ることを特徴とするものである。
Further, in the package for storing a semiconductor element of the present invention, in the above structure, the insulating frame is made of ceramics having a coefficient of thermal expansion of 6 to 8 ppm / ° C. (room temperature to 800 ° C.). Is.

【0015】本発明の半導体素子収納用パッケージによ
れば、放熱基体が、タングステンまたはモリブデンの多
孔質体に10乃至25重量%の銅を含浸させて成る複合材料
層とその上下面に形成された銅層とから成るとともに、
複合材料層の厚みをt1、銅層の厚みをt2としたと
き、30μm≦t2≦300μmかつt2≦0.15×t1であ
ることから、タングステンまたはモリブデンの多孔質体
に銅を含浸させて成る複合材料層のみで構成された放熱
基体に比べて、これに載置される半導体素子で発生した
熱を、まず表面近傍で銅層によって面内の水平方向によ
り多く逃がすことができるとともに、銅層と複合材料層
中の銅とは連続的につながっているため熱伝導の損失が
小さくなり、その結果、複合材料層内により多く熱を逃
がすことができる。また、複合材料層内は、銅−タング
ステン材料であるので200W/mK以上の熱伝導率が確
保されている。これによって、放熱基体の熱伝導率を25
0W/mK以上と極めて高いものとすることが可能とな
る。
According to the package for housing a semiconductor device of the present invention, the heat dissipation substrate is formed on the composite material layer formed by impregnating a porous body of tungsten or molybdenum with 10 to 25% by weight of copper and the upper and lower surfaces thereof. It consists of a copper layer and
Assuming that the thickness of the composite material layer is t1 and the thickness of the copper layer is t2, 30 μm ≦ t2 ≦ 300 μm and t2 ≦ 0.15 × t1. Therefore, a composite material obtained by impregnating a porous body of tungsten or molybdenum with copper. Compared to a heat dissipation substrate composed of only layers, the heat generated in the semiconductor element mounted on the heat dissipation substrate can first be dissipated in the horizontal direction in the plane by the copper layer in the vicinity of the surface, and at the same time, combined with the copper layer. Since it is continuously connected to copper in the material layer, the loss of heat conduction is small, and as a result, more heat can be released into the composite material layer. Further, since the inside of the composite material layer is a copper-tungsten material, a thermal conductivity of 200 W / mK or more is secured. As a result, the thermal conductivity of the heat dissipation base is reduced to 25
It is possible to make it extremely high, such as 0 W / mK or more.

【0016】また、複合材料層の上下面に形成された銅
層は、複合材料層をタングステンまたはモリブデンに銅
を溶浸法で含浸させる際に同時に形成することができる
ことから、熱間一軸法や圧延法で貼り合わせた銅層と異
なり、放熱基体に絶縁枠体を接合する時の熱応力により
銅層と複合材料層との界面にクラックが発生することは
ほとんどなく、その結果、放熱基体に載置されてパッケ
ージ内部に収容される半導体素子を長期にわたり正常
に、かつ安定に作動させることが可能となる。
The copper layers formed on the upper and lower surfaces of the composite material layer can be formed at the same time when the composite material layer is impregnated with tungsten or molybdenum by the infiltration method. Unlike the copper layer bonded by the rolling method, cracks hardly occur at the interface between the copper layer and the composite material layer due to the thermal stress when the insulating frame is joined to the heat dissipation base, and as a result, the heat dissipation base is It is possible to normally and stably operate the semiconductor element that is placed and accommodated in the package for a long period of time.

【0017】また、放熱基体が、タングステンまたはモ
リブデンの多孔質体に銅を含浸させて成る複合材料層と
その上下面に形成された銅層とから成るとともに、複合
材料層の厚みをt1、銅層の厚みをt2としたとき、30
μm≦t2≦300μmかつt2≦0.15×t1であること
から、放熱基体の上面に設けられた半導体素子の載置部
では熱伝導率とともに熱膨張係数も大きい銅の占める割
合が多いにもかかわらず、放熱基体の熱膨張係数を絶縁
枠体の熱膨張係数に近づけることが可能となる。
The heat dissipating base is composed of a composite material layer formed by impregnating a porous body of tungsten or molybdenum with copper, and copper layers formed on the upper and lower surfaces of the composite material layer. When the layer thickness is t2, 30
Since μm ≦ t2 ≦ 300 μm and t2 ≦ 0.15 × t1, copper having a large coefficient of thermal expansion as well as thermal conductivity occupies a large proportion in the mounting portion of the semiconductor element provided on the upper surface of the heat dissipation base. It is possible to bring the thermal expansion coefficient of the heat dissipation base close to that of the insulating frame.

【0018】特に、複合材料層をタングステンまたはモ
リブデンの多孔質体に10乃至25重量%の銅を含浸させて
成るものとしたときには、放熱基体の熱膨張係数は9.0
ppm/℃以下の値になるため、放熱基体と絶縁枠体と
を長期間にわたり良好に、かつ安定に接合させることが
可能となる。
In particular, when the composite material layer is formed by impregnating a porous body of tungsten or molybdenum with 10 to 25% by weight of copper, the thermal expansion coefficient of the heat dissipation substrate is 9.0.
Since the value is not more than ppm / ° C., the heat dissipation base and the insulating frame can be bonded to each other favorably and stably over a long period of time.

【0019】また、絶縁枠体を熱膨張係数が6乃至8p
pm/℃(室温〜800℃)のセラミックスから成るもの
としたときには、放熱基体の熱膨張係数をその絶縁枠体
の熱膨張係数の近傍の値にすることが可能となるので、
放熱基体と絶縁枠体とを長期間にわたり良好に、かつ安
定に接合させることが可能となる。
The thermal expansion coefficient of the insulating frame is 6 to 8 p.
When the ceramics of pm / ° C. (room temperature to 800 ° C.) are used, the thermal expansion coefficient of the heat dissipation base can be set to a value close to the thermal expansion coefficient of the insulating frame.
The heat dissipation base and the insulating frame can be bonded to each other satisfactorily and stably over a long period of time.

【0020】[0020]

【発明の実施の形態】以下、本発明を添付図面に基づき
詳細に説明する。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described below in detail with reference to the accompanying drawings.

【0021】図1は本発明の半導体素子収納用パッケー
ジの実施の形態の一例を示し、1は絶縁枠体、2は蓋
体、3は放熱基体であり、4は半導体素子である。放熱
基体3は上面の中央部に半導体素子4が載置される載置
部を有しており、絶縁枠体1は放熱基体3の上面に載置
部を囲繞するように取着されており、これら絶縁枠体1
と蓋体2と放熱基体3とで半導体素子4を収納する容器
が構成される。
FIG. 1 shows an example of an embodiment of a package for accommodating a semiconductor element of the present invention, in which 1 is an insulating frame, 2 is a lid, 3 is a heat dissipating base, and 4 is a semiconductor element. The heat dissipating base 3 has a mounting portion on which the semiconductor element 4 is mounted at the center of the upper surface, and the insulating frame 1 is attached to the upper surface of the heat dissipating base 3 so as to surround the mounting portion. , These insulation frames 1
The lid 2 and the heat dissipating base 3 constitute a container for housing the semiconductor element 4.

【0022】絶縁枠体1は酸化アルミニウム質焼結体・
ムライト質焼結体・ガラスセラミックス焼結体等の電気
絶縁材料であるセラミックスから成り、放熱基体3とロ
ウ材6を介して接着固定される。なお、ロウ付け用の金
属層(非図示)が絶縁枠体1の放熱基体3との接合部に
形成される。
The insulating frame 1 is an aluminum oxide sintered body.
It is made of ceramics, which is an electrically insulating material, such as a mullite sintered body and a glass ceramics sintered body, and is bonded and fixed to the heat dissipation base 3 and the brazing material 6. A metal layer (not shown) for brazing is formed at the joint of the insulating frame 1 with the heat dissipation base 3.

【0023】絶縁枠体1は、例えば酸化アルミニウム質
焼結体から成る場合、酸化アルミニウム粉末とホウ珪酸
ガラス等のガラス粉末とから成る原料粉末に適当な有機
バインダーや溶剤等を添加混合して泥漿物を作るととも
に、この泥漿物をドクターブレード法やカレンダーロー
ル法を採用することによってセラミックグリーンシート
(セラミック生シート)と成し、しかる後に、これらセ
ラミックグリーンシートに適当な打ち抜き加工を施すと
ともにこれを複数枚積層し、約1600℃の温度で焼成する
ことによって作製される。
When the insulating frame 1 is made of, for example, an aluminum oxide sintered body, a suitable organic binder, a solvent, etc. are added to and mixed with a raw material powder made of aluminum oxide powder and glass powder such as borosilicate glass. Along with making a product, this sludge is made into a ceramic green sheet (ceramic green sheet) by adopting a doctor blade method or a calender roll method, and then these ceramic green sheets are appropriately punched and It is produced by stacking a plurality of sheets and firing at a temperature of about 1600 ° C.

【0024】また、絶縁枠体1には、その内側の半導体
素子4の載置部を取り囲む部位から外表面にかけて導出
する配線導体8が形成されており、絶縁枠体1の内側に
露出する配線導体8の一端には半導体素子4の各電極が
ボンディングワイヤ5を介して電気的に接続される。
Further, the insulating frame 1 is provided with a wiring conductor 8 extending from a portion surrounding the mounting portion of the semiconductor element 4 inside to the outer surface, and the wiring exposed inside the insulating frame 1 is formed. Each electrode of the semiconductor element 4 is electrically connected to one end of the conductor 8 via a bonding wire 5.

【0025】配線導体8はタングステン・モリブデン等
の高融点金属から成り、タングステン・モリブデン等の
金属粉末に適当な有機バインダーや溶剤等を添加混合し
て得た金属ペーストを絶縁枠体1となるセラミックグリ
ーンシートに予め従来周知のスクリーン印刷法等によっ
て所定のパターンに印刷塗布しておくことによって、絶
縁枠体1の内側から外表面にかけて被着形成される。
The wiring conductor 8 is made of a refractory metal such as tungsten or molybdenum, and a metal paste obtained by adding and mixing an appropriate organic binder, a solvent, or the like to a metal powder such as tungsten or molybdenum is used as the insulating frame 1. By printing and applying a predetermined pattern to the green sheet in advance by a conventionally known screen printing method or the like, the green sheet is adhered and formed from the inner side to the outer surface of the insulating frame 1.

【0026】なお、配線導体8はその露出する表面にニ
ッケル・金等の耐食性に優れ、かつボンディングワイヤ
5のボンディング性に優れる金属を1μm乃至20μmの
厚みにメッキ法によって被着させておくと、配線導体8
の酸化腐食を有効に防止できるとともに配線導体8への
ボンディングワイヤ5の接続を強固となすことができ
る。従って、配線導体8は、その露出する表面にニッケ
ル・金等の耐食性に優れ、かつボンディング性に優れる
金属を1μm乃至20μmの厚みに被着させておくことが
望ましい。
When the exposed surface of the wiring conductor 8 is coated with a metal such as nickel and gold which has excellent corrosion resistance and bonding property of the bonding wire 5 to a thickness of 1 μm to 20 μm by plating, Wiring conductor 8
It is possible to effectively prevent the above-mentioned oxidative corrosion and to firmly connect the bonding wire 5 to the wiring conductor 8. Therefore, it is desirable that the exposed surface of the wiring conductor 8 be coated with a metal having excellent corrosion resistance such as nickel and gold and excellent bonding property in a thickness of 1 μm to 20 μm.

【0027】放熱基体3はその上面に半導体素子4の載
置部を有しており、この載置部には半導体素子4が樹脂
・ガラス・ロウ材等の接着材7を介して固定される。な
お、接着材7としてロウ材を用いる場合には、通常、ロ
ウ付け用の金属層(非図示)が放熱基体3の半導体素子
4との接合部に形成される。また、絶縁枠体1と放熱基
体3とは、銀−銅合金等からなるロウ材6を用い、ロウ
材6を600℃から900℃の還元雰囲気中で溶融させた後に
冷却固化させることで接合される。
The heat dissipating substrate 3 has a mounting portion for the semiconductor element 4 on its upper surface, and the semiconductor element 4 is fixed to this mounting portion via an adhesive material 7 such as resin, glass, or brazing material. . When a brazing material is used as the adhesive material 7, a metal layer (not shown) for brazing is usually formed at the joint portion of the heat dissipation base 3 with the semiconductor element 4. The insulating frame 1 and the heat dissipation base 3 are joined by using a brazing material 6 made of a silver-copper alloy or the like, and melting and brazing the brazing material 6 in a reducing atmosphere at 600 to 900 ° C. To be done.

【0028】放熱基体3は、図2にその概略構成を断面
図で示すように、タングステンまたはモリブデンの多孔
質体に銅を含浸させて成る複合材料層3aとその上下面
に形成された銅層3bとから成る。放熱基体3は、半導
体素子4の作動に伴い発生する熱を吸収するとともに大
気中に放散させる機能を有する。放熱基体3の作製は、
予め形成されたタングステンまたはモリブデンの多孔質
体に溶浸法により上下面から銅を溶融含浸させて複合材
料層3aを形成し、その際に複合材料層3aの上下面に
残った銅が銅層3bとなって上下面を被覆しているた
め、この銅層3bを30μm乃至200μmの厚さで残すよ
うに研磨することによって行なわれる。その後、必要に
応じて、銅層3bの表面の耐食性を高め、またロウ材6
や接着材7との濡れ性を高める等の目的で、露出する表
面にニッケル等のメッキ層(非図示)を施す。
The heat dissipating base body 3 is, as shown in a schematic sectional view in FIG. 2, a composite material layer 3a formed by impregnating a porous body of tungsten or molybdenum with copper, and copper layers formed on the upper and lower surfaces thereof. 3b and. The heat dissipation base 3 has a function of absorbing heat generated by the operation of the semiconductor element 4 and dissipating the same into the atmosphere. The heat dissipation base 3 is manufactured by
A preformed porous body of tungsten or molybdenum is melt-impregnated with copper from the upper and lower surfaces by an infiltration method to form a composite material layer 3a. At that time, copper remaining on the upper and lower surfaces of the composite material layer 3a is a copper layer. Since the upper and lower surfaces are covered with 3b, the copper layer 3b is polished to leave a thickness of 30 to 200 μm. After that, if necessary, the corrosion resistance of the surface of the copper layer 3b is increased, and the brazing material 6 is added.
A plating layer (not shown) of nickel or the like is formed on the exposed surface for the purpose of improving the wettability with the adhesive 7 and the like.

【0029】放熱基体3において、複合材料層3aを構
成するタングステンまたはモリブデンの多孔質体は、例
えば中心粒径が数μm乃至100μmのタングステン粉末
またはモリブデン粉末に適量のバインダを混合した後、
約1t/cm3程度の圧力でプレス体を成形し、このプ
レス成形体を約1500℃程度の温度で焼成して焼結させる
ことによって得ることができる。
In the heat dissipating substrate 3, the tungsten or molybdenum porous material forming the composite material layer 3a is prepared, for example, by mixing an appropriate amount of binder with tungsten powder or molybdenum powder having a central particle size of several μm to 100 μm.
It can be obtained by forming a pressed body under a pressure of about 1 t / cm 3 and firing and sintering the pressed body at a temperature of about 1500 ° C.

【0030】そして、この多孔質体に銅を含浸させて複
合材料層3aが形成されるとともに、その上下面に銅層
3bが形成されている。この銅層3bは、通常は、複合
材料層3aに多孔質体の上下面から含浸させた銅のうち
内部に含浸されきれずに残った分が複合材料層3aの上
下面に配置されて形成される。
Then, the porous body is impregnated with copper to form the composite material layer 3a, and the copper layers 3b are formed on the upper and lower surfaces thereof. The copper layer 3b is usually formed by arranging, of the copper impregnated in the composite material layer 3a from the upper and lower surfaces of the porous body, the remaining part that cannot be completely impregnated inside the composite material layer 3a. To be done.

【0031】そして、この放熱基体3においては、図2
中に示すように、上下面のそれぞれの銅層3bの厚みを
t2、複合材料層3aの厚みをt1としたとき、30μm
≦t2≦300μmかつt2≦0.15×t1とすることが重
要である。t2<30μmとなると表面近傍で銅層によっ
て面内の水平方向により多く熱を逃がすことができなく
なるために、半導体素子4が発生する熱を大気中に良好
に放散することが困難になり、半導体素子4の熱破壊が
起きたり、特性に熱変化を与え誤動作を生じさせる傾向
がある。他方、t2>300μmとなると、半導体素子4
の載置部における銅の占める割合が大きくなり過ぎ、熱
膨張係数が大きくなり、半導体素子4および放熱基体3
と接合材7との間および絶縁枠体1および放熱基体3と
接合材6との間で破壊や剥離が生じやすくなる傾向があ
る。
Then, in this heat dissipation substrate 3, as shown in FIG.
As shown in the inside, when the thickness of each of the upper and lower copper layers 3b is t2 and the thickness of the composite material layer 3a is t1, 30 μm
It is important that ≦ t2 ≦ 300 μm and t2 ≦ 0.15 × t1. When t2 <30 μm, the copper layer cannot dissipate more heat in the in-plane horizontal direction in the vicinity of the surface, so that it becomes difficult to satisfactorily dissipate the heat generated by the semiconductor element 4 into the atmosphere. There is a tendency for the element 4 to be destroyed by heat or to cause a thermal change in the characteristics to cause a malfunction. On the other hand, when t2> 300 μm, the semiconductor element 4
The proportion of copper occupying too much in the mounting portion of the element becomes too large, and the coefficient of thermal expansion becomes large.
And the bonding material 7, and between the insulating frame 1 and the heat dissipation base 3 and the bonding material 6 tend to be easily broken or peeled.

【0032】また、t2>0.15×t1となると、上記と
同様に、半導体素子4の載置部における銅の占める割合
が大きくなり過ぎ、熱膨張係数が大きくなり、半導体素
子4および放熱基体3と接合材7との間および絶縁枠体
1および放熱基体3と接合材6との間で破壊や剥離が生
じやすくなる傾向がある。
When t2> 0.15 × t1, similarly to the above, the proportion of copper in the mounting portion of the semiconductor element 4 becomes too large and the coefficient of thermal expansion becomes large, so that the semiconductor element 4 and the heat dissipation base 3 are There is a tendency that breakage or peeling easily occurs between the bonding material 7 and between the insulating frame 1 and the heat dissipation base 3 and the bonding material 6.

【0033】また、複合材料層3aにおいてタングステ
ンまたはモリブデンの多孔質体に含浸させる銅の含有量
は、放熱基体3の熱膨張係数を6.5乃至9.0ppm/℃と
セラミックスから成る絶縁枠体1の熱膨張係数の近傍の
値にするために、10乃至25重量%としておくことが好ま
しい。この銅の含有量が10重量%未満となると、放熱基
体3の熱膨張係数が6.0ppm/℃以下になるために、
半導体素子4および放熱基体3と接合材7との間および
絶縁枠体1および放熱基体3と接合材7との間で破壊や
剥離が生じやすくなる傾向がある。他方、25重量%を超
えると、放熱基体3の熱膨張係数が9.0ppm/℃以上
になるために、半導体素子4および放熱基体3と接合材
7との間および絶縁枠体1および放熱基体3と接合材7
との間で破壊や剥離が生じやすくなる傾向がある。
In addition, the content of copper with which the porous material of tungsten or molybdenum is impregnated in the composite material layer 3a is such that the thermal expansion coefficient of the heat dissipation base 3 is 6.5 to 9.0 ppm / ° C. In order to obtain a value close to the expansion coefficient, it is preferably set to 10 to 25% by weight. When the content of copper is less than 10% by weight, the thermal expansion coefficient of the heat dissipation base 3 becomes 6.0 ppm / ° C. or less,
There is a tendency that breakage or peeling easily occurs between the semiconductor element 4 and the heat dissipation base 3 and the bonding material 7, and between the insulating frame 1 and the heat dissipation base 3 and the bonding material 7. On the other hand, if it exceeds 25% by weight, the thermal expansion coefficient of the heat dissipation base 3 becomes 9.0 ppm / ° C. or more, so that the semiconductor element 4, the heat dissipation base 3 and the bonding material 7, and the insulating frame 1 and the heat dissipation base 3 are provided. And joining material 7
Tends to be easily broken or peeled.

【0034】なお、このような放熱基体3に対し、絶縁
枠体1としては、放熱基体3の熱膨張係数をその絶縁枠
体1の熱膨張係数の近傍の値にする観点からは、熱膨張
係数が6乃至8ppm/℃(室温〜800℃)のセラミッ
クスから成ることが好ましい。このようなセラミックス
としては、酸化アルミニウム質焼結体やガラスセラミッ
クス焼結体等を用いればよい。中でも、酸化アルミニウ
ム質焼結体を用いると、焼結体自体の熱伝導率が30W/
mKと高い点で好適なものとなる。
With respect to the heat dissipating base body 3, the thermal expansion coefficient of the insulating frame body 1 is set so that the thermal expansion coefficient of the heat dissipating base body 3 is close to the thermal expansion coefficient of the insulating frame body 1. It is preferably made of ceramics having a coefficient of 6 to 8 ppm / ° C (room temperature to 800 ° C). As such a ceramic, an aluminum oxide sintered body, a glass ceramic sintered body, or the like may be used. Above all, when an aluminum oxide sintered body is used, the thermal conductivity of the sintered body itself is 30 W /
It is suitable in terms of high mK.

【0035】かくして上述の本発明の半導体素子収納用
パッケージによれば、放熱基体3の上面の載置部に半導
体素子4をガラス・樹脂・ロウ材等からなる接着材7を
介して接着固定して載置するとともにこの半導体素子4
の各電極をボンディングワイヤ5を介して所定の配線導
体8に接続させ、しかる後に、絶縁枠体1の上面に蓋体
2をガラス・樹脂・ロウ材等からなる封止材を介して接
合させ、絶縁枠体1と放熱基体3と蓋体2とからなる容
器内部に半導体素子4を気密に収容することによって、
製品としての半導体装置となる。
Thus, according to the above-described package for housing a semiconductor element of the present invention, the semiconductor element 4 is adhered and fixed to the mounting portion on the upper surface of the heat dissipation base 3 via the adhesive 7 made of glass, resin, brazing material or the like. This semiconductor element 4
Each electrode is connected to a predetermined wiring conductor 8 through a bonding wire 5, and then the lid 2 is joined to the upper surface of the insulating frame 1 through a sealing material made of glass, resin, brazing material or the like. By hermetically housing the semiconductor element 4 in the container formed of the insulating frame body 1, the heat dissipation base 3, and the lid body 2,
It becomes a semiconductor device as a product.

【0036】[0036]

【実施例】(実施例1)まず、中心粒径が数μm乃至10
0μmのタングステン粉末に適量のバインダを混合した
後、約1t/cm3の圧力でプレス体を成形し、このプ
レス成形体を約1500℃の温度で焼成して得たタングステ
ンから成る焼結多孔質体を準備した。次に、この多孔質
体に1200℃の温度で15重量%の銅の溶浸を行なって含浸
させ、上下面のそれぞれの銅層の厚みが0、0.015、0.03
0、0.050、0.10、0.20、0.30、0.50mmになるようにし
て、評価用の放熱基体試料の作製を行なった。
Example (Example 1) First, the central particle size is several μm to 10 μm.
After mixing an appropriate amount of binder with 0 μm tungsten powder, a pressed body is formed at a pressure of about 1 t / cm 3 , and the pressed formed body is fired at a temperature of about 1500 ° C. Sintered porosity made of tungsten I prepared my body. Next, this porous body is infiltrated by infiltrating 15% by weight of copper at a temperature of 1200 ° C., and the thickness of each of the upper and lower copper layers is 0, 0.015, 0.03.
A heat-dissipating substrate sample for evaluation was prepared so that the thickness was 0, 0.050, 0.10, 0.20, 0.30, 0.50 mm.

【0037】そして、これら評価用放熱基体試料につ
き、JIS R1611に規定のファインセラミックスのレ
ーザーフラッシュ法により熱拡散・比熱容量・熱伝導率
試験方法に基づき評価用放熱基体試料の熱伝導率(W/
mK)を測定し、またTMA(Thermomechanical Analy
sis)法により評価用放熱基体試料を昇温させながら各
温度に対する評価用放熱基体試料の伸び量を測定し、そ
の値を温度上昇幅の値で除算することによって熱膨張係
数(ppm/℃)を測定した。また、接合界面につい
て、倍率が40倍の顕微鏡にて界面観察を行なった。その
後、超音波探傷装置にて同様の観察を行なった。その結
果について、表1にこれらタングステンと銅とから成る
複合材料層とその上下面の銅層との厚み比率を変化させ
た場合の放熱基体の熱膨張率と熱伝導率の物性値と温度
サイクル試験(TCT:−65/+150℃、1000サイク
ル)後の10.0mm□、0.60mmtのシリコン製の半導体
素子と放熱基体との接合界面状態および外形サイズが2
0.0mmt、キャビティサイズが12.0mm□で、厚みが
1.0mmtの絶縁枠体と放熱基体との接合界面状態を示
す。
With respect to these heat-radiating substrate samples for evaluation, the thermal conductivity (W / W) of the heat-radiating substrate samples for evaluation was measured by the fine ceramics laser flash method specified in JIS R1611 based on the thermal diffusion / specific heat capacity / thermal conductivity test method.
mK) and TMA (Thermomechanical Analy
The thermal expansion coefficient (ppm / ° C) is determined by measuring the elongation of the evaluation heat dissipation substrate sample for each temperature while raising the temperature of the evaluation heat dissipation substrate sample by the (sis) method, and dividing the value by the value of the temperature rise width. Was measured. Further, the joint interface was observed with a microscope having a magnification of 40 times. After that, the same observation was performed with an ultrasonic flaw detector. Regarding the results, Table 1 shows the physical properties of the thermal expansion coefficient and the thermal conductivity of the heat dissipation substrate and the temperature cycle when the thickness ratio of the composite material layer made of tungsten and copper and the copper layers on the upper and lower surfaces thereof was changed. After the test (TCT: -65 / + 150 ℃, 1000 cycles), the bonding interface state between the semiconductor element of 10.0 mm □ and 0.60 mmt made of silicon and the heat dissipation base and the external size are 2
0.0mmt, cavity size is 12.0mm □, thickness is
The joint interface state of an insulating frame of 1.0 mmt and a heat dissipation base is shown.

【0038】[0038]

【表1】 [Table 1]

【0039】表1に示す結果より分かるように、No.1
乃至No.8の放熱基体では、複合材料層の厚みを2.0mm
tに固定して銅層の厚みを0乃至0.5mmtで変更した
場合に、複合材料層/銅層厚み比率(t2/t1)は0
乃至0.25と大きくなる、これに伴い熱伝導率および熱膨
張率も大きい値を示している。特に、t2/t1=0.01
5以上で250W/mK以上の値を示した。しかし、銅層厚
みが300μm以上では熱伝導率は大きく変化しないが、
t2/t1=0.15を超えると放熱基体と絶縁体との接合
界面でクラックが発生することが確認できた。放熱基体
として、250W/mK以上の高放熱性があり絶縁体との
信頼性が確保できる複合材料層と銅層との厚み比率は、
0.15以下が好適である。
As can be seen from the results shown in Table 1, No. 1
In No. 8 heat dissipation substrate, the thickness of the composite material layer is 2.0 mm
When the thickness of the copper layer is fixed at t and the thickness of the copper layer is changed from 0 to 0.5 mmt, the composite material layer / copper layer thickness ratio (t2 / t1) is 0.
To 0.25, the thermal conductivity and the coefficient of thermal expansion also show large values. In particular, t2 / t1 = 0.01
A value of 250 W / mK or more was shown at 5 or more. However, although the thermal conductivity does not change significantly when the copper layer thickness is 300 μm or more,
It has been confirmed that when t2 / t1 = 0.15 is exceeded, cracks are generated at the bonding interface between the heat dissipation base and the insulator. As the heat dissipation base, the thickness ratio between the composite material layer and the copper layer, which has a high heat dissipation property of 250 W / mK or more and can secure reliability with the insulator, is:
0.15 or less is suitable.

【0040】また、No.9乃至No.10の放熱基体では、複
合材料層の厚みを1.0mmtと3.0mmtに、銅層の厚み
を0.1と0.3mmtに変更した場合でも、熱伝導率が250
W/mK以上で熱膨張率も8.0ppm/℃以下の値を示
すことが分かる。
In No. 9 to No. 10 heat dissipating substrates, the thermal conductivity was 250 even when the thickness of the composite material layer was changed to 1.0 mmt and 3.0 mmt and the thickness of the copper layer was changed to 0.1 and 0.3 mmt.
It can be seen that the coefficient of thermal expansion also shows a value of 8.0 ppm / ° C. or less at W / mK or more.

【0041】なお、多孔質体にモリブデンを用いた場合
の結果についても、No.11に示すように、250W/mK以
上の良好な熱伝導率を示すことが確認できた。
As for the results when molybdenum was used for the porous body, it was confirmed that, as shown in No. 11, a good thermal conductivity of 250 W / mK or more was exhibited.

【0042】(実施例2)中心粒径が数μm乃至100μ
mのタングステン粉末に適量のバインダを混合した後、
約1t/cm3の圧力でプレス体を成形し、このプレス
成形体を約1500℃の温度で焼成して得たタングステンか
ら成る焼結多孔質体を準備した。次に、この多孔質体に
1200℃の温度で銅をそれぞれ10乃至40重量%の含有量
(タングステンの量が90乃至60重量%)となるように溶
浸させて含浸させ、上下面のそれぞれの銅層の厚みは0.
10mmになるようにして評価用の放熱基体試料を作製し
た。そして、実施例1と同様の評価を行なった。その結
果について、表2に複合材料層とその上下面の銅層との
厚み比率が0.05での複合材料層の銅量を10重量%乃至60
重量%の間で変化させた場合の放熱基体の熱膨張率と熱
伝導率の物性と温度サイクル試験(TCT:−65/150
℃、1000サイクル)後の半導体素子と放熱基体との接合
界面状態および絶縁体と放熱基体との接合界面状態を示
す。
(Example 2) Central particle size is several μm to 100 μm
After mixing an appropriate amount of binder with tungsten powder of m,
A pressed body was formed at a pressure of about 1 t / cm 3, and a sintered porous body made of tungsten was prepared by firing the pressed body at a temperature of about 1500 ° C. Next, in this porous body
At a temperature of 1200 ° C, copper was infiltrated by infiltration so that the content of each was 10 to 40% by weight (the amount of tungsten was 90 to 60% by weight), and the thickness of each copper layer on the upper and lower surfaces was 0.
A heat-dissipating substrate sample for evaluation was prepared so as to have a thickness of 10 mm. Then, the same evaluation as in Example 1 was performed. The results are shown in Table 2 in which the amount of copper in the composite material layer with the thickness ratio of the composite material layer and the copper layers on the upper and lower surfaces of 0.05 is 10% by weight to 60% by weight.
Physical properties of thermal expansion coefficient and thermal conductivity of the heat-radiating substrate and temperature cycle test (TCT: -65/150)
The junction interface state between the semiconductor element and the heat dissipation substrate and the junction interface state between the insulator and the heat dissipation substrate after 1000 ° C) are shown.

【0043】[0043]

【表2】 [Table 2]

【0044】表2に示す結果より分かるように、No.1
乃至No.6の放熱基体では、銅−タングステン複合材料
層の銅含有率は10乃至60重量%の範囲で変更を行なっ
た。これから複合材料層の銅量の比率を上げることで熱
膨張率は徐々に増加する。また、特に銅比率が30重量%
以上では熱膨張係数が9ppm/℃以上となり、放熱基
体と絶縁体との界面でクラック等が発生する。よって信
頼性が確保できる複合材料層の銅料の比率は、10乃至25
重量%が好適である。
As can be seen from the results shown in Table 2, No. 1
In No. 6 to No. 6, the copper content of the copper-tungsten composite material layer was changed in the range of 10 to 60% by weight. From now on, the coefficient of thermal expansion gradually increases by increasing the ratio of the amount of copper in the composite material layer. Also, especially the copper ratio is 30% by weight
With the above, the thermal expansion coefficient becomes 9 ppm / ° C. or more, and cracks or the like occur at the interface between the heat dissipation base and the insulator. Therefore, the ratio of copper material in the composite material layer that can ensure reliability is 10 to 25.
Weight percent is preferred.

【0045】また、No.7にタングステンに代えてモリ
ブデンを用いた場合の結果について示す。これから250
W/mK以上の良好な熱伝導率が得られていることが分
かる。
Further, No. 7 shows the result when molybdenum is used instead of tungsten. From now on 250
It can be seen that good thermal conductivity of W / mK or more is obtained.

【0046】なお本発明は、上述の実施の形態の例に限
定されるものではなく、本発明の要旨を逸脱しない範囲
で種々の変更を加えることは何ら差し支えない。
The present invention is not limited to the above-mentioned embodiments, and various modifications may be made without departing from the scope of the present invention.

【0047】[0047]

【発明の効果】本発明の半導体素子収納用パッケージに
よれば、放熱基体が、タングステンまたはモリブデンの
多孔質体に10乃至25重量%の銅を含浸させて成る複合材
料層とその上下面に形成された銅層とから成るととも
に、複合材料層の厚みをt1、銅層の厚みをt2とした
とき、30μm≦t2≦300μmかつt2≦0.15×t1で
あることから、タングステンまたはモリブデンの多孔質
体に銅を含浸させて成る複合材料層のみで構成された放
熱基体に比べて、これに載置される半導体素子で発生し
た熱を、まず表面近傍で銅層によって面内の水平方向に
より多く逃がすことができるとともに、銅層と複合材料
層中の銅とは連続的につながっているため熱伝導の損失
が小さくなり、その結果、複合材料層内により多く熱を
逃がすことができる。また、複合材料層内は、銅−タン
グステン材料であるので200W/mK以上の熱伝導率が
確保されている。これによって、放熱基体の熱伝導率を
250W/mK以上と極めて高いものとすることが可能と
なる。
According to the package for housing a semiconductor device of the present invention, the heat dissipation base is formed on the composite material layer formed by impregnating a porous body of tungsten or molybdenum with 10 to 25% by weight of copper and the upper and lower surfaces thereof. Porous layer of tungsten or molybdenum, since the thickness of the composite material layer is t1 and the thickness of the copper layer is t2, 30 μm ≦ t2 ≦ 300 μm and t2 ≦ 0.15 × t1. Compared to a heat dissipation substrate composed only of a composite material layer formed by impregnating copper with copper, the heat generated in the semiconductor element mounted on the heat dissipation substrate is first dissipated in the horizontal direction in the plane by the copper layer near the surface. In addition, since the copper layer and the copper in the composite material layer are continuously connected, the heat conduction loss is reduced, and as a result, more heat can be released into the composite material layer. Further, since the inside of the composite material layer is a copper-tungsten material, a thermal conductivity of 200 W / mK or more is secured. As a result, the thermal conductivity of the heat dissipation substrate
It is possible to make it as extremely high as 250 W / mK or more.

【0048】また、複合材料層の上下面に形成された銅
層は、複合材料層をタングステンまたはモリブデンに銅
を溶浸法で含浸させる際に同時に形成することができる
ことから、熱間一軸法や圧延法で貼り合わせた銅層と異
なり、放熱基体に絶縁枠体を接合する時の熱応力により
銅層と複合材料層との界面にクラックが発生することは
ほとんどなく、その結果、放熱基体に載置されてパッケ
ージ内部に収容される半導体素子を長期にわたり正常
に、かつ安定に作動させることが可能となる。
Further, the copper layers formed on the upper and lower surfaces of the composite material layer can be formed at the same time when the composite material layer is impregnated with tungsten or molybdenum by the infiltration method. Unlike the copper layer bonded by the rolling method, cracks hardly occur at the interface between the copper layer and the composite material layer due to the thermal stress when the insulating frame is joined to the heat dissipation base, and as a result, the heat dissipation base is It is possible to normally and stably operate the semiconductor element that is placed and accommodated in the package for a long period of time.

【0049】また、放熱基体が、タングステンまたはモ
リブデンの多孔質体に銅を含浸させて成る複合材料層と
その上下面に形成された銅層とから成るとともに、複合
材料層の厚みをt1、銅層の厚みをt2としたとき、30
μm≦t2≦300μmかつt2≦0.15×t1であること
から、放熱基体の上面に設けられた半導体素子の載置部
では熱伝導率とともに熱膨張係数も大きい銅の占める割
合が多いにもかかわらず、放熱基体の熱膨張係数を絶縁
枠体の熱膨張係数に近づけることが可能となる。
Further, the heat dissipation base is composed of a composite material layer formed by impregnating a porous body of tungsten or molybdenum with copper and copper layers formed on the upper and lower surfaces thereof, and the thickness of the composite material layer is t1 and the copper layer is copper. When the layer thickness is t2, 30
Since μm ≦ t2 ≦ 300 μm and t2 ≦ 0.15 × t1, copper having a large coefficient of thermal expansion as well as thermal conductivity occupies a large proportion in the mounting portion of the semiconductor element provided on the upper surface of the heat dissipation base. It is possible to bring the thermal expansion coefficient of the heat dissipation base close to that of the insulating frame.

【0050】特に、複合材料層をタングステンまたはモ
リブデンの多孔質体に10乃至25重量%の銅を含浸させて
成るものとしたときには、放熱基体の熱膨張係数は9.0
ppm/℃以下の値になるため、放熱基体と絶縁枠体と
を長期間にわたり良好に、かつ安定に接合させることが
可能となる。
Particularly, when the composite material layer is formed by impregnating a porous body of tungsten or molybdenum with 10 to 25% by weight of copper, the thermal expansion coefficient of the heat dissipation substrate is 9.0.
Since the value is not more than ppm / ° C., the heat dissipation base and the insulating frame can be bonded to each other favorably and stably over a long period of time.

【0051】また、絶縁枠体を熱膨張係数が6乃至8p
pm/℃(室温〜800℃)のセラミックスから成るもの
としたときには、放熱基体の熱膨張係数をその絶縁枠体
の熱膨張係数の近傍の値にすることが可能となるので、
放熱基体と絶縁枠体とを長期間にわたり良好に、かつ安
定に接合させることが可能となる。
The insulating frame has a thermal expansion coefficient of 6 to 8 p.
When the ceramics of pm / ° C. (room temperature to 800 ° C.) are used, the thermal expansion coefficient of the heat dissipation base can be set to a value close to the thermal expansion coefficient of the insulating frame.
The heat dissipation base and the insulating frame can be bonded to each other satisfactorily and stably over a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体素子収納用パッケージの実施の
形態の一例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of an embodiment of a package for housing a semiconductor element of the present invention.

【図2】本発明の半導体素子収納用パッケージにおける
放熱基体の概略構成を示す断面図である。
FIG. 2 is a cross-sectional view showing a schematic configuration of a heat dissipation base in the semiconductor element housing package of the present invention.

【図3】従来の半導体素子収納用パッケージの例を示す
断面図である。
FIG. 3 is a cross-sectional view showing an example of a conventional semiconductor element housing package.

【符号の説明】[Explanation of symbols]

1・・・・・絶縁枠体 2・・・・・蓋体 3・・・・・放熱基体 3a・・・・・複合材料層 3b・・・・・銅層 4・・・・・半導体素子 1 ... Insulation frame 2 ... Lid 3 ... Heat dissipation base 3a ... Composite material layer 3b ... Copper layer 4 ... Semiconductor element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 上面に半導体素子が載置される載置部を
有する放熱基体と、該放熱基体の上面に前記載置部を囲
繞するように取着された絶縁枠体と、該絶縁枠体の上面
に取着される蓋体とから成る半導体素子収納用パッケー
ジであって、前記放熱基体は、タングステンまたはモリ
ブデンの多孔質体に銅を含浸させて成る複合材料層とそ
の上下面に形成された銅層とから成るとともに、前記複
合材料層の厚みをt1、前記銅層の厚みをt2としたと
き、30μm≦t2≦300μmかつt2≦0.15×
t1であることを特徴とする半導体素子収納用パッケー
ジ。
1. A heat dissipation base having a mounting part on which a semiconductor element is mounted, an insulating frame body attached to the upper surface of the heat dissipation base so as to surround the mounting part, and the insulating frame. A package for accommodating a semiconductor device, comprising a lid attached to the upper surface of the body, wherein the heat dissipation base is formed on a composite material layer formed by impregnating a porous body of tungsten or molybdenum with copper and the upper and lower surfaces thereof. 30 μm ≦ t2 ≦ 300 μm and t2 ≦ 0.15 ×, where the composite material layer has a thickness of t1 and the copper layer has a thickness of t2.
A package for housing a semiconductor element, which is t1.
【請求項2】 前記複合材料層は、タングステンまたは
モリブデンの多孔質体に10乃至25重量%の銅を含浸
させて成ることを特徴とする請求項1記載の半導体素子
収納用パッケージ。
2. The package for accommodating a semiconductor element according to claim 1, wherein the composite material layer is formed by impregnating a porous body of tungsten or molybdenum with 10 to 25% by weight of copper.
【請求項3】 前記絶縁枠体は、熱膨張係数が6乃至8
ppm/℃(室温〜800℃)のセラミックスから成る
ことを特徴とする請求項1記載の半導体素子収納用パッ
ケージ。
3. The insulating frame has a coefficient of thermal expansion of 6 to 8
2. The package for housing a semiconductor element according to claim 1, which is made of a ceramic having a ppm / ° C. (room temperature to 800 ° C.).
JP2001224254A 2001-07-25 2001-07-25 Package for housing semiconductor element Pending JP2003037198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001224254A JP2003037198A (en) 2001-07-25 2001-07-25 Package for housing semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001224254A JP2003037198A (en) 2001-07-25 2001-07-25 Package for housing semiconductor element

Publications (1)

Publication Number Publication Date
JP2003037198A true JP2003037198A (en) 2003-02-07

Family

ID=19057450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001224254A Pending JP2003037198A (en) 2001-07-25 2001-07-25 Package for housing semiconductor element

Country Status (1)

Country Link
JP (1) JP2003037198A (en)

Similar Documents

Publication Publication Date Title
US20190371702A1 (en) Power module and method for manufacturing power module
JP4227610B2 (en) Manufacturing method of heat dissipation base
JP4459031B2 (en) Electronic component storage package and electronic device
JP3850312B2 (en) Semiconductor element storage package and semiconductor device
JP3872391B2 (en) Package for storing semiconductor elements
JP4514598B2 (en) Electronic component storage package and electronic device
JP2006013420A (en) Package for electronic component housing, and electronic device
JP2003037198A (en) Package for housing semiconductor element
JP3987649B2 (en) Package for storing semiconductor elements
JP2000183253A (en) Package for housing semiconductor element
JP2003133487A (en) Semiconductor device housing package
JP2003068954A (en) Package for housing semiconductor element
JP2005277382A (en) Package for storing electronic component, and electronic device
JP2003037204A (en) Package for accommodating semiconductor element
JP4574071B2 (en) Package for housing heat dissipation member and semiconductor element
JP3971592B2 (en) Package for storing semiconductor elements
JP3752447B2 (en) Package for storing semiconductor elements
JP2004221328A (en) Semiconductor element housing package and semiconductor device
JP4485893B2 (en) Electronic component storage package and electronic device
JP3748399B2 (en) Package for storing semiconductor elements
JP2000183215A (en) Package for housing semiconductor element
JP2005340560A (en) Package for accommodating electronic component and electronic device
JP2003068904A (en) Package for semiconductor element storage
JP2002009403A (en) Ceramic circuit board and semiconductor element module
JP2004235364A (en) Package for housing semiconductor element and semiconductor device