JP2003030683A - Rough surface light reflection circuit - Google Patents
Rough surface light reflection circuitInfo
- Publication number
- JP2003030683A JP2003030683A JP2001252126A JP2001252126A JP2003030683A JP 2003030683 A JP2003030683 A JP 2003030683A JP 2001252126 A JP2001252126 A JP 2001252126A JP 2001252126 A JP2001252126 A JP 2001252126A JP 2003030683 A JP2003030683 A JP 2003030683A
- Authority
- JP
- Japan
- Prior art keywords
- light
- circuit
- light reflection
- cos
- rough surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Image Generation (AREA)
Abstract
Description
【発明の詳細な説明】
【01】 [発明の属する技術分野]この発明はコンピ
ュータグラフィックスのレンダリングに関して、光の反
射によって生じる表面粗さを考慮した、ラフ表面のシェ
ーディング(明暗)を描画する回路に関する。この発明
の回路のLSI化により、シュミレーション、ゲームな
ど仮想現実システムの実時間可視化に適用される。
【02】 [従来の技術]光反射モデリングは3次元コ
ンピュータグラフィックスの中で、映像をリアリスティ
ックに表現し、また幾何学的な認知を得る最も重要な技
術である。特定のアルゴリズムを用いて光反射物体を描
画する技術はいくつかが開発されているが、ポリゴン表
記法におけるレンダリングではフォン・シェーディング
がその代表的なものである。これらの技術をVLSIに
実装する場合、一般には物体表面を多角形に分割し、そ
れぞれの多角形の頂点に面の法線を定義し、これをレン
ダリング段階にて内挿する手順が必要となっている。一
般には、これらの実装は内挿毎の法線ベクトルの正規化
や、方向余弦の計算のための複雑なハードウエア回路が
必要であるなどの問題を有していた。この問題を解決す
る方法として、面の法線、光源の単位ベクトルを極座標
における水平および垂直角で表現し、これをまず内挿し
た後、所定の演算を行うことで正規化計算を省略するア
ルゴリズムが本発明者により開発された。日本特許出願
7−102904、9−155684および米国特許
5,900,881では鏡面反射成分を求める方法とし
て、面法線と光源ベクトルを極座標で表記し内挿した
後、乗算器と加算器とを用いて、拡散反射成分を乗算
し、さらに光源ベクトルで減算している。上記発明の回
路は面の内部を極座標の角度で内挿し、その後、直交座
標の法線ベクトルに変換するため、内挿毎の法線ベクト
ルの正規化処理が不要となる点で回路の簡素化が図られ
ている。フォン・シェーディングモデルは一般に(1)
式で表される。
ここで視点への入射光Ip、拡散反射係数Id、鏡面反
射係数Is、光源の単位ベクトルL、面法線Nおよび視
点単位ベクトルをVとする。cosαのmは鏡面反射指
数である。しかしこれらのフォン・シェーディングモデ
ルでは面表面が均一な平面とし、表面粗さによって生じ
る表面上での乱反射率および光波長特性を考慮していな
い推論法に基づいている。一方、表面粗さをモデル化し
たものとしてCook/Torranceモデルが知ら
れている。これは鏡面反射成分Rsを下記の(2)式で
表現する。
ここでρ(λ,θ)、D(α)、H、Vはそれぞれ光源
入射角と面法線とが成す角θと光の波長を変数とする物
体のフレンネル関数をもとする反射率、光の反射角と視
点方向とが成す角αを変数とする輝度分布関数、LとV
とのハーフベクトル、および視線単位ベクトルである。
(2)式において減衰率Gはベクトル表記であり、括弧
内の3項のうち最小値をその輝度の決定に用いる。これ
を求めるにあたり、これらのベクトルを多角形の各頂点
に定義し、多角形内部をベクトルを用いて内挿した後、
ベクトル成分を用いて(2)式を計算すると、それぞれ
のベクトル成分に対しての正規化が必要となり、(2)
式の回路化はフォン・シェーディング回路に比べはるか
に複雑な回路となる問題点を持っている。本発明は以上
のように回路化が困難であったラフ面での光反射輝度
を、極座標系成分を内挿補間して得られた値から拡散成
分と鏡面反射成分の内積値をそれぞれ計算し、鏡面反射
成分の回路の簡素化を図るものである。
【03】[問題を解決するための手段]法線、光入射
角、視点角それぞれの極座標表記を用いたフォン・シェ
ーディングモデルでは面の輝度を決定するため、多角形
のそれぞれの頂点には頂点座標値(x、y、z)、頂点
での面法線(Nh、Nv)、光源とのなす角(Lh、L
v)および視点とのなす角(Eh、Ev)を定義する。
ここで面法線、入射光の単位ベクトル、視点ベクトル
は、極座標として水平および垂直角で表現(添数は水平
h、垂直vを意味する)する。これらの値は、多角形内
部の全点において、線形に内挿され、次に内挿された値
を式(3)と(4)を用いて拡散反射成分cosθおよ
び鏡面反射成分cosαのそれぞれを求める。
また面法線と視点方向が成す内積cosγは、
となり、(3)から(8)式までを用いて(2)式を展
開すると、ラフ面での鏡面反射光成分として(9)式得
る。(9)式では[]括弧内の3項の内、最小値を選
ぶ。鏡面反射成分をIspecとする。
本発明では内挿値Lh,Lv,Nh,Nv,Ehおよび
Evを(5)−(8)式までを用いて、面法線と光入射
角とが成す方向余弦cosθと、反射角と視点方向との
成す方向余弦cosαおよび法線と視点とが成す角co
sγを求める。(9)式において、反射率ρ(λ,θ)
は光入射角に対する物質固有の特性をもち、また分布関
数D(α)はガウスあるいはベックマン等の関数が与え
られるが、本発明ではρ(λ,θ)およびD(α)はそ
れぞれアドレスをcosθおよびcosαとするRAM
テーブルで構成する。ρ(λ,θ)は実測値をもとにρ
(λ,cosθ)に変換して、またD(α)は、例えば
cosnα値が用いられるが、テーブルはD(cos
α)が記憶される。nおよびkは物体の表面特性により
決定する。この結果、(9)式の鏡面反射成分はフォン
・シェーディング回路で得られるcosθ、cosαお
よびcosγのみを入力変数として、RAMテーブル、
ROMテーブル、乗算器などで容易に構成可能となる。
【04】[実施例]図1に本発明の、面法線と光源入射
角とが成す角θの方向余弦cosθと、入射光のミラー
反射角と視点方向とが成す角αの方向余弦cosαを求
める回路を示す。図1において、面法線、光源入射角お
よび視点方向を極座標とした水平、垂直角をそれぞれN
h,Nv、Lh,LvおよびEh,Evとし、これらを
極座標から直交座標に変換回路1.1,1.3および
1.3でそれぞれ直交座標Nx,Ny,Nz、Lx,L
y,LzおよびVx,Vy,Vzに変換する。変換回路
は(5)−(7)式により三角関数テーブルと乗算器で
構成する。Cosθおよびcosαは(3)および
(4)式により、乗算器1.4,1.5,1.6、加算
器1.7,1.8、また2倍のスケールをもつ乗算器
1.9,1.10,1.11、減算器1.12,1.1
3,1.14、乗算器1.15,1.16,1.17、
加算器1.18,1.19を用いて構成することができ
る。ここでcosθは加算器1.8から、またcosα
は加算器1.18より出力される。また面の法線と視点
方向との内積cosγは乗算器1.20、1.21およ
び1.22と加算器1.23と1.14で得られる。本
発明のラフ面鏡面反射では図1の回路において、cos
θ、cosαおよびcosγの値を面法線、光源入射
角、視点角から得た後、それぞれ反射率、減衰率および
分布率を計算する。図2に本発明のラフサーフェイス反
射回路を示す。鏡面反射成分は式(9)で表される。回
路ではメモリテーブル2.1と2.4はcosθが加わ
り、テーブル2.1では2/cosθが、またテーブル
2.2では2/cosγが記憶される。一方、メモリテ
ーブル2.4には反射率が色成分毎に記憶される。反射
率ρ(λ,θ)は物体の反射特性のカラー成分毎の実測
値をテーブル化してこれをcosθで読み出す。よって
実際にはρ(λ,cosθ)に変換された値が記憶され
る。また分布特性はガウス、ベックマンあるいはcos
nαなどの値D(cosα)をメモリ2.3でテーブル
化しcosαで読み出す。さらに減算器2.5では2/
cosθと2/cosγを比較し、小さい方の値をマル
チプレクサ2.6にて選択する。この値は乗算器2.8
でcosαと乗算される。この値は、1/2シフター
2.7で1/2とした1/cosγと比較回路2.9で
比較され、小さい方が鏡面反射成分としてマルチプレク
サ2.12で選択される。さらにテーブル2.4の出力
は乗算器2.10で分布率テーブル2.3の出力と乗算
され、さらにこの値が前記マルチプレクサ2.12の出
力と乗算回路2.13で乗算されて鏡面反射成分Isp
ecを得る。また反射率ρ(λ,cosθ)は拡散係数
K1と乗算器2.11で乗算して拡散成分Idiffを
得る。以上から本発明の回路ではラフ面特性を得るパラ
メータとして、従来のPhongシェーディングと共有
可能なcosα、cosθおよびcosγのみを使用し
ている点と、三角関数や指数関数をテーブル化すること
によって、小規模な回路でラフ面のシェーディング回路
を構成することができる。メモリテーブル2.1および
2.2はROM(読み出し専用)を用いることもでき
る。
【05】[発明の効果]本発明により、繊細な反射特性
を持つ物体をリアルタイムにレンダリングすることが可
能となる。Description: TECHNICAL FIELD [0001] The present invention relates to a computer graphics rendering circuit for drawing rough surface shading (light / dark) in consideration of surface roughness caused by light reflection. About. By making the circuit of the present invention an LSI, it is applied to real-time visualization of a virtual reality system such as a simulation and a game. [Prior Art] Light reflection modeling is the most important technique in 3D computer graphics for realistically representing an image and obtaining geometrical perception. Although some techniques for drawing a light reflecting object using a specific algorithm have been developed, Phong shading is a typical example of rendering in polygon notation. When implementing these technologies in VLSI, it is generally necessary to divide the surface of the object into polygons, define the surface normals at the vertices of each polygon, and interpolate these at the rendering stage. ing. In general, these implementations had problems such as the normalization of normal vectors for each interpolation and the need for complex hardware circuits for calculating the direction cosine. As a method of solving this problem, an algorithm that expresses the normal of the surface and the unit vector of the light source by horizontal and vertical angles in polar coordinates, first interpolates this, and then performs a predetermined operation to omit the normalization calculation Was developed by the present inventors. In Japanese Patent Application Nos. 7-102904 and 9-155684 and U.S. Pat. No. 5,900,881, as a method for obtaining a specular reflection component, a surface normal and a light source vector are written in polar coordinates, interpolated, and then a multiplier and an adder are used. In this case, a diffuse reflection component is multiplied, and further subtracted by a light source vector. The circuit of the invention described above simplifies the circuit in that the interior of the surface is interpolated at polar coordinate angles and then converted to orthogonal coordinate normal vectors, which eliminates the need for normalization of normal vectors for each interpolation. Is planned. Von shading model is generally (1)
It is expressed by an equation. Here, let the incident light Ip to the viewpoint, the diffuse reflection coefficient Id, the specular reflection coefficient Is, the unit vector L of the light source, the surface normal N, and the viewpoint unit vector be V. m of cos α is a specular reflection index. However, these von shading models are based on an inference method in which the surface is a uniform plane and does not take into account the irregular reflectance and light wavelength characteristics on the surface caused by surface roughness. On the other hand, a Cook / Torrence model is known as a model of the surface roughness. This expresses the specular reflection component Rs by the following equation (2). Here, ρ (λ, θ), D (α), H, and V are reflectances that also have a Fresnel function of an object whose variable is the angle θ formed by the incident angle of the light source and the surface normal and the wavelength of light. L and V, a luminance distribution function using the angle α between the light reflection angle and the viewpoint direction as a variable
And a line-of-sight unit vector.
In the equation (2), the attenuation rate G is represented by a vector, and the minimum value among the three terms in parentheses is used for determining the luminance. To find this, we define these vectors at each vertex of the polygon, interpolate the interior of the polygon using vectors,
When the expression (2) is calculated using the vector components, it is necessary to normalize each of the vector components.
The circuitization of the equation has the problem that it is a much more complicated circuit than the Phong shading circuit. The present invention calculates the light reflection luminance on the rough surface, which is difficult to circuit as described above, and calculates the inner product value of the diffuse component and the specular reflection component from the value obtained by interpolating the polar coordinate system component. , To simplify the circuit of the specular reflection component. [Means for Solving the Problem] In the von shading model using the polar coordinates of the normal, light incident angle and viewpoint angle, the vertex of each polygon is determined in order to determine the luminance of the surface. Coordinate values (x, y, z), surface normals at vertices (Nh, Nv), and angles (Lh, L
v) and an angle (Eh, Ev) with the viewpoint are defined.
Here, the surface normal, the unit vector of the incident light, and the viewpoint vector are expressed by horizontal and vertical angles as polar coordinates (subscripts mean horizontal h and vertical v). These values are linearly interpolated at all points inside the polygon, and the interpolated values are then converted to the diffuse reflection component cos θ and the specular reflection component cos α using equations (3) and (4). Ask. The inner product cosγ formed by the surface normal and the viewpoint direction is By expanding Expression (2) using Expressions (3) to (8), Expression (9) is obtained as a specular reflected light component on the rough surface. In equation (9), the minimum value is selected from the three items in the brackets []. The specular reflection component is assumed to be Ispec. In the present invention, the interpolated values Lh, Lv, Nh, Nv, Eh, and Ev are expressed by equations (5) to (8), and the direction cosine cos θ formed by the surface normal and the light incident angle, the reflection angle and the viewpoint The direction cosine cosα formed by the direction and the angle co formed by the normal and the viewpoint
Find sγ. In the equation (9), the reflectance ρ (λ, θ)
Has a characteristic peculiar to a substance with respect to a light incident angle, and a distribution function D (α) is given by a function such as Gauss or Beckman. In the present invention, ρ (λ, θ) and D (α) represent addresses cos θ, respectively. And cosα RAM
Consist of a table. ρ (λ, θ) is ρ
(Λ, cos θ), and D (α) is, for example, a cos n α value.
α) is stored. n and k are determined by the surface characteristics of the object. As a result, the specular reflection component of the equation (9) is obtained by using only the cos θ, cos α, and cos γ obtained by the Phong shading circuit as input variables in the RAM table,
It can be easily configured with a ROM table, a multiplier, and the like. [Example] FIG. 1 shows the direction cosine cos θ of the angle θ formed by the surface normal and the incident angle of the light source, and the direction cosine cos α of the angle α formed by the mirror reflection angle of the incident light and the viewpoint direction. The following shows a circuit for obtaining. In FIG. 1, the horizontal and vertical angles, where the surface normal, the light source incident angle, and the viewpoint direction are polar coordinates, are N, respectively.
h, Nv, Lh, Lv and Eh, Ev, which are converted from polar coordinates to rectangular coordinates by the conversion circuits 1.1, 1.3, and 1.3, respectively, at rectangular coordinates Nx, Ny, Nz, Lx, L
y, Lz and Vx, Vy, Vz. The conversion circuit is composed of a trigonometric function table and a multiplier according to equations (5)-(7). Cos θ and cos α are calculated according to equations (3) and (4) as multipliers 1.4, 1.5, 1.6, adders 1.7, 1.8, and a multiplier 1.9 having a double scale. , 1.10, 1.11, subtractors 1.12, 1.1
3, 1.14, multipliers 1.15, 1.16, 1.17,
It can be configured using adders 1.18 and 1.19. Here, cos θ is obtained from adder 1.8 and cos α
Is output from the adder 1.18. The inner product cosγ between the surface normal and the viewpoint direction is obtained by multipliers 1.20, 1.21 and 1.22 and adders 1.23 and 1.14. In the rough specular reflection of the present invention, in the circuit of FIG.
After obtaining the values of θ, cosα, and cosγ from the surface normal, the light source incident angle, and the viewpoint angle, the reflectance, the attenuation rate, and the distribution rate are calculated, respectively. FIG. 2 shows a rough surface reflection circuit of the present invention. The specular reflection component is represented by Expression (9). In the circuit, cos θ is added to the memory tables 2.1 and 2.4, 2 / cos θ is stored in the table 2.1, and 2 / cos γ is stored in the table 2.2. On the other hand, the reflectance is stored for each color component in the memory table 2.4. For the reflectance ρ (λ, θ), the measured values of the reflection characteristics of the object for each color component are tabulated and read as cos θ. Therefore, the value converted into ρ (λ, cos θ) is actually stored. The distribution characteristic is Gauss, Beckman or cos
Values D (cos α) such as n α are tabulated in the memory 2.3 and read out with cos α. Further, 2 /
The cos θ is compared with 2 / cos γ, and the smaller value is selected by the multiplexer 2.6. This value is a multiplier 2.8
Is multiplied by cos α. This value is compared by the comparator 2.9 with 1 / cosγ, which has been set to で by the シ shifter 2.7, and the smaller one is selected by the multiplexer 2.12. Further, the output of the table 2.4 is multiplied by the output of the distribution ratio table 2.3 by the multiplier 2.10, and this value is further multiplied by the output of the multiplexer 2.12 by the multiplication circuit 2.13 to obtain the specular reflection component. Isp
ec. The reflectance ρ (λ, cos θ) is multiplied by the diffusion coefficient K1 by the multiplier 2.11 to obtain a diffusion component Idiff. From the above, the circuit of the present invention uses only cos α, cos θ and cos γ that can be shared with the conventional Phong shading as parameters for obtaining the rough surface characteristics, and makes a triangular function or an exponential function into a table. A rough surface shading circuit can be configured by a large-scale circuit. The memory tables 2.1 and 2.2 can also use a ROM (read only). [Effect of the Invention] According to the present invention, an object having delicate reflection characteristics can be rendered in real time.
【図面の簡単な説明】
【図1】本発明の拡散および鏡面反射成分回路
【符号の説明】
1.1 面法線用極・直交座標変換回路 1.11
乗算器
1.2 光源用極・直交座標変換回路 1.12
減算器
1.3 視線用極・直交座標変換回路 1.13
減算器
1.4 乗算器 1.14
減算器
1.5 乗算器 1.15
乗算器
1.6 乗算器 1.16
乗算器
1.7 加算器 1.17
乗算器
1.8 加算器 1.18
加算器
1.9 乗算器 1.19
加算器
1.10 乗算器 1.20
乗算器
1.21 乗算器 1,23
加算器
1.22 乗算器 1.24
加算器
【図2】本発明の拡散および鏡面反射成分回路
【符号の説明】
2.1 2/cosθテーブル 2.8
乗算器
2.2 2/cosγテーブル 2.9
比較器
2.3 D(cosα)テーブル 2.10
乗算器
2.4 k×ρ(λ,cosθ)テーブル 2.11
乗算器
2.5 減算器 2.12
マルチプレクサ
2.6 マルチプレクサ 2.13
乗算器
2.7 1/2シフターBRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 Diffuse and specular reflection component circuit of the present invention [Description of symbols] 1.1 Polar normal / rectangular coordinate conversion circuit for surface normal 1.11
Multiplier 1.2 Polar / Cartesian coordinate conversion circuit for light source 1.12
Subtractor 1.3 Line-of-sight polar / rectangular coordinate conversion circuit 1.13
Subtractor 1.4 Multiplier 1.14
Subtractor 1.5 Multiplier 1.15
Multiplier 1.6 Multiplier 1.16
Multiplier 1.7 Adder 1.17
Multiplier 1.8 Adder 1.18
Adder 1.9 Multiplier 1.19
Adder 1.10 Multiplier 1.20
Multiplier 1.21 Multipliers 1, 23
Adder 1.22 Multiplier 1.24
Adder [FIG. 2] Diffusion and specular reflection component circuit of the present invention [Description of symbols] 2.1 2 / cos θ table 2.8
Multiplier 2.2 2 / cosγ table 2.9
Comparator 2.3 D (cosα) table 2.10
Multiplier 2.4 k × ρ (λ, cos θ) table 2.11
Multiplier 2.5 Subtractor 2.12
Multiplexer 2.6 Multiplexer 2.13
Multiplier 2.7 1/2 shifter
Claims (1)
率、光分布関数、表面での光減衰関数それぞれの成分で
定義する光反射モデルに関し、物体を表現する多角形の
頂点には、面法線、光入射角、および視点角を定義し、
それらを多角形内部で内挿補間して得られた値をもと
に、前記光反射モデルのそれぞれの成分を計算して、ラ
フ面における面の輝度を決定する光反射回路において、
多角形の内挿には水平および垂直角からなる極座標成分
を用いて補間する手段と、前記の反射率、反射光分布関
数および光減衰関数を、面法線と光入射ベクトル、光の
反射ベクトルと視点ベクトル、また面法線と視点ベクト
ルが成すそれぞれの内積値をアドレスとする記憶素子を
用いて鏡面反射成分を求めるラフ面光反射回路。Claims: 1. An object is represented by a light reflection model that defines the light reflection luminance of an object having a surface roughness by using respective components of a reflectance, a light distribution function, and a light attenuation function on a surface. The vertices of the polygon that defines the surface normal, light incident angle, and viewpoint angle,
In a light reflection circuit that calculates the respective components of the light reflection model based on the values obtained by interpolating them inside the polygon, and determines the luminance of the surface on the rough surface,
Means for interpolating polygons using polar components consisting of horizontal and vertical angles, and the above-mentioned reflectance, reflected light distribution function and light attenuation function as surface normals, light incident vectors, and light reflection vectors. A rough surface light reflection circuit for obtaining a specular reflection component by using a storage element having, as an address, an inner product value formed by the surface vector and the viewpoint vector, and the respective inner product values formed by the surface normal and the viewpoint vector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001252126A JP2003030683A (en) | 2001-07-18 | 2001-07-18 | Rough surface light reflection circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001252126A JP2003030683A (en) | 2001-07-18 | 2001-07-18 | Rough surface light reflection circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003030683A true JP2003030683A (en) | 2003-01-31 |
Family
ID=19080654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001252126A Pending JP2003030683A (en) | 2001-07-18 | 2001-07-18 | Rough surface light reflection circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003030683A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006072703A (en) * | 2004-09-02 | 2006-03-16 | Medison Co Ltd | Rendering device and method for real-time three-dimensional ultrasonic diagnosis system |
US7616802B2 (en) | 2003-03-06 | 2009-11-10 | Digital Media Professionals, Inc. | Light reflection intensity calculation circuit |
US7682689B2 (en) | 2001-02-21 | 2010-03-23 | New Japan Chemical Co., Ltd. | Successively biaxial-oriented porous polypropylene film and process for production thereof |
CN102087740A (en) * | 2009-12-08 | 2011-06-08 | 英特尔公司 | Texture unit for general purpose computing |
-
2001
- 2001-07-18 JP JP2001252126A patent/JP2003030683A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7682689B2 (en) | 2001-02-21 | 2010-03-23 | New Japan Chemical Co., Ltd. | Successively biaxial-oriented porous polypropylene film and process for production thereof |
US7616802B2 (en) | 2003-03-06 | 2009-11-10 | Digital Media Professionals, Inc. | Light reflection intensity calculation circuit |
JP2010079932A (en) * | 2003-03-06 | 2010-04-08 | Digital Media Professional:Kk | Light reflection intensity calculation circuit |
JP2006072703A (en) * | 2004-09-02 | 2006-03-16 | Medison Co Ltd | Rendering device and method for real-time three-dimensional ultrasonic diagnosis system |
JP4575089B2 (en) * | 2004-09-02 | 2010-11-04 | 株式会社 メディソン | Rendering apparatus and method for real-time three-dimensional ultrasonic diagnostic system |
CN102087740A (en) * | 2009-12-08 | 2011-06-08 | 英特尔公司 | Texture unit for general purpose computing |
GB2476141A (en) * | 2009-12-08 | 2011-06-15 | Intel Corp | Using a texture unit for mathematical calculations |
GB2476141B (en) * | 2009-12-08 | 2012-10-03 | Intel Corp | Texture unit for general purpose computing |
US8570336B2 (en) | 2009-12-08 | 2013-10-29 | Intel Corporation | Texture unit for general purpose computing |
US9076254B2 (en) | 2009-12-08 | 2015-07-07 | Intel Corporation | Texture unit for general purpose computing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7212207B2 (en) | Method and apparatus for real-time global illumination incorporating stream processor based hybrid ray tracing | |
US5808619A (en) | Real-time rendering method of selectively performing bump mapping and phong shading processes and apparatus therefor | |
US7212206B2 (en) | Method and apparatus for self shadowing and self interreflection light capture | |
EP2951785B1 (en) | Method and system for efficient modeling of specular reflection | |
JP4834773B2 (en) | Light reflection intensity calculation circuit | |
JPH1079046A (en) | Shading processor | |
JP2004126692A (en) | Image processing device and method therefor | |
IL155337A (en) | Systems and methods for providing controllable texture sampling | |
JP2003030683A (en) | Rough surface light reflection circuit | |
CN114494545A (en) | Implementation method and system for simulating foggy day in 3D scene | |
JP4319308B2 (en) | Gaseous object display circuit | |
JPH0345427B2 (en) | ||
Szirmay-Kalos et al. | Hardware implementation of Phong shading using spherical interpolation | |
Tamura et al. | Deferred shadowing for real‐time rendering of dynamic scenes under environment illumination | |
KR100420859B1 (en) | apparatus and method for processing bump mapping | |
JP2006268810A (en) | Anisotropic reflection rendering circuit | |
JPH0345428B2 (en) | ||
JP3966433B2 (en) | Gaseous object image synthesis circuit | |
Hamza | Realistic Shadows In Computer Graphics | |
JP2000057372A (en) | Image processor, image processing method and storage medium | |
JP2006195940A (en) | Translucent object rendering circuit | |
JPH09231403A (en) | Horn shading method and picture generating device | |
Bugeja et al. | High-fidelity graphics for dynamically generated environments using distributed computing | |
JP3733502B2 (en) | Bump map shading circuit | |
JP4440632B2 (en) | Translucent object display circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040730 |
|
RD02 | Notification of acceptance of power of attorney |
Effective date: 20080716 Free format text: JAPANESE INTERMEDIATE CODE: A7422 |