[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003027205A - Method for producing thermal spraying material - Google Patents

Method for producing thermal spraying material

Info

Publication number
JP2003027205A
JP2003027205A JP2001208093A JP2001208093A JP2003027205A JP 2003027205 A JP2003027205 A JP 2003027205A JP 2001208093 A JP2001208093 A JP 2001208093A JP 2001208093 A JP2001208093 A JP 2001208093A JP 2003027205 A JP2003027205 A JP 2003027205A
Authority
JP
Japan
Prior art keywords
chromium
iron
thermal spray
spray material
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001208093A
Other languages
Japanese (ja)
Inventor
Makoto Mori
誠 森
Naoya Komabayashi
直哉 駒林
Hisashi Morimoto
久志 森元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2001208093A priority Critical patent/JP2003027205A/en
Priority to US10/190,627 priority patent/US6797080B2/en
Publication of JP2003027205A publication Critical patent/JP2003027205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a chromium-iron based alloy thermal spraying material which has increased pulverizability, and has excellent grain shape. SOLUTION: A chromium-iron based alloy is subjected to heat treatment, and is thereafter subjected to pulverization treatment. The content of chromium in the chromium-iron based alloy is controlled to the range of 60 to 95 mass%, the grain size thereof is controlled to the range of 1 mm to 5 μm, and the heat treatment is performed in an atmosphere of gaseous hydrogen or inert gas. Further, the pulverization treatment is performed by an impact type pulverizer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐食性部材に用い
られるクロム−鉄系溶射材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a chromium-iron based thermal spray material used for a corrosion resistant member.

【0002】[0002]

【従来の技術】溶射法は、基材の表面改質方法として広
く産業分野で利用されている方法であり、耐食性、耐摩
耗性、耐熱性付与を目的に航空機エンジン、発電用ガス
タービン、製紙、鉄鋼ロールなどの部材に応用されてい
る。溶射法は、主に粉体である溶射材を、高温の熱源で
瞬時に溶融し、これを被加工物表面に凝固、析出させ皮
膜を形成する方法である。この際、溶射材料を溶解する
熱源としては、プロピレン、アセチレン、灯油等の燃料
と空気、酸素を燃焼させる燃焼ガスタイプとアルゴン、
水素、ヘリウム、窒素などを使用するプラズマ溶射タイ
プなどがあり、溶射する目的に応じて使い分けられてい
る。
2. Description of the Related Art The thermal spraying method is widely used in the industrial field as a surface modification method for substrates, and is used for aircraft engines, gas turbines for power generation, papermaking for the purpose of imparting corrosion resistance, wear resistance and heat resistance. It is applied to steel rolls and other parts. The thermal spraying method is a method in which a thermal spraying material, which is mainly a powder, is instantaneously melted by a high-temperature heat source, and this is solidified and deposited on the surface of a workpiece to form a film. At this time, as a heat source for melting the spray material, propylene, acetylene, fuel such as kerosene and air, combustion gas type for burning oxygen and argon,
There is a plasma spray type that uses hydrogen, helium, nitrogen, etc., and is used properly according to the purpose of spraying.

【0003】溶射法は、他の皮膜の被覆方法、例えばメ
ッキ法などに比較して、(1)成膜速度が速い、(2)
基材側に直接フレームが接触することがないので熱によ
る変形が小さい、(3)メッキ槽の大きさなどによる基
材の寸法制限を受けないので大面積への施工が容易であ
るという特徴を持っている。そのため鉄塔、鉄橋、鉄
骨、船舶、各種化学工業の容器類など大型の加工物につ
いても防食、防錆を目的に溶射法が実用化されている。
The thermal spraying method is (1) faster in film forming speed than other coating methods such as plating, and (2)
Since the frame does not come into direct contact with the base material side, there is little deformation due to heat. (3) Since there is no size restriction of the base material due to the size of the plating tank, etc., it is easy to install on a large area. have. Therefore, the thermal spraying method has been put into practical use for the purpose of anticorrosion and anticorrosion even for large processed products such as steel towers, iron bridges, steel frames, ships, and containers of various chemical industries.

【0004】溶射材料としては、アルミ、亜鉛、亜鉛−
アルミニウム合金、クロム−鉄系合金、ニッケル−クロ
ム合金、コクラリ合金、ニクラリ合金などが実用化され
ており、この中でクロム−鉄系合金は、耐食性付与を目
的に使用されている。クロム−鉄系合金の溶射膜は例え
ば、ナトリウム硫黄電池陽極容器内面に形成することに
より、腐食性の活物質から電池容器を保護する目的でも
使用されている。
Aluminum, zinc, zinc-
Aluminum alloys, chromium-iron-based alloys, nickel-chromium alloys, Koklari alloys, Niklari alloys, and the like have been put into practical use. Among them, chromium-iron-based alloys are used for the purpose of imparting corrosion resistance. The thermal spray coating of the chromium-iron alloy is also used for the purpose of protecting the battery case from a corrosive active material by forming it on the inner surface of the sodium-sulfur battery anode case.

【0005】従来のクロム−鉄系合金の溶射材は、通
常、クロム−鉄系合金のインゴットをそのまま粉砕処
理、分級処理することにより製造されている。
The conventional thermal spray material of chromium-iron alloy is usually manufactured by crushing and classifying an ingot of chromium-iron alloy as it is.

【0006】[0006]

【発明が解決しようとする課題】鉄−クロム系合金の溶
射材の製造に際して、一般的には粉砕機として、振動ミ
ル、アトライターなどが用いられているが、クロム−鉄
系合金の溶射材の粒径が数100μm程度であれば粉砕
が容易であるが、粒径が100μm以下になるとクロム
−鉄系合金のもつ靱性から粉砕が困難となる。また、過
度に粉砕を行うと粉砕機の内部が摩耗し、溶射材に不純
物が混入するといった問題点があった。さらに、従来の
粉砕方法で100μm以下のクロム−鉄系溶射材を製造
しようとすると粉砕後の粒子形状が扁平になりやすく、
溶射材料のように粉末の流動性が重要となる用途に対し
ては不向きであった。
Generally, a vibration mill, an attritor or the like is used as a crusher in the production of the thermal spray material of the iron-chromium alloy, but the thermal spray material of the chromium-iron alloy is used. If the particle size is about several 100 μm, the crushing is easy, but if the particle size is 100 μm or less, the crushing becomes difficult due to the toughness of the chromium-iron alloy. Further, if the pulverization is performed excessively, there is a problem that the inside of the pulverizer is worn and impurities are mixed in the thermal spray material. Furthermore, when a chromium-iron-based thermal spray material having a particle diameter of 100 μm or less is produced by a conventional pulverization method, the particle shape after pulverization tends to be flat,
It was unsuitable for applications in which the fluidity of the powder is important, such as thermal spray materials.

【0007】本発明は、これら従来技術による問題点を
解決し、クロム−鉄系合金の粉砕性を高め、粒子形状に
優れた溶射材の製造方法および溶射材を提供することを
目的とする。
It is an object of the present invention to solve these problems of the prior art, to improve the pulverizability of a chromium-iron based alloy, and to provide a method for producing a thermal spray material having an excellent particle shape and a thermal spray material.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく鋭意努力検討した結果本発明に到達した。す
なわち本発明は以下に関する。 (1)クロム−鉄系合金を熱処理後、粉砕処理を行うこ
とを特徴とするクロム−鉄系溶射材料の製造方法。 (2)クロム−鉄系合金が、クロム含有量60〜95質
量%の範囲内の合金を含むことを特徴とする(1)に記
載のクロム−鉄系溶射材料の製造方法。 (3)クロム−鉄系合金が粒状であり、粒径が1mm〜
5μmの範囲内の粒を含むことを特徴とする(1)また
は(2)に記載のクロム−鉄系溶射材料の製造方法。 (4)クロム−鉄系合金の熱処理を、水素ガス、または
不活性ガス雰囲気中で行うことを特徴とする(1)〜
(3)の何れか1項に記載のクロム−鉄系溶射材料の製
造方法。 (5)不活性ガスがアルゴンであることを特徴とする
(4)に記載のクロム−鉄系溶射材料の製造方法。 (6)クロム−鉄系合金の熱処理を、500〜1300
℃の温度範囲で行うことを特徴とする(1)〜(5)の
何れか1項に記載のクロム−鉄系溶射材料の製造方法。 (7)粉砕処理を衝撃式粉砕機により行うことを特徴と
する(1)〜(6)の何れか1項に記載のクロム−鉄系
溶射材料の製造方法。 (8)衝撃式粉砕機が、ライナー部にくし状に配置され
た耐摩耗部材を有することを特徴とする(7)に記載の
クロム−鉄系溶射材料の製造方法。 (9)耐摩耗部材が、ジルコニア、イットリア安定化ジ
ルコニア、カルシア安定化ジルコニア、マグネシア安定
化ジルコニア、アルミナ、アルミナジルコニア、炭化珪
素、窒化珪素、炭化タングテン−コバルト合金の中から
選ばれた何れか1種であることを特徴とする(8)に記
載のクロム−鉄系溶射材料の製造方法。 (10)(1)〜(9)の何れか1項に記載のクロム−
鉄系溶射材料の製造方法により製造された溶射材が、粒
度分布が100〜5μmの範囲内であることを特徴とす
るクロム−鉄系溶射材料の製造方法。 (11)(1)〜(10)の何れか1項に記載のクロム
−鉄系溶射材料の製造方法により製造された溶射材が、
JIS(Z2504)に規定する見掛密度で2.8〜
3.5g/cm3の範囲内であることを特徴とするクロ
ム−鉄系溶射材料の製造方法。 (12)クロム含有量が60〜95質量%の範囲内であ
り、粒度分布が100〜5μmの範囲内であり、JIS
(Z2504)に規定する見掛密度が2.8〜3.5g
/cm3の範囲内であるクロム−鉄系溶射材料。
The inventor of the present invention arrived at the present invention as a result of intensive studies to solve the above problems. That is, the present invention relates to the following. (1) A method for producing a chromium-iron thermal spray material, which comprises subjecting a chromium-iron alloy to a heat treatment and then a pulverization treatment. (2) The method for producing a chromium-iron based thermal spray material according to (1), wherein the chromium-iron based alloy contains an alloy having a chromium content in the range of 60 to 95 mass%. (3) The chrome-iron alloy is granular and has a particle size of 1 mm to
The method for producing a chromium-iron-based thermal spray material according to (1) or (2), characterized in that it contains grains within a range of 5 μm. (4) The heat treatment of the chromium-iron alloy is performed in a hydrogen gas or inert gas atmosphere (1) to
The method for producing a chromium-iron-based thermal spray material according to any one of (3). (5) The method for producing a chromium-iron based thermal spray material according to (4), wherein the inert gas is argon. (6) The heat treatment of the chromium-iron-based alloy is 500 to 1300.
The method for producing a chromium-iron based thermal spray material according to any one of (1) to (5), which is performed in a temperature range of ° C. (7) The method for producing a chromium-iron-based thermal spray material according to any one of (1) to (6), wherein the pulverization process is performed by an impact pulverizer. (8) The method for producing a chromium-iron based thermal spray material according to (7), wherein the impact type crusher has a wear-resistant member arranged in a liner portion in a comb shape. (9) Any one of the wear-resistant members selected from zirconia, yttria-stabilized zirconia, calcia-stabilized zirconia, magnesia-stabilized zirconia, alumina, alumina zirconia, silicon carbide, silicon nitride, and tungsten carbide-tungsten-cobalt alloy. The method for producing a chromium-iron based thermal spray material according to (8), which is a seed. (10) Chromium according to any one of (1) to (9)
A method for producing a chromium-iron based thermal spray material, wherein the thermal spray material produced by the method for producing an iron based thermal spray material has a particle size distribution within a range of 100 to 5 μm. (11) A thermal spray material produced by the method for producing a chromium-iron based thermal spray material according to any one of (1) to (10),
The apparent density specified by JIS (Z2504) is 2.8-
It is within the range of 3.5 g / cm 3. A method for producing a chromium-iron-based thermal spray material. (12) The chromium content is in the range of 60 to 95 mass%, the particle size distribution is in the range of 100 to 5 μm, and JIS
Apparent density specified in (Z2504) is 2.8 to 3.5 g.
A chromium-iron-based thermal spray material having a thickness within the range of / cm 3 .

【0009】[0009]

【発明の実施の形態】本発明の溶射材の製造方法は、ク
ロム−鉄系合金を熱処理後、粉砕処理を行うことを特徴
とする。本発明者は、クロム−鉄系合金の粉砕処理につ
いて検討を行ったところ、クロム−鉄合金に熱処理を施
すことにより合金組織が脆化し、その後に粉砕処理を行
うことにより微粉砕が可能となり、またこの粉砕により
溶射に適した形状の粉体が得られることを見出した。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a thermal spray material of the present invention is characterized in that a chrome-iron alloy is heat-treated and then pulverized. The present inventor conducted a study on the crushing treatment of the chromium-iron-based alloy, and the alloy structure was embrittled by subjecting the chrome-iron alloy to a heat treatment, and fine pulverization was made possible by performing the crushing treatment thereafter. It was also found that this pulverization can obtain powder having a shape suitable for thermal spraying.

【0010】クロム−鉄系合金とは、Cr−Fe合金、
Cr−Fe−Ni合金、Cr−Fe−Al合金、Cr−
Fe−Ni−Al合金等が例示でき、更にこれらの合金
にC,Si,Mn,Cu,Mo,Zn,Ti,Zr,N
b,Hf,Ta,W,Re,Ge,O等を添加した合金
系も含まれる。
A chromium-iron alloy is a Cr-Fe alloy,
Cr-Fe-Ni alloy, Cr-Fe-Al alloy, Cr-
Fe-Ni-Al alloys and the like can be exemplified, and further, C, Si, Mn, Cu, Mo, Zn, Ti, Zr, N can be added to these alloys.
An alloy system to which b, Hf, Ta, W, Re, Ge, O, etc. are added is also included.

【0011】本発明はこの中で、クロム含有量が60〜
95質量%の範囲内、より好ましくはクロム含有量が7
0〜90質量%の範囲内であるクロム−鉄系合金を用い
るのが好ましい。本発明者は、熱処理後のクロム−鉄合
金の粉砕性について検討した結果、クロム−鉄系合金
は、クロム含有量により粉砕性に影響することを見出し
た。すなわちクロム含有量が60質量%未満になると鉄
−クロム系合金の靱性が増加し粉砕性が悪化するため加
熱処理による粉砕性の改善効果が低下した。一方、クロ
ム含有量が95質量%を超えると粉砕性が高くなりすぎ
粉体の靱性が低下し、また粉体が溶射材に適さない扁平
形状となった。
In the present invention, the chromium content is 60 to
Within the range of 95% by mass, more preferably the chromium content is 7
It is preferable to use a chromium-iron alloy in the range of 0 to 90% by mass. As a result of examining the pulverizability of the chromium-iron alloy after the heat treatment, the present inventor has found that the chrome-iron alloy affects the pulverizability depending on the chromium content. That is, when the chromium content is less than 60% by mass, the toughness of the iron-chromium alloy is increased and the pulverizability is deteriorated, so the effect of improving the pulverizability by the heat treatment is reduced. On the other hand, when the chromium content exceeds 95% by mass, the pulverizability becomes too high and the toughness of the powder is lowered, and the powder has a flat shape not suitable for a thermal spray material.

【0012】またクロム−鉄系合金に含まれる炭素濃度
も粉砕性に密接に影響があることを本発明者は見出し
た。すなわち炭素含有量が8質量%を超えると粉砕性が
高くなり粉体が溶射材に適さない扁平形状となった。
The present inventor has also found that the carbon concentration contained in the chromium-iron alloy has a close influence on the pulverizability. That is, when the carbon content exceeds 8 mass%, the pulverizability becomes high and the powder has a flat shape which is not suitable for a thermal spray material.

【0013】クロム−鉄系合金は、その後の熱処理工
程、粉砕処理工程を考慮すると、粒状であるのが好まし
く、1mm〜5μmの範囲内、より好ましくは300μ
m〜5μmの範囲内の粒を含有させることが好ましい。
The chromium-iron alloy is preferably granular in consideration of the subsequent heat treatment step and pulverization step, and is preferably in the range of 1 mm to 5 μm, more preferably 300 μm.
It is preferable to contain particles in the range of m to 5 μm.

【0014】本発明の熱処理とは、クロムー鉄系合金を
一定温度に加熱し、その加熱温度に一定時間保持し、そ
の後クロム−鉄系合金を室温まで降温する一連の操作を
指す。その際の昇温速度、および降温速度は特に問わな
い。
The heat treatment of the present invention refers to a series of operations in which a chromium-iron based alloy is heated to a constant temperature, kept at the heating temperature for a certain time, and then the chromium-iron based alloy is cooled to room temperature. The rate of temperature increase and the rate of temperature decrease at that time are not particularly limited.

【0015】本発明では、熱処理を水素ガス、または不
活性ガス雰囲気で、500〜1300℃の温度範囲で行
うことが好ましい。本発明のクロム−鉄系合金をこの条
件下で熱処理を行うと、合金が熱脆化または水素脆化を
起こし、溶射に適した形状、粒径の粉体が製造しやすく
なる。不活性ガスは、加熱処理を通してクロム−鉄系合
金と反応することがなければ良く、例えばアルゴンガス
を用いることが好ましい。なお、窒素ガスは、クロム−
鉄系合金と加熱処理中に反応するので使用に適さない。
In the present invention, the heat treatment is preferably carried out in a hydrogen gas or inert gas atmosphere in a temperature range of 500 to 1300.degree. When the chromium-iron based alloy of the present invention is heat-treated under these conditions, the alloy undergoes thermal embrittlement or hydrogen embrittlement, which facilitates the production of powder having a shape and particle size suitable for thermal spraying. It is sufficient that the inert gas does not react with the chromium-iron alloy through the heat treatment, and it is preferable to use argon gas, for example. The nitrogen gas is chromium-
Not suitable for use as it reacts with iron-based alloys during heat treatment.

【0016】熱処理温度は、好ましくは500〜130
0℃の範囲内、より好ましくは800〜1000℃の範
囲内で行う。500℃未満では、充分な脆化効果が得ら
れず粉砕性向上の効果が充分ではない。また1300℃
を超えると加熱処理時にクロム−鉄系合金自身の焼結が
進行しやすくその後の粉砕処理が行い難くなる。
The heat treatment temperature is preferably 500 to 130.
It is carried out within the range of 0 ° C, more preferably within the range of 800 to 1000 ° C. If it is less than 500 ° C, a sufficient brittleness effect cannot be obtained, and the effect of improving the pulverizability is not sufficient. Also 1300 ℃
If it exceeds, the sintering of the chromium-iron alloy itself tends to proceed during the heat treatment, and it becomes difficult to perform the subsequent pulverization treatment.

【0017】上記の熱処理温度での保持時間は、好まし
くは1〜10時間の範囲内、より好ましくは3〜6時間
の範囲内とする。
The holding time at the above heat treatment temperature is preferably in the range of 1 to 10 hours, more preferably 3 to 6 hours.

【0018】クロム−鉄系合金の熱処理後の粉砕処理
は、衝撃式粉砕機を用いることが好ましい。
For the crushing treatment after the heat treatment of the chromium-iron alloy, it is preferable to use an impact crusher.

【0019】衝撃式粉砕機とは、粉体を気流等により粉
砕機内に導入し、ハンマー(グラインディングハンマ
ー)及びライナーにより衝撃を加え粉砕する機構を有す
る粉砕機である。ライナーの形状としては、粉砕性を高
めるためにライナー内面に溝をつけたもの(ミゾライナ
ー)とスムース形状(スムースライナー)の2種類があ
るが、粉砕性の点ではスムースライナーよりミゾライナ
ーの方が優れている。衝撃式粉砕機のライナーには一般
的には金属材質のものが使われているが、本発明のクロ
ム−鉄系合金を粉砕するためには耐摩耗性に乏しく、粉
砕中にライナーの部材が摩耗し、溶射材中に不純物が混
入するといった問題点が生ずる。
The impact type pulverizer is a pulverizer having a mechanism in which powder is introduced into the pulverizer by an air stream or the like, and an impact is pulverized by a hammer (grinding hammer) and a liner. There are two types of liner shapes, one with grooves on the inner surface of the liner (Mizo Liner) and one with a smooth shape (Smooth Liner) to improve the pulverizability, but the Mizo Liner is superior to the smooth liner in terms of pulverizability. ing. Generally, a metal material is used for the liner of the impact type crusher, but it has poor wear resistance for crushing the chromium-iron alloy of the present invention. There is a problem that it is worn and impurities are mixed in the thermal spray material.

【0020】本発明では、衝撃式粉砕機のライナー部
に、くし状に配置された耐摩耗部材を用いることによ
り、衝撃式粉砕機の耐摩耗性、粉砕効率、粉砕能力を高
め、かつ溶射材中の不純物を低下させることができる。
In the present invention, the wear resistance member, the crushing efficiency and the crushing capacity of the impact crusher are enhanced by using the wear resistant member arranged in a comb shape in the liner portion of the impact crusher, and the thermal spray material is used. Impurities in it can be reduced.

【0021】耐摩耗部材の材質としては、ジルコニア、
イットリア安定化ジルコニア、カルシア安定化ジルコニ
ア、マグネシア安定化ジルコニア、酸化アルミニウム、
アルミナ−ジルコニア、炭化珪素、窒化珪素および炭化
タングステン−コバルト、炭化タングステン−コバルト
クロム、炭化タングステン−ニッケルクロムなどの超硬
材料が例示できる。この中で本発明の衝撃式粉砕機の耐
摩耗部材としては、シルコニア系の耐摩耗部材、例え
ば、ジルコニア、イットリア安定化ジルコニア、カルシ
ア安定化ジルコニア、マグネシア安定化ジルコニア、ア
ルミナ−ジルコニアを用いることが好ましい。また、本
発明の衝撃式粉砕機の耐摩耗部材を設置するライナー枠
部の材質は、耐摩耗部材の保持力が高く、かつ粉砕運転
中に大きく変形しない材質が好ましく、例えば鉄系、ス
テンレス系の金属を用いることが好ましい。
As the material of the wear resistant member, zirconia,
Yttria stabilized zirconia, calcia stabilized zirconia, magnesia stabilized zirconia, aluminum oxide,
Examples of ultrahard materials such as alumina-zirconia, silicon carbide, silicon nitride, tungsten carbide-cobalt, tungsten carbide-cobalt chromium, and tungsten carbide-nickel chromium. Among these, as the wear-resistant member of the impact type crusher of the present invention, it is possible to use a zirconia-based wear-resistant member, for example, zirconia, yttria-stabilized zirconia, calcia-stabilized zirconia, magnesia-stabilized zirconia, or alumina-zirconia. preferable. Further, the material of the liner frame portion for installing the wear resistant member of the impact type crusher of the present invention is preferably a material having a high holding force of the wear resistant member and not largely deformed during the crushing operation, for example, iron-based, stainless steel-based It is preferable to use the above metal.

【0022】また本発明では、衝撃式粉砕機のグライン
ディングハンマー部においても耐摩耗部材を用いること
が好ましい。この部分に用いる耐摩耗部材についても、
前述した、ジルコニア、イットリア安定化ジルコニア、
カルシア安定化ジルコニア、マグネシア安定化ジルコニ
ア、酸化アルミニウム、アルミナ−ジルコニア、炭化珪
素、窒化珪素および炭化タングステン−コバルト、炭化
タングステン−コバルトクロム、炭化タングステン−ニ
ッケルクロムなどの超硬材料が例示できるが、この中で
も、炭化タングステン系の耐摩耗部材、例えば炭化タン
グステン−コバルトまたはシルコニア系の耐摩耗部材、
例えば、イットリア安定化ジルコニアを用いることが好
ましい。また、グラインディングハンマー部を設置する
粉砕ローター部の材質についても、耐摩耗部材の保持力
が高く、かつ粉砕運転中に大きく変形しない材質が好ま
しく、例えば鉄系、ステンレス系の金属を用いることが
好ましい。
Further, in the present invention, it is preferable to use the wear resistant member also in the grinding hammer part of the impact type crusher. Also for the wear resistant member used in this part,
As mentioned above, zirconia, yttria-stabilized zirconia,
Examples of ultra-hard materials such as calcia-stabilized zirconia, magnesia-stabilized zirconia, aluminum oxide, alumina-zirconia, silicon carbide, silicon nitride and tungsten carbide-cobalt, tungsten carbide-cobalt chrome, and tungsten carbide-nickel chrome. Among them, a tungsten carbide-based wear resistant member, for example, tungsten carbide-cobalt or zirconia-based wear resistant member,
For example, it is preferable to use yttria-stabilized zirconia. Also, as for the material of the crushing rotor part where the grinding hammer part is installed, it is preferable to use a material that has a high holding force of the wear resistant member and does not significantly deform during the crushing operation. preferable.

【0023】図1に本発明の衝撃式粉砕機の具体例を模
式的に示すが、本発明の衝撃式粉砕機はこれに限定され
るものではない。
FIG. 1 schematically shows a specific example of the impact type crusher of the present invention, but the impact type pulverizer of the present invention is not limited to this.

【0024】供給口1から粉砕室2に投入されたクロム
−鉄系合金の粉末は気流3により粉砕ローター4に導入
され、グラインディングハンマー部5とライナー6によ
り衝撃作用を受けて粉砕される。粉砕された粉体はガイ
ドリング7の外側を通って分級ゾーン8に導かれ、微粉
は分級機9を通過して機外に取り出されるが、粗粉はガ
イドリング7の内側を通って再度、粉砕ローター4に戻
され粉砕作用を受ける。このように分級機を通過できな
い粉体は繰り返し粉砕され、設定された分級点以下の微
粉のみが分級機9を通過して機外に取り出される。
The powder of the chromium-iron alloy introduced into the crushing chamber 2 from the supply port 1 is introduced into the crushing rotor 4 by the air flow 3, and is crushed by the grinding hammer part 5 and the liner 6 under the impact. The pulverized powder is guided to the classification zone 8 through the outside of the guide ring 7, the fine powder is taken out of the machine through the classifier 9, but the coarse powder is passed through the inside of the guide ring 7 again, It is returned to the crushing rotor 4 and crushed. In this way, the powder that cannot pass through the classifier is repeatedly crushed, and only the fine powder below the set classification point passes through the classifier 9 and is taken out of the machine.

【0025】図2に粉砕ローター10とライナー11を
上から見た図を模式的に示す。本発明の衝撃式粉砕機に
用いられる円筒状のライナー11は、内壁に耐摩耗部材
12をくし状に取り付けるのが好ましい。このくし状に
取り付ける耐摩耗部材12は、例えば単純な直方体形状
で良く、ライナー部の上下からはみ出さない形状とす
る。このような形状の耐摩耗部材12をライナーの内壁
に等間隔に取りつける。耐摩耗部材同士の間隔は、粉砕
物により金属性ライナー枠の摩耗(ライナーの凹部分)
が大きく進行しないような間隔を設定すれば良い。
FIG. 2 schematically shows a view from above of the crushing rotor 10 and the liner 11. The wear resistance member 12 is preferably attached to the inner wall of the cylindrical liner 11 used in the impact type crusher of the present invention in a comb shape. The abrasion resistant member 12 attached in a comb shape may be, for example, a simple rectangular parallelepiped shape and has a shape that does not protrude from the upper and lower sides of the liner portion. The wear resistant member 12 having such a shape is attached to the inner wall of the liner at equal intervals. The distance between the wear-resistant members depends on the abrasion of the metal liner frame due to the crushed material (the concave portion of the liner)
It is sufficient to set an interval so that does not progress significantly.

【0026】また粉砕ローター10に取り付ける耐摩耗
部材13は、粉砕ローター10の上面に粉砕ローター1
0の回転により偏心がないようにバランスよく配置され
れば良い。
The wear-resistant member 13 attached to the crushing rotor 10 has the crushing rotor 1 on the upper surface of the crushing rotor 10.
It may be arranged in a well-balanced manner so that there is no eccentricity due to 0 rotation.

【0027】ライナー内壁に取り付けられた耐摩耗部材
12と、粉砕ローターに取り付けられた耐摩耗部材13
との間隔は、最も近い部分で0.1〜5mm、好ましく
は0.5〜2mmとする。
Abrasion resistant member 12 attached to the inner wall of the liner and abrasion resistant member 13 attached to the crushing rotor
The distance between and is 0.1 to 5 mm, preferably 0.5 to 2 mm at the closest portion.

【0028】耐摩耗部材12および13の固定方法は、
粉砕機運転中に耐摩耗部材が脱落することがなければな
んら問題がなく、一般的にはエポキシ樹脂等の接着剤が
使用されるが、ねじ等による物理的な固定方法を採用し
ても良い。
The method of fixing the wear resistant members 12 and 13 is as follows.
There is no problem if the wear resistant member does not fall off during operation of the crusher, and an adhesive such as an epoxy resin is generally used, but a physical fixing method such as a screw may be adopted. .

【0029】本発明の衝撃式粉砕機に用いられる分級機
構は、一般に用いられている分級機構を用いることがで
きるが、回転型の分級セパレータやメッシュ型の分級機
等を好適に用いることができる。
As the classification mechanism used in the impact type crusher of the present invention, a commonly used classification mechanism can be used, but a rotary type separator or a mesh type classifier can be preferably used. .

【0030】本発明により製造されるクロム−鉄系の溶
射材料は、100〜5μmの範囲内、好ましくは63〜
5μmの範囲内が良い。100μmを超えると溶射時に
溶射フレーム中での溶融が不充分となり基材への付着効
率が悪化すると共に、溶射皮膜組織もポーラスになり耐
食性の点から良くない。また溶射材料が5μm未満とな
ると、溶射粉末の流動性が悪化するため、皮膜の膜質が
不均一となると共に、溶射粉末が酸化し易くなるため溶
射皮膜の膜質が悪化する。
The chromium-iron-based thermal spray material produced according to the present invention is in the range of 100 to 5 μm, preferably 63 to 5 μm.
The range of 5 μm is preferable. When it exceeds 100 μm, the melting in the thermal spray frame is insufficient at the time of thermal spraying, the adhesion efficiency to the base material deteriorates, and the thermal spray coating structure becomes porous, which is not good in terms of corrosion resistance. On the other hand, if the thermal spraying material is less than 5 μm, the fluidity of the thermal spraying powder will be deteriorated, and the film quality of the coating will be non-uniform, and the thermal spraying powder will be easily oxidized, and the film quality of the thermal spraying coating will be deteriorated.

【0031】また本発明により製造されるクロム−鉄系
の溶射材料は、JIS(Z2504)に規定する見掛け
密度で、2.8〜3.5g/cm3の範囲内である粉体
が得られる。これにより溶射時の皮膜の緻密性が増加
し、耐食性の高い溶射皮膜を形成することができる。
Further, the chromium-iron-based thermal spray material produced by the present invention can obtain a powder having an apparent density defined by JIS (Z2504) within the range of 2.8 to 3.5 g / cm 3. . As a result, the denseness of the coating at the time of thermal spraying is increased, and a thermal sprayed coating having high corrosion resistance can be formed.

【0032】JIS(Z2504)に規定する見掛け密
度の測定方法は、以下の手順で行う。試料を乾燥容器に
入れ、105±5℃で1時間保持し、その後デシケータ
内で室温まで冷却する。試料の取り出しは測定の直前と
する。試料を孔径2.5mmのオリフィスを持つ漏斗に
注ぎ、流れ出した測定試料がコップ(内径28〜30m
m、容積25±0.05cm3の円筒形のもの。)に一
杯になってあふれ出るまで流し込む。あふれ始めたら直
ちに測定試料の流入をやめ、振動を与えないようにコッ
プの上に盛り上がった粉末をへらでコップの上端に沿っ
て平らにかきとる。その後コップの側面を軽くたたい
て、粉末を沈ませ、コップの外側に付着した粉末を除去
して、コップ内の粉末質量を0.05gの精度で秤量
し、見掛け密度を算出する。
The apparent density measuring method defined in JIS (Z2504) is performed according to the following procedure. The sample is placed in a dry container and kept at 105 ± 5 ° C. for 1 hour, then cooled to room temperature in a desiccator. Take out the sample immediately before the measurement. The sample is poured into a funnel having an orifice with a hole diameter of 2.5 mm, and the flow-out measurement sample is a cup (inner diameter 28 to 30 m).
m, cylindrical shape with a volume of 25 ± 0.05 cm3. ) And pour until it overflows. Immediately after it begins to overflow, stop the flow of the measurement sample, and scrape the powder that has risen above the cup flat with a spatula along the top edge of the cup so as not to give vibration. Then, the side surface of the cup is tapped to sink the powder, the powder adhering to the outside of the cup is removed, and the mass of the powder in the cup is weighed with an accuracy of 0.05 g to calculate the apparent density.

【0033】[0033]

【実施例】以下実施例により本発明をさらに詳細に説明
するが本発明の実施態様は実施例に限定されるものでは
ない。
The present invention will be described in more detail with reference to the following examples, but the embodiments of the present invention are not limited to the examples.

【0034】(比較例1)クロム含有量75%のクロム
−鉄合金で、106μm以下の粒を39質量%、75μ
m以下の粒を14質量%含む合金ソースを、加熱処理を
行うことなく粉砕処理を行った。粉砕条件は、クロム−
鉄合金ソース1Kgを、材質S45C、17φのボール
8.5Kgを充填した金属製ボールミル(サイズ180
φX180)に投入し、アルゴンガス置換後10時間粉
砕を行った。粉砕終了後、粉砕物を取り出し、106μ
m以下の粒、75μm以下の粒の質量%を測定した。測
定結果を表1に示す。
(Comparative Example 1) Chromium-iron alloy having a chromium content of 75%, particles of 106 μm or less of 39 mass%, 75 μm
An alloy source containing 14% by mass of particles of m or less was crushed without heat treatment. Grinding conditions are chromium-
A metal ball mill (size 180) filled with 1 kg of an iron alloy source and 8.5 kg of S45C, 17φ balls.
(φX180), and crushed for 10 hours after replacement with argon gas. After crushing, take out the crushed product, 106μ
The mass% of particles of m or less and particles of 75 μm or less were measured. The measurement results are shown in Table 1.

【0035】(実施例1)比較例1と同様のクロム含有
量75%のクロム−鉄合金を、雰囲気炉に入れてアルゴ
ンガス雰囲気中で500℃で4時間加熱処理を行った。
冷却後、雰囲気炉より取り出した前記クロム−鉄合金ソ
ース1Kgを、比較例1と同様の、材質S45C、17
φのボール8.5Kgを充填した金属製ボールミル(サ
イズ180φX180)に投入し、アルゴンガス置換後
10時間粉砕を行った。粉砕終了後、粉砕物を取り出
し、比較例1と同様に、106μm以下の粒、75μm
以下の粒の質量%を測定した。測定結果を表1に示す。
Example 1 The same chromium-iron alloy as in Comparative Example 1 having a chromium content of 75% was placed in an atmosphere furnace and heat-treated at 500 ° C. for 4 hours in an argon gas atmosphere.
After cooling, 1 Kg of the chromium-iron alloy source taken out from the atmosphere furnace was replaced with the same material S45C, 17 as in Comparative Example 1.
It was put into a metal ball mill (size 180φX180) filled with 8.5 kg of φ balls, and crushed for 10 hours after replacement with argon gas. After crushing, the crushed product was taken out, and as in Comparative Example 1, particles of 106 μm or less, 75 μm
The mass% of the following grains was measured. The measurement results are shown in Table 1.

【0036】(実施例2)実施例1と同じクロム−鉄合
金ソースを雰囲気炉に入れて、アルゴンガス雰囲気中で
600℃、4時間の加熱処理を行った。他の処理条件は
実施例1と同じにした。実施例1と同様の方法で測定し
た結果を表1に示す。
(Example 2) The same chromium-iron alloy source as in Example 1 was placed in an atmosphere furnace and heat-treated at 600 ° C for 4 hours in an argon gas atmosphere. The other processing conditions were the same as in Example 1. Table 1 shows the results measured by the same method as in Example 1.

【0037】(実施例3)実施例1と同じクロム−鉄合
金ソースを雰囲気炉に入れて、アルゴンガス雰囲気中で
850℃、4時間の加熱処理を行った。他の処理条件は
実施例1と同じにした。実施例1と同様の方法で測定し
た結果を表1に示す。
(Example 3) The same chromium-iron alloy source as in Example 1 was placed in an atmosphere furnace and heat-treated at 850 ° C for 4 hours in an argon gas atmosphere. The other processing conditions were the same as in Example 1. Table 1 shows the results measured by the same method as in Example 1.

【0038】(実施例4)実施例1と同じクロム−鉄合
金ソースを雰囲気炉に入れてアルゴンガス雰囲気中で9
50℃、4時間の加熱処理を行った。他の処理条件は実
施例1と同じにした。実施例1と同様の方法で測定した
結果を表1に示す。
(Example 4) The same chromium-iron alloy source as in Example 1 was placed in an atmosphere furnace and was placed in an argon gas atmosphere for 9 hours.
Heat treatment was performed at 50 ° C. for 4 hours. The other processing conditions were the same as in Example 1. Table 1 shows the results measured by the same method as in Example 1.

【0039】(実施例5)実施例1と同じクロム−鉄合
金ソースを雰囲気炉に入れてアルゴンガス雰囲気中で1
050℃、4時間の加熱処理を行った。他の処理条件は
実施例1と同じにした。実施例1と同様の方法で測定し
た結果を表1に示す。
(Embodiment 5) The same chromium-iron alloy source as that used in Embodiment 1 was placed in an atmosphere furnace and placed in an argon gas atmosphere for 1 hour.
Heat treatment was performed at 050 ° C. for 4 hours. The other processing conditions were the same as in Example 1. Table 1 shows the results measured by the same method as in Example 1.

【0040】(実施例6)実施例1と同じクロム−鉄合
金ソースを雰囲気炉に入れてアルゴンガス雰囲気中で1
200℃、4時間の加熱処理を行った。他の処理条件は
実施例1と同じにした。実施例1と同様の方法で測定し
た結果を表1に示す。
(Example 6) The same chromium-iron alloy source as in Example 1 was placed in an atmosphere furnace and placed in an argon gas atmosphere.
The heat treatment was performed at 200 ° C. for 4 hours. The other processing conditions were the same as in Example 1. Table 1 shows the results measured by the same method as in Example 1.

【0041】(実施例7)実施例1と同じクロム−鉄合
金ソースを雰囲気炉に入れて水素ガス雰囲気中で850
℃、4時間の加熱処理を行った。他の処理条件は実施例
1と同じにした。実施例1と同様の方法で測定した結果
を表1に示す。
(Embodiment 7) The same chromium-iron alloy source as in Embodiment 1 is put into an atmosphere furnace and 850 in a hydrogen gas atmosphere.
The heat treatment was performed at 4 ° C. for 4 hours. The other processing conditions were the same as in Example 1. Table 1 shows the results measured by the same method as in Example 1.

【0042】(実施例8)実施例1と同じクロム−鉄合
金ソースを雰囲気炉に入れて水素ガス雰囲気中で110
0℃、4時間の加熱処理を行った。他の処理条件は実施
例1と同じにした。実施例1と同様の方法で測定した結
果を表1に示す。
(Embodiment 8) The same chromium-iron alloy source as that used in Embodiment 1 is put into an atmosphere furnace and is put in a hydrogen gas atmosphere at 110
Heat treatment was performed at 0 ° C. for 4 hours. The other processing conditions were the same as in Example 1. Table 1 shows the results measured by the same method as in Example 1.

【0043】[0043]

【表1】 [Table 1]

【0044】表1の結果を見ると、106μm以下の粉
砕粒での質量%で比較を行った場合、粉砕前に39質量
%であった粉砕ソースが、加熱処理なし(比較例1)で
粉砕した場合は49質量%に増加するのにとどまるのに
対し、本発明による加熱処理(実施例1〜8)を行った
ものは、88〜97質量%となっている。これは比較例
1に対して1.8〜2倍に相当し大幅な粉砕性向上が得
られている。
When looking at the results in Table 1, when the comparison was made with the mass% of the ground particles of 106 μm or less, the grinding source, which was 39% by mass before the grinding, was ground without heat treatment (Comparative Example 1). In the case where the heat treatment was carried out, the amount increased to 49% by mass, whereas in the case where the heat treatment according to the present invention (Examples 1 to 8) was performed, the amount was 88 to 97% by mass. This is 1.8 to 2 times that of Comparative Example 1, and a great improvement in pulverizability is obtained.

【0045】この傾向は75μm以下の粉砕粒での質量
%比較でもみられ、加熱処理なし(比較例1)では41
質量%であるのに対し、本発明による加熱処理(実施例
1〜8)では59〜71質量%となり、比較例1に対し
て1.4〜1.7倍の粉砕性向上が得られている。
This tendency can be seen in the comparison of the mass% of the pulverized particles of 75 μm or less, which is 41 without the heat treatment (Comparative Example 1).
In the heat treatment according to the present invention (Examples 1 to 8), the amount is 59 to 71% by mass, which is 1.4 to 1.7 times as high as that of Comparative Example 1. There is.

【0046】(実施例9)実施例1と同様のクロム−鉄
系合金ソースを、アルゴンガス雰囲気中1000℃で2
時間加熱処理を行った。冷却後、本発明の粉砕ライナー
を取りつけた衝撃式粉砕機(ホソカワミクロン製ACM
−10)で粉砕を行った。
Example 9 The same chromium-iron alloy source as in Example 1 was used at 1000 ° C. for 2 hours in an argon gas atmosphere.
Heat treatment was performed for an hour. After cooling, an impact type crusher (Hosokawa Micron ACM equipped with the crusher liner of the present invention)
It grind | pulverized by -10).

【0047】本発明の衝撃式粉砕機に用いられる金属製
円筒状のライナー枠は、318mm、厚さ8mmのもの
を使用した。また、このライナー部の内壁にくし状に取
り付けられる耐摩耗部材はイットリア安定化ジルコニア
製で、単純な直方体形状でライナー部の上下からはみ出
さない形状とした。具体的には5mmX8mmX60m
mとした。このような耐摩耗部材をライナーの内壁に等
間隔に、71個取り付けた。
The metal cylindrical liner frame used in the impact type crusher of the present invention had a thickness of 318 mm and a thickness of 8 mm. The wear-resistant member attached to the inner wall of the liner portion in a comb shape is made of yttria-stabilized zirconia and has a simple rectangular parallelepiped shape that does not protrude from the top and bottom of the liner portion. Specifically, 5mmX8mmX60m
m. 71 such wear resistant members were attached to the inner wall of the liner at equal intervals.

【0048】また粉砕ローターに取り付ける耐摩耗部材
は炭化タングステン−コバルト製で、粉砕物に衝突する
側の長さが40mmその反対側の長さが33mmで幅が
29mm、厚さが16mmのものを使用した。このよう
な耐摩耗部材を粉砕ローターの上面に等間隔に、4個取
り付けた。そして粉砕ローターの回転数は、6500r
pmで粉砕を行った。
The wear-resistant member attached to the crushing rotor is made of tungsten carbide-cobalt and has a length of 40 mm on the side colliding with the crushed material, a length of 33 mm on the opposite side, a width of 29 mm, and a thickness of 16 mm. used. Four such wear resistant members were attached to the upper surface of the crushing rotor at equal intervals. And the rotation speed of the crushing rotor is 6500r
Grinding was done at pm.

【0049】本発明の衝撃式粉砕機で粉砕した粒を、分
級操作により粒径範囲38−8μmの粉末を得た。
The particles crushed by the impact crusher of the present invention were classified to obtain powder having a particle size range of 38-8 μm.

【0050】(実施例10)実施例9と同様の方法で加
熱処理、粉砕を行った後、分級操作により粒径範囲45
−10μmの粉末を得た。
(Embodiment 10) Heat treatment and pulverization were carried out in the same manner as in Embodiment 9, and then a particle size range of 45 was obtained by classification.
A powder of -10 μm was obtained.

【0051】(実施例11)実施例9と同様の方法で加
熱処理、粉砕を行った後、分級操作により粒径範囲53
−10μmの粉末を得た。
(Embodiment 11) Heat treatment and pulverization were carried out in the same manner as in Embodiment 9, and then a particle size range of 53 was obtained by classification.
A powder of -10 μm was obtained.

【0052】(比較例2)実施例1と同様のクロム−鉄
系合金ソースを水素ガス雰囲気中1000℃で2時間加
熱処理を行った。冷却後、粉砕メディアとして18φX
585LのSUS304ロッドを220本入れた振動ミ
ル(中央化工機製)で1時間粉砕を行い、分級操作によ
り38−8μmの粉末を得た。
Comparative Example 2 The same chromium-iron alloy source as in Example 1 was heat-treated in a hydrogen gas atmosphere at 1000 ° C. for 2 hours. 18φX as grinding media after cooling
It was pulverized for 1 hour by a vibration mill (manufactured by Chuo Kakoki Co., Ltd.) containing 220 pieces of 585L SUS304 rod, and 38-8 μm powder was obtained by a classification operation.

【0053】(比較例3)比較例2と同様の方法で加熱
処理、粉砕を行った後、分級操作により45−10μm
の粉末を得た。
(Comparative Example 3) Heat treatment and pulverization were carried out in the same manner as in Comparative Example 2, and then 45-10 μm by classification operation.
Of powder was obtained.

【0054】(比較例4)比較例2と同様の方法で加熱
処理を行った後、粉砕メディアとして10φの鋼球35
0Kgを入れたアトライタ−(三井三池化工機製)で
1.5時間粉砕を行い、分級操作により45−10μm
の粉末を得た。
(Comparative Example 4) After heat treatment was carried out in the same manner as in Comparative Example 2, a 10φ steel ball 35 as a grinding medium was used.
It was crushed for 1.5 hours with an attritor (Mitsui Miike Kakoki Co., Ltd.) containing 0 kg, and classified by 45-10 μm.
Of powder was obtained.

【0055】(比較例5)クロム−鉄系合金ソースを加
熱処理することなく粉砕メディアとして10φの鋼球3
50Kgを入れたアトライター(三井三池化工機製)で
1.5時間粉砕を行い、分級操作により53−10μm
の粉末を得た。
(Comparative Example 5) A 10φ steel ball 3 was used as a grinding medium without heat treatment of a chromium-iron based alloy source.
Grind with an attritor (Mitsui Miike Kakoki Co., Ltd.) containing 50 kg for 1.5 hours, and classify to 53-10 μm.
Of powder was obtained.

【0056】実施例9〜11、比較例2〜5で得られた
粉末の見掛密度(Z2504)の値を表2に示す。本発
明の加熱処理を行い、衝撃式粉砕を行った粉末は、JI
S金属粉の見掛密度の値が2.8以上となっている。こ
れは、前述したように粒子の形状が丸みを帯びたことに
よるものであり、溶射時の粉末の流動性が安定し均一な
皮膜が得られるという効果をもたらすものである。図3
に実施例10で得られた粉末の走査型電子顕微鏡写真
(SEM)写真、図4に比較例3で得られた粉末のSE
M写真を示す。
Table 2 shows the apparent density (Z2504) values of the powders obtained in Examples 9 to 11 and Comparative Examples 2 to 5. The powder that has been subjected to the heat treatment of the present invention and subjected to impact pulverization is JI
The value of the apparent density of the S metal powder is 2.8 or more. This is due to the rounded shape of the particles as described above, which brings about the effect that the fluidity of the powder during thermal spraying is stable and a uniform film can be obtained. Figure 3
The scanning electron micrograph (SEM) photograph of the powder obtained in Example 10 and the SE of the powder obtained in Comparative Example 3 in FIG.
An M photograph is shown.

【0057】[0057]

【表2】 [Table 2]

【0058】(比較例6)実施例9の衝撃式粉砕機の、
ライナー部の内部にくし状に取り付けられる耐摩耗部材
にステンレスを用いて粉砕を行った。他の条件は実施例
9と同様にして粉砕を行った。
Comparative Example 6 The impact type crusher of Example 9
The abrasion resistant member attached in a comb shape inside the liner was crushed using stainless steel. The other conditions were the same as in Example 9 for pulverization.

【0059】表3は実施例9、比較例6に用いた衝撃式
粉砕機の、ライナー部の内部にくし状に取り付けられた
耐摩耗部材の摩耗量、および衝撃式粉砕機の粉砕性能を
相対的に比較したものである。
Table 3 shows the amount of wear of the wear resistant member attached in a comb shape inside the liner portion of the impact type pulverizer used in Example 9 and Comparative Example 6 and the pulverizing performance of the impact type pulverizer. It is a comparative comparison.

【0060】[0060]

【表3】 [Table 3]

【0061】本発明の衝撃式粉砕機を用いることによ
り、クロム−鉄系合金の粉砕効率が高まり衝撃式粉砕機
のランニングコストが飛躍的に下げられた。また、耐摩
耗部材の摩耗粉の粉砕粉への混入が減少し、粉砕粉の純
度を高めることが可能となった。
By using the impact type crusher of the present invention, the crushing efficiency of the chromium-iron alloy was increased, and the running cost of the impact type crusher was dramatically reduced. Further, the mixture of the abrasion powder of the abrasion resistant member into the pulverized powder is reduced, and the purity of the pulverized powder can be increased.

【0062】[0062]

【発明の効果】本発明の、クロム−鉄系溶射材の製造方
法を用いることにより、クロム−鉄系合金の粉砕性を大
幅に向上させることが可能となった。また、従来ではラ
ンニングコストや、不純物の混入で実用化が困難であっ
た衝撃式粉砕機を本発明の製造方法に用いることによ
り、大幅なランニングコストの低減と、製造される溶射
材の純度を高めることが可能となった。
By using the method for producing a chromium-iron based thermal spray material according to the present invention, it has become possible to significantly improve the pulverizability of a chromium-iron based alloy. Further, by using the impact type crusher which has been difficult to put into practical use in the past due to running cost and inclusion of impurities in the production method of the present invention, a significant reduction in running cost and the purity of the thermal spray material produced can be achieved. It has become possible to raise it.

【0063】本発明の衝撃式粉砕機で、粉砕機の内部に
気流分級機能を内蔵するものを用いると、従来のバッチ
粉砕を行う場合と異なり、粉砕物の温度が上昇しにくく
酸化されにくいという特徴を有し、バッチ粉砕の場合に
必要とされる酸化防止のための雰囲気調整が必要なくな
り大気中での粉砕が可能となり、更にランニングコスト
の低減がはかられた。
When the impact type crusher of the present invention having a built-in air flow classification function is used inside the crusher, unlike the conventional batch crushing, the temperature of the crushed product is less likely to rise and is less likely to be oxidized. It has a feature that it is not necessary to adjust the atmosphere for preventing oxidation, which is required in the case of batch pulverization, and pulverization in the atmosphere is possible, and the running cost is further reduced.

【0064】また、本発明により得られる溶射粉末は、
丸みを帯びることから溶射時の粉末の流動性が安定し均
一な皮膜が得られるという効果をもたらした。
The thermal spray powder obtained by the present invention is
The roundness brought about the effect that the fluidity of the powder during thermal spraying was stable and a uniform film was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の衝撃式粉砕機の具体例を模式的に示
す。
FIG. 1 schematically shows a specific example of an impact type crusher of the present invention.

【図2】本発明の衝撃式粉砕機の、粉砕ローターとライ
ナーを上から見た図を模式的に示す。
FIG. 2 schematically shows a top view of a crushing rotor and a liner of the impact crusher of the present invention.

【図3】実施例10で得られた粉末の走査型電子顕微鏡
写真を示す。
FIG. 3 shows a scanning electron micrograph of the powder obtained in Example 10.

【図4】比較例3で得られた粉末の走査型電子顕微鏡写
真を示す。
FIG. 4 shows a scanning electron micrograph of the powder obtained in Comparative Example 3.

【符号の説明】[Explanation of symbols]

1 供給口 2 粉砕室 3 気流 4 粉砕ローター 5 グラインディングハンマー部 6 ライナー 7 ガイドリング 8 分級ゾーン 9 分級機 10 粉砕ローター 11 ライナー 12 耐摩耗部材 13 耐摩耗部材 14 モータ 15 モータシャフト 16 エアー入り口 1 supply port 2 crushing room 3 airflow 4 crushing rotor 5 Grinding hammer part 6 liner 7 Guide ring 8 classification zones 9 classifier 10 crushing rotor 11 liner 12 Wear resistant members 13 Wear resistant members 14 motor 15 motor shaft 16 Air entrance

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森元 久志 長野県塩尻市大字宗賀1番地 昭和電工株 式会社塩尻生産・技術統括部内 Fターム(参考) 4K031 AA02 AA08 AB02 AB08 AB09 CB01 CB07 CB08 CB18 CB22 CB32 DA01 DA04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hisashi Morimoto             Showa Denko Co., Ltd.             Shiojiri Production / Technology Management Department F-term (reference) 4K031 AA02 AA08 AB02 AB08 AB09                       CB01 CB07 CB08 CB18 CB22                       CB32 DA01 DA04

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】クロム−鉄系合金を熱処理後、粉砕処理を
行うことを特徴とするクロム−鉄系溶射材料の製造方
法。
1. A method for producing a chromium-iron based thermal spray material, which comprises subjecting a chromium-iron based alloy to a heat treatment and then a pulverization treatment.
【請求項2】クロム−鉄系合金が、クロム含有量60〜
95質量%の範囲内の合金を含むことを特徴とする請求
項1に記載のクロム−鉄系溶射材料の製造方法。
2. A chromium-iron based alloy having a chromium content of 60-.
The method for producing a chromium-iron based thermal spray material according to claim 1, characterized in that the alloy contains the alloy within a range of 95 mass%.
【請求項3】クロム−鉄系合金が粒状であり、粒径が1
mm〜5μmの範囲内の粒を含むことを特徴とする請求
項1または2に記載のクロム−鉄系溶射材料の製造方
法。
3. The chromium-iron alloy is granular and has a particle size of 1
The method for producing a chromium-iron-based thermal spray material according to claim 1 or 2, which contains particles within a range of mm to 5 µm.
【請求項4】クロム−鉄系合金の熱処理を、水素ガス、
または不活性ガス雰囲気中で行うことを特徴とする請求
項1〜3の何れか1項に記載のクロム−鉄系溶射材料の
製造方法。
4. A heat treatment of a chromium-iron alloy is carried out with hydrogen gas,
Alternatively, it is carried out in an inert gas atmosphere, and the method for producing a chromium-iron based thermal spray material according to claim 1.
【請求項5】不活性ガスがアルゴンであることを特徴と
する請求項4に記載のクロム−鉄系溶射材料の製造方
法。
5. The method for producing a chromium-iron-based thermal spray material according to claim 4, wherein the inert gas is argon.
【請求項6】クロム−鉄系合金の熱処理を、500〜1
300℃の温度範囲で行うことを特徴とする請求項1〜
5の何れか1項に記載のクロム−鉄系溶射材料の製造方
法。
6. A heat treatment for a chromium-iron-based alloy is performed in the range of 500-1.
It is performed in a temperature range of 300 ° C. 3.
5. The method for producing the chromium-iron based thermal spray material according to any one of 5 above.
【請求項7】粉砕処理を衝撃式粉砕機により行うことを
特徴とする請求項1〜6の何れか1項に記載のクロム−
鉄系溶射材料の製造方法。
7. The chromium-containing alloy according to claim 1, wherein the crushing treatment is carried out by an impact crusher.
Manufacturing method of iron-based thermal spray material.
【請求項8】衝撃式粉砕機が、ライナー部にくし状に配
置された耐摩耗部材を有することを特徴とする請求項7
に記載のクロム−鉄系溶射材料の製造方法。
8. The impact type crusher has abrasion resistant members arranged in a liner portion in a comb shape.
The method for producing a chromium-iron-based thermal spray material according to 1.
【請求項9】耐摩耗部材が、ジルコニア、イットリア安
定化ジルコニア、カルシア安定化ジルコニア、マグネシ
ア安定化ジルコニア、アルミナ、アルミナジルコニア、
炭化珪素、窒化珪素、炭化タングテン−コバルト合金の
中から選ばれた何れか1種であることを特徴とする請求
項8に記載のクロム−鉄系溶射材料の製造方法。
9. The wear resistant member is zirconia, yttria stabilized zirconia, calcia stabilized zirconia, magnesia stabilized zirconia, alumina, alumina zirconia,
9. The method for producing a chromium-iron based thermal spray material according to claim 8, wherein the method is any one selected from silicon carbide, silicon nitride, and a tungsten carbide-tungsten carbide alloy.
【請求項10】請求項1〜9の何れか1項に記載のクロ
ム−鉄系溶射材料の製造方法により製造された溶射材
が、粒度分布が100〜5μmの範囲内であることを特
徴とするクロム−鉄系溶射材料の製造方法。
10. A thermal spray material produced by the method for producing a chromium-iron-based thermal spray material according to claim 1, wherein the particle size distribution is within a range of 100 to 5 μm. A method for producing a chromium-iron based thermal spray material.
【請求項11】請求項1〜10の何れか1項に記載のク
ロム−鉄系溶射材料の製造方法により製造された溶射材
が、JIS(Z2504)に規定する見掛密度で2.8
〜3.5g/cm3の範囲内であることを特徴とするク
ロム−鉄系溶射材料の製造方法。
11. A thermal spray material produced by the method for producing a chromium-iron-based thermal spray material according to any one of claims 1 to 10 has an apparent density of 2.8 specified in JIS (Z2504).
To 3.5 g / cm 3 in range, a method for producing a chromium-iron based thermal spray material.
【請求項12】クロム含有量が60〜95質量%の範囲
内であり、粒度分布が100〜5μmの範囲内であり、
JIS(Z2504)に規定する見掛密度が2.8〜
3.5g/cm3の範囲内であるクロム−鉄系溶射材
料。
12. The chromium content is in the range of 60 to 95 mass%, the particle size distribution is in the range of 100 to 5 μm,
The apparent density specified in JIS (Z2504) is 2.8-
Chromium-iron based thermal spray material having a range of 3.5 g / cm 3 .
JP2001208093A 2001-07-09 2001-07-09 Method for producing thermal spraying material Pending JP2003027205A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001208093A JP2003027205A (en) 2001-07-09 2001-07-09 Method for producing thermal spraying material
US10/190,627 US6797080B2 (en) 2001-07-09 2002-07-09 Method for producing spraying material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001208093A JP2003027205A (en) 2001-07-09 2001-07-09 Method for producing thermal spraying material

Publications (1)

Publication Number Publication Date
JP2003027205A true JP2003027205A (en) 2003-01-29

Family

ID=19043974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001208093A Pending JP2003027205A (en) 2001-07-09 2001-07-09 Method for producing thermal spraying material

Country Status (1)

Country Link
JP (1) JP2003027205A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2230707A1 (en) * 2009-03-12 2010-09-22 Plansee Se Interconnector of a solid electrolyte high temperature fuel cell
JP2017168337A (en) * 2016-03-17 2017-09-21 日本碍子株式会社 Method for producing positive electrode current collector for sodium-sulfur battery, and method for producing sodium-sulfur battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126854A (en) * 1978-03-24 1979-10-02 Toyota Motor Corp Piston ring
JPS55128506A (en) * 1979-03-23 1980-10-04 Allied Chem Metal glass powder from glassy alloy
JPS563667A (en) * 1979-06-19 1981-01-14 Toyota Motor Corp Piston ring for internal combustion engine
JPS60262953A (en) * 1984-06-08 1985-12-26 Showa Denko Kk Powder for spraying
JPS60262954A (en) * 1984-06-08 1985-12-26 Showa Denko Kk Powder for spraying
JPS6313656A (en) * 1986-07-02 1988-01-20 Ube Ind Ltd Manufacture of casting
JPH10182228A (en) * 1996-12-20 1998-07-07 Tosoh Corp Production of ito sintered compact

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126854A (en) * 1978-03-24 1979-10-02 Toyota Motor Corp Piston ring
JPS55128506A (en) * 1979-03-23 1980-10-04 Allied Chem Metal glass powder from glassy alloy
JPS563667A (en) * 1979-06-19 1981-01-14 Toyota Motor Corp Piston ring for internal combustion engine
JPS60262953A (en) * 1984-06-08 1985-12-26 Showa Denko Kk Powder for spraying
JPS60262954A (en) * 1984-06-08 1985-12-26 Showa Denko Kk Powder for spraying
JPS6313656A (en) * 1986-07-02 1988-01-20 Ube Ind Ltd Manufacture of casting
JPH10182228A (en) * 1996-12-20 1998-07-07 Tosoh Corp Production of ito sintered compact

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2230707A1 (en) * 2009-03-12 2010-09-22 Plansee Se Interconnector of a solid electrolyte high temperature fuel cell
US9029044B2 (en) 2009-03-12 2015-05-12 Plansee Se Interconnector for a high-temperature solid electrolyte fuel cell, method of producing a fuel cell, and high-temperature solid electrolyte fuel cell
KR101681326B1 (en) 2009-03-12 2016-11-30 플란제 에스이 Interconnector for a high-temperature solid electrolyte fuel cell
JP2017168337A (en) * 2016-03-17 2017-09-21 日本碍子株式会社 Method for producing positive electrode current collector for sodium-sulfur battery, and method for producing sodium-sulfur battery

Similar Documents

Publication Publication Date Title
EP1126043B1 (en) Spray powder, thermal spraying process using it, and sprayed coating
EP1227169B1 (en) Spray powder and method for its production
Jiang et al. Induction plasma spheroidization of tungsten and molybdenum powders
JP5525813B2 (en) Thermal spray coated work roll
KR101475764B1 (en) Thermal spraying powder, thermal spray coating, and hearth roll
US20160348222A1 (en) Centrifugal atomization of iron-based alloys
Li et al. Spheroidization of titanium carbide powders by induction thermal plasma processing
CN107739950A (en) A kind of WC Co cBN composite hard alloys and preparation method thereof
JP6763441B2 (en) A method for forming an intermetallic compound sprayed coating, the sprayed coating, a method for manufacturing a metal product having the sprayed coating, and a roll for transporting glass.
Feng et al. Laser cladding of Ni-Cr/Al2O3 composite coatings on AISI 304 stainless steel
CA2267960C (en) Coating powder and method for its production
Fan et al. High entropy alloy bonded cemented carbides: composition, processing, microstructure, properties and applications
Eigen et al. Microstructures and properties of nanostructured thermal sprayed coatings using high-energy milled cermet powders
JP2003027205A (en) Method for producing thermal spraying material
EP3950177A1 (en) Ni-based alloy, ni-based alloy powder, ni-based alloy member, and product provided with ni-based alloy member
WO2004111301A1 (en) Electrode for electrical discharge coating and its evaluation method, and method of electrical discharge coating
Viljus et al. Structure formation in Ti-C-Ni-Mo composites during reactive sintering
Hussain et al. Characteristics of feedstock materials
US6797080B2 (en) Method for producing spraying material
Jiangzheng et al. Effects of La2O3 mass fraction on microstructure and friction-wear performances of WC− 10Co4Cr− Al2O3 coatings by laser cladding
JP4439101B2 (en) Attritor equipment
Zoz et al. High energy milling/Mechanical alloying/Reactive milling
WO2020196578A1 (en) Method of producing solid spherical powder, and method of producing shaped product
JPS5913609A (en) Flaky nitride ceramics and its manufacture
Zhao et al. Effect of ball-to-powder ratio on morphology, structure, and flowability of ball-milled gray cast iron powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080520

A711 Notification of change in applicant

Effective date: 20081006

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081006

A977 Report on retrieval

Effective date: 20081118

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100817

A02 Decision of refusal

Effective date: 20100914

Free format text: JAPANESE INTERMEDIATE CODE: A02