JP2003023194A - Solid-state laser amplifier - Google Patents
Solid-state laser amplifierInfo
- Publication number
- JP2003023194A JP2003023194A JP2001204578A JP2001204578A JP2003023194A JP 2003023194 A JP2003023194 A JP 2003023194A JP 2001204578 A JP2001204578 A JP 2001204578A JP 2001204578 A JP2001204578 A JP 2001204578A JP 2003023194 A JP2003023194 A JP 2003023194A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- laser
- angle
- incident
- laser light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Lasers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、レーザー結晶を利
用したレーザー光の増幅器に関するものである。特に、
本発明は、ブリュースター角度又はそれに近い角度で両
端を切断したレーザー結晶を使用し、レーザー結晶から
出たレーザー光を空間的に折り返し、入射角度を変えて
再びレーザー結晶に入射することによって1個の増幅器
で多数回増幅することを特長とする固体レーザー増幅器
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser light amplifier using a laser crystal. In particular,
The present invention uses a laser crystal whose both ends are cut at Brewster's angle or at an angle close to it, spatially folds the laser light emitted from the laser crystal, changes the incident angle, and re-enters the laser crystal to produce one laser light. It is a solid-state laser amplifier characterized by being amplified many times by the amplifier of.
【0002】[0002]
【従来の技術】従来、固体レーザー発振器で発生するレ
ーザー光の出力を増幅するためには、発振器からのレー
ザー光を複数の増幅器に入射させるか、或いは増幅器中
を折り返し往復させて出力を高める方法が用いられてい
る。2. Description of the Related Art Conventionally, in order to amplify the output of laser light generated by a solid-state laser oscillator, the laser light from the oscillator is made incident on a plurality of amplifiers or is folded back and forth through the amplifiers to increase the output. Is used.
【0003】複数の増幅器を用いる方法では、出力を増
強するためレーザー光を各増幅器で徐々に増幅する。こ
のため各増幅器内に蓄積されたエネルギーのかなりの部
分が光として取り出されず、増幅器内に残留し、レーザ
ー発振効率が低いという問題がある。In the method using a plurality of amplifiers, laser light is gradually amplified by each amplifier in order to enhance the output. For this reason, there is a problem that a considerable part of the energy accumulated in each amplifier is not extracted as light and remains in the amplifier, resulting in low laser oscillation efficiency.
【0004】折り返し増幅法では、レーザー光を往復さ
せるためにレーザー結晶への入射角度を変えたり、結晶
の一方を反射面として利用するなどの方法が使われてい
る。これまでの方法では、レーザー結晶への入射角度を
変化させると出てくるレーザー光線の角度も変化するた
め光路の調整や熱レンズ効果の補正が非常に困難であっ
た。In the folding amplification method, a method of changing the incident angle to the laser crystal in order to make the laser beam reciprocate, or utilizing one of the crystals as a reflecting surface is used. In the conventional methods, it is very difficult to adjust the optical path and correct the thermal lens effect because the angle of the laser beam that emerges also changes when the angle of incidence on the laser crystal changes.
【0005】[0005]
【発明が解決しようとする課題】上記の折り返し増幅器
は以下のような問題が発生しており、解決する必要が生
じていた。まず、第1に、レーザー出力が高くなると、
レーザー結晶は熱で歪み、この結果、結晶がレンズのよ
うに働き(熱レンズ効果)、最悪の場合、結晶内に焦点
を結んで結晶を破壊する。The folding amplifier described above has the following problems, and it is necessary to solve them. First of all, when the laser output becomes high,
The laser crystal is distorted by heat, and as a result, the crystal acts like a lens (thermal lens effect) and, in the worst case, focuses inside the crystal and destroys it.
【0006】第2に、レーザー結晶内にはエネルギーが
蓄えられているが、1回の折り返しではこれを効率良く
引き出すことができない。Secondly, although energy is stored in the laser crystal, it cannot be efficiently extracted with one turn.
【0007】[0007]
【課題を解決するための手段】本発明は、上記問題を解
決するためのものであり、まず、上記第1の問題を解決
するために、本発明では、増幅された入射レーザー光を
空間的に異なる角度でレーザー結晶に再入射する。従っ
てこの時レンズ効果が発生しないように像転送を行うこ
とにより熱レンズ効果が抑えられる。The present invention is intended to solve the above problems. First, in order to solve the first problem, the present invention uses an amplified incident laser beam spatially. Re-enters the laser crystal at different angles. Therefore, at this time, the thermal lens effect is suppressed by performing image transfer so that the lens effect does not occur.
【0008】又、上記第2の問題を解決するために、本
発明では、レーザー光を以下に述べる様な条件で複数回
折り返すことでエネルギー引き出し効率を向上させるこ
とができる。Further, in order to solve the second problem, in the present invention, the energy extraction efficiency can be improved by returning the laser light a plurality of times under the conditions described below.
【0009】即ち、本発明は、ブリュースター角度又は
それに近い角度で両端を切断した1個のレーザー結晶を
使用し、入射光をその結晶に入射後、結晶から出たレー
ザー光を空間的に複数回折り返して入射角度を変えて結
晶に再入射させ、そのつど結晶内をレーザー光をジグザ
グに複数回全反射して進行させ、レーザー結晶をまんべ
んなく照射利用することにより、光エネルギーの引き出
し効率を向上させた固体レーザー増幅器である。That is, the present invention uses one laser crystal whose both ends are cut at a Brewster's angle or an angle close thereto, and after the incident light is incident on the crystal, a plurality of laser lights emitted from the crystal are spatially separated. Improves the extraction efficiency of light energy by turning back and re-incident on the crystal by changing the incident angle, and by making total reflection of the laser light in zigzag multiple times in the crystal to make progress and irradiating the laser crystal evenly. This is a solid-state laser amplifier.
【0010】[0010]
【発明の実施の形態】上記のブリュースター角度は、レ
ーザー光のような単色で直線偏光の光が結晶などに入射
する時、偏光方向が入射面に垂直な光の反射係数がゼロ
(損失が無い)になる入射角である。図3に示されるよ
うに、この角度(θ)は光が入射する媒質の屈折率
(n)によって変化し、θ=tan-1nで表される。例
えば、Nd:YAG結晶の屈折率は1.818であるの
で、そのブリュースター角度は約61.19度になる。BEST MODE FOR CARRYING OUT THE INVENTION The above Brewster angle is such that when monochromatic linearly polarized light such as laser light is incident on a crystal or the like, the reflection coefficient of light whose polarization direction is perpendicular to the incident surface is zero (loss is Incident angle. As shown in FIG. 3, this angle (θ) changes depending on the refractive index (n) of the medium into which light is incident, and is represented by θ = tan −1 n. For example, since the Nd: YAG crystal has a refractive index of 1.818, its Brewster angle is about 61.19 degrees.
【0011】上記レーザー光の複数回折り返しを行うた
めには、例えば、結晶の切断角度を約28.8度、結晶
長を81mmとする。このレーザー結晶内の全反射回数
が整数回になる条件を選定する。例えば、入射角度が6
1.5度で15回、51.8度で17回、44.1度で
19回、37.8度で21回等である。この条件を使う
ことによって、例えば、上記角度で結晶への入射角度を
変え、最後の37.8度の角度で入射したレーザー光を
ミラーを使って折り返すことによって合計8回の折り返
し増幅が可能となる。なお、YAG結晶の臨界角度は3
3.3度であるから、レーザー光の結晶内での反射角度
がこれ以上であれば、入射光は結晶内で全反射されて出
てくることになるので8回以上の折り返しも可能とな
る。In order to perform the above-mentioned multiple reflection of the laser light, for example, the crystal cutting angle is about 28.8 degrees and the crystal length is 81 mm. The conditions are selected so that the total number of times of total reflection within the laser crystal is an integer. For example, if the incident angle is 6
It is 15 times at 1.5 degrees, 17 times at 51.8 degrees, 19 times at 44.1 degrees, 21 times at 37.8 degrees, and so on. By using this condition, for example, the incident angle to the crystal is changed at the above-mentioned angle, and the laser light incident at the last 37.8 degrees is folded back by using the mirror, thereby making it possible to carry out folding amplification eight times in total. Become. The critical angle of YAG crystal is 3
Since it is 3.3 degrees, if the reflection angle of the laser light in the crystal is more than this, the incident light will be totally reflected in the crystal and come out, so that it can be folded eight times or more. .
【0012】さらに、結晶へのレーザー光の入射角度を
変えると結晶内での全反射回数が変わり光路も変化す
る。この結果、レーザー結晶がまんべんに照射される。
このため一層エネルギー引き出し効率が向上する。以
下、本発明を実施例に基づいてせつめいする。Furthermore, when the incident angle of the laser beam on the crystal is changed, the number of total reflections in the crystal is changed and the optical path is also changed. As a result, the laser crystal is evenly irradiated.
Therefore, the energy extraction efficiency is further improved. Hereinafter, the present invention will be described based on examples.
【0013】[0013]
【実施例】(実施例1)図1にレーザー光が結晶内を4
往復(8回通過)する場合を示す。1は入射レーザー
光、2は増幅光取り出し用偏光素子、3は偏光回転用1
/2波長板、4はファラデー回転子、5はレーザー結
晶、6は像転送用レンズ、7は絶縁破壊防止用真空セ
ル、8は折り返し用ミラー、9は増幅されて取り出され
るレーザー光である。[Example] (Example 1) In FIG.
It shows the case of going back and forth (passing 8 times). 1 is an incident laser beam, 2 is a polarization element for extracting amplified light, and 3 is a polarization rotation 1
/ 2 wavelength plate, 4 Faraday rotator, 5 laser crystal, 6 image transfer lens, 7 dielectric breakdown preventing vacuum cell, 8 folding mirror, and 9 amplified and extracted laser light.
【0014】入射レーザー光1は、増幅光取り出し用偏
光素子2、偏光回転用1/2波長板3、ファラデー回転
子4を通過してレーザー結晶5に入射する。結晶を出た
レーザー光は2枚の像転送用レンズ6でレーザー結晶中
に転送される。この時のレーザー光の入射角度は上で述
べた角度に設定する。即ち、入射角度をブリュースター
角度又はそれに近い角度の約59.1度に設定した。こ
れは結晶端での熱の影響などを考慮して決定された。The incident laser light 1 passes through a polarized element 2 for extracting amplified light, a 1/2 wavelength plate 3 for polarization rotation, and a Faraday rotator 4, and is incident on a laser crystal 5. The laser light emitted from the crystal is transferred into the laser crystal by the two image transfer lenses 6. The incident angle of the laser light at this time is set to the angle described above. That is, the incident angle was set to about 59.1 degrees, which is the Brewster angle or an angle close thereto. This was determined in consideration of the influence of heat at the crystal edge.
【0015】入射レーザー光は結晶内部で全反射し、増
幅されたレーザー光は入射角度と同じ角度で結晶から出
てくる。この時、1回目と同様に結晶中の像を2枚のレ
ンズ6を使って再度結晶中に転送する。レーザー光の結
晶への入射角度を上で述べた角度に設定し、同じ操作を
さらに2回行う。最後は結晶の出口に折り返しミラー8
を置くことによって、増幅されたレーザー光9は同じ光
路を戻って、増幅光取り出し用偏光素子2で光路の外に
取り出される。即ち、図2では、レーザー光は全部で4
回結晶内を往復(8回通過)する場合を示している。The incident laser light is totally reflected inside the crystal, and the amplified laser light emerges from the crystal at the same angle as the incident angle. At this time, similarly to the first time, the image in the crystal is transferred into the crystal again by using the two lenses 6. The angle of incidence of the laser light on the crystal is set to the angle described above, and the same operation is performed twice more. At the end, a mirror 8 is folded at the exit of the crystal.
Is set, the amplified laser beam 9 returns to the same optical path and is extracted outside the optical path by the amplified light extraction polarization element 2. That is, in FIG. 2, the laser light is 4 in total.
It shows the case of reciprocating (passing 8 times) in the recrystallized crystal.
【0016】(実施例2)図2にレーザー光を4回結晶
中を通過させた場合の実験結果を示す。入射光が1回レ
ーザー結晶を通過することによって結晶内に蓄積された
エネルギーの24%が光として取り出される。このレー
ザー光がさらに4回結晶内を折り返すことによって蓄積
エネルギーの62%が光として取り出される。(Embodiment 2) FIG. 2 shows an experimental result when a laser beam is passed through a crystal four times. As the incident light passes through the laser crystal once, 24% of the energy stored in the crystal is extracted as light. This laser light is turned back inside the crystal four times, and 62% of the stored energy is extracted as light.
【0017】[0017]
【発明の効果】本発明においては、ブリュースター角度
又はそれに近い角度で両端を切断した1個のレーザー結
晶を使用し、入射光をその結晶に入射後、結晶から出た
レーザー光を空間的に複数回折り返して再入射させ、そ
のつど結晶内をレーザー光をジグザグに複数回全反射し
て進行させ、レーザー結晶をまんべんなく照射利用する
ことにより、光エネルギーの引き出し効率を向上させる
ことができる、という本発明に特有な顕著な効果を生ず
る。INDUSTRIAL APPLICABILITY In the present invention, one laser crystal whose both ends are cut at Brewster's angle or an angle close to it is used, and after incident light is incident on the crystal, the laser light emitted from the crystal is spatially separated. It is possible to improve the extraction efficiency of light energy by making multiple reflections and re-incidents, and by totally reflecting the laser light in the crystal multiple times in a zigzag manner and by irradiating and utilizing the laser crystal evenly. The remarkable effect peculiar to this invention is produced.
【図1】 本発明の空間的な増幅方法の一例を示す図で
ある。FIG. 1 is a diagram showing an example of a spatial amplification method of the present invention.
【図2】 レーザー光が結晶内を4回折り返す場合のエ
ネルギー引き出し効率を示す図である。FIG. 2 is a diagram showing energy extraction efficiency when laser light is returned four times in a crystal.
【図3】 ブリュースター角度を示す図である。FIG. 3 is a diagram showing Brewster angles.
1:入射レーザー光 2:増幅光取り出し用偏光素子 3:偏光回転用1/2波長板 4:ファラデー回転子 5:レーザー結晶 6:像転送用レンズ 7:絶縁破壊防止用真空セル 8:折り返し用ミラー 9:増幅されて取り出されるレーザー光 1: Incident laser light 2: Polarizing element for extracting amplified light 3: 1/2 wavelength plate for polarization rotation 4: Faraday rotator 5: Laser crystal 6: Lens for image transfer 7: Vacuum cell for insulation breakdown prevention 8: Folding mirror 9: Laser light amplified and taken out
───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 政明 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 Fターム(参考) 5F072 AB01 AK03 AK09 JJ01 JJ02 JJ06 KK05 KK15 KK18 KK30 MM00 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Masaaki Kato 4 of 2 Shirane, Shikata, Tokai-mura, Naka-gun, Ibaraki Prefecture Japan Atomic Energy Research Institute Tokai Research Center F term (reference) 5F072 AB01 AK03 AK09 JJ01 JJ02 JJ06 KK05 KK15 KK18 KK30 MM00
Claims (5)
で両端を切断したレーザー結晶を利用した固体レーザー
増幅器。1. A solid-state laser amplifier using a laser crystal whose both ends are cut at a Brewster's angle or an angle close thereto.
に複数回全反射することを特長とする固体レーザー増幅
器。2. A solid-state laser amplifier characterized in that laser light is totally reflected in a zigzag manner a plurality of times in a laser crystal.
射角度が可変であることを特長とする固体レーザー増幅
器。3. A solid-state laser amplifier characterized in that the incident angle of laser light incident on a laser crystal is variable.
的に折り返し、入射角度を変えて再びレーザー結晶に入
射することによって1個の増幅器で多数回増幅すること
を特長とする固体レーザー増幅器。4. A solid-state laser amplifier characterized in that a laser beam emitted from a laser crystal is spatially folded back and is incident on the laser crystal again at a different incident angle so that the laser light is amplified many times by one amplifier.
を補正することができることを特長とする固体レーザー
増幅器。5. A solid-state laser amplifier characterized by being able to correct the thermal lens effect in a spatial amplification method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001204578A JP2003023194A (en) | 2001-07-05 | 2001-07-05 | Solid-state laser amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001204578A JP2003023194A (en) | 2001-07-05 | 2001-07-05 | Solid-state laser amplifier |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003023194A true JP2003023194A (en) | 2003-01-24 |
Family
ID=19041019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001204578A Pending JP2003023194A (en) | 2001-07-05 | 2001-07-05 | Solid-state laser amplifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003023194A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007059471A (en) * | 2005-08-22 | 2007-03-08 | Hamamatsu Photonics Kk | Optical amplifier and mopa laser device |
JP2008522409A (en) * | 2004-11-26 | 2008-06-26 | ジェフリー, ジー マンニ, | High gain diode pumped laser amplifier. |
WO2015029285A1 (en) * | 2013-09-02 | 2015-03-05 | 三菱電機株式会社 | Laser amplification device |
WO2018037538A1 (en) * | 2016-08-25 | 2018-03-01 | 株式会社メガオプト | Laser amplifying medium, laser oscillator, and laser amplifier |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62189778A (en) * | 1986-02-17 | 1987-08-19 | Toshiba Corp | Laser oscillator |
JPH0214587A (en) * | 1988-06-30 | 1990-01-18 | Mitsubishi Electric Corp | Solid laser equipment |
JPH06216438A (en) * | 1992-11-30 | 1994-08-05 | Fuji Electric Co Ltd | Slab type solid laser device |
JPH0750440A (en) * | 1993-08-09 | 1995-02-21 | Fuji Electric Co Ltd | Slab type solid-state laser equipment |
JPH0799358A (en) * | 1993-09-29 | 1995-04-11 | Fuji Electric Co Ltd | Solid state-laser system |
JPH07193307A (en) * | 1993-11-05 | 1995-07-28 | Trw Inc | Solid laser source, method of removing influence of multiplerefraction and zigzag amplifier |
JPH08191165A (en) * | 1995-01-11 | 1996-07-23 | Fuji Electric Co Ltd | Slab type solid-state laser |
JPH09181378A (en) * | 1995-12-25 | 1997-07-11 | Japan Atom Energy Res Inst | Solid laser amplifier and solid laser device |
JPH09214024A (en) * | 1996-02-02 | 1997-08-15 | Fanuc Ltd | Solid-state laser oscillator |
JPH09312430A (en) * | 1996-05-22 | 1997-12-02 | Sadao Nakai | Zig-zag slab solid-state laser and amplifier |
JPH09321371A (en) * | 1996-05-27 | 1997-12-12 | Fuji Electric Co Ltd | Slab-shaped solid-state laser apparatus |
JPH118428A (en) * | 1997-06-18 | 1999-01-12 | Nec Corp | Solid-state laser oscillator |
JPH11346018A (en) * | 1998-05-29 | 1999-12-14 | Nec Corp | Solid slab laser |
JP2000252573A (en) * | 1999-03-03 | 2000-09-14 | Fuji Electric Co Ltd | Laser oscillation device |
-
2001
- 2001-07-05 JP JP2001204578A patent/JP2003023194A/en active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62189778A (en) * | 1986-02-17 | 1987-08-19 | Toshiba Corp | Laser oscillator |
JPH0214587A (en) * | 1988-06-30 | 1990-01-18 | Mitsubishi Electric Corp | Solid laser equipment |
JPH06216438A (en) * | 1992-11-30 | 1994-08-05 | Fuji Electric Co Ltd | Slab type solid laser device |
JPH0750440A (en) * | 1993-08-09 | 1995-02-21 | Fuji Electric Co Ltd | Slab type solid-state laser equipment |
JPH0799358A (en) * | 1993-09-29 | 1995-04-11 | Fuji Electric Co Ltd | Solid state-laser system |
JPH07193307A (en) * | 1993-11-05 | 1995-07-28 | Trw Inc | Solid laser source, method of removing influence of multiplerefraction and zigzag amplifier |
JPH08191165A (en) * | 1995-01-11 | 1996-07-23 | Fuji Electric Co Ltd | Slab type solid-state laser |
JPH09181378A (en) * | 1995-12-25 | 1997-07-11 | Japan Atom Energy Res Inst | Solid laser amplifier and solid laser device |
JPH09214024A (en) * | 1996-02-02 | 1997-08-15 | Fanuc Ltd | Solid-state laser oscillator |
JPH09312430A (en) * | 1996-05-22 | 1997-12-02 | Sadao Nakai | Zig-zag slab solid-state laser and amplifier |
JPH09321371A (en) * | 1996-05-27 | 1997-12-12 | Fuji Electric Co Ltd | Slab-shaped solid-state laser apparatus |
JPH118428A (en) * | 1997-06-18 | 1999-01-12 | Nec Corp | Solid-state laser oscillator |
JPH11346018A (en) * | 1998-05-29 | 1999-12-14 | Nec Corp | Solid slab laser |
JP2000252573A (en) * | 1999-03-03 | 2000-09-14 | Fuji Electric Co Ltd | Laser oscillation device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008522409A (en) * | 2004-11-26 | 2008-06-26 | ジェフリー, ジー マンニ, | High gain diode pumped laser amplifier. |
JP2007059471A (en) * | 2005-08-22 | 2007-03-08 | Hamamatsu Photonics Kk | Optical amplifier and mopa laser device |
WO2015029285A1 (en) * | 2013-09-02 | 2015-03-05 | 三菱電機株式会社 | Laser amplification device |
JPWO2015029285A1 (en) * | 2013-09-02 | 2017-03-02 | 三菱電機株式会社 | Laser amplifier |
US9698556B2 (en) | 2013-09-02 | 2017-07-04 | Mitsubishi Electric Corporation | Laser amplification device |
WO2018037538A1 (en) * | 2016-08-25 | 2018-03-01 | 株式会社メガオプト | Laser amplifying medium, laser oscillator, and laser amplifier |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2746845B2 (en) | Solid state laser source, method of removing birefringence effects, and zigzag amplifier | |
US4734911A (en) | Efficient phase conjugate laser | |
US5504763A (en) | System for minimizing the depolarization of a laser beam due to thermally induced birefringence | |
JP4925085B2 (en) | Deep ultraviolet laser light generation method and deep ultraviolet laser device | |
JP3588195B2 (en) | Solid state laser amplifier | |
US6384966B1 (en) | Multiple pass optical amplifier with thermal birefringence compensation | |
KR102344775B1 (en) | High Efficiency Laser System for Third Harmonic Generation | |
KR0149771B1 (en) | Solid state laser for highpower laser beam generation | |
JPH07505979A (en) | Method and apparatus for generating and using high-density excited ions in a laser medium | |
JP2000107875A (en) | Device for irradiating laser beam | |
CN103069668B (en) | Polarization central authorities for the Coherent coupling of strong intracavity beam extract laser cavity | |
JP2003023194A (en) | Solid-state laser amplifier | |
Yoshida et al. | Two-beam-combined 7.4 J, 50 Hz Q-switch pulsed YAG laser system based on SBS phase conjugation mirror for plasma diagnostics | |
JP2008098496A (en) | Chirp pulse amplifier, and amplification method | |
JP2007227447A (en) | Regenerative amplifier, mode lock laser, and gain smoothing method | |
JP4772545B2 (en) | Pulse compressor and laser generator | |
JP3596068B2 (en) | Laser amplifier and laser oscillator | |
KR20230119143A (en) | A device for amplifying a laser beam | |
KR20050024559A (en) | Apparatus and method for self-phase control with stimulated Brillouin scattering phase conjugate mirror | |
JP2002252404A (en) | Double wavelength laser device | |
JP2005268506A (en) | Solid laser amplifier | |
JPH09331097A (en) | Solid laser system | |
US5293394A (en) | Raman laser | |
RU2709049C1 (en) | Method and device for reducing laser beams | |
US5838710A (en) | Optical amplification device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060223 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100430 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100907 |