JP2003017062A - Energy storage medium - Google Patents
Energy storage mediumInfo
- Publication number
- JP2003017062A JP2003017062A JP2001204422A JP2001204422A JP2003017062A JP 2003017062 A JP2003017062 A JP 2003017062A JP 2001204422 A JP2001204422 A JP 2001204422A JP 2001204422 A JP2001204422 A JP 2001204422A JP 2003017062 A JP2003017062 A JP 2003017062A
- Authority
- JP
- Japan
- Prior art keywords
- group
- formula
- nitrogen
- atom
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はエネルギー貯蔵媒体
として用いられるエネルギー貯蔵媒体に関する。特に、
化学的、電気的に安定且つ耐熱性に優れ、高容量のエネ
ルギー貯蔵媒体に関する。TECHNICAL FIELD The present invention relates to an energy storage medium used as an energy storage medium. In particular,
The present invention relates to a high capacity energy storage medium that is chemically and electrically stable and has excellent heat resistance.
【0002】[0002]
【従来の技術】導電性高分子材料をエネルギー貯蔵媒体
の電極や電極表面に用いることが検討されている。たと
えばポリアセチレン、ポリピリジン等の導電性高分子が
電極材料に検討されている。一般にこれらπ共役系高分
子材料に導電性を付与する場合、電気的若しくは化学的
酸化(pドーピング)又は還元(nドーピング)を施す
必要がある。この場合、ドーピング材自体が導電性高分
子材料と電子の授受を行う再に化学的に反応するなどそ
の電気伝導特性を著しく損なう結果を伴い、結果とし
て、導電性材料を電極材料に用いた場合の低容量や低サ
イクル性等の問題を生じていた。2. Description of the Related Art The use of conductive polymer materials for electrodes of energy storage media and electrode surfaces has been studied. For example, conductive polymers such as polyacetylene and polypyridine have been studied as electrode materials. Generally, when imparting conductivity to these π-conjugated polymer materials, it is necessary to perform electrical or chemical oxidation (p doping) or reduction (n doping). In this case, with the result that the doping material itself chemically reacts again with the conductive polymer material to exchange electrons with the conductive material, which significantly impairs the electrical conductivity characteristics, and as a result, when the conductive material is used as the electrode material, However, there are problems such as low capacity and low cycle performance of the.
【0003】また多くの場合、nドーピングされた化合
物の安定性は悪く、その結果として、これらの導電性材
料を電極材に用いた場合その特性劣化の原因となってい
た。In many cases, the stability of n-doped compounds is poor, and as a result, when these conductive materials are used as electrode materials, their characteristics are deteriorated.
【0004】近年たとえば、J.Electroche
m.Soc、140,2498,1993に記載されて
いるように、ポリフェニルキノキサリンが濃塩酸水溶液
中で下記(式(I))に示されるような酸化還元反応を
行うことが開示されている。この場合、塩素イオン(C
l-)をドーパントとして用いている。Recently, for example, J. Electroche
m. As disclosed in Soc, 140, 2498, 1993, it is disclosed that polyphenylquinoxaline performs a redox reaction as shown in the following (formula (I)) in concentrated hydrochloric acid aqueous solution. In this case, chlorine ion (C
l − ) is used as a dopant.
【0005】[0005]
【化8】 [Chemical 8]
【0006】(式中、重合度nは少なくとも5、X-は
Cl-を表す)
さらに、J.Electrochem.Soc、14
5,1193,1998に上記ポリフェニルキノキサリ
ンが強酸中においても導電性を発現し、前述した式
(I)に示される反応機構と同様の機構で充放電を行う
ことが開示されている。[0006] (wherein, the degree of polymerization n of at least 5, X - is Cl - represents a) further, J. Electrochem. Soc, 14
5, 1193, 1998, it is disclosed that the polyphenylquinoxaline exhibits conductivity even in a strong acid, and charge / discharge is performed by a mechanism similar to the reaction mechanism represented by the formula (I).
【0007】[0007]
【発明が解決しようとする課題】しかしながら前述した
ような導電性材料にポリフェニルキノキサリンを用いた
場合、ポリフェニルキノキサリンは、単位ユニット、す
なわち1のモノマー当たりの分子量が大きい上、前記式
(I)に示される反応機構に示されるように、ドーパン
トに塩素イオンを用いるため、反応電子数が2電子と少
なく、体積当たり又は重量当たりの容量が小さいという
問題点が指摘されている。またポリマー自体の電解液へ
の溶解性などもエネルギー媒体の特性劣化の原因として
指摘されている。However, when polyphenylquinoxaline is used as the conductive material as described above, the polyphenylquinoxaline has a large molecular weight per unit unit, that is, one monomer, and also has the above formula (I). As shown in the reaction mechanism shown in (1), since chlorine ions are used as a dopant, the number of reaction electrons is as small as 2 electrons, and the problem is that the capacity per volume or weight is small. Further, the solubility of the polymer itself in the electrolytic solution has been pointed out as a cause of the deterioration of the characteristics of the energy medium.
【0008】またポリアセチレン、ポリピリジン等の重
合体はポリマー自体の電解液への溶解性などが原因でエ
ネルギー媒体の特性劣化が指摘されている。即ち、電解
液への安定性が著しく悪いことが指摘されている。It has been pointed out that polymers such as polyacetylene and polypyridine are deteriorated in characteristics of energy medium due to solubility of the polymer itself in an electrolytic solution. That is, it has been pointed out that the stability to the electrolytic solution is extremely poor.
【0009】本発明は、上記問題点を克服し、安定性に
優れるエネルギー媒体を提供することにある。The present invention is to overcome the above problems and provide an energy medium having excellent stability.
【0010】[0010]
【課題を解決するための手段】即ち、本発明は、 式
(1)That is, the present invention is based on the formula (1)
【0011】[0011]
【化9】 [Chemical 9]
【0012】(式中、a、b、c、d、e、f、g及び
hのうち任意の2つは繰り返し単位間の結合に関与する
炭素原子であり、少なくとも1つはN→O基を、残りは
それぞれ独立に炭素原子、CH基、窒素原子又はN→O
基を表し、a、b、c、dに含まれるN→O基の数の最
大総数は2を、窒素原子の数の最大総数は2を表し、ま
た、e、f、g、hに含まれるN→O基の数の最大総数
は2を、窒素原子の数の総数は2を表し、重合度nは少
なくとも5で表され、R1及びR2はそれぞれ独立に水素
原子、ハロゲン原子、ヒドロキシル基、カルボキシル
基、スルホン基、硫酸基、ニトロ基、シアノ基、アルキ
ル基、アリール基、アルコキシル基、アミノ基、アルキ
ルチオ基及びアリールチオ基を表す。)で表される構成
単位を有するN−オキシド化ポリ(含窒素縮合複素環)
重合体、硫黄原子を含有する陰イオンを含む電解質と、
そのカウンターイオンとなる陽イオンを含む電解質とを
含有する材料からなる電極を用いることを特徴とするエ
ネルギー貯蔵媒体に関する。(In the formula, any two of a, b, c, d, e, f, g and h are carbon atoms involved in the bond between repeating units, and at least one is an N → O group. And the rest are each independently a carbon atom, a CH group, a nitrogen atom or N → O.
Group, the maximum total number of N → O groups contained in a, b, c, d is 2, the maximum total number of nitrogen atoms is 2, and is contained in e, f, g, h The maximum number of N → O groups represented is 2, the total number of nitrogen atoms is 2, the degree of polymerization n is represented by at least 5, and R 1 and R 2 are each independently a hydrogen atom, a halogen atom, It represents a hydroxyl group, a carboxyl group, a sulfone group, a sulfuric acid group, a nitro group, a cyano group, an alkyl group, an aryl group, an alkoxyl group, an amino group, an alkylthio group and an arylthio group. ) N-oxidized poly having a structural unit represented by (nitrogen-containing condensed heterocycle)
A polymer, an electrolyte containing an anion containing a sulfur atom,
The present invention relates to an energy storage medium characterized by using an electrode made of a material containing an electrolyte containing a cation serving as the counter ion.
【0013】また、本発明は、式(2)Further, the present invention provides the formula (2)
【0014】[0014]
【化10】 [Chemical 10]
【0015】(式中、a、b、c、d、e、f、g及び
hのうち任意の2つは繰り返し単位間の結合に関与する
炭素原子を表し、少なくとも1つはN→O基を、残りは
炭素原子、CH基、窒素原子又はN→O基を表し、a、
b、c、dに含まれるN→O基の数の最大総数は2を、
窒素原子の数の最大総数は2を表し、また、e、f、
g、hに含まれるN→O基の数の最大総数は2を、窒素
原子の数の総数は2を表し、またo、p、q、r、s、
t、u及びvのうち、任意の2つは繰り返し単位間の結
合に関与する炭素原子を表し、残りはそれぞれ独立に、
炭素原子、CH基又は窒素原子を表し、o、p、q、r
に含まれる窒素原子の数の最大総数は2を表し、また
s、t、u、vに含まれる窒素原子の最大総数は2を表
し、重合度l+mは少なくとも5の整数を表し、R1、
R2、R3、及びR4はそれぞれ独立に水素原子、ハロゲ
ン原子、ヒドロキシル基、カルボキシル基、スルホン
基、硫酸基、ニトロ基、シアノ基、アルキル基、アリー
ル基、アルコキシル基、アミノ基、アルキルチオ基及び
アリールチオ基を表す。)で表されるN−オキシド化ポ
リ(含窒素縮合複素環)重合体、硫黄原子を含有する陰
イオンを含む電解質と、そのカウンターイオンとなる陽
イオンを含む電解質とを含有する材料からなる電極を用
いることを特徴とするエネルギー貯蔵媒体に関する。(In the formula, any two of a, b, c, d, e, f, g and h represent a carbon atom involved in a bond between repeating units, and at least one of them is an N → O group. And the rest represent carbon atoms, CH groups, nitrogen atoms or N → O groups, and
The maximum total number of N → O groups contained in b, c, and d is 2,
The maximum number of nitrogen atoms represents 2, and e, f,
The maximum total number of N → O groups contained in g and h is 2, the total number of nitrogen atoms is 2, and o, p, q, r, s,
Any two of t, u and v represent a carbon atom involved in a bond between repeating units, and the rest are each independently,
Represents a carbon atom, a CH group or a nitrogen atom, and is o, p, q, r
The maximum total number of nitrogen atoms contained in 2 represents 2, the maximum total number of nitrogen atoms contained in s, t, u, v represents 2, and the degree of polymerization l + m represents an integer of at least 5, R 1 ,
R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a sulfone group, a sulfuric acid group, a nitro group, a cyano group, an alkyl group, an aryl group, an alkoxyl group, an amino group, an alkylthio group. Represents a group and an arylthio group. ) An electrode made of a material containing an N-oxidized poly (nitrogen-containing condensed heterocycle) polymer represented by the formula (1), an electrolyte containing an anion containing a sulfur atom, and an electrolyte containing a cation serving as its counter ion. The present invention relates to an energy storage medium characterized by using.
【0016】上記式(1)の重合体は、含窒素縮合複素
環の窒素原子がオキシド化されている繰返し単位を主と
して含む重合体であり、また式(2)の重合体は、含窒
素縮合複素環の窒素原子がオキシド化されている繰返し
単位と含窒素縮合複素環の窒素原子がオキシド化されて
いない繰返し単位とからなる共重合体である。なお該式
(2)の共重合体において、含窒素縮合複素環の窒素原
子がオキシド化されている繰返し単位と含窒素縮合複素
環の窒素原子がオキシド化されていない繰返し単位とは
ランダムに共重合しているものである。The polymer of the above formula (1) is a polymer mainly containing a repeating unit in which a nitrogen atom of a nitrogen-containing condensed heterocycle is oxidized, and the polymer of the formula (2) is a nitrogen-containing condensed polymer. It is a copolymer composed of a repeating unit in which a nitrogen atom of a heterocycle is oxidized and a repeating unit in which a nitrogen atom of a nitrogen-containing condensed heterocycle is not oxidized. In the copolymer of the formula (2), the repeating unit in which the nitrogen atom of the nitrogen-containing condensed heterocycle is oxidized and the repeating unit in which the nitrogen atom of the nitrogen-containing condensed heterocycle is not oxidized are randomly copolymerized. It is polymerized.
【0017】上記のN−オキシド化ポリ(含窒素縮合複
素環)重合体は、前記の硫黄原子を含有する陰イオン、
若しくはカウンター陽イオンがN−オキシド化ポリ(含
窒素縮合複素環)重合体の窒素原子と反応し、負極電極
と正極電極との間で安定な酸化還元反応が進行すること
に着目し、安定性に優れるエネルギー貯蔵媒体を得るこ
とが出来ことに到達した。以下本発明についてその詳細
を説明する。The above-mentioned N-oxidized poly (nitrogen-containing condensed heterocycle) polymer is an anion containing the above-mentioned sulfur atom,
Alternatively, the counter cation reacts with the nitrogen atom of the N-oxidized poly (nitrogen-containing condensed heterocycle) polymer, paying attention to the fact that a stable redox reaction proceeds between the negative electrode and the positive electrode, and stability is improved. It has been possible to obtain an excellent energy storage medium. The present invention will be described in detail below.
【0018】[0018]
【発明の実施の形態】以下、本発明の実施の形態に係る
エネルギー貯蔵媒体、及びこれらの製造方法を、図面を
参照して説明する。図1は、本発明の一実施の形態に係
るエネルギー貯蔵媒体の断面模式図である。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an energy storage medium according to an embodiment of the present invention and a manufacturing method thereof will be described with reference to the drawings. FIG. 1 is a schematic sectional view of an energy storage medium according to an embodiment of the present invention.
【0019】本発明の実施の形態に係るエネルギー貯蔵
媒体は、外部電源を用いて充電を行うことにより繰り返
し利用可能な二次エネルギー貯蔵媒体であり、図1に示
すように、集電体1及び5の片面にそれぞれ性質の異な
る負極電極2及び正極電極3を設置し、前記負極電極2
と前記正極電極3とがセパレータ4を介して対向するよ
うに設置される。The energy storage medium according to the embodiment of the present invention is a secondary energy storage medium that can be repeatedly used by charging with an external power source, and as shown in FIG. 5, a negative electrode 2 and a positive electrode 3 having different properties are installed on one surface of the negative electrode 2.
And the positive electrode 3 are installed so as to face each other with the separator 4 in between.
【0020】負極電極2は、特に限定されないが、電極
表面に形成され、導電性活物質であるN−オキシド化ポ
リ(含窒素縮合複素環)重合体と、ドーパントとして硫
黄原子を含む陰イオン含有電解質と、そのカウンターイ
オンである陽イオンを含む電解質とを含有する膜から形
成される。一般的に、この膜は5〜800μmである
が、好ましくは50〜200μmの間で制御されてい
る。The negative electrode 2 is not particularly limited, but it is formed on the surface of the electrode and contains an N-oxidized poly (nitrogen-containing condensed heterocyclic) polymer as a conductive active material and an anion containing a sulfur atom as a dopant. It is formed from a film containing an electrolyte and an electrolyte containing a cation which is its counter ion. Generally, the membrane is between 5 and 800 μm, but is preferably controlled between 50 and 200 μm.
【0021】正極電極3は、特に限定されないが、導電
性物質で、たとえばN−オキシド化ポリ(含窒素縮合複
素環)重合体、ポリアニリン誘導体等で作成できる。The positive electrode 3 is not particularly limited, but can be made of a conductive material such as an N-oxidized poly (nitrogen-containing condensed heterocycle) polymer or polyaniline derivative.
【0022】また、セパレータ4は、前述の電解質を溶
解させた電解液に含浸させて形成するか、若しくは固体
電解質又はゲル電解質を用いる。セパレータとして一般
に用いられる材料としては、特に限定するものではない
が、ポリメチルメタクリレート、ポリアクリロニトリ
ル、ポリエチレンオキシド、ポリビニリデンフロライ
ド、ポリビニリデンフロライド-ヘキサフルオロプロピ
レンなどが挙げられる。Further, the separator 4 is formed by impregnating it with an electrolytic solution in which the above-mentioned electrolyte is dissolved, or uses a solid electrolyte or a gel electrolyte. The material generally used as the separator is not particularly limited, but examples thereof include polymethylmethacrylate, polyacrylonitrile, polyethylene oxide, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, and the like.
【0023】電解液は、電子伝導性がなくイオン伝導性
を有する電解質を溶解させた溶媒で、水もしくは有機溶
剤(例えば、プロピレンカーボネート、エチレンカーボ
ネートなど)がある。集電体1、5は、シート状に加工
された金属導電物からなり、平板、若しくはグリッド構
造の銅やアルミなどが用いられる。The electrolytic solution is a solvent in which an electrolyte having no electron conductivity but ionic conductivity is dissolved, and water or an organic solvent (for example, propylene carbonate, ethylene carbonate, etc.) is used. Each of the current collectors 1 and 5 is made of a sheet-shaped metal conductor, and is made of a flat plate or a grid structure of copper or aluminum.
【0024】電極材として用いられる式(1)Formula (1) used as an electrode material
【0025】[0025]
【化11】 [Chemical 11]
【0026】で示される構成単位を有するN−オキシド
化ポリ(含窒素縮合複素環)重合体で、式中、a、b、
c、d、e、f、g及びhのうち任意の2つは繰り返し
単位間の結合に関与する炭素原子であり、少なくとも1
つはN→O基を、残りは炭素原子、CH基、窒素原子又
はN→O基を表し、a、b、c、dに含まれるN→O基
の数の最大総数は2を、窒素原子の数の最大総数は2を
表し、また、e、f、g、hに含まれるN→O基の数の
最大総数は2を、窒素原子の数の総数は2を表し、重合
度nは少なくとも5を表すが、その機械的強度や耐溶剤
性、更にはその加工性の観点から好ましくは5以上10
0000以下、更に好ましくは100以上10000以
下が提唱される量である。An N-oxidized poly (nitrogen-containing condensed heterocycle) polymer having a structural unit represented by the following formula, wherein a, b, and
Any two of c, d, e, f, g and h are carbon atoms involved in the bond between repeating units, and at least 1
One represents an N → O group, the rest represent a carbon atom, a CH group, a nitrogen atom or an N → O group, and the maximum total number of N → O groups contained in a, b, c, d is 2, The maximum total number of atoms is 2, the maximum total number of N → O groups contained in e, f, g, and h is 2, the total number of nitrogen atoms is 2, and the degree of polymerization is n. Represents at least 5, preferably 5 or more and 10 or more from the viewpoint of mechanical strength, solvent resistance, and processability thereof.
0000 or less, and more preferably 100 or more and 10,000 or less is the suggested amount.
【0027】R1及びR2はそれぞれ独立に水素原子、ハ
ロゲン原子、ヒドロキシル基、カルボキシル基、スルホ
ン基、硫酸基、ニトロ基、シアノ基、アルキル基、アリ
ール基、アルコキシル基、アミノ基、アルキルチオ基及
びアリールチオ基を有することを特徴としているが、こ
こにアルキル基は炭素数1〜20、特に1〜5のものが
好ましい。一価炭化水素基として具体的には、メチル
基、エチル基、プロピル基、イソプロピル基、ブチル
基、sec−ブチル基、tert−ブチル基、ペンチル
基、ヘキシル基、オクチル基、デシル基等のアルキル
基、シクロペンチル基、シクロヘキシル基等のシクロア
ルキル基、ビシクロヘキシル基等のビシクロアルキル
基、ビニル基、1−プロペニル基、2−プロペニル基、
イソプロペニル基、1−メチル−2−プロペニル基、1
又は2又は3−ブテニル基、ヘキセニル基等のアルケニ
ル基が挙げられる。また、アリール基として、フェニル
基、キシリル基、トリル基、ビフェニル基、ナフチル基
等のアリール基、ベンジル基、フェニルエチル基、フェ
ニルシクロヘキシル基等のアラルキル基等や、これら一
価炭化水素基の水素原子の一部又は全部をハロゲン原
子、水酸基、アルコキシ基などで置換されたものを例示
することができる。R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a sulfone group, a sulfuric acid group, a nitro group, a cyano group, an alkyl group, an aryl group, an alkoxyl group, an amino group, an alkylthio group. And an arylthio group, wherein the alkyl group preferably has 1 to 20 carbon atoms, and particularly preferably 1 to 5 carbon atoms. Specific examples of the monovalent hydrocarbon group include alkyl such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, octyl group and decyl group. Group, cyclopentyl group, cycloalkyl group such as cyclohexyl group, bicycloalkyl group such as bicyclohexyl group, vinyl group, 1-propenyl group, 2-propenyl group,
Isopropenyl group, 1-methyl-2-propenyl group, 1
Alternatively, an alkenyl group such as a 2 or 3-butenyl group and a hexenyl group can be mentioned. Further, as an aryl group, an aryl group such as a phenyl group, a xylyl group, a tolyl group, a biphenyl group and a naphthyl group, an aralkyl group such as a benzyl group, a phenylethyl group and a phenylcyclohexyl group, and hydrogen of these monovalent hydrocarbon groups. Examples thereof include those in which some or all of the atoms have been replaced with halogen atoms, hydroxyl groups, alkoxy groups and the like.
【0028】式(2)Equation (2)
【0029】[0029]
【化12】 [Chemical 12]
【0030】で示される構成単位を有するN−オキシド
化ポリ(含窒素縮合複素環)重合体で、式中、a、b、
c、d、e、f、g及びhのうち任意の2つは繰り返し
単位間の結合に関与する炭素原子を表し、少なくとも1
つはN→O基を、残りはそれぞれ独立に炭素原子、CH
基、窒素原子又はN→O基を表し、a、b、c、dに含
まれるN→O基の数の最大総数は2を、窒素原子の数の
最大総数は2を表し、また、e、f、g、hに含まれる
N→O基の数の最大総数は2を、窒素原子の数の総数は
2を表し、またo、p、q、r、s、t、u及びvのう
ち、任意の2つは繰り返し単位間の結合に関与する炭素
原子を表し、残りはそれぞれ独立に、炭素原子、CH基
又は窒素原子を表し、o、p、q、rに含まれる窒素原
子の数の最大総数は2を表し、またs、t、u、vに含
まれる窒素原子の最大総数は2を表し、重合度l+mは
少なくとも5の整数を表すが、その機械的強度や耐溶剤
性、更にはその加工性の観点から好ましくは5以上10
0000以下、更に好ましくは100以上10000以
下が提唱される量である。An N-oxidized poly (nitrogen-containing condensed heterocycle) polymer having a structural unit represented by the following formula:
Any two of c, d, e, f, g and h represent a carbon atom involved in a bond between repeating units, and at least 1
One is an N → O group, the rest are each independently a carbon atom, CH
Group, nitrogen atom or N → O group, the maximum total number of N → O groups contained in a, b, c, d is 2, the maximum total number of nitrogen atoms is 2, and e , F, g, h, the maximum total number of N → O groups is 2, the total number of nitrogen atoms is 2, and o, p, q, r, s, t, u and v Among them, any two represent a carbon atom involved in a bond between repeating units, the rest independently represent a carbon atom, a CH group or a nitrogen atom, and each of the nitrogen atoms contained in o, p, q and r. The maximum total number is 2, and the maximum total number of nitrogen atoms contained in s, t, u, and v is 2, and the degree of polymerization l + m is an integer of at least 5, but its mechanical strength and solvent resistance. , And more preferably 5 or more and 10 from the viewpoint of workability.
0000 or less, and more preferably 100 or more and 10,000 or less is the suggested amount.
【0031】R1、R2、R3、及びR4はそれぞれ独立に
水素原子、ハロゲン原子、ヒドロキシル基、カルボキシ
ル基、スルホン基、硫酸基、ニトロ基、シアノ基、アル
キル基、アリール基、アルコキシル基、アミノ基、アル
キルチオ基及びアリールチオ基等を表す。R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a sulfone group, a sulfuric acid group, a nitro group, a cyano group, an alkyl group, an aryl group or an alkoxyl group. Group, amino group, alkylthio group, arylthio group and the like.
【0032】ここにアルキル基は炭素数1〜20、特に
1〜5のものが好ましい。一価炭化水素基として具体的
には、メチル基、エチル基、プロピル基、イソプロピル
基、ブチル基、sec−ブチル基、tert−ブチル
基、ペンチル基、ヘキシル基、オクチル基、デシル基等
のアルキル基、シクロペンチル基、シクロヘキシル基等
のシクロアルキル基、ビシクロヘキシル基等のビシクロ
アルキル基、ビニル基、1−プロペニル基、2−プロペ
ニル基、イソプロペニル基、1−メチル−2−プロペニ
ル基、1又は2又は3−ブテニル基、ヘキセニル基など
のアルケニル基が挙げられる。また、アリール基とし
て、フェニル基、キシリル基、トリル基、ビフェニル
基、ナフチル基等のアリール基、ベンジル基、フェニル
エチル基、フェニルシクロヘキシル基等のアラルキル基
などや、これら一価炭化水素基の水素原子の一部又は全
部をハロゲン原子、水酸基、アルコキシ基などで置換さ
れたものを例示することができる。The alkyl group has preferably 1 to 20 carbon atoms, and more preferably 1 to 5 carbon atoms. Specific examples of the monovalent hydrocarbon group include alkyl such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, octyl group and decyl group. Group, cyclopentyl group, cycloalkyl group such as cyclohexyl group, bicycloalkyl group such as bicyclohexyl group, vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-methyl-2-propenyl group, 1 or Examples thereof include alkenyl groups such as 2 or 3-butenyl groups and hexenyl groups. Further, as the aryl group, an aryl group such as a phenyl group, a xylyl group, a tolyl group, a biphenyl group, a naphthyl group, an aralkyl group such as a benzyl group, a phenylethyl group, a phenylcyclohexyl group, etc., and hydrogen of these monovalent hydrocarbon groups. Examples thereof include those in which some or all of the atoms have been replaced with halogen atoms, hydroxyl groups, alkoxy groups and the like.
【0033】式(1)で表されるN−オキシド化ポリ
(含窒素縮合複素環)重合体のサブグループとしては、
次式(1a)のN−オキシド化ポリ(キノリンジイル)
重合体、(1b−1)及び(1b−2)のN−オキシド
化ポリ(キノキサリンジイル)重合体、(1c−1)及
び(1c−2)のN−オキシド化ポリ(ナフチリジンジ
イル)重合体がある。As a subgroup of the N-oxidized poly (nitrogen-containing condensed heterocycle) polymer represented by the formula (1),
N-oxidized poly (quinolinediyl) of the following formula (1a)
Polymer, N-oxidized poly (quinoxalinediyl) polymer of (1b-1) and (1b-2), N-oxidized poly (naphthyridinediyl) polymer of (1c-1) and (1c-2) There is.
【0034】[0034]
【化13】 [Chemical 13]
【0035】式中、重合度n1、n2、n3、n4及びn5
は少なくとも5の整数を表されるが、その機械的強度や
耐溶剤性、更にはその加工性の観点から好ましくは5以
上100000以下、更に好ましくは100以上100
00以下が提唱される量である。R1及びR2は前記と同
じである。In the formula, the degrees of polymerization n 1 , n 2 , n 3 , n 4 and n 5
Represents an integer of at least 5, but preferably 5 or more and 100,000 or less, more preferably 100 or more and 100 or more from the viewpoint of mechanical strength, solvent resistance, and processability thereof.
A quantity of 00 or less is proposed. R 1 and R 2 are the same as above.
【0036】また、上記式(2)で表されるN−オキシ
ド化ポリ(含窒素縮合複素環)重合体のサブグループと
しては、式(2)が、次式(2a)のN−オキシド化ポ
リ(キノリンジイル)共重合体、(2b−1)及び(2
b−2)のN−オキシド化ポリ(キノキサリンジイル)
共重合体、(2c−1)及び(2c−2)のN−オキシ
ド化ポリ(ナフチリジンジイル)共重合体がある。As a subgroup of the N-oxidized poly (nitrogen-containing condensed heterocycle) polymer represented by the above formula (2), the formula (2) is an N-oxidized compound represented by the following formula (2a). Poly (quinolinediyl) copolymer, (2b-1) and (2
b-2) N-oxidized poly (quinoxalinediyl)
There are copolymers, N-oxidized poly (naphthyridinediyl) copolymers of (2c-1) and (2c-2).
【0037】[0037]
【化14】 [Chemical 14]
【0038】式中、重合度l1+m1、l2+m2、l3+
m3、l4+m4及びl5+m5は少なくとも5の整数を
表されるが、その機械的強度や耐溶剤性、更にはその加
工性の観点から好ましくは5以上100000以下、更
に好ましくは100以上10000以下が提唱される量
である。R1、R2、R3及びR4は前記と同じ意味であ
る。In the formula, the degree of polymerization l 1 + m 1 , l 2 + m 2 , l 3 +
m 3 , l 4 + m 4 and l 5 + m 5 represent an integer of at least 5, but preferably 5 or more and 100000 or less, more preferably from the viewpoint of mechanical strength, solvent resistance, and processability thereof. The recommended amount is 100 or more and 10000 or less. R 1 , R 2 , R 3 and R 4 have the same meanings as described above.
【0039】上記の本発明で用いる重合体は、式(3)The above-mentioned polymer used in the present invention has the formula (3)
【0040】[0040]
【化15】 [Chemical 15]
【0041】(式中、o、p、q、r、s、t、u、
v、R1及びR2は前記と同様の意味を表し、重合度xは
少なくとも5を表す。)で表される2価の基を構成単位
として含有するポリ(含窒素縮合複素環)重合体、特に
次式(3a)、(3b)、(3c)(Where o, p, q, r, s, t, u,
v, R 1 and R 2 have the same meanings as described above, and the degree of polymerization x represents at least 5. ) A poly (nitrogen-containing condensed heterocycle) polymer containing a divalent group represented by the formula), especially the following formulas (3a), (3b) and (3c)
【0042】[0042]
【化16】 [Chemical 16]
【0043】(式中、重合度x1、x2およびx3は少な
くとも5を表し、R1及びR2は前記と同様の意味を表
す。)で表される2価の基を構成単位として含有するポ
リ(キノリンジイル)、ポリ(キノキサリンジイル)ま
たはポリ(ナフチリジンジイル)重合体を適当な過酸化
物、例えば過酢酸(過酸化水素水と氷酢酸)、過硫酸、
m−クロル過安息香酸と反応させ、環内窒素原子をN−
オキシド化することによって製造される。本反応におい
て、使用する過酸化物は上記記載例に限定されるもので
はなく、また使用する過酸化物の種類、当量または反応
条件を工夫することにより本発明で用いる重合体の式
(1)と式(2)、または式(1a)と式(2a)、式
(1b−1)と式(2b−1)、式(1b−2)と式
(2b−2)、式(1c−1)と式(2c−1)、式
(1c−2)と式(2c−2)とをそれぞれ製造しわけ
ることができる。(In the formula, the polymerization degrees x 1 , x 2 and x 3 represent at least 5, and R 1 and R 2 have the same meanings as described above.) As a constitutional unit. Containing poly (quinolinediyl), poly (quinoxalinediyl) or poly (naphthyridinediyl) polymers containing suitable peroxides such as peracetic acid (hydrogen peroxide and glacial acetic acid), persulfuric acid,
It was reacted with m-chloroperbenzoic acid to convert the ring nitrogen atom into N-
It is produced by oxidization. In this reaction, the peroxide to be used is not limited to the above-mentioned examples, and the formula (1) of the polymer used in the present invention can be obtained by devising the type, equivalent or reaction conditions of the peroxide to be used. And formula (2), or formula (1a) and formula (2a), formula (1b-1) and formula (2b-1), formula (1b-2) and formula (2b-2), formula (1c-1). ) And the formula (2c-1), and the formula (1c-2) and the formula (2c-2) can be separately manufactured.
【0044】また、本発明で用いる重合体の別の製造法
として、次式(4)As another method for producing the polymer used in the present invention, the following formula (4)
【0045】[0045]
【化17】 [Chemical 17]
【0046】(式中、XおよびYはそれぞれハロゲン原
子を表し、a、b、c、d、e、f、gおよびhの内、
任意の二つは前記ハロゲン原子に結合する炭素原子を、
少なくとも一つはN→O基を表し、残りはそれぞれ独立
に、炭素原子、CH基または窒素原子を表し、a、b、
c、dに含まれるN→O基の数の最大総数は2を、窒素
原子の数の最大総数は2を表し、また、e、f、g、h
に含まれるN→O基の最大総数は2を、窒素原子の数の
最大総数は2を表し、R1及びR2は前記と同じ意味を表
す。)で表されるジハライド化合物、特にキノリンオキ
シド、キノキサリンオキシド、キノキサリンジオキシ
ド、1,5−ナフチリジンオキシドまたは1,5−ナフ
チリジンジオキシドの任意の2箇所の水素原子をハロゲ
ン原子に置換した式(4a)、式(4b−1)、式(4
b−2)、式(4c−1)または式(4c−2)(In the formula, X and Y each represent a halogen atom, and among a, b, c, d, e, f, g and h,
Any two are carbon atoms bonded to the halogen atom,
At least one represents an N → O group, the rest independently represent a carbon atom, a CH group or a nitrogen atom, and a, b,
The maximum total number of N → O groups contained in c and d is 2, the maximum total number of nitrogen atoms is 2, and e, f, g, h
The maximum total number of N → O groups contained in 2 is 2, the maximum total number of nitrogen atoms is 2, and R 1 and R 2 have the same meanings as described above. ), Particularly quinoline oxide, quinoxaline oxide, quinoxaline dioxide, 1,5-naphthyridine oxide, or 1,5-naphthyridine dioxide represented by the formula (4a) in which any two hydrogen atoms are substituted with halogen atoms. ), Formula (4b-1), formula (4
b-2), formula (4c-1) or formula (4c-2)
【0047】[0047]
【化18】 [Chemical 18]
【0048】(式中、XおよびYはそれぞれハロゲン原
子を表し、R1及びR2は前記と同じ意味を表す。)で
表されるジハライド化合物をゼロ価ニッケル化合物と反
応させる方法を掲げることができる。すなわち、上記ジ
ハライド化合物に有機溶媒中において等モル以上のゼロ
価ニッケル化合物を加えて反応させ、脱ハロゲン化する
ことによって取得される。好適な反応温度は室温〜約8
0℃の間にあり、約24時間程度で反応は完結する。上
記有機溶媒としては例えば、N,N−ジメチルホルムア
ミド、アセトニトリル、トルエン、テトラヒドロフラン
等が適用可能である。(Wherein X and Y each represent a halogen atom, and R 1 and R 2 have the same meanings as described above), and a method of reacting the dihalide compound with a zero-valent nickel compound can be mentioned. it can. That is, it is obtained by adding an equimolar amount or more of a zero-valent nickel compound in an organic solvent to the above dihalide compound, reacting them, and dehalogenating. Suitable reaction temperatures are room temperature to about 8
The temperature is between 0 ° C and the reaction is completed in about 24 hours. As the organic solvent, for example, N, N-dimethylformamide, acetonitrile, toluene, tetrahydrofuran or the like can be applied.
【0049】また、本発明で用いる重合体は、前記式
(4)で表されるジハライド化合物、特にキノリンオキ
シド、キノキサリンオキシド、キノキサリンジオキシ
ド、1,5−ナフチリジンオキシドまたは1,5−ナフ
チリジンジオキシドの任意の2箇所の水素原子をハロゲ
ン原子に置換した前記の式(4a)、式(4b−1)、
式(4b−2)、式(4c−1)または式(4c−2)
で表されるジハライド化合物をニッケル化合物の存在下
で電解還元することによっても製造することができる。
すなわち、ジハライド化合物を2価のニッケル化合物の
共存下で電解還元反応させると、脱ハロゲン化反応によ
ってN−オキシド化ポリ(含窒素縮合複素環)重合体を
得ることができる。The polymer used in the present invention is a dihalide compound represented by the above formula (4), especially quinoline oxide, quinoxaline oxide, quinoxaline dioxide, 1,5-naphthyridine oxide or 1,5-naphthyridine dioxide. Of the above formula (4a) and formula (4b-1) in which hydrogen atoms at any two positions of are substituted with halogen atoms,
Formula (4b-2), Formula (4c-1) or Formula (4c-2)
It can also be produced by electrolytically reducing the dihalide compound represented by: in the presence of a nickel compound.
That is, when the dihalide compound is subjected to an electrolytic reduction reaction in the presence of a divalent nickel compound, an N-oxidized poly (nitrogen-containing condensed heterocycle) polymer can be obtained by a dehalogenation reaction.
【0050】本発明の実施の形態に係るエネルギー貯蔵
媒体に用いられている電解質は、前述したように、硫黄
原子を含有する陰イオンを含む電解質とそのカウンター
イオンとなる陽イオンを含む電解質である。ここに電解
質は特に規定するもではないが、たとえば無機酸として
硫酸、有機酸としてベンゼンスルホン酸、アルキルベン
ゼンスルホン酸、カンファスルホン酸、5―スルホサリ
チル酸、p−トルエンスルホン酸、メタンスルホン酸、
トリフルオロメタンスルホン酸イオン、ブタンスルホン
酸イオン、トリクロロベンゼンスルホン酸イオン、ナフ
タレンスルホン酸イオン、パーフルオロブタンスルホン
酸イオン、パーフルオロオクタンスルホン酸イオン更
に、ポリスチレンスルホン酸イオン、ポリビニルスルホ
ン酸などが含まれる。As described above, the electrolyte used in the energy storage medium according to the embodiment of the present invention is an electrolyte containing an anion containing a sulfur atom and a cation serving as its counter ion. . Although the electrolyte is not particularly specified here, for example, sulfuric acid as an inorganic acid, benzenesulfonic acid as an organic acid, alkylbenzenesulfonic acid, camphorsulfonic acid, 5-sulfosalicylic acid, p-toluenesulfonic acid, methanesulfonic acid,
Examples include trifluoromethane sulfonate ion, butane sulfonate ion, trichlorobenzene sulfonate ion, naphthalene sulfonate ion, perfluorobutane sulfonate ion, perfluorooctane sulfonate ion, polystyrene sulfonate ion, and polyvinyl sulfonate ion.
【0051】また、カウンターイオンとしては、特に限
定されるものではないが限定されるわけではないが、プ
ロトン、アルカリ金属イオン(リチウムイオン、ナトリ
ウムイオン、カリウムイオン)、アルカリ土類金属(マ
グネシウムイオン、カルシウムイオン、バリウムイオ
ン)、アルミニウムイオン、鉄イオン、ニッケルイオ
ン、テトラメチルアンモニウムイオン等が挙げられる。The counter ion is not particularly limited, but is not limited to, proton, alkali metal ion (lithium ion, sodium ion, potassium ion), alkaline earth metal (magnesium ion, Examples thereof include calcium ion, barium ion), aluminum ion, iron ion, nickel ion, and tetramethylammonium ion.
【0052】次に、前記樹脂材料を用いたエネルギー貯
蔵媒体の製造方法について説明する。実際に用いられる
エネルギー媒体を図1に示す。負極電極2は以下のよう
に形成されるが、特にその方法は限定されるものではな
い。先ず、N−オキシド化ポリ(含窒素縮合複素環)重
合体に導電性付与剤としてカーボンを添加し、これをD
MF、NMPに溶解若しくは分散しワニス化する。ワニ
ス化にはボールミルを用いるのが効果的である。得られ
たワニスはドクターブレード法などにより銅集電体1上
に塗布し乾燥する。十分に乾燥した後、プレス機を用い
て加圧し、膜厚を調整する。正極3は特に限定されるも
のではないが、アミン系導電性高分子としてポリアニリ
ンを用い、これに導電性付与剤としてカーボンを添加
し、更にバインダーポリマーを混合したDMF、若しく
はNMPスラリーをボールミルを用いて作成する。成膜
は負極と同様に行える。これら電極のドーピングには特
に限定するものではないが、トリフルオロメタンスルホ
ン酸等を用い、化学的に行える。次に、同様なドーピン
グ剤を含有した電解液中に予め作成しておいたセパレー
タを浸し、十分に含浸させた後に先に作成した正極、負
極をこのセパレータを介して張り合わせエネルギー貯蔵
媒体を得ることができる。Next, a method of manufacturing an energy storage medium using the resin material will be described. The energy medium actually used is shown in FIG. The negative electrode 2 is formed as follows, but the method is not particularly limited. First, carbon was added as a conductivity-imparting agent to an N-oxidized poly (nitrogen-containing condensed heterocycle) polymer, and this was added to D
It is dissolved or dispersed in MF and NMP to form a varnish. It is effective to use a ball mill for varnishing. The obtained varnish is applied on the copper current collector 1 by a doctor blade method or the like and dried. After being sufficiently dried, pressure is applied using a pressing machine to adjust the film thickness. The positive electrode 3 is not particularly limited, but polyaniline is used as the amine-based conductive polymer, carbon is added as a conductivity-providing agent to this, and DMF or NMP slurry in which a binder polymer is mixed is used in a ball mill. To create. The film formation can be performed in the same manner as the negative electrode. The doping of these electrodes is not particularly limited, but can be chemically performed using trifluoromethanesulfonic acid or the like. Next, a separator prepared in advance is dipped in an electrolytic solution containing a similar doping agent, and after sufficiently impregnated, the positive electrode and the negative electrode prepared previously are bonded together via this separator to obtain an energy storage medium. You can
【0053】なお、上記とは別に図2に示すエネルギー
媒体も挙げられる。N−オキシド化ポリ(含窒素縮合複
素環)重合体に導電性付与剤としてカーボンを添加し、
これをDMF、NMPに溶解若しくは分散しワニス化す
る。ワニス化にはボールミルを用いるのが効果的であ
る。得られたワニスはドクターブレード法により銅集電
体5上に塗布し乾燥する。このワニスを用いて正極、負
極を作成し、これと特に限定するものではないが、トリ
フルオロメタンスルホン酸を用い、化学的に行い、次
に、十分にドーピング剤を含有したセパレータを介して
この正極、負極を貼り合わせエネルギー貯蔵媒体を得る
ことが出来る。In addition to the above, the energy medium shown in FIG. 2 may be used. Carbon is added to the N-oxidized poly (nitrogen-containing condensed heterocycle) polymer as a conductivity-imparting agent,
This is dissolved or dispersed in DMF and NMP to form a varnish. It is effective to use a ball mill for varnishing. The obtained varnish is applied on the copper current collector 5 by the doctor blade method and dried. Using this varnish, a positive electrode and a negative electrode are prepared, and although not particularly limited thereto, chemically performed using trifluoromethanesulfonic acid, and then the positive electrode is passed through a separator sufficiently containing a doping agent. It is possible to obtain an energy storage medium by laminating the negative electrodes.
【0054】次に、本実施の形態に係るエネルギー貯蔵
媒体の実施例を比較例とともに示し、本発明に係るエネ
ルギー貯蔵媒体を具体的に説明する。尚、ここで得られ
たエネルギー貯蔵媒体は定電流にて充電試験を行った。Next, examples of the energy storage medium according to the present embodiment will be shown together with comparative examples, and the energy storage medium according to the present invention will be specifically described. The energy storage medium obtained here was subjected to a charging test at a constant current.
【0055】[0055]
【実施例】実施例1 図1に示される負極電極として式(6)[Example] Example 1 As the negative electrode shown in FIG.
【0056】[0056]
【化19】 [Chemical 19]
【0057】で表されるされるポリ(ナフチリジン−1
−オキシド−2,6−ジイル)重合体(n=185)を
用い、正極電極2に式(7)Poly (naphthyridine-1) represented by
-Oxide-2,6-diyl) polymer (n = 185) was used for the positive electrode 2 with the formula (7).
【0058】[0058]
【化20】 [Chemical 20]
【0059】で表されるポリアニリン(数平均分子量1
2000)を用いた。また、負極電極1及び正極電極2
のドーパントしてトリフルオロメタンスルホン酸を用い
た。Polyaniline represented by (number average molecular weight 1
2000) was used. In addition, the negative electrode 1 and the positive electrode 2
Trifluoromethanesulfonic acid was used as a dopant.
【0060】式(7)に示すポリアニリンに、導電付与
剤(カーボン)を重量比で3:1混合させ、これにバイ
ンダー(ポリ弗化ビニリデンフロライド−ヘキサフルオ
ロプロピレン)を6wt%添加した後DMFに分散しス
ラリーを作成した。得られたスラリーはボールミルで攪
拌した後、ドクターブレード法で集電体5の片側にコー
トする。得られた薄膜は十分に乾燥の後、プレス機で加
圧し膜厚を整える。乾燥は100℃、減圧下で行った。
膜厚は凡そ80μmとした。次に同様な方法を用いて負
極の作成を行った。ここでポリ(ナフチリジン−1−オ
キシド−2,6−ジイル)重合体と導電付与剤(カーボ
ン)の混合比は2:1で膜厚は凡そ100μmとした。
電解液は、トリフルオロメタンスルホン酸水溶液を用
い、負極電極2及び正極電極3のドーピングを化学的に
行った。続いて、電解液を含浸させたセパレータ4を介
して上記電極を貼りあわせることによりエネルギー貯蔵
媒体を得た。The polyaniline represented by the formula (7) was mixed with a conductivity-imparting agent (carbon) in a weight ratio of 3: 1, and a binder (polyvinylidene fluoride-hexafluoropropylene) was added thereto in an amount of 6 wt%. To prepare a slurry. The obtained slurry is stirred by a ball mill and then coated on one side of the current collector 5 by the doctor blade method. The obtained thin film is sufficiently dried and then pressed by a press to adjust the film thickness. Drying was performed at 100 ° C. under reduced pressure.
The film thickness was about 80 μm. Next, a negative electrode was prepared using the same method. Here, the mixing ratio of the poly (naphthyridine-1-oxide-2,6-diyl) polymer and the conductivity-imparting agent (carbon) was 2: 1 and the film thickness was about 100 μm.
An aqueous solution of trifluoromethanesulfonic acid was used as an electrolytic solution, and the negative electrode 2 and the positive electrode 3 were chemically doped. Subsequently, the above-mentioned electrodes were bonded together via the separator 4 impregnated with the electrolytic solution to obtain an energy storage medium.
【0061】電池性能は以下のように行った。まず、得
られたエネルギー貯蔵媒体を0.5mA/cm2の定電
流にて充電を0.9Vまで行った。得られた容量は、負
極活物質重量当たり102Wh/kgであった。サイク
ル特性においても、初期容量(この場合102Wh/k
g)の80%になるまでのサイクル回数は2300回で
あった。また、容量保存特性は25℃で30日後の容量
が76%であった。The battery performance was as follows. First, the obtained energy storage medium was charged to 0.9 V at a constant current of 0.5 mA / cm 2. The obtained capacity was 102 Wh / kg per weight of the negative electrode active material. Even in the cycle characteristics, the initial capacity (in this case, 102 Wh / k
The number of cycles until 80% of g) was 2300. As for the capacity storage characteristics, the capacity after 30 days at 25 ° C. was 76%.
【0062】実施例2
実施例1で用いた式(6)で表されるポリ(ナフチリジ
ン−1−オキシド−2,6−ジイル)重合体を正、負電
極活物質として用い、更にドーパントとして硫酸を用い
エネルギー貯蔵媒体を作成した。Example 2 The poly (naphthyridine-1-oxide-2,6-diyl) polymer represented by the formula (6) used in Example 1 was used as the positive and negative electrode active materials, and sulfuric acid was used as the dopant. Was used to create an energy storage medium.
【0063】電極は実施例1に示した負極作成法に従っ
た。更に電解液を含浸したセパレータを介して貼りあわ
せエネルギー貯蔵媒体とした。完成したキャパシタを
0.5mA/cm2で定電流にて充電を行った。その結
果、得られた容量は負極活物質当たり19Wh/kgで
あった。サイクル特性においても、初期容量の80%に
なるまでのサイクル回数は5000回であった。The electrode was in accordance with the method for preparing a negative electrode shown in Example 1. Further, an energy storage medium was obtained by pasting together with a separator impregnated with the electrolytic solution. The completed capacitor was charged at a constant current of 0.5 mA / cm 2 . As a result, the obtained capacity was 19 Wh / kg per negative electrode active material. Also in the cycle characteristics, the number of cycles until reaching 80% of the initial capacity was 5000 times.
【0064】比較例1
ドーパントとして塩酸を用いた場合に付いて、実施例1
と同様の実験を行った。その結果、エネルギー貯蔵媒体
を0.5mA/cm2の定電流にて充電を0.9Vまで
行った時、容量は負極活物質重量当たり55Wh/kg
であり、サイクル特性においても、初期容量の80%に
なるまでのサイクル回数は800回であった。Comparative Example 1 In the case of using hydrochloric acid as a dopant, Example 1
The same experiment was performed. As a result, when the energy storage medium was charged to 0.9 V at a constant current of 0.5 mA / cm 2 , the capacity was 55 Wh / kg per weight of the negative electrode active material.
Also in the cycle characteristics, the number of cycles until reaching 80% of the initial capacity was 800 times.
【0065】比較例2
実施例2においてポリアニリン(数平均分子量1200
0)を正、負電極活物質として用い、実施例2と同様な
実験を行った。その結果、得られた容量は負極活物質あ
たり9.4wh/kgであり、サイクル特性においても
初期容量の80%になるまでのサイクル回数は1200
回であった。Comparative Example 2 Polyaniline (number average molecular weight 1200
0) was used as the positive and negative electrode active materials, and the same experiment as in Example 2 was performed. As a result, the obtained capacity was 9.4 wh / kg per negative electrode active material, and the cycle number was 1200 before the capacity reached 80% of the initial capacity.
It was once.
【図1】 本発明の実施例1の形態に係るエネルギー貯
蔵媒体の断面模式図である。FIG. 1 is a schematic sectional view of an energy storage medium according to a mode of Example 1 of the present invention.
【図2】 本発明の実施例2の形態に係るエネルギー貯
蔵媒体の断面模式図である。FIG. 2 is a schematic sectional view of an energy storage medium according to a form of Example 2 of the present invention.
1 集電体 2 負極 3 正極 4 セパレータ 5 集電体 1 Current collector 2 Negative electrode 3 positive electrode 4 separator 5 Current collector
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J002 CM021 DG046 EV256 FD206 4J032 BA12 BC03 BD02 5H029 AJ05 AK16 AL16 AM02 AM07 BJ04 DJ09 EJ13 HJ02 5H050 AA07 BA15 CA22 CA25 CB22 CB25 HA02 ─────────────────────────────────────────────────── ─── Continued front page F term (reference) 4J002 CM021 DG046 EV256 FD206 4J032 BA12 BC03 BD02 5H029 AJ05 AK16 AL16 AM02 AM07 BJ04 DJ09 EJ13 HJ02 5H050 AA07 BA15 CA22 CA25 CB22 CB25 HA02
Claims (9)
の2つは繰り返し単位間の結合に関与する炭素原子であ
り、少なくとも1つはN→O基を、残りはそれぞれ独立
に炭素原子、CH基、窒素原子又はN→O基を表し、
a、b、c、dに含まれるN→O基の数の最大総数は2
を、窒素原子の数の最大総数は2を表し、また、e、
f、g、hに含まれるN→O基の数の最大総数は2を、
窒素原子の数の総数は2を表し、重合度nは少なくとも
5で表され、R1及びR2はそれぞれ独立に水素原子、ハ
ロゲン原子、ヒドロキシル基、カルボキシル基、スルホ
ン基、硫酸基、ニトロ基、シアノ基、アルキル基、アリ
ール基、アルコキシル基、アミノ基、アルキルチオ基及
びアリールチオ基を表す。)で表される構成単位を有す
るN−オキシド化ポリ(含窒素縮合複素環)重合体、硫
黄原子を含有する陰イオンを含む電解質と、そのカウン
ターイオンとなる陽イオンを含む電解質とを含有する材
料からなる電極を用いることを特徴とするエネルギー貯
蔵媒体。1. Formula (1): (In the formula, any two of a, b, c, d, e, f, g and h are carbon atoms involved in the bond between repeating units, and at least one is an N → O group, and the rest are Each independently represent a carbon atom, a CH group, a nitrogen atom or an N → O group,
The maximum total number of N → O groups contained in a, b, c, d is 2
The maximum total number of nitrogen atoms is 2, and e,
The maximum total number of N → O groups contained in f, g, and h is 2,
The total number of nitrogen atoms is 2, the degree of polymerization n is represented by at least 5, and R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a sulfone group, a sulfate group, a nitro group. Represents a cyano group, an alkyl group, an aryl group, an alkoxyl group, an amino group, an alkylthio group and an arylthio group. ) An N-oxidized poly (nitrogen-containing condensed heterocycle) polymer having a structural unit represented by the formula (1), an electrolyte containing an anion containing a sulfur atom, and an electrolyte containing a cation serving as its counter ion. An energy storage medium characterized by using an electrode made of a material.
の2つは繰り返し単位間の結合に関与する炭素原子を表
し、少なくとも1つはN→O基を、残りは炭素原子、C
H基、窒素原子又はN→O基を表し、a、b、c、dに
含まれるN→O基の数の最大総数は2を、窒素原子の数
の最大総数は2を表し、また、e、f、g、hに含まれ
るN→O基の数の最大総数は2を、窒素原子の数の総数
は2を表し、またo、p、q、r、s、t、u及びvの
うち、任意の2つは繰り返し単位間の結合に関与する炭
素原子を表し、残りはそれぞれ独立に炭素原子、CH基
又は窒素原子を表し、o、p、q、rに含まれる窒素原
子の数の最大総数は2を表し、またs、t、u、vに含
まれる窒素原子の最大総数は2を表し、重合度l+mは
少なくとも5の整数を表し、R1、R2、R3、及びR4は
それぞれ独立に水素原子、ハロゲン原子、ヒドロキシル
基、カルボキシル基、スルホン基、硫酸基、ニトロ基、
シアノ基、アルキル基、アリール基、アルコキシル基、
アミノ基、アルキルチオ基及びアリールチオ基を表
す。)で表されるN−オキシド化ポリ(含窒素縮合複素
環)重合体、硫黄原子を含有する陰イオンを含む電解質
と、そのカウンターイオンとなる陽イオンを含む電解質
とを含有する材料からなる電極を用いることを特徴とす
るエネルギー貯蔵媒体。2. Formula (2): (In the formula, any two of a, b, c, d, e, f, g and h represent a carbon atom involved in a bond between repeating units, and at least one is an N → O group, and the rest are Is a carbon atom, C
Represents a H group, a nitrogen atom or an N → O group, the maximum total number of N → O groups contained in a, b, c, d is 2, the maximum total number of nitrogen atoms is 2, and The maximum total number of N → O groups contained in e, f, g and h is 2, the total number of nitrogen atoms is 2, and o, p, q, r, s, t, u and v Among them, any two represent a carbon atom involved in a bond between repeating units, the rest independently represent a carbon atom, a CH group or a nitrogen atom, and each of the nitrogen atoms contained in o, p, q and r The maximum total number is 2, and the maximum total number of nitrogen atoms contained in s, t, u, v is 2, and the polymerization degree l + m represents an integer of at least 5, R 1 , R 2 , R 3 , And R 4 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a sulfone group, a sulfuric acid group, a nitro group,
Cyano group, alkyl group, aryl group, alkoxyl group,
It represents an amino group, an alkylthio group and an arylthio group. ) An electrode made of a material containing an N-oxidized poly (nitrogen-containing condensed heterocycle) polymer represented by the formula (1), an electrolyte containing an anion containing a sulfur atom, and an electrolyte containing a cation serving as its counter ion. An energy storage medium characterized by using.
縮合複素環)重合体が次式(1a)、(1b−1)、
(1b−2)、(1c−1)又は(1c−2) 【化3】 (式中、重合度n1、n2、n3、n4及びn5は少なくと
も5を表し、R1,R2は前記と同じ意味を表す。)であ
る請求項1記載のエネルギー貯蔵媒体。3. An N-oxidized poly (nitrogen-containing condensed heterocycle) polymer of the formula (1) has the following formulas (1a), (1b-1),
(1b-2), (1c-1) or (1c-2) (Wherein the polymerization degrees n 1 , n 2 , n 3 , n 4 and n 5 represent at least 5, and R 1 and R 2 have the same meanings as described above). .
縮合複素環)重合体が次式(2a)、(2b−1)、
(2b−2)、(2c−1)又は(2c−2) 【化4】 (式中、重合度l1+m1、l2+m2、l3+m3、l4+
m5は少なくとも5を表し、R1、R2、R3及びR4は前
記と同じ意味を表す。)である請求項2記載のエネルギ
ー貯蔵媒体。4. An N-oxidized poly (nitrogen-containing condensed heterocycle) polymer of the formula (2) has the following formulas (2a), (2b-1),
(2b-2), (2c-1) or (2c-2) (In the formula, the degree of polymerization l 1 + m 1 , l 2 + m 2 , l 3 + m 3 , l 4 +
m 5 represents at least 5, and R 1 , R 2 , R 3 and R 4 have the same meanings as described above. ) Is an energy storage medium according to claim 2.
環)重合体が式(3) 【化5】 (式中、o、p、q、r、s、t、u、v及び置換基R
1、R2は前記と同じ意味を表し、重合度xは少なくとも
5を表す。)で示される2価の基を構成単位として含有
するポリ(含窒素縮合複素環)重合体を過酸化物と反応
させ、環内窒素原子をN−オキシド化して得たN−オキ
シド化ポリ(含窒素縮合複素環)重合体である請求項1
乃至請求項4のいずれかに記載のエネルギー貯蔵媒体。5. An N-oxidized poly (nitrogen-containing condensed heterocycle) polymer is represented by the formula (3): (In the formula, o, p, q, r, s, t, u, v and the substituent R
1 , R 2 has the same meaning as described above, and the degree of polymerization x represents at least 5. ), A poly (nitrogen-containing condensed heterocycle) polymer containing a divalent group as a constitutional unit is reacted with a peroxide to N-oxidize the nitrogen atom in the ring to obtain an N-oxidized poly ( A nitrogen-containing condensed heterocycle) polymer.
An energy storage medium according to claim 4.
環)重合体が式(4) 【化6】 (式中、X及びYはそれぞれハロゲン原子を表し、a、
b、c、d、e、f、g及びhのうち、任意の2つは前
記ハロゲン原子に結合する炭素原子を、少なくとも1つ
はN→O基を表し、残りはそれぞれ独立に炭素原子、C
H基または窒素原子を表し、a、b、c、dに含まれる
N→O基の数の最大総数は2を、窒素原子の数の最大総
数は2を表し、またe、f、g、hに含まれるN→O基
の数の最大総数は2を、窒素原子の最大の総数は2を表
し、また、R1、R2はそれぞれ独立に水素原子、ハロゲ
ン原子、ヒドロキシル基、カルボキシル基、スルホン
基、硫酸基、ニトロ基、シアノ基、アルキル基、アリー
ル基、アルコキシル基、アミノ基、アルキルチオ基及び
アリールチオ基等を示す。)で示されるジハライド化合
物をゼロ価ニッケル化合物とを反応させ得られるN−オ
キシド化ポリ重合体である請求項1乃至請求項4のいず
れかに記載のネルギー貯蔵媒体。6. An N-oxidized poly (nitrogen-containing condensed heterocycle) polymer is represented by the formula (4): (In the formula, X and Y each represent a halogen atom, and a,
Any one of b, c, d, e, f, g and h is a carbon atom bonded to the halogen atom, at least one is an N → O group, and the rest are each independently a carbon atom, C
Represents a H group or a nitrogen atom, the maximum total number of N → O groups contained in a, b, c, d is 2, the maximum total number of nitrogen atoms is 2, and e, f, g, The maximum total number of N → O groups contained in h is 2, the maximum total number of nitrogen atoms is 2, and R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a hydroxyl group or a carboxyl group. , A sulfone group, a sulfuric acid group, a nitro group, a cyano group, an alkyl group, an aryl group, an alkoxyl group, an amino group, an alkylthio group and an arylthio group. The energy storage medium according to any one of claims 1 to 4, which is an N-oxidized polypolymer obtained by reacting the dihalide compound represented by the formula (4) with a zero-valent nickel compound.
環)重合体が前記式(4)で示されるジハライド化合物
をゼロ価ニッケル化合物の存在下で電解還元することで
得られるN−オキシド化ポリ重合体である請求項1乃至
請求項4のいずれかに記載のネルギー貯蔵媒体。7. An N-oxidized poly (nitrogen-containing condensed heterocycle) polymer obtained by electrolytically reducing a dihalide compound represented by the above formula (4) in the presence of a zero-valent nickel compound. The energy storage medium according to any one of claims 1 to 4, which is a polypolymer.
環)重合体が次式(3a)、(3b)、(3c) 【化7】 (式中、R1、R2は式(3)と同じ、重合度x1、x2及
びx3は少なくとも5を表す。)である請求項5記載の
エネルギー貯蔵媒体。8. The poly (nitrogen-containing condensed heterocycle) polymer of the formula (3) is represented by the following formulas (3a), (3b) and (3c): The energy storage medium according to claim 5, wherein R 1 and R 2 are the same as those in formula (3), and the degrees of polymerization x 1 , x 2 and x 3 represent at least 5.
で示されるN−オキシド化ポリ(含窒素縮合複素環)重
合体を有する膜を施すことにより電極を形成し、硫黄原
子を含有する陰イオンを含む電解質と、そのカウンター
イオンとなる陽イオンを含む電解質とを含有する溶液を
用いて、前記電極中のN−オキシド化ポリ(含窒素縮合
複素環)重合体をドーピングすることを特徴とするエネ
ルギー貯蔵媒体の製造方法。9. The formula (1) or (2) on the surface of the current collector.
An electrode is formed by applying a film having an N-oxidized poly (nitrogen-containing condensed heterocycle) polymer represented by, and includes an electrolyte containing an anion containing a sulfur atom and a cation serving as a counter ion thereof. A method for producing an energy storage medium, which comprises doping an N-oxidized poly (nitrogen-containing condensed heterocycle) polymer in the electrode with a solution containing an electrolyte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001204422A JP5261855B2 (en) | 2001-07-05 | 2001-07-05 | Energy storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001204422A JP5261855B2 (en) | 2001-07-05 | 2001-07-05 | Energy storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003017062A true JP2003017062A (en) | 2003-01-17 |
JP5261855B2 JP5261855B2 (en) | 2013-08-14 |
Family
ID=19040894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001204422A Expired - Fee Related JP5261855B2 (en) | 2001-07-05 | 2001-07-05 | Energy storage medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5261855B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003069703A1 (en) * | 2002-02-18 | 2003-08-21 | Nec Corporation | Electrode-active materials, electrodes made by using the same, and cells equipped with the electrodes |
JP2004192829A (en) * | 2002-12-06 | 2004-07-08 | Nec Corp | Secondary battery |
KR100458666B1 (en) * | 2001-10-03 | 2004-12-03 | 닛뽕덴끼 가부시끼가이샤 | Electrode and battery using same |
US8283466B2 (en) | 2007-02-20 | 2012-10-09 | Board Of Trustees Of Michigan State University | Catalytic deamination for caprolactam production |
WO2014024940A1 (en) * | 2012-08-08 | 2014-02-13 | 日東電工株式会社 | Positive electrode for electricity-storage device and method for manufacturing electricity-storage device and slurry for electricity-storage-device positive electrode |
US11603431B2 (en) | 2016-02-04 | 2023-03-14 | Raynergy Tek Incorporation | Organic semiconductors |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH093171A (en) * | 1995-06-15 | 1997-01-07 | Ryuichi Yamamoto | Conductive material and its synthesis |
JP2000260422A (en) * | 1999-03-11 | 2000-09-22 | Nec Corp | Battery using quinoxaline resin and capacitor |
JP2001035494A (en) * | 1999-07-22 | 2001-02-09 | Nec Corp | Secondary battery using indole polymer and capacitor |
-
2001
- 2001-07-05 JP JP2001204422A patent/JP5261855B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH093171A (en) * | 1995-06-15 | 1997-01-07 | Ryuichi Yamamoto | Conductive material and its synthesis |
JP2000260422A (en) * | 1999-03-11 | 2000-09-22 | Nec Corp | Battery using quinoxaline resin and capacitor |
JP2001035494A (en) * | 1999-07-22 | 2001-02-09 | Nec Corp | Secondary battery using indole polymer and capacitor |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100458666B1 (en) * | 2001-10-03 | 2004-12-03 | 닛뽕덴끼 가부시끼가이샤 | Electrode and battery using same |
WO2003069703A1 (en) * | 2002-02-18 | 2003-08-21 | Nec Corporation | Electrode-active materials, electrodes made by using the same, and cells equipped with the electrodes |
US7476465B2 (en) | 2002-02-18 | 2009-01-13 | Nec Corporation | Electrode active material and electrode using the electrode active material and battery using the electrode |
JP2004192829A (en) * | 2002-12-06 | 2004-07-08 | Nec Corp | Secondary battery |
JP4677706B2 (en) * | 2002-12-06 | 2011-04-27 | 日本電気株式会社 | Secondary battery |
US8283466B2 (en) | 2007-02-20 | 2012-10-09 | Board Of Trustees Of Michigan State University | Catalytic deamination for caprolactam production |
WO2014024940A1 (en) * | 2012-08-08 | 2014-02-13 | 日東電工株式会社 | Positive electrode for electricity-storage device and method for manufacturing electricity-storage device and slurry for electricity-storage-device positive electrode |
CN104521043A (en) * | 2012-08-08 | 2015-04-15 | 日东电工株式会社 | Positive electrode for electricity-storage device and method for manufacturing electricity-storage device and slurry for electricity-storage-device positive electrode |
US11603431B2 (en) | 2016-02-04 | 2023-03-14 | Raynergy Tek Incorporation | Organic semiconductors |
Also Published As
Publication number | Publication date |
---|---|
JP5261855B2 (en) | 2013-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7041329B2 (en) | Non-aqueous electrolyte secondary battery and positive electrode sheet for it | |
Zhu et al. | Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries | |
KR101016276B1 (en) | Polyelectrolyte and manufacturing method thereof, and electrochemical device | |
KR102147250B1 (en) | Use of thianthrene-containing polymers as charge stores | |
CN109423237B (en) | Binder, electrode and lithium battery including the same, and method of preparing the binder | |
JP2002100405A (en) | Resin composition for gel high polymer solid electrolyte and the gel high polymer solid electrolyte | |
JP4828112B2 (en) | PROTON CONDUCTIVE POLYMER MATERIAL AND SOLID ELECTROLYTE MEMBRANE, ELECTROCHEMICAL CELL, AND FUEL CELL USING THE SAME | |
WO2013111713A1 (en) | Carbazole polymer | |
KR20160067793A (en) | Polymer and polymer electrolyte membrane using the same | |
EP1202372B1 (en) | Method for manufacturing polymer battery | |
JP2005209576A (en) | Copolymer compound and electrochemical cell using it | |
JP5261855B2 (en) | Energy storage medium | |
US10377849B2 (en) | Ionic and electronic conducting binder for electrochemical devices | |
JP3144410B2 (en) | Battery and capacitor using quinoxaline resin | |
TWI409839B (en) | An electrochemical capacitor electrode, a composition for the electrode, and a method for manufacturing the same, and an electrochemical capacitor using the same | |
JP2001319655A (en) | Secondary battery and capacitor using polyquinoxaline ether | |
CN116632334A (en) | Solid electrolyte and preparation method thereof, and solid lithium battery and preparation method thereof | |
KR102575121B1 (en) | A crosslinked copolymer having excellent ionic conductivity and self-healing ability, a polymer binder for a silicon anode comprising the same, a silicon anode comprising the polymer binder for the silicon anode, and a lithium ion battery comprising the silicon anode | |
JP2000331713A (en) | Manufacture of polymer solid electrolyte, polymer solid electrolyte, and electrochemical device using the same | |
JPH1021963A (en) | Battery and manufacture thereof | |
JP3723140B2 (en) | Power storage device using quinoxaline compound | |
JP4048063B2 (en) | Proton-conducting polymer solid electrolyte, method for producing the electrolyte, electrolyte membrane made of the electrolyte, method for producing the electrolyte membrane, electrochemical element using the electrolyte and / or electrolyte membrane, and method for producing the electrochemical element | |
JP3066426B2 (en) | Electrochemical element and manufacturing method thereof | |
KR100574639B1 (en) | Sulfonated Binder for Lithium Polymer Battery, Electrode Composition Containing It and Lithium Polymer Battery Containing the Electrode Composition | |
KR102387379B1 (en) | Polymeric binder for sea water batteries and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110615 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110804 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20110804 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120530 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120724 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130415 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5261855 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |