[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003014074A - Gear ratio infinitely continuously variable transmission - Google Patents

Gear ratio infinitely continuously variable transmission

Info

Publication number
JP2003014074A
JP2003014074A JP2001201593A JP2001201593A JP2003014074A JP 2003014074 A JP2003014074 A JP 2003014074A JP 2001201593 A JP2001201593 A JP 2001201593A JP 2001201593 A JP2001201593 A JP 2001201593A JP 2003014074 A JP2003014074 A JP 2003014074A
Authority
JP
Japan
Prior art keywords
gear
variable transmission
continuously variable
ratio
planetary gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001201593A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yamada
一浩 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001201593A priority Critical patent/JP2003014074A/en
Publication of JP2003014074A publication Critical patent/JP2003014074A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H37/086CVT using two coaxial friction members cooperating with at least one intermediate friction member

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)
  • Transmission Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve transmission efficiency while enlarging the range of a gear ratio of a gear ratio infinitely continuously variable transmission. SOLUTION: A first variable speed mechanism comprises a continuously variable transmission, and a second variable speed mechanism comprises a transmission capable of connecting and disconnecting rotation between input and output and realizing two large and small gear ratios. The output part of the first variable speed mechanism is connected to a sun gear of a planetary gear mechanism and to a ring gear through a clutch. The output part of the second variable speed mechanism is connected to a carrier of the planetary gear mechanism. The ring gear is connected to the output shaft side for driving a driving wheel. It is constituted to have the relation of Ig2/Id<λ1(1+α)/(λ1/λ2+α) among the maximum gear ratio λ1 and minimum gear ratio 12 of the continuously variable transmission, the smaller gear ratio Ig2 of the second variable speed mechanism, the number-of-teeth ratio αbetween the number-of-teeth of the sun gear of the planetary gear mechanism and the number-of-teeth of the ring gear, and a rotation ratio Id between the sun gear input rotation of the planetary gear mechanism and the output rotation of the continuously variable transmission.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、車両等に採用さ
れる無段変速機に係り、特に変速比無限大無段変速機の
改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuously variable transmission adopted in a vehicle or the like, and more particularly to an improvement of an infinitely variable transmission continuously variable transmission.

【0002】[0002]

【従来の技術】従来から車両の変速機として、ベルト式
やトロイダル型の無段変速機が知られており、このよう
な無段変速機の変速領域をさらに拡大するために、例え
ば、本出願人が先に提案した特開平11−303969
号に示すような、無段変速機に遊星歯車機構を組み合わ
せて変速比を無限大まで制御可能とする変速比無限大無
段変速機(IVT)が知られている。
2. Description of the Related Art Conventionally, a belt type or toroidal type continuously variable transmission has been known as a transmission for a vehicle. In order to further expand the transmission range of such a continuously variable transmission, for example, the present application is proposed. Japanese Patent Laid-Open No. 11-303969 previously proposed by a person
There is known an infinitely variable transmission continuously variable transmission (IVT) which is capable of controlling a gear ratio up to infinity by combining a planetary gear mechanism with a continuously variable transmission as shown in No.

【0003】これは、クラッチの選択によって、ユニッ
ト(変速比無限大無段変速機)の変速比を負の値から正
の値まで変速比無限大(=ギヤードニュートラルポイン
トGNPという)を含んで連続的に変速制御を行う動力
循環モード、無段変速機(CVT)の変速比に応じて変
速制御を行う無段変速機直結モード、およびHi側の変
速比の範囲を拡大した増速モードを選択的に使用できる
ようになっている。
This is because the gear ratio of the unit (infinitely variable transmission continuously variable transmission) is continuously changed from a negative value to a positive value by including the infinite transmission ratio (= geared neutral point GNP) depending on the selection of the clutch. Select a power circulation mode that performs gear shift control, a continuously variable transmission direct connection mode that performs gear shift control according to the gear ratio of a continuously variable transmission (CVT), and a speed increase mode that expands the range of the gear ratio on the Hi side. It can be used for various purposes.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな変速比無限大無段変速機にあって、増速モードにお
いては、CVT変速比がLoになるほど(=ユニット変
速比がHiになるほど)、CVT入力パワーが相対的に
大きくなることを確認した。
However, in such an infinitely variable transmission continuously variable transmission, in the speed increasing mode, the CVT transmission ratio becomes Lo (= the unit transmission ratio becomes Hi), It was confirmed that the CVT input power was relatively large.

【0005】上記従来例では、増速モードにおける動力
伝達の流れを簡易的に表わすと図11のようになる。
In the above-mentioned conventional example, the flow of power transmission in the speed-up mode is simply shown in FIG.

【0006】つまり、増速モード用の遊星歯車は、駆動
源からのトルクTINがリングギアに、CVTを経由した
循環トルクTsがサンギアにそれぞれ入力され、キャリ
アから出力される構成となっている。
That is, in the planetary gear for the speed increasing mode, the torque T IN from the drive source is input to the ring gear and the circulating torque Ts via the CVT is input to the sun gear, and is output from the carrier. .

【0007】このときの変速機全体の動力伝達効率ηを
計算すると以下のようになる。
The power transmission efficiency η of the entire transmission at this time is calculated as follows.

【0008】ユニットの入力トルクをTIN、ユニットの
出力トルクをTOUT、ユニットの入力回転速度をωIN
ユニットの出力回転速度をωOUT、ユニットの変速比を
Ii0、CVTの変速比をIc、CVTの出力ギヤ列の
変速比をId、一定変速機構の変速比Ig、CVTの伝
達効率をηc、CVTの出力ギヤ列の伝達効率をηd、一
定変速機構の伝達効率をηg、遊星歯車機構のサンギヤ
歯数とリングギヤ歯数との歯数比(遊星歯車機構ギヤ
比)をα、遊星歯車機構のサンギヤのトルクをTS、キ
ャリアのトルクをTC、リングギヤのトルクをTR、遊星
歯車機構のサンギヤの回転速度をωS、キャリアの回転
速度をωC、リングギヤの回転速度をωR、遊星歯車機構
の伝達効率をη0とすると、 TS=TC・1/(1+η0・i0) …(30) TR=TC・i0/(η0+i0) …(31) ただし、i0=1/α また、 TSO=TS・(Id・Ic)/(ηd・ηc) …(32) 以上から、 TOUT=TC・ηg・Ig−TS・(Id・Ic)/(ηd・ηc) =TR・ηg・Ig・(η0+i0)/i0− TR・[(Id・Ic)/(ηd・ηc)] ・[(1+η0/i0)/(1+η0・i0)] …(33) ∴トルク比t=TOUT/TIN=ηg・Ig・(1+η0/i0)− [(Id・Ic)/(ηd・ηc)] ・[(1+η0/i0)/(1+η0・i0)] =(1+η0/i0) ・[ηg・Ig−[(Id・Ic)/(ηd・ηc)] ・[1/(1+η0・i0)]] …(34) また、 ωR+α・ωS=(1+α)・ωC …(35) ωC/Ig=ωS/(Id・Ic) …(36) より、 ωR+α・ωC・Id・Ic/Ig=(1+α)・ωC ωR=[(1+α)−α・Id・Ic/Ig]・ωC …(37) ∴速度比e=1/Ii0=ωOUT/ωIN=(ωC/Ig)/ωR =(1/Ig)・[1/[(1+α)−α・Id・Ic/Ig]] =1/[(1+α)・Ig−α・Id・Ic] …(38) したがって、ユニットの伝達効率ηは、 η=t・e =(1+α・η0) ・[ηg・Ig−[(Id・Ic)/(ηd・ηc)]・[1/(1+η0/α)]] ・[1/[(1+α)・Ig−α・Id・Ic]] …(40) となり、この計算結果を図4の諸元の下に表わすと図1
2のようになり、増速モードにおいてCVTの変速比I
cが増大するにつれて伝達効率が低下することが解る。
The input torque of the unit is T IN , the output torque of the unit is T OUT , the input rotation speed of the unit is ω IN ,
The output rotation speed of the unit is ω OUT , the gear ratio of the unit is Ii 0 , the gear ratio of the CVT is Ic, the gear ratio of the output gear train of the CVT is Id, the gear ratio Ig of the constant speed change mechanism, and the transmission efficiency of the CVT is ηc, The transmission efficiency of the output gear train of the CVT is ηd, the transmission efficiency of the constant speed change mechanism is ηg, the gear ratio between the number of sun gears and the number of ring gears of the planetary gear mechanism (planetary gear mechanism gear ratio) is α, and the planetary gear mechanism's gear ratio is α. The torque of the sun gear is T S , the torque of the carrier is T C , the torque of the ring gear is T R , the rotation speed of the sun gear of the planetary gear mechanism is ω S , the rotation speed of the carrier is ω C , the rotation speed of the ring gear is ω R , and the planet When the transmission efficiency of the gear mechanism and η 0, T S = T C · 1 / (1 + η 0 · i 0) ... (30) T R = T C · i 0 / (η 0 + i 0) ... (31) However , I 0 = 1 / α and T SO = T S · (Id · Ic) / (ηd · η from c) ... (32) above, T OUT = T C · ηg · Ig-T S · (Id · Ic) / (ηd · ηc) = T R · ηg · Ig · (η 0 + i 0) / i 0 -T R · [(Id · Ic) / (ηd · ηc)] · [(1 + η 0 / i 0 ) / (1 + η 0 · i 0 )] (33) ∴ Torque ratio t = T OUT / T IN = ηg · Ig · (1 + η 0 / i 0 ) − [(Id · Ic) / (ηd · ηc)] · [(1 + η 0 / i 0 ) / (1 + η 0 · i 0 )] = (1 + η 0 / i 0) ) ・ [Ηg ・ Ig-[(Id ・ Ic) / (ηd ・ ηc)] ・ [1 / (1 + η 0・ i 0 )]] (34) Also, ω R + α ・ ω S = (1 + α) ・ω C (35) ω C / Ig = ω S / (Id · Ic) (36) From ω R + α · ω C · Id · Ic / Ig = (1 + α) · ω C ω R = [(1 + α ) -α · Id · Ic / Ig ] · ω C ... (37) ∴ speed ratio e = 1 / Ii 0 = ω OUT / ω IN = (ω C / I ) / Ω R = (1 / Ig) · [1 / [(1 + α) -α · Id · Ic / Ig]] = 1 / [(1 + α) · Ig-α · Id · Ic] ... (38) Therefore, The transfer efficiency η of the unit is as follows: η = t · e = (1 + α · η 0 ) · [ηg · Ig − [(Id · Ic) / (ηd · ηc)] · [1 / (1 + η 0 / α)]]・ [1 / [(1 + α) ・ Ig−α ・ Id ・ Ic]] (40), and the calculation result is shown below the specifications in FIG.
2 and the gear ratio I of the CVT in the speed increasing mode
It can be seen that the transmission efficiency decreases as c increases.

【0009】これは、増速モードにおいてCVTの変速
比Icが増大するにつれて,ギア噛合よりも伝達効率が
低いCVTの摩擦係合を経由した循環トルクTsの割合
が多くなるためであり、以下計算によって示される。
This is because as the gear ratio Ic of the CVT increases in the speed increasing mode, the ratio of the circulation torque Ts via the frictional engagement of the CVT, which has lower transmission efficiency than the gear mesh, increases. Indicated by.

【0010】ユニットの入力パワーTIN・ωINに対する
CVT入力パワーTi・ωIの比hは、 h=(Ti・ωI)/(TIN・ωIN) =[[1/(1+η0・i0)]/[i0/(η0+i0)]] ・[[(Id・Ic/Ig)・ωC] /[(1+α)−α・Id・Ic/Ig]・ωC] =[(1+α・η0)/(1+η0/α)] ・[1/[Ig・(1+α)/(Id・Ic)−α]] =[(η0+1/α)/(1+η0/α)] ・[1/[(1+1/α)・Ig/(Id・Ic)−1]] …(41) となり、この計算結果を図13に示すと明らかなよう
に、CVTの変速比Icが増大するにつれてCVT入力
パワー比hは大きくなり、CVTを経由した循環トルク
Tsの割合が多くなり、変速機全体の動力伝達効率が下
がることが解る。
The ratio h of the CVT input power T i · ω I to the input power T IN · ω IN of the unit is h = (T i · ω I ) / (T IN · ω IN ) = [[1 / (1 + η 0 · i 0 )] / [i 0 / (η 0 + i 0 )]] · [[(Id · Ic / Ig) · ω C ] / [(1 + α) −α · Id · Ic / Ig] · ω C ] = [(1 + α · η 0 ) / (1 + η 0 / α)] ・ [1 / [Ig · (1 + α) / (Id · Ic) −α]] = [(η 0 + 1 / α) / (1 + η 0 / Α)] · [1 / [(1 + 1 / α) · Ig / (Id · Ic) −1]] (41), and as is clear from the calculation result shown in FIG. It can be seen that as the Ic increases, the CVT input power ratio h increases, the ratio of the circulation torque Ts via the CVT increases, and the power transmission efficiency of the entire transmission decreases.

【0011】以上示した通り、従来のIVTでは直結モ
ードよりも更に小さい変速比を実現しているものの、C
VT変速比が増大するにつれて変速機全体の動力伝達効
率が低下するという問題があった。
As described above, the conventional IVT realizes a gear ratio smaller than that of the direct connection mode, but C
There has been a problem that the power transmission efficiency of the entire transmission decreases as the VT speed ratio increases.

【0012】また、増速モードのために、複数のクラッ
チを追加する構成となっており、変速機が大型化すると
いう問題があった。
Further, because of the speed increasing mode, a plurality of clutches are added, which causes a problem that the transmission becomes large.

【0013】この発明は、変速比無限大無段変速機の変
速比の範囲を拡大すると共に、これらの問題点を解決す
ることを目的とする。
It is an object of the present invention to expand the range of the gear ratio of an infinitely variable gear continuously variable transmission and solve these problems.

【0014】[0014]

【課題を解決するための手段】第1の発明は、駆動源か
らの駆動力を入力する第1変速機構および第2変速機構
と、これら第1および第2変速機構の出力を入力にして
駆動輪側へ出力する遊星歯車機構とを備え、前記第1変
速機構は変速比を無段階で変速し得る無段変速機からな
り、前記第2変速機構は該第2変速機構の入出力間で回
転を断接可能であり、かつ大小2つの変速比を実現可能
な変速機からなり、前記第1変速機構の出力部を前記遊
星歯車機構のサンギヤおよびクラッチを介してリングギ
ヤに連結し、前記第2変速機構の出力部を前記遊星歯車
機構のキャリアに連結し、前記リングギヤは駆動輪を駆
動させる出力軸側に連結し、前記無段変速機の最大変速
比λ1、最小変速比λ2と、前記第2変速機構の小さい
方の変速比Ig2と、前記遊星歯車機構のサンギヤ歯数
とリングギヤ歯数との歯数比αと、前記遊星歯車機構の
サンギヤ入力回転と前記無段変速機の出力回転との回転
比Idとの間に、 Ig2/Id<λ1(1+α)/(λ1/λ2+α) の関係を有する。
SUMMARY OF THE INVENTION A first aspect of the present invention is to drive a first transmission mechanism and a second transmission mechanism for inputting a driving force from a drive source, and an output of these first and second transmission mechanisms for input. A planetary gear mechanism for outputting to the wheel side, the first speed change mechanism is a continuously variable transmission capable of continuously changing the speed change ratio, and the second speed change mechanism is provided between the input and output of the second speed change mechanism. The transmission comprises a transmission capable of connecting / disconnecting rotation and realizing two gear ratios, large and small. The output portion of the first transmission mechanism is connected to a ring gear via a sun gear and a clutch of the planetary gear mechanism. The output part of the two-speed mechanism is connected to the carrier of the planetary gear mechanism, the ring gear is connected to the output shaft side for driving the drive wheels, and the maximum speed ratio λ1 and the minimum speed ratio λ2 of the continuously variable transmission are The smaller gear ratio Ig2 of the second transmission mechanism Between the sun gear tooth number ratio α of the planetary gear mechanism and the ring gear tooth number α, and the rotation ratio Id of the sun gear input rotation of the planetary gear mechanism and the output rotation of the continuously variable transmission, Ig2 / It has a relationship of Id <λ1 (1 + α) / (λ1 / λ2 + α).

【0015】第2の発明は、第1の発明において、前記
第2変速機構は、駆動源からの入力軸上に2つの大小歯
車を配置すると共に、それぞれ変速比の異なる歯車列を
形成して、それぞれの歯車列の出力側をクラッチを介し
て遊星歯車機構のキャリアに連結する。
According to a second aspect of the present invention, in the first aspect of the present invention, the second speed change mechanism includes two large and small gears arranged on an input shaft from a drive source, and gear trains having different gear ratios are formed. , The output side of each gear train is connected to the carrier of the planetary gear mechanism via a clutch.

【0016】第3の発明は、第1の発明において、前記
第2変速機構は、前記遊星歯車機構とは別の第2遊星歯
車機構と、第2遊星歯車機構のリングギヤを変速機ケー
スに対して固定可能なブレーキと、クラッチとを有し、
第2遊星歯車機構のサンギヤとキャリアの一方を前記遊
星歯車機構のキャリアに連結し、他方を駆動源側に連結
すると共に、第2遊星歯車機構のサンギヤとキャリアと
をクラッチを介して一体回転可能にした。
In a third aspect based on the first aspect, the second speed change mechanism includes a second planetary gear mechanism different from the planetary gear mechanism and a ring gear of the second planetary gear mechanism with respect to the transmission case. Has a brake that can be fixed in place and a clutch,
One of the sun gear of the second planetary gear mechanism and the carrier is connected to the carrier of the planetary gear mechanism, and the other is connected to the drive source side, and the sun gear of the second planetary gear mechanism and the carrier can be integrally rotated through a clutch. I chose

【0017】第4の発明は、第1の発明において、前記
無段変速機の最小変速比λ2と、前記第2変速機構の小
さい方の変速比Ig2と、前記遊星歯車機構のサンギヤ
入力回転と前記無段変速機の出力回転との回転比Idと
の間に、 Ig2/Id≧λ2 の関係を有する。
In a fourth aspect based on the first aspect, the minimum speed ratio λ2 of the continuously variable transmission, the smaller speed ratio Ig2 of the second speed change mechanism, and the sun gear input rotation of the planetary gear mechanism. The output ratio of the continuously variable transmission and the rotation ratio Id have a relationship of Ig2 / Id ≧ λ2.

【0018】[0018]

【発明の効果】第1の発明によれば、増速モードにおい
て、遊星歯車機構はキャリアが入力、サンギヤとリング
ギヤが出力となるので、第1変速機構の無段変速機入力
パワーとユニット(変速比無限大無段変速機)入力パワ
ーとの比は、無段変速機の変速比がLo(大)側になる
ほど小さくなり(無段変速機に流れるトルクが少なくな
り)、ユニットの伝達効率が向上する。
According to the first aspect of the invention, in the speed increasing mode, the planetary gear mechanism receives the carrier and outputs the sun gear and the ring gear. Infinite ratio continuously variable transmission) The ratio to the input power becomes smaller as the gear ratio of the continuously variable transmission becomes closer to Lo (large) (the torque flowing to the continuously variable transmission becomes smaller), and the transmission efficiency of the unit increases. improves.

【0019】また、この場合Ig2/Id<λ1(1+
α)/(λ1/λ2+α)の関係を満たすことで、ユニ
ットの変速比を、第1変速機構の出力部を遊星歯車機構
のリングギヤに連結する無段変速機直結モード以上にで
き、Hi側の変速比を拡大することができる。
In this case, Ig2 / Id <λ1 (1+
By satisfying the relationship of α) / (λ1 / λ2 + α), the gear ratio of the unit can be set to be equal to or higher than the continuously variable transmission direct connection mode in which the output portion of the first transmission mechanism is connected to the ring gear of the planetary gear mechanism, and The gear ratio can be expanded.

【0020】また、クラッチの数を減らすことができ、
ユニットの小型化に貢献できる。
Further, the number of clutches can be reduced,
It can contribute to the miniaturization of the unit.

【0021】第2の発明によれば、第2変速機構の複数
の歯車列によって、1組の遊星歯車機構にて増速モード
を実現でき、安価にできる。
According to the second aspect of the invention, the speed increasing mode can be realized by one set of planetary gear mechanisms by the plurality of gear trains of the second speed change mechanism, and the cost can be reduced.

【0022】第3の発明によれば、第2変速機構に遊星
歯車機構を用いることで、ユニット入力側に配置する歯
車の径を小さくすることができる。
According to the third invention, by using the planetary gear mechanism for the second transmission mechanism, the diameter of the gear arranged on the unit input side can be reduced.

【0023】第4発明によれば、Ig2/Id≧λ2の
関係を満たすことで、増速モードにおけるユニットの最
Lo変速比が無段変速機直結モードおけるユニットの最
Hi変速比以下になるので、無段変速機直結モードと増
速モードとの切換時の変速比の連続性を確保することが
できる。
According to the fourth aspect of the invention, by satisfying the relation of Ig2 / Id ≧ λ2, the maximum Lo gear ratio of the unit in the speed increasing mode becomes equal to or less than the maximum Hi gear ratio of the unit in the continuously variable transmission direct connection mode. Therefore, it is possible to ensure continuity of the gear ratio when switching between the continuously variable transmission direct connection mode and the speed increasing mode.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0025】図1は第1の実施の形態の変速比無限大無
段変速機を示すもので、図示しないエンジンのクランク
シャフトに連結される変速比無限大無段変速機(IV
T)のユニット入力軸1には、第1変速機構2と第2変
速機構3とが並列的に連結される。
FIG. 1 shows an infinitely variable transmission continuously variable transmission according to a first embodiment. An infinitely variable transmission continuously variable transmission (IV) is connected to a crankshaft of an engine (not shown).
The first transmission mechanism 2 and the second transmission mechanism 3 are connected in parallel to the unit input shaft 1 of T).

【0026】第1変速機構2は、変速比を無段階で変速
し得るトロイダル型の無段変速機(CVT)4と、無段
変速機4の出力ギヤ列5とを備え、その出力軸2aが遊
星歯車機構6のサンギヤ6aにならびに無段変速機直結
モードクラッチ7を介して変速比無限大無段変速機の出
力軸であるユニット出力軸8に連結される。
The first transmission mechanism 2 is provided with a toroidal type continuously variable transmission (CVT) 4 capable of continuously changing the gear ratio, and an output gear train 5 of the continuously variable transmission 4, and its output shaft 2a. Is connected to the sun gear 6a of the planetary gear mechanism 6 and the unit output shaft 8 which is the output shaft of the continuously variable transmission having an infinite transmission ratio via the continuously variable transmission direct coupling mode clutch 7.

【0027】第2変速機構3は、ユニット入力軸1上に
歯数の異なる2つの歯車(小歯車9、大歯車10)を配
置すると共に、それぞれ変速比の異なるギヤ列11、1
2を形成して、それぞれのギヤ列11、12の出力側が
動力循環モードクラッチ(第1動力循環モードクラッチ
13、第2動力循環モードクラッチ14)、出力軸3a
を介して遊星歯車機構6のキャリア6bに連結される。
The second transmission mechanism 3 includes two gears (small gear 9 and large gear 10) having different numbers of teeth on the unit input shaft 1 and gear trains 11 and 1 having different gear ratios.
2, the output side of each gear train 11, 12 is a power circulation mode clutch (first power circulation mode clutch 13, second power circulation mode clutch 14), output shaft 3a.
Is connected to the carrier 6b of the planetary gear mechanism 6 via.

【0028】遊星歯車機構6のリングギヤ6cは、ユニ
ット出力軸8に連結され、第1変速機構2の出力軸2
a、第2変速機構3の出力軸3aは、ユニット出力軸8
に相対回転自在に軸支される。
The ring gear 6c of the planetary gear mechanism 6 is connected to the unit output shaft 8 and is connected to the output shaft 2 of the first speed change mechanism 2.
a, the output shaft 3a of the second speed change mechanism 3 is the unit output shaft 8
Is rotatably supported relative to.

【0029】ユニット出力は、変速機出力ギヤ15、フ
ァイナルギヤ16、ディファレンシャルギヤ17を経て
駆動軸18に伝達される。
The unit output is transmitted to the drive shaft 18 via the transmission output gear 15, the final gear 16, and the differential gear 17.

【0030】そして、第1変速機構2、第2変速機構
3、遊星歯車機構6は、第1変速機構2の無段変速機4
の最大変速比(最Lo変速比)λ1、最小変速比(最H
i変速比)λ2と、第2変速機構3の小さい方の変速比
(大歯車10側の変速比)Ig2と、遊星歯車機構6の
サンギヤ歯数とリングギヤ歯数との歯数比(遊星歯車機
構ギヤ比)αと、遊星歯車機構6のサンギヤ入力回転と
第1変速機構2の無段変速機4の出力回転との回転比
(無段変速機4の出力ギヤ列5の変速比)Idとの間
に、 Ig2/Id<λ1(1+α)/(λ1/λ2+α) …(1) の関係を有するように、ギヤ列5、12、遊星歯車機構
ギヤ比等が設定される。
The first speed change mechanism 2, the second speed change mechanism 3 and the planetary gear mechanism 6 are the continuously variable transmission 4 of the first speed change mechanism 2.
Maximum gear ratio (maximum Lo gear ratio) λ1, minimum gear ratio (maximum H gear ratio)
i gear ratio) λ2, the smaller gear ratio of the second gear mechanism 3 (gear ratio on the large gear 10 side) Ig2, and the gear ratio of the number of sun gear teeth and the number of ring gear teeth of the planetary gear mechanism 6 (planetary gear). Mechanical gear ratio) α and the rotation ratio between the sun gear input rotation of the planetary gear mechanism 6 and the output rotation of the continuously variable transmission 4 of the first transmission mechanism 2 (the gear ratio of the output gear train 5 of the continuously variable transmission 4) Id The gear trains 5 and 12, the planetary gear mechanism gear ratio, etc. are set so that the following relationship is established: Ig2 / Id <λ1 (1 + α) / (λ1 / λ2 + α) (1).

【0031】また、 Ig2/Id≧λ2 …(2) の関係を有するように、設定される。In addition,     Ig2 / Id ≧ λ2 (2) Are set to have the relationship of.

【0032】次に、このように構成された変速比無限大
無段変速機の動作を説明する。
Next, the operation of the infinitely variable transmission ratio continuously variable transmission thus configured will be described.

【0033】この変速比無限大無段変速機では、図2に
示すクラッチの締結、解放によって第1動力循環モー
ド、無段変速機直結モード、第2動力循環モード(増速
モード)を選択的に使用することができる。
In this continuously variable transmission with an infinite transmission ratio, the first power circulation mode, the continuously variable transmission direct connection mode, and the second power circulation mode (acceleration mode) are selectively selected by engaging and releasing the clutch shown in FIG. Can be used for

【0034】なお、変速比無限大無段変速機の変速比
(ユニット変速比=ユニット入力軸回転数/ユニット出
力軸回転数)Iiを第1動力循環モード時はIi1、無
段変速機直結モード時はIi0、第2動力循環モード時
はIi2、第1変速機構2の無段変速機4の変速比(C
VT変速比)をIc、第2変速機構3の大きい方の変速
比(小歯車9側の変速比)をIg1とする。ただし、無
段変速機4の最小変速比λ2≦Ic≦最大変速比λ1で
ある。
It should be noted that the gear ratio (unit gear ratio = unit input shaft rotation speed / unit output shaft rotation speed) Ii of the continuously variable transmission with infinite gear ratio is Ii 1 in the first power circulation mode, and is directly connected to the continuously variable transmission. Ii 0 in the mode, Ii 2 in the second power circulation mode, and the gear ratio (C
VT gear ratio) is Ic, and the larger gear ratio of the second transmission mechanism 3 (gear ratio on the small gear 9 side) is Ig1. However, the minimum speed ratio λ2 ≦ Ic ≦ the maximum speed ratio λ1 of the continuously variable transmission 4 is satisfied.

【0035】第1動力循環モードでは、第1動力循環モ
ードクラッチ13を締結する一方、無段変速機直結モー
ドクラッチ7と第2動力循環モードクラッチ14を解放
することにより、無段変速機4の変速比Icとユニット
変速比Ii1の関係は、 1/Ii1=(1+α)/Ig1−α/(Ic・Id) …(3) で表され、無段変速機4の変速比Icに応じて、ユニッ
ト変速比Iiを負の値から正の値まで無限大を含んでほ
ぼ連続的に変化させることができる。
In the first power circulation mode, the first power circulation mode clutch 13 is engaged, while the continuously variable transmission direct-coupling mode clutch 7 and the second power circulation mode clutch 14 are released, whereby the continuously variable transmission 4 operates. The relationship between the gear ratio Ic and the unit gear ratio Ii 1 is expressed by 1 / Ii 1 = (1 + α) / Ig 1-α / (Ic · Id) (3), and it depends on the gear ratio Ic of the continuously variable transmission 4. Thus, the unit speed ratio Ii can be changed almost continuously from a negative value to a positive value including infinity.

【0036】無段変速機直結モードでは、無段変速機直
結モードクラッチ7を締結する一方、第1動力循環モー
ドクラッチ13と第2動力循環モードクラッチ14を解
放することにより、無段変速機4の変速比Icとユニッ
ト変速比Ii0の関係は、 1/Ii0=1/(Ic・Id) …(4) で表され、無段変速機4の変速比Icに応じて、ユニッ
ト変速比Iiを連続的に変化させることができる。
In the continuously variable transmission direct coupling mode, the continuously variable transmission direct coupling mode clutch 7 is engaged, while the first power circulation mode clutch 13 and the second power circulation mode clutch 14 are released, whereby the continuously variable transmission 4 is released. The relationship between the gear ratio Ic and the unit gear ratio Ii 0 is expressed by 1 / Ii 0 = 1 / (Ic · Id) (4), and according to the gear ratio Ic of the continuously variable transmission 4, the unit gear ratio Ii can be continuously changed.

【0037】第2動力循環モードでは、第2動力循環モ
ードクラッチ14を締結する一方、無段変速機直結モー
ドクラッチ7と第1動力循環モードクラッチ13を解放
する。即ち、第1動力循環モードよりも高い回転を遊星
歯車機構6のキャリア6bに入力しており、無段変速機
4の変速比Icとユニット変速比Ii2の関係は、 1/Ii2=(1+α)/Ig2−α/(Ic・Id) …(5) で表される。
In the second power circulation mode, the second power circulation mode clutch 14 is engaged, while the continuously variable transmission direct connection mode clutch 7 and the first power circulation mode clutch 13 are released. That is, the rotation higher than that in the first power circulation mode is input to the carrier 6b of the planetary gear mechanism 6, and the relationship between the gear ratio Ic of the continuously variable transmission 4 and the unit gear ratio Ii 2 is 1 / Ii 2 = ( 1 + α) / Ig2-α / (Ic · Id) (5)

【0038】この場合、第2動力循環モードでのユニッ
ト最Hi変速比Ii2Hiと無段変速機直結モードでのユ
ニット最Hi変速比Ii0Hiとを比較すると、第2動力
循環モードでのユニット最Hi変速比Ii2Hiは無段変
速機4の最大変速比λ1のときであり、無段変速機直結
モードでのユニット最Hi変速比Ii0Hiは無段変速機
4の最小変速比λ2のときであるから、 1/Ii2Hi=1/Ii2(Ic=λ1) =(1+α)/Ig2−α/(λ1・Id) …(6) 1/Ii0Hi=1/Ii0(Ic=λ2) =1/(λ2・Id) …(7) したがって、 1/Ii2Hi−1/Ii0Hi =(1+α)/Ig2−α/(λ1・Id)−1/(λ2・Id) =(1+α)/Ig2−(α/λ1+1/λ2)/Id =[(1+α)/(α/λ1+1/λ2)−Ig2/Id] ×(α/λ1+1/λ2)/Ig2 =[λ1(1+α)/(λ1/λ2+α)−Ig2/Id] ×(α/λ1+1/λ2)/Ig2 …(8) が得られ、これに対して、Ig2/Id<λ1(1+α)/(λ1/λ2+α) に設定してあるので、(8)式は>0となり、 Ii2Hi<Ii0Hi …(9) となる。
In this case, comparing the unit maximum Hi gear ratio Ii 2Hi in the second power circulation mode with the unit maximum Hi gear ratio Ii 0Hi in the continuously variable transmission direct connection mode, the unit maximum Hi gear ratio Ii 0Hi in the second power circulation mode is compared. The Hi gear ratio Ii 2Hi is the maximum gear ratio λ1 of the continuously variable transmission 4, and the unit maximum Hi gear ratio Ii 0Hi in the continuously variable transmission direct connection mode is the minimum gear ratio λ2 of the continuously variable transmission 4. Therefore , 1 / Ii 2Hi = 1 / Ii 2 (Ic = λ1) = (1 + α) / Ig2-α / (λ1 · Id) (6) 1 / Ii 0Hi = 1 / Ii 0 (Ic = λ2) = 1 / (λ2 · Id) (7) Therefore, 1 / Ii 2Hi −1 / Ii 0Hi = (1 + α) / Ig2 -α / (λ1 · Id) −1 / (λ2 · Id) = (1 + α) / Ig2 -(Α / λ1 + 1 / λ2) / Id = [(1 + α) / (α / λ1 + 1 / λ2) -Ig2 Id] × (α / λ1 + 1 / λ2) / Ig2 = [λ1 (1 + α) / (λ1 / λ2 + α) −Ig2 / Id] × (α / λ1 + 1 / λ2) / Ig2 (8) Since Ig2 / Id <λ1 (1 + α) / (λ1 / λ2 + α) is set, the equation (8) becomes> 0 and Ii 2Hi <Ii 0Hi (9).

【0039】即ち、第2動力循環モードにおいて、Hi
側の変速比Iiを拡大することができる。
That is, in the second power circulation mode, Hi
The gear ratio Ii on the side can be increased.

【0040】また、第2動力循環モードでのユニット最
Lo変速比Ii2Loは無段変速機4の最小変速比λ2の
ときであるから、 1/Ii2Lo=1/Ii2(Ic=λ2) =(1+α)/Ig2−α/(λ2・Id) …(10) したがって、 1/Ii2Lo−1/Ii0Hi =(1+α)/Ig2−α/(λ2・Id)−1/(λ2・Id) =(1+α)/Ig2−(1+α)/(λ2・Id) =(λ2−Ig2/Id)×(1+α)/(λ2・Ig2)…(11) が得られ、これに対して、Ig2/Id≧λ2に設定してあるので、(11)式 は≦0となり、 Ii2Lo≧Ii0Hi …(12) となる。
Further, since the unit maximum Lo gear ratio Ii 2Lo in the second power circulation mode is the minimum gear ratio λ2 of the continuously variable transmission 4, 1 / Ii 2Lo = 1 / Ii 2 (Ic = λ2) = (1 + α) / Ig2-α / (λ2 · Id) (10) Therefore, 1 / Ii 2Lo −1 / Ii 0Hi = (1 + α) / Ig2 -α / (λ2 · Id) −1 / (λ2 · Id) ) = (1 + α) / Ig2- (1 + α) / (λ2 · Id) = (λ2-Ig2 / Id) × (1 + α) / (λ2 · Ig2) ... (11), whereas Ig2 // Since Id ≧ λ2 is set, the equation (11) becomes ≦ 0, and Ii 2Lo ≧ Ii 0Hi (12).

【0041】即ち、無段変速機直結モードと第2動力循
環モードとの切換時の変速比の連続性を確保することが
できる。
That is, it is possible to ensure continuity of the gear ratio when switching between the continuously variable transmission direct connection mode and the second power circulation mode.

【0042】一方、第2動力循環モードにおける動力伝
達の流れを示すと、図3のようになる。つまり、遊星歯
車機構6は、駆動源からのトルクTINならびにサンギア
6aに伝わり無段変速機4を経由した循環トルクTi
キャリア6bに入力され、リングギア6cから出力され
る構成となっている。
On the other hand, the flow of power transmission in the second power circulation mode is shown in FIG. That is, the planetary gear mechanism 6 has a configuration in which the torque T IN from the drive source and the circulating torque T i transmitted to the sun gear 6a and passed through the continuously variable transmission 4 are input to the carrier 6b and output from the ring gear 6c. There is.

【0043】第2動力循環モードでのユニットの伝達効
率ηは、ユニットの入力トルクをT IN、ユニットの出力
トルクをTOUT、ユニットの入力回転速度をωIN、ユニ
ットの出力回転速度をωOUT、無段変速機4の伝達トル
クをTi、無段変速機4の伝達効率をηc、無段変速機4
の出力ギヤ列5の伝達効率をηd、第2変速機構3の変
速比の小さい方のギヤ列12の伝達効率をηg、遊星歯
車機構6のサンギヤ6aのトルクをTS、キャリア6b
のトルクをTC、リングギヤ6cのトルクをTR、遊星歯
車機構6の伝達効率をη0として、簡易式で求めると、
キャリア入力、サンギヤ、リングギヤ出力のため(前進
状態)、 TS=TC・η0/(η0+Ii0) …(13) TR=TC・(η0・Ii0)/(1+η0・Ii0) …(14) また、 Ti=TS・(ηd/Id)・(ηc・Ic) …(15) TC=(Ti1+TIN)・Ig2・ηg …(16) 以上から、 TC/(Ig2・ηg)=[(ηd・ηc)/(Id・Ic)] ・[η0/(η0+Ii0)]・TC+TIN …(17) TC・[[1/(Ig2・ηg)]−[(ηd・ηc)/(Id・Ic)] ・[η0/(η0+Ii0)]]=TIN …(18) したがって、ユニットの伝達効率ηは、 η=(TOUT・ωOUT)/(TIN・ωIN) =(TR/TIN)・(1/Ii0) =[(η0・Ii0)/(1+η0・Ii0)] ・(TC/TIN)・(1/Ii0) =[(η0・Ii0)/(1+η0・Ii0)]・[1/[1/(Ig2・ηg) −ηd・ηc・η0/(Id・Ic・(η0+Ii0))]]・(1/Ii0) =[1/[1+1/(1+η0・Ii0)]・[1/(Ig2・ηg) −ηd・ηc/(Id・Ic・(1+Ii0/η0))]]・(1/Ii0) …(19) ただし、1/Ii0=(1+α)/Ig2−α/(Ic
・Id)より求まる。
Transmission efficiency of the unit in the second power circulation mode
The ratio η is the input torque of the unit T IN, Unit output
Torque to TOUT, The input rotation speed of the unit is ωIN, Uni
Output rotation speed ofOUT, Transmission torque of continuously variable transmission 4
Ku to Ti, The transmission efficiency of the continuously variable transmission 4 is ηc, and the continuously variable transmission 4 is
The transmission efficiency of the output gear train 5 of
The transmission efficiency of the gear train 12 with the smaller speed ratio is ηg,
The torque of the sun gear 6a of the car mechanism 6 is TS, Carrier 6b
Torque of TC, Torque of ring gear 6c to TR, Planetary teeth
The transmission efficiency of the vehicle mechanism 6 is η0As a simple formula,
For carrier input, sun gear, ring gear output (forward
Status),     TS= TC・ Η0/ (Η0+ Ii0)… (13)     TR= TC・ (Η0・ Ii0) / (1 + η0・ Ii0)… (14)   Also,     Ti= TS・ (Ηd / Id) ・ (ηc ・ Ic) (15)     TC= (Ti1 + TIN) ・ Ig2 ・ ηg (16)   From the above,     TC/(Ig2.eta.g)=[(.eta.d.eta.c)/(Id.Ic)]                         ・ [Η0/ (Η0+ Ii0)] ・ TC+ TIN  … (17)     TC・ [[1 / (Ig2 ・ ηg)]-[(ηd ・ ηc) / (Id ・ Ic)]         ・ [Η0/ (Η0+ Ii0)]] = TIN                      … (18)   Therefore, the transmission efficiency η of the unit is     η = (TOUT・ ΩOUT) / (TIN・ ΩIN)       = (TR/ TIN) ・ (1 / Ii0)       = [(Η0・ Ii0) / (1 + η0・ Ii0)]         ・ (TC/ TIN) ・ (1 / Ii0)       = [(Η0・ Ii0) / (1 + η0・ Ii0)] ・ [1 / [1 / (Ig2 ・ ηg)         −ηd ・ ηc ・ η0/ (Id ・ Ic ・ (η0+ Ii0))]] ・ (1 / Ii0)       = [1 / [1 + 1 / (1 + η0・ Ii0)] ・ [1 / (Ig2 ・ ηg)         −ηd ・ ηc / (Id ・ Ic ・ (1 + Ii0/ Η0))]] ・ (1 / Ii0)                                                             … (19) However, 1 / Ii0= (1 + α) / Ig2-α / (Ic
・ It is obtained from Id).

【0044】第2動力循環モードでの無段変速機入力パ
ワーとユニット入力パワーとの比hは、 h=(Ti・ωI)/(TIN・ωIN) =[(ηd・ηc)/(Id・Ic)]・(TS/TIN)・(ωIN/ωIN) =[(ηd・ηc)/(Id・Ic)] ・[η0/(η0+Ii0)]・(TC/TIN) =[(ηd・ηc)/(Id・Ic)]・[[η0/(η0+Ii0)]・TC] /[[1/(Ig2・ηg)]−[(ηd・ηc)/(Id・Ic)] ・[η0/(η0+Ii0)]・TC] =1/[[1/(Ig2・ηg)] ・[Id・Ic・(η0+Ii0)/(ηd・ηc・η0)]−1] =1/[[(Id・Ic)/(Ig2・ηg・ηd・ηc)] ・(1+Ii0/η0)−1] =1/[[(Id・Ic)/(Ig2・ηg・ηd・ηc)] ・[1+1/(α・η0)]−1] …(20) となる。
The ratio h of the continuously variable transmission input power to the unit input power in the second power circulation mode is h = (T i · ω I ) / (T IN · ω IN ) = [(ηd · ηc) / (Id · Ic)] ・ (T S / T IN ) ・ (ω IN / ω IN ) = [(ηd ・ ηc) / (Id ・ Ic)] ・ [η 0 / (η 0 + Ii 0 )] ・(T C / T IN ) = [(ηd · ηc) / (Id · Ic)] · [[η 0 / (η 0 + Ii 0 )] · T C ] / [[1 / (Ig 2 · ηg)]- [(Ηd ・ ηc) / (Id ・ Ic)] ・ [η 0 / (η 0 + Ii 0 )] ・ T C ] = 1 / [[1 / (Ig2 ・ ηg)] ・ [Id ・ Ic ・ (η 0 + Ii 0 ) / (ηd · ηc · η 0 )] − 1] = 1 / [[(Id · Ic) / (Ig2 · ηg · ηd · ηc)] ・ (1 + Ii 0 / η 0 ) -1] = 1 / [[(Id · Ic) / (Ig2 · ηg · ηd · ηc)] · [1 + 1 / (α · η 0 )] − 1] (20).

【0045】即ち、第2動力循環モードでの無段変速機
入力パワーとユニット入力パワーとの比hは、従来と異
なり、無段変速機4の変速比IcがLo(大)になるほ
ど小さくなる(無段変速機4側に流れるトルクが少なく
なる)。したがって、第2動力循環モードでのユニット
の伝達効率ηが向上する。
That is, the ratio h of the continuously variable transmission input power and the unit input power in the second power circulation mode becomes smaller as the gear ratio Ic of the continuously variable transmission 4 becomes Lo (large), unlike the conventional case. (The torque flowing to the continuously variable transmission 4 side is reduced). Therefore, the transmission efficiency η of the unit in the second power circulation mode is improved.

【0046】次に、図4に示すギヤ比設定および効率条
件で計算した結果を図5、図6、図7に示す。なお、無
段変速機(バリエータ)4の伝達効率ηcは、1組のギ
ヤ列で構成される一定変速機の伝達効率より低いため、
低い値を設定して計算している。
Next, the results calculated under the gear ratio setting and efficiency conditions shown in FIG. 4 are shown in FIGS. 5, 6 and 7. Since the transmission efficiency ηc of the continuously variable transmission (variator) 4 is lower than the transmission efficiency of a constant transmission composed of one set of gear trains,
Calculated by setting a low value.

【0047】図5はユニット速度比(=変速比の逆数)
1/Iiを示しており、第2動力循環モードにおいて、
Hi側の変速比Iiが拡大している。即ち、第2動力循
環モードにおいて、第2変速機構3の変速比の小さい方
のギヤ列12によって第1動力循環モードよりも高い回
転を遊星歯車機構6のキャリア6bに入力しており、こ
のようにすることで、第2動力循環モードは第1動力循
環モードよりも高い変速比側にオフセットした形の特性
となり、Hi側(増速側)に広い変速比Iiを得ること
ができる。
FIG. 5 shows the unit speed ratio (= reciprocal of gear ratio)
1 / Ii is shown, and in the second power circulation mode,
The gear ratio Ii on the Hi side is expanding. That is, in the second power circulation mode, the rotation higher than that in the first power circulation mode is input to the carrier 6b of the planetary gear mechanism 6 by the gear train 12 of the second transmission mechanism 3 having a smaller gear ratio. By so doing, the second power circulation mode has a characteristic of being offset to a higher gear ratio side than the first power circulation mode, and a wide gear ratio Ii can be obtained on the Hi side (speed increasing side).

【0048】図6はユニット効率ηを、図7はバリエー
タ入力パワーとユニット入力パワーとの比hを示してお
り、本発明においては、第2動力循環モードにおけるバ
リエータ入力パワーとユニット入力パワーとの比hが、
従来例の増速モードに比して十分小さくなり、1よりも
小さくなる。したがって、本発明のIVTは、図6のよ
うに従来例の増速モードよりも高く、また直結モードよ
りも高い伝達効率ηを実現できることが確認できる。
FIG. 6 shows the unit efficiency η, and FIG. 7 shows the ratio h between the variator input power and the unit input power. In the present invention, the variator input power and the unit input power in the second power circulation mode are shown. The ratio h is
It is sufficiently smaller than the speed increasing mode of the conventional example, and is smaller than 1. Therefore, it can be confirmed that the IVT of the present invention can achieve higher transmission efficiency η than the speed increasing mode of the conventional example and higher than the direct coupling mode as shown in FIG.

【0049】なお、無段変速機4には、図1に示すよう
に、入力ディスク21、出力ディスク22によってパワ
ーローラ20を挟持、押圧するトロイダル型のものを用
いているが、ベルト式のものでも良い。また、無段変速
機4の出力ギヤ列5の代わりに、チェーン伝動機構を用
いても良い。
As shown in FIG. 1, the continuously variable transmission 4 is of a toroidal type in which the power roller 20 is sandwiched and pressed by the input disk 21 and the output disk 22. But good. A chain transmission mechanism may be used instead of the output gear train 5 of the continuously variable transmission 4.

【0050】図8は、本発明の第2の実施の形態を示
す。これは、第2変速機構30に前記遊星歯車機構(第
1遊星歯車機構)6とは別の第2遊星歯車機構31を用
いて、第1動力循環モードと第2動力循環モードとで第
1遊星歯車機構6のキャリア6bに入力する回転を変え
るようにしたものである。
FIG. 8 shows a second embodiment of the present invention. This uses a second planetary gear mechanism 31 other than the planetary gear mechanism (first planetary gear mechanism) 6 for the second speed change mechanism 30, and uses a second planetary gear mechanism 31 in a first power circulation mode and a second power circulation mode. The rotation input to the carrier 6b of the planetary gear mechanism 6 is changed.

【0051】第2遊星歯車機構31のキャリア31b
を、ユニット入力軸1に所定のギヤ列32を介して連結
すると共に、動力循環モードクラッチ33(第1動力循
環モードクラッチ)を介してサンギヤ31aと一体回転
可能に構成する。サンギヤ31aは第1遊星歯車機構6
のキャリア6bに連結する。リングギヤ31cは、変速
機ケースに対してブレーキ34(第2動力循環モードク
ラッチに相当)を介して固定可能に構成する。
Carrier 31b of second planetary gear mechanism 31
Is connected to the unit input shaft 1 via a predetermined gear train 32, and is configured to be integrally rotatable with the sun gear 31a via a power circulation mode clutch 33 (first power circulation mode clutch). The sun gear 31a is the first planetary gear mechanism 6
To the carrier 6b. The ring gear 31c is configured to be fixed to the transmission case via a brake 34 (corresponding to a second power circulation mode clutch).

【0052】第1変速機構2の無段変速機4の出力軸
は、スプロケット35a、チェーン35b、スプロケッ
ト35cを介して出力軸2aに連結し、出力軸2aは第
1遊星歯車機構6のサンギヤ6aにならびに無段変速機
直結モードクラッチ7を介してユニット出力軸8に連結
する。
The output shaft of the continuously variable transmission 4 of the first transmission mechanism 2 is connected to the output shaft 2a via the sprocket 35a, the chain 35b and the sprocket 35c, and the output shaft 2a is the sun gear 6a of the first planetary gear mechanism 6. And a unit output shaft 8 via a continuously variable transmission direct coupling mode clutch 7.

【0053】その他の構成は、第1の実施の形態と同じ
である。
The other structure is the same as that of the first embodiment.

【0054】第1動力循環モードでは、第1動力循環モ
ードクラッチ33を締結する一方、無段変速機直結モー
ドクラッチ7とブレーキ34を解放する。この場合、ユ
ニットの入力回転は、第2変速機構30のギヤ列32、
第1動力循環モードクラッチ33を経て、第1遊星歯車
機構6のキャリア6bに伝えられる。
In the first power circulation mode, the first power circulation mode clutch 33 is engaged, while the continuously variable transmission direct connection mode clutch 7 and the brake 34 are released. In this case, the input rotation of the unit is the gear train 32 of the second speed change mechanism 30,
It is transmitted to the carrier 6b of the first planetary gear mechanism 6 via the first power circulation mode clutch 33.

【0055】無段変速機直結モードでは、無段変速機直
結モードクラッチ7を締結する一方、第1動力循環モー
ドクラッチ13とブレーキ34を解放する。
In the continuously variable transmission direct connection mode, the continuously variable transmission direct connection mode clutch 7 is engaged, while the first power circulation mode clutch 13 and the brake 34 are released.

【0056】第2動力循環モードでは、ブレーキ34を
締結する一方、無段変速機直結モードクラッチ7と第1
動力循環モードクラッチ13を解放する。この場合、ユ
ニットの入力回転は、第2変速機構30のギヤ列32を
経て、第2遊星歯車機構31によって増速されてサンギ
ヤ31aから、第1遊星歯車機構6のキャリア6bに伝
えられる。
In the second power circulation mode, the brake 34 is engaged while the continuously variable transmission direct coupling mode clutch 7 and the first
The power circulation mode clutch 13 is released. In this case, the input rotation of the unit passes through the gear train 32 of the second transmission mechanism 30, is accelerated by the second planetary gear mechanism 31, and is transmitted from the sun gear 31a to the carrier 6b of the first planetary gear mechanism 6.

【0057】第2変速機構30の第1動力循環モードで
の変速比をIg1(ユニットの入力回転数/第1遊星歯
車機構6のキャリア6bに出力する回転数)、第2動力
循環モードでの変速比をIg2(ユニットの入力回転数
/第1遊星歯車機構6のキャリア6bに出力する回転
数)、第2遊星歯車機構31のサンギヤ歯数とリングギ
ヤ歯数との歯数比をβ(<1)とすると、第2動力循環
モードでの第2遊星歯車機構31の変速比は、 キャリア回転数/サンギヤ回転数=1/(1+1/β) …(21) であるため、 Ig2=Ig1/(1+1/β)<Ig1 …(22) となり、Ig2はIg1より増速した変速比に設定され
る。
The gear ratio of the second speed change mechanism 30 in the first power circulation mode is Ig1 (the input rotation speed of the unit / the rotation speed output to the carrier 6b of the first planetary gear mechanism 6) and the second power circulation mode. The gear ratio is Ig2 (the input rotation speed of the unit / the rotation speed output to the carrier 6b of the first planetary gear mechanism 6), and the tooth ratio of the sun gear teeth number and the ring gear teeth number of the second planetary gear mechanism 31 is β (< 1), the gear ratio of the second planetary gear mechanism 31 in the second power circulation mode is: carrier rotation speed / sun gear rotation speed = 1 / (1 + 1 / β) (21) Therefore, Ig2 = Ig1 / (1 + 1 / β) <Ig1 (22), and Ig2 is set to a speed ratio higher than Ig1.

【0058】このようにすれば、ユニット入力軸1に配
置する歯車の径を小さくすることができる。
By doing so, the diameter of the gear arranged on the unit input shaft 1 can be reduced.

【0059】図9は、本発明の第3の実施の形態を示
す。これは、第2変速機構30の第2遊星歯車機構31
のサンギヤ31aをユニット入力軸1に所定のギヤ列3
2を介して連結、第2遊星歯車機構31のキャリア31
bを第1遊星歯車機構6のキャリア6bに連結すると共
に、第2遊星歯車機構31のキャリア31bとサンギヤ
31aとを一体回転可能にする動力循環モードクラッチ
33を第2動力循環モードクラッチに、第2遊星歯車機
構31のリングギヤ31cを変速機ケースに対して固定
可能にするブレーキ34を第1動力循環モードクラッチ
にしたものである。
FIG. 9 shows a third embodiment of the present invention. This is the second planetary gear mechanism 31 of the second transmission mechanism 30.
The sun gear 31a of the
2 via a carrier 31 of the second planetary gear mechanism 31
b is connected to the carrier 6b of the first planetary gear mechanism 6, and the power circulation mode clutch 33 for integrally rotating the carrier 31b of the second planetary gear mechanism 31 and the sun gear 31a is used as the second power circulation mode clutch. The brake 34 for fixing the ring gear 31c of the two-planetary gear mechanism 31 to the transmission case is a first power circulation mode clutch.

【0060】その他の構成は、第2の実施の形態と同じ
である。
The other structure is the same as that of the second embodiment.

【0061】第1動力循環モードでは、ブレーキ34
(第1動力循環モードクラッチ)を締結する一方、無段
変速機直結モードクラッチ7と動力循環モードクラッチ
33(第2動力循環モードクラッチ)を解放する。この
場合、ユニットの入力回転は、第2変速機構30のギヤ
列32を経て、第2遊星歯車機構31によって減速され
てキャリア31bから、第1遊星歯車機構6のキャリア
6bに伝えられる。
In the first power circulation mode, the brake 34
While engaging the (first power circulation mode clutch), the continuously variable transmission direct coupling mode clutch 7 and the power circulation mode clutch 33 (second power circulation mode clutch) are released. In this case, the input rotation of the unit passes through the gear train 32 of the second transmission mechanism 30, is decelerated by the second planetary gear mechanism 31, and is transmitted from the carrier 31b to the carrier 6b of the first planetary gear mechanism 6.

【0062】無段変速機直結モードでは、無段変速機直
結モードクラッチ7を締結する一方、ブレーキ34と動
力循環モードクラッチ33を解放する。
In the continuously variable transmission direct connection mode, the continuously variable transmission direct connection mode clutch 7 is engaged while the brake 34 and the power circulation mode clutch 33 are released.

【0063】第2動力循環モードでは、動力循環モード
クラッチ33(第2動力循環モードクラッチ)を締結す
る一方、無段変速機直結モードクラッチ7とブレーキ3
4(第1動力循環モードクラッチ)を解放する。この場
合、ユニットの入力回転は、第2変速機構30のギヤ列
32、動力循環モードクラッチ33(第2動力循環モー
ドクラッチ)を経て、第1遊星歯車機構6のキャリア6
bに伝えられる。
In the second power circulation mode, the power circulation mode clutch 33 (second power circulation mode clutch) is engaged, while the continuously variable transmission direct connection mode clutch 7 and the brake 3 are engaged.
4 (first power circulation mode clutch) is released. In this case, the input rotation of the unit passes through the gear train 32 of the second speed change mechanism 30 and the power circulation mode clutch 33 (second power circulation mode clutch) and then the carrier 6 of the first planetary gear mechanism 6.
b.

【0064】即ち、第2動力循環モードでの第2遊星歯
車機構31の変速比は、 サンギヤ回転数/キャリア回転数=(1+1/β) …(23) であるため、 Ig1=Ig2×(1+1/β)>Ig2 …(24) となる。
That is, the gear ratio of the second planetary gear mechanism 31 in the second power circulation mode is Sun gear rotation speed / carrier rotation speed = (1 + 1 / β) (23), so that Ig1 = Ig2 × (1 + 1) / Β)> Ig2 (24).

【0065】また、各実施の形態においては、従来に比
べ、クラッチの総数を減らすことができ、IVTの小型
化を図れる。
Further, in each of the embodiments, the total number of clutches can be reduced and the IVT can be downsized as compared with the conventional one.

【0066】また、第2、第3の実施の形態において第
2変速機構30のギヤ列32を、また第1の実施の形態
における無段変速機4の出力ギヤ列5あるいは第2、第
3の実施の形態における無段変速機4の伝動機構を、そ
れぞれ図10のように構成しても良い。また、ユニット
出力軸8の出力を、図10のようにカウンタ軸40を介
してファイナルギヤ16側に伝えるようにしても良く、
このようにすればカウンタギヤ列41、ファイナルギヤ
列(15,16)の2カ所でギヤ比を設定するため、ス
ルーの減速比を大きくすることが可能となり、第2動力
循環モードで拡大した変速比幅を、駆動力と定地燃費の
両性能がバランス良く向上するように設計できる効果が
ある。
In the second and third embodiments, the gear train 32 of the second transmission mechanism 30 is used, and the output gear train 5 of the continuously variable transmission 4 in the first embodiment or the second and third gear trains. The transmission mechanism of the continuously variable transmission 4 according to the embodiment may be configured as shown in FIG. Further, the output of the unit output shaft 8 may be transmitted to the final gear 16 side via the counter shaft 40 as shown in FIG.
By doing so, the gear ratio is set at two places, that is, the counter gear train 41 and the final gear train (15, 16), so that it is possible to increase the reduction ratio of the through gear, and the gear shift increased in the second power circulation mode. There is an effect that the specific width can be designed so as to improve both the performance of the driving force and the performance of the constant fuel consumption in a well-balanced manner.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施の形態の変速比無限大無段変速機の
概略構成図である。
FIG. 1 is a schematic configuration diagram of an infinitely variable transmission continuously variable transmission according to a first embodiment.

【図2】クラッチの締結、解放パターンを示す表図であ
る。
FIG. 2 is a table showing engagement and disengagement patterns of a clutch.

【図3】動力伝達の流れを示す図である。FIG. 3 is a diagram showing a flow of power transmission.

【図4】ギヤ比および効率条件の設定例を示す表図であ
る。
FIG. 4 is a table showing an example of setting gear ratios and efficiency conditions.

【図5】無段変速機とユニット速度比との関係を示すグ
ラフである。
FIG. 5 is a graph showing a relationship between a continuously variable transmission and a unit speed ratio.

【図6】ユニット効率ηを示すグラフである。FIG. 6 is a graph showing unit efficiency η.

【図7】ユニット速度比とバリエータ入力パワー/ユニ
ット入力パワーとの関係を示すグラフである。
FIG. 7 is a graph showing the relationship between unit speed ratio and variator input power / unit input power.

【図8】第2の実施の形態の変速比無限大無段変速機の
概略構成図である。
FIG. 8 is a schematic configuration diagram of an infinitely variable transmission continuously variable transmission according to a second embodiment.

【図9】第3の実施の形態の変速比無限大無段変速機の
概略構成図である。
FIG. 9 is a schematic configuration diagram of an infinitely variable transmission continuously variable transmission according to a third embodiment.

【図10】第4の実施の形態の変速比無限大無段変速機
の概略構成図である。
FIG. 10 is a schematic configuration diagram of an infinitely variable transmission continuously variable transmission according to a fourth embodiment.

【図11】従来例の動力伝達の流れを示す図である。FIG. 11 is a diagram showing a flow of power transmission in a conventional example.

【図12】従来例のユニット効率ηを示すグラフであ
る。
FIG. 12 is a graph showing a unit efficiency η of a conventional example.

【図13】従来例のユニット速度比とバリエータ入力パ
ワー/ユニット入力パワーとの関係を示すグラフであ
る。
FIG. 13 is a graph showing the relationship between unit speed ratio and variator input power / unit input power in a conventional example.

【符号の説明】[Explanation of symbols]

1 ユニット入力軸 2 第1変速機構 2a 出力軸 3 第2変速機構 3a 出力軸 4 無段変速機 5 出力ギヤ列 6 遊星歯車機構 6a サンギヤ 6b キャリア 6c リングギヤ 7 無段変速機直結モードクラッチ 8 ユニット出力軸 9 小歯車 10 大歯車 11、12 ギヤ列11、12 13 第1動力循環モードクラッチ 14 第2動力循環モードクラッチ 30 第2変速機構 31 第2遊星歯車機構 31a サンギヤ 31b キャリア 31c リングギヤ 33 動力循環モードクラッチ 34 ブレーキ 35a スプロケット 35b チェーン 35c スプロケット 1 unit input shaft 2 First speed change mechanism 2a Output shaft 3 Second speed change mechanism 3a Output shaft 4 continuously variable transmission 5 output gear train 6 Planetary gear mechanism 6a sun gear 6b carrier 6c ring gear 7 Continuously variable transmission direct coupling mode clutch 8 unit output shaft 9 small gears 10 gears 11,12 Gear train 11,12 13 First power circulation mode clutch 14 Second power circulation mode clutch 30 Second speed change mechanism 31 Second planetary gear mechanism 31a sun gear 31b carrier 31c ring gear 33 Power circulation mode clutch 34 Brake 35a sprocket 35b chain 35c sprocket

フロントページの続き Fターム(参考) 3J051 AA03 AA08 BA03 BD02 BE09 CB07 ED15 FA01 3J062 AA01 AA18 AB01 AB06 AB33 AB35 AC02 AC03 BA12 BA31 BA35 CG02 CG14 CG35 CG38 CG44 CG52 CG82 Continued front page    F-term (reference) 3J051 AA03 AA08 BA03 BD02 BE09                       CB07 ED15 FA01                 3J062 AA01 AA18 AB01 AB06 AB33                       AB35 AC02 AC03 BA12 BA31                       BA35 CG02 CG14 CG35 CG38                       CG44 CG52 CG82

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 駆動源からの駆動力を入力する第1変速
機構および第2変速機構と、 これら第1および第2変速機構の出力を入力にして駆動
輪側へ出力する遊星歯車機構とを備え、 前記第1変速機構は変速比を無段階で変速し得る無段変
速機からなり、 前記第2変速機構は該第2変速機構の入出力間で回転を
断接可能であり、かつ大小2つの変速比を実現可能な変
速機からなり、 前記第1変速機構の出力部を前記遊星歯車機構のサンギ
ヤおよびクラッチを介してリングギヤに連結し、 前記第2変速機構の出力部を前記遊星歯車機構のキャリ
アに連結し、 前記リングギヤは駆動輪を駆動させる出力軸側に連結
し、 前記無段変速機の最大変速比λ1、最小変速比λ2と、 前記第2変速機構の小さい方の変速比Ig2と、 前記遊星歯車機構のサンギヤ歯数とリングギヤ歯数との
歯数比αと、 前記遊星歯車機構のサンギヤ入力回転と前記無段変速機
の出力回転との回転比Idとの間に、 Ig2/Id<λ1(1+α)/(λ1/λ2+α) の関係を有することを特徴とする変速比無限大無段変速
機。
1. A first speed change mechanism and a second speed change mechanism for inputting a driving force from a drive source, and a planetary gear mechanism for inputting outputs of the first and second speed change mechanisms to output to a drive wheel side. The first speed change mechanism is a continuously variable transmission capable of continuously changing the speed change ratio, the second speed change mechanism is capable of connecting and disconnecting rotation between the input and output of the second speed change mechanism, and has a large and small size. A transmission capable of realizing two gear ratios, wherein an output portion of the first transmission mechanism is connected to a ring gear through a sun gear and a clutch of the planetary gear mechanism, and an output portion of the second transmission mechanism is connected to the planetary gear. And a ring gear connected to the output shaft side for driving the drive wheels. The maximum speed ratio λ1, the minimum speed ratio λ2 of the continuously variable transmission, and the smaller speed ratio of the second speed change mechanism. Ig2 and the support of the planetary gear mechanism. Ig2 / Id <λ1 (1 + α) between the gear ratio α between the gear teeth and the ring gear teeth, and the rotation ratio Id between the sun gear input rotation of the planetary gear mechanism and the output rotation of the continuously variable transmission. An infinitely variable transmission continuously variable transmission having a relationship of / (λ1 / λ2 + α).
【請求項2】 前記第2変速機構は、駆動源からの入力
軸上に2つの大小歯車を配置すると共に、それぞれ変速
比の異なる歯車列を形成して、それぞれの歯車列の出力
側をクラッチを介して遊星歯車機構のキャリアに連結す
ることを特徴とする請求項1に記載の変速比無限大無段
変速機。
2. The second speed change mechanism includes two large and small gears arranged on an input shaft from a drive source, forms gear trains having different gear ratios, and clutches an output side of each gear train. The infinitely variable transmission continuously variable transmission according to claim 1, wherein the infinitely variable transmission is connected to the carrier of the planetary gear mechanism via.
【請求項3】 前記第2変速機構は、前記遊星歯車機構
とは別の第2遊星歯車機構と、第2遊星歯車機構のリン
グギヤを変速機ケースに対して固定可能なブレーキと、
クラッチとを有し、第2遊星歯車機構のサンギヤとキャ
リアの一方を前記遊星歯車機構のキャリアに連結し、他
方を駆動源側に連結すると共に、第2遊星歯車機構のサ
ンギヤとキャリアとをクラッチを介して一体回転可能に
したことを特徴とする請求項1に記載の変速比無限大無
段変速機。
3. The second speed change mechanism comprises a second planetary gear mechanism different from the planetary gear mechanism, and a brake capable of fixing the ring gear of the second planetary gear mechanism to the transmission case.
And a clutch, wherein one of a sun gear and a carrier of the second planetary gear mechanism is connected to the carrier of the planetary gear mechanism and the other is connected to a drive source side, and the sun gear and the carrier of the second planetary gear mechanism are clutched. The infinitely variable transmission continuously variable transmission according to claim 1, wherein the continuously variable transmission is made integral with the gear.
【請求項4】 前記無段変速機の最小変速比λ2と、前
記第2変速機構の小さい方の変速比Ig2と、前記遊星
歯車機構のサンギヤ入力回転と前記無段変速機の出力回
転との回転比Idとの間に、 Ig2/Id≧λ2 の関係を有することを特徴とする請求項1に記載の変速
比無限大無段変速機。
4. A minimum speed ratio λ2 of the continuously variable transmission, a smaller speed ratio Ig2 of the second speed change mechanism, a sun gear input rotation of the planetary gear mechanism, and an output rotation of the continuously variable transmission. The infinitely variable transmission continuously variable transmission according to claim 1, having a relationship of Ig2 / Id ≧ λ2 with the rotation ratio Id.
JP2001201593A 2001-07-03 2001-07-03 Gear ratio infinitely continuously variable transmission Pending JP2003014074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001201593A JP2003014074A (en) 2001-07-03 2001-07-03 Gear ratio infinitely continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201593A JP2003014074A (en) 2001-07-03 2001-07-03 Gear ratio infinitely continuously variable transmission

Publications (1)

Publication Number Publication Date
JP2003014074A true JP2003014074A (en) 2003-01-15

Family

ID=19038520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201593A Pending JP2003014074A (en) 2001-07-03 2001-07-03 Gear ratio infinitely continuously variable transmission

Country Status (1)

Country Link
JP (1) JP2003014074A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522421A (en) * 2004-02-16 2007-08-09 アヤツ ジュアン ラモン ゴマ Gear ratio continuously variable transmission mechanism
JP2012202473A (en) * 2011-03-25 2012-10-22 Jatco Ltd Automatic transmission

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522421A (en) * 2004-02-16 2007-08-09 アヤツ ジュアン ラモン ゴマ Gear ratio continuously variable transmission mechanism
JP4829129B2 (en) * 2004-02-16 2011-12-07 アヤツ ジュアン ラモン ゴマ Gear ratio continuously variable transmission mechanism
KR101140018B1 (en) 2004-02-16 2012-05-02 후안 라몬 고마 아야츠 Continually variable transmission
JP2012202473A (en) * 2011-03-25 2012-10-22 Jatco Ltd Automatic transmission
EP2503186A3 (en) * 2011-03-25 2018-04-18 Jatco Ltd Automatic transmission

Similar Documents

Publication Publication Date Title
US6893373B2 (en) Transmission for vehicle
KR100579302B1 (en) Multi stage automatic transmission for a vehicle
US6723016B2 (en) Torque split infinitely variable transmission
JP2001173734A (en) Vehicular automatic transmission
US7815537B2 (en) Power-branched automatic vehicle transmission with a CVT-variable speed drive
JP3254561B2 (en) Continuously variable transmission for vehicles
JP2001165250A (en) Vehicular automatic transmission
US6855084B2 (en) Power transmission system in vehicle
JPH0826926B2 (en) Continuously variable transmission
US20060293143A1 (en) Compound planetary gear set and gear trains
US6561942B2 (en) Dual mode variable ratio transmission
JP4552376B2 (en) Infinite transmission
JPH09144835A (en) Continuously variable transmission
JP3401292B2 (en) Continuously variable transmission for vehicles
US20080242468A1 (en) Power-Split Transmission
JP4386672B2 (en) Automatic transmission
JP3579981B2 (en) Infinitely variable transmission
JP2003014074A (en) Gear ratio infinitely continuously variable transmission
JPH09210175A (en) Continuously variable transmission with gear ratio of infinity
JP2011506883A (en) Transmission structure for a vehicle
KR100427361B1 (en) continuous variable transmission for use a vehicle
KR100203482B1 (en) Belt type cvt
KR20020062068A (en) Continuously Variable Transmission Having High Transmission Efficiency and Durability
KR0183219B1 (en) Infinite variable-speed drive for avehicle
JP3468060B2 (en) Transmission ratio infinitely variable transmission