JP2003003215A - Method for producing grain-oriented silicon steel sheet having high magnetic flux density - Google Patents
Method for producing grain-oriented silicon steel sheet having high magnetic flux densityInfo
- Publication number
- JP2003003215A JP2003003215A JP2002053688A JP2002053688A JP2003003215A JP 2003003215 A JP2003003215 A JP 2003003215A JP 2002053688 A JP2002053688 A JP 2002053688A JP 2002053688 A JP2002053688 A JP 2002053688A JP 2003003215 A JP2003003215 A JP 2003003215A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- annealing
- grain
- magnetic flux
- flux density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、結晶粒がミラー指
数で{110}<001>方位に集積した、いわゆる方
向性電磁鋼板の製造方法に関するものである。この鋼板
は、軟磁性材料として変圧器等の電気機器の鉄芯として
用いられる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a so-called grain-oriented electrical steel sheet in which crystal grains are integrated in {110} <001> orientation by Miller index. This steel sheet is used as a soft magnetic material as an iron core of electric equipment such as a transformer.
【0002】[0002]
【従来の技術】方向性電磁鋼板は、{110}<001
>方位(いわゆるゴス方位)に集積した結晶粒により構
成されたSiを4.8%以下含有した鋼板である。この
鋼板は磁気特性として励磁特性と鉄損得性が要求され
る。励磁特性を表す指標としては磁場の強さ800A/
mにおける磁束密度:B8が通常使用される。また、鉄
損特性を表す指標としては周波数50Hzで1.7Tま
で磁化した時の鋼板1kgあたりの鉄損:W17/50が用
いられる。磁束密度:B8は鉄損特性の最大の支配因子
であり、磁束密度:B8値が高いほど鉄損特性も良好に
なる。磁束密度:B8を高めるためには結晶方位を高度
に揃えることが重要である。この結晶方位の制御は二次
再結晶とよばれるカタストロフィックな粒成長現象を利
用して達成される。2. Description of the Related Art Grain-oriented electrical steel sheets are {110} <001.
A steel plate containing 4.8% or less of Si composed of crystal grains accumulated in the> direction (so-called Goth direction). This steel plate is required to have magnetic properties such as excitation property and iron loss obtainability. Magnetic field strength of 800 A /
Magnetic flux density at m: B8 is commonly used. Further, as an index showing the iron loss characteristic, the iron loss per 1 kg of steel plate when magnetized to 1.7 T at a frequency of 50 Hz: W17 / 50 is used. The magnetic flux density: B8 is the most dominant factor of the iron loss characteristics, and the higher the magnetic flux density: B8 value, the better the iron loss characteristics. To increase the magnetic flux density: B8, it is important to align the crystal orientations at a high level. This control of the crystal orientation is achieved by utilizing a catastrophic grain growth phenomenon called secondary recrystallization.
【0003】この二次再結晶を制御するためには、二次
再結晶前の一次再結晶組織の調整と、インヒビタ−とよ
ばれる微細析出物の調整を行うことが必要である。この
インヒビタ−は、一次再結晶組織のなかで一般の粒の成
長を抑制し、特定の{110}<001>方位粒のみを
優先成長させる機能を持つ。析出物として代表的なもの
としては、M.F.Littmann(特公昭30−3
651号公報)及びJ.E.May&D.Turnbu
ll(Trans.Met.Soc.AIME212
(1958年)p769)等はMnSを、田口ら(特公
昭40−15644号公報)はAlNを、今中ら(特公
昭51−13469号公報)はMnSeを提示してい
る。In order to control this secondary recrystallization, it is necessary to adjust the primary recrystallization structure before the secondary recrystallization and to adjust the fine precipitates called inhibitors. This inhibitor has a function of suppressing the growth of general grains in the primary recrystallization structure and preferentially growing only specific {110} <001> oriented grains. Typical examples of the precipitate include M.I. F. Littmann (Japanese Patent Publication Sho 30-3
651) and J. E. May & D. Turnbu
ll (Trans.Met. Soc. AIM212
(1958) p769) and others present MnS, Taguchi et al. (Japanese Patent Publication No. 40-15644) AlN, and Imanaka et al. (Japanese Patent Publication No. 51-13469) MnSe.
【0004】これらの析出物は熱間圧延前のスラブ加熱
時に完全固溶させた後に、熱間圧延及びその後の焼鈍工
程で微細析出させる方法がとられている。これらの析出
物を完全固溶させるためには1350℃ないし1400
℃以上の高温で加熱する必要があり、これは普通鋼のス
ラブ加熱温度に比べて約200℃高く次の問題点があ
る。(1)専用の加熱炉が必要。(2)加熱炉のエネル
ギ−原単位が高い。(3)溶融スケール量が多く、いわ
ゆるノロ出し等の操業管理が必要である。A method is adopted in which these precipitates are completely solid-solved during heating of the slab before hot rolling and then finely precipitated in the hot rolling and subsequent annealing steps. In order to completely dissolve these precipitates, 1350 ° C to 1400 ° C
It is necessary to heat at a high temperature of ℃ or more, which is about 200 ℃ higher than the slab heating temperature of ordinary steel and has the following problems. (1) A dedicated heating furnace is required. (2) Energy intensity of heating furnace is high. (3) The amount of melt scale is large, and operation management such as so-called sticking out is necessary.
【0005】そこで低温スラブ加熱による研究開発が進
められ、低温スラブ加熱による製造方法として小松ら
(特公昭62−45285号公報)は窒化処理により形
成した(Al,Si)Nをインヒビターとして用いる方
法を開示している。この窒化処理の方法として、小林等
は脱炭焼鈍後にストリップ状で窒化する方法を開示(特
開平2-77525号公報)し、牛神等によりその窒化
物の挙動が報告されている(Materials Science Foru
m, 204-206 (1996),pp593-598)。Therefore, research and development by low-temperature slab heating has been advanced, and as a manufacturing method by low-temperature slab heating, Komatsu et al. (Japanese Patent Publication No. 62-45285) uses a method of using (Al, Si) N formed by nitriding treatment as an inhibitor. Disclosure. As a method of this nitriding treatment, Kobayashi et al. Disclosed a method of nitriding in strip form after decarburization annealing (Japanese Patent Laid-Open No. 2-77525), and Ushigami et al. Reported the behavior of the nitride (Materials Science). Foru
m, 204-206 (1996), pp593-598).
【0006】低温スラブ加熱による方向性電磁鋼板の製
造方法においては、脱炭焼鈍時にインヒビタ−が形成さ
れていないので、脱炭焼鈍における一次再結晶組織の調
整が二次再結晶を制御するうえで重要となる。従来の高
温スラブ加熱による方向性電磁鋼板の製造方法の研究に
おいては、二次再結晶前の一次再結晶組織調整に関する
知見はほとんどなく、本願発明者らは例えば特公平8−
32929号公報、特開平9−256051号公報等に
その重要性を開示している。In the method for producing a grain-oriented electrical steel sheet by low-temperature slab heating, an inhibitor is not formed during decarburization annealing, so that the primary recrystallization structure in decarburization annealing controls the secondary recrystallization. It becomes important. In the conventional research on the production method of the grain-oriented electrical steel sheet by the high temperature slab heating, there is almost no knowledge about the adjustment of the primary recrystallization structure before the secondary recrystallization.
The importance thereof is disclosed in Japanese Patent No. 32929, Japanese Patent Laid-Open No. 9-256051 and the like.
【0007】特公平8−32929号公報において、一
次再結晶粒組織の粒径分布の変動係数が0.6より大き
くなり粒組織が不均一になると二次再結晶が不安定にな
ることを開示している。その後、さらに特開平9−25
6051号公報において、二次再結晶の制御因子である
一次再結晶組織とインヒビターに関する研究を行なった
結果、一次再結晶粒組織の粒組織として脱炭焼鈍後の集
合組織においてゴス方位粒の成長を促進すると考えられ
る{111}方位および{411}方位の粒の比率;I
{111}/I{411}を3以下に調整することによ
り製品の磁束密度が向上することを示した。ここで、I
{111}及びI{411}はそれぞれ{111}及び
{411}面が鋼板板面に平行である粒の割合であり、
X線回折測定により板厚1/10層において測定された
回折強度値を表している。Japanese Patent Publication No. 8-32929 discloses that the secondary recrystallization becomes unstable when the variation coefficient of the grain size distribution of the primary recrystallized grain structure becomes larger than 0.6 and the grain structure becomes nonuniform. is doing. After that, further Japanese Patent Laid-Open No. 9-25
In the 6051 publication, as a result of research on a primary recrystallized structure and an inhibitor that are the control factors of secondary recrystallization, as a result, the growth of Goss-oriented grains in the texture after decarburization annealing was observed as the grain structure of the primary recrystallized grain structure. Ratio of grains in {111} and {411} orientations that are considered to promote; I
It was shown that the magnetic flux density of the product is improved by adjusting {111} / I {411} to 3 or less. Where I
{111} and I {411} are the proportions of grains whose {111} and {411} planes are parallel to the steel plate surface, respectively.
It shows the diffraction intensity value measured in the plate thickness 1/10 layer by X-ray diffraction measurement.
【0008】この脱炭焼鈍後の一次再結晶組織に対して
は、脱炭焼鈍工程の加熱速度、均熱温度、均熱時間等の
脱炭焼鈍の焼鈍サイクルが影響するのはもちろんのこ
と、熱延板焼鈍の有無、冷間圧延の圧下率(冷延圧下
率)等の脱炭焼鈍前の製造工程も影響を与える。これら
の工程制御因子により制御した一次再結晶集合組織の影
響を介して二次再結晶時に[110]<001>方位をもつ結晶粒
の優先成長性が高まるが、この優先成長性にはインヒビ
ターと呼ばれる析出物も影響を与える。The primary recrystallized structure after decarburization annealing is of course affected by the annealing cycle of decarburization annealing such as heating rate, soaking temperature, soaking time in the decarburization annealing step, The presence or absence of hot-rolled sheet annealing, cold rolling reduction (cold rolling reduction), and other manufacturing processes before decarburization annealing also have an effect. The preferential growth of grains having the [110] <001> orientation is enhanced during secondary recrystallization through the influence of the primary recrystallization texture controlled by these process control factors. The so-called precipitate also has an effect.
【0009】[0009]
【発明が解決しようとする課題】本発明は、インヒビタ
ー条件に応じて脱炭焼鈍条件を適切に制御することによ
って、工業的に安定して磁束密度の高い優れた磁気特性
をもつ方向性電磁鋼板を製造する方法を開示するもので
ある。また、本発明は、薄手方向性電磁鋼板を低温スラ
ブ加熱により製造する方法において、従来必須であった
中間焼鈍を挟んだ二回以上の冷延工程を、酸可溶性Al
量および脱炭焼鈍条件を適切に制御することにより一回
のみの冷延によっても磁束密度の高い優れた磁気特性を
もつ方向性電磁鋼板を製造する方法を提供するものであ
る。DISCLOSURE OF THE INVENTION The present invention provides a grain-oriented electrical steel sheet having excellent magnetic properties, which is industrially stable and has a high magnetic flux density, by appropriately controlling the decarburization annealing conditions according to the inhibitor conditions. It discloses a method of manufacturing. Further, the present invention is a method for producing a thin grain-oriented electrical steel sheet by low-temperature slab heating.
It is intended to provide a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties with high magnetic flux density even by cold rolling only once by appropriately controlling the amount and decarburization annealing conditions.
【0010】[0010]
【課題を解決するための手段】本発明の要旨とするとこ
ろは以下の通りである。
(1)質量で、Si:0.8〜4.8%、C:0.08
5%以下、酸可溶性Al:0.01〜0.065%、
N:0.012%以下を含み、残部Fe及び不可避的不
純物からなる鋼を1280℃以下の温度で加熱した後に
熱間圧延し、次いで一回もしくは中間焼鈍を挟む二回以
上の冷間圧延により最終板厚とし、脱炭焼鈍後、マグネ
シアを主成分とする焼鈍分離剤を塗布し、仕上げ焼鈍を
施す方向性電磁鋼板の製造方法において、酸可溶性Alの
量:[Al]%に対応して、脱炭焼鈍工程の昇温過程におけ
る、鋼板温度が600℃以下の領域から750〜900
℃の範囲内の所定の温度までの加熱速度:HR℃/秒をHR
≧−6250[Al]+200とすることにより、脱炭焼鈍後の集合
組織におけるI[111]/I[411]の比率を3以下に調整し、
その後窒化処理を行なうことを特徴とする磁束密度の高
い方向性電磁鋼板の製造方法。
(2)前記冷間圧延において圧下率を90%超とするこ
とを特徴とする(1)記載の磁束密度の高い方向性電磁
鋼板の製造方法。The gist of the present invention is as follows. (1) By mass, Si: 0.8 to 4.8%, C: 0.08
5% or less, acid-soluble Al: 0.01 to 0.065%,
N: 0.012% or less, the steel consisting of the balance Fe and unavoidable impurities is heated at a temperature of 1280 ° C. or less, and then hot-rolled, and then once or twice or more cold-rolled with intermediate annealing. The final plate thickness, after decarburization annealing, applied with an annealing separator containing magnesia as a main component, and subjected to finish annealing in the manufacturing method of grain-oriented electrical steel sheet, the amount of acid-soluble Al: [Al]% , 750 to 900 from the region where the steel plate temperature is 600 ° C. or less in the temperature rising process of the decarburization annealing process
Heating rate up to a predetermined temperature in the range of ℃: HR ℃
By adjusting ≧ −6250 [Al] +200, the ratio of I [111] / I [411] in the texture after decarburization annealing is adjusted to 3 or less,
A method for manufacturing a grain-oriented electrical steel sheet having a high magnetic flux density, characterized by performing nitriding treatment thereafter. (2) The method for producing a grain-oriented electrical steel sheet having a high magnetic flux density according to (1), characterized in that a reduction rate is more than 90% in the cold rolling.
【0011】(3)前記熱延板に900〜1200℃の
温度域で30秒〜30分間の焼鈍を施すことを特徴とす
る(1)または(2)記載の磁束密度の高い方向性電磁
鋼板の製造方法。
(4)前記脱炭焼鈍工程において770℃〜900℃の
温度域で雰囲気ガスの酸化度(PH2O/PH2):0.
15超1.1以下の範囲内で鋼板の酸素量が2.3g/
m2以下となるような時間焼鈍することを特徴とする
(1)乃至(3)のいずれかの項に記載の磁束密度の高
い方向性電磁鋼板の製造方法。(3) The grain-oriented electrical steel sheet having a high magnetic flux density according to (1) or (2), characterized in that the hot rolled sheet is annealed in a temperature range of 900 to 1200 ° C. for 30 seconds to 30 minutes. Manufacturing method. (4) In the decarburization annealing step, the degree of oxidation of the atmospheric gas (PH 2 O / PH 2 ) in the temperature range of 770 ° C. to 900 ° C .: 0.
Within the range of more than 15 and 1.1 or less, the oxygen content of the steel sheet is 2.3 g /
The method for producing a grain-oriented electrical steel sheet having a high magnetic flux density according to any one of (1) to (3), characterized in that the annealing is carried out for a time period of m 2 or less.
【0012】(5)前記鋼板の酸可溶性Alの量:[A
l]に応じて窒素量:[N]が[N]/[Al]≧0.
67を満足する量となるように窒化処理を施すことを特
徴とする(1)乃至(4)のいずれかの項に記載の磁束
密度の高い方向性電磁鋼板の製造方法。
(6)質量%で、さらに、Sn:0.02〜0.15%
を添加することを特徴とする(1)乃至(5)のいずれ
かの項に記載の磁束密度の高い方向性電磁鋼板の製造方
法。(5) Amount of acid-soluble Al in the steel sheet: [A
Amount of nitrogen: [N] is [N] / [Al] ≧ 0.
The method for producing a grain-oriented electrical steel sheet having a high magnetic flux density according to any one of (1) to (4), which is characterized by performing a nitriding treatment so that the amount satisfies 67. (6) Mass%, and Sn: 0.02 to 0.15%
The method for producing a grain-oriented electrical steel sheet having a high magnetic flux density according to any one of (1) to (5), characterized in that:
【0013】(7)質量%で、さらに、Cr:0.03
〜0.2%を添加することを特徴とする(1)乃至
(6)のいずれかの項に記載の磁束密度の高い方向性電
磁鋼板の製造方法。(7)% by mass, Cr: 0.03
~ 0.2% is added, The manufacturing method of the grain-oriented electrical steel sheet with high magnetic flux density as described in any one of (1) to (6).
【0014】[0014]
【発明の実施の形態】本発明者らは、一次再結晶組織の
I{111}/I{411}を3以下となるように制御
することにより、B8の値を1.88T以上にできることを特
開平9−256051号公報にて明らかにしているが、
製品の磁束密度に影響を及ぼす一次再結晶組織以外の主
要因子であるインヒビターを制御することにより、一次
再結晶集合組織制御の効果をより顕著に発揮することが
できるのではないかと考え、鋼板の磁束密度B8に対する
インヒビターと一次再結晶集合組織制御因子との関係に
ついて調べた。ここでは特に、一次再結晶集合組織に影
響を与える脱炭焼鈍時の加熱速度とインヒビター強度に
関係する酸可溶性Alとの相関について詳細に調べた。そ
の結果、酸可溶性Alの量に従って、高いB8を得るのに必
要な加熱速度の領域が広がることが分かった。BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have found that the value of B8 can be 1.88 T or more by controlling the I {111} / I {411} of the primary recrystallization structure to be 3 or less. As disclosed in Kaihei 9-256051,
By controlling the inhibitor, which is a major factor other than the primary recrystallized structure that affects the magnetic flux density of the product, we believe that the effect of primary recrystallized texture control can be exerted more remarkably. The relationship between the inhibitor of magnetic flux density B8 and the primary recrystallization texture control factor was investigated. Here, in particular, the correlation between the heating rate during decarburization annealing, which affects the primary recrystallization texture, and acid-soluble Al, which is related to inhibitor strength, was investigated in detail. As a result, it was found that the range of heating rate required to obtain high B8 was increased according to the amount of acid-soluble Al.
【0015】以下、実験結果をもとに説明する。図1は
sol-Al量、脱炭焼鈍加熱速度に対する鋼板の磁束密度B8
の分布を示した図である。ここで用いた試料は、質量%
で、Si:3.3%、C:0.06%、酸可溶性Al:
0.020−0.038%、N:0.008%、Mn:
0.1%、S:0.007%を含有するスラブを115
0℃の温度で加熱した後、2.0mm厚に熱間圧延し、
その後、1120℃で焼鈍した後、0.22mm厚まで
冷間圧延後、加熱速度15〜100℃/秒で加熱し、7
70〜950℃の温度で脱炭焼鈍した後、一部はそのま
ま、一部はアンモニア含有雰囲気で焼鈍して鋼板中の窒
素を0.02〜0.03%とし、次いで、MgOを主成
分とする焼鈍分離剤を塗布した後、仕上げ焼鈍を行った
ものである。これらの試料の脱炭焼鈍板の一次再結晶集
合組織を解析した結果、全ての試料においてI{11
1}/I{411}の値が3以下となっていることを確
認している。更に全く同様に0.18mm厚まで冷延し
た実験でも図1と同様の結果が得られた。Hereinafter, description will be given based on the experimental results. Figure 1
Magnetic flux density B8 of steel sheet against sol-Al content and decarburization annealing heating rate
It is a figure showing distribution of. The sample used here is% by mass
Then, Si: 3.3%, C: 0.06%, acid-soluble Al:
0.020-0.038%, N: 0.008%, Mn:
Slab containing 0.1%, S: 0.007% 115
After heating at a temperature of 0 ° C., hot rolling to a thickness of 2.0 mm,
Then, after annealing at 1120 ° C., cold rolling to a thickness of 0.22 mm, heating at a heating rate of 15 to 100 ° C./sec, and 7
After decarburizing and annealing at a temperature of 70 to 950 ° C., part of it is annealed as it is, and part of it is annealed in an atmosphere containing ammonia to make nitrogen in the steel sheet 0.02 to 0.03%, and then MgO as a main component. After the annealing separating agent is applied, finish annealing is performed. As a result of analyzing the primary recrystallization textures of the decarburized and annealed sheets of these samples, I {11
It has been confirmed that the value of 1} / I {411} is 3 or less. Further, the same result as in FIG. 1 was obtained in the same experiment as in the cold rolling to a thickness of 0.18 mm.
【0016】図1から明らかなように、1.92T以上
の高磁束密度が得られる脱炭焼鈍加熱速度の閾値が酸可
溶性Alの量:[Al]%が増加するに従って低下していくこ
とがわかる。即ち、脱炭焼鈍時の加熱速度を同じとし、
同じように一次再結晶集合組織を調整した場合であって
も、インヒビターを強くするように[Al]を高くしさえす
れば、一次再結晶集合組織制御による高磁束密度化の効
果を得ることができるということである。As is clear from FIG. 1, the decarburization annealing heating rate threshold value at which a high magnetic flux density of 1.92 T or more can be obtained decreases as the amount of acid-soluble Al: [Al]% increases. Recognize. That is, the heating rate during decarburization annealing is the same,
Even if the primary recrystallization texture is adjusted in the same manner, the effect of increasing the magnetic flux density by controlling the primary recrystallization texture can be obtained by increasing the [Al] to strengthen the inhibitor. It means that you can.
【0017】これまで方向性電磁鋼板の脱炭焼鈍を急速
加熱で行うことは、例えば、特開平1−290716号
公報、特開平6−212262号公報等に開示されてい
る。しかしながら、これらの特許は高温スラブ加熱によ
る方向性電磁鋼板の製造方法に適用したものであり、そ
の効果も二次再結晶粒径が小さくなり鉄損特性が向上す
るというものである。Hitherto, decarburization annealing of grain-oriented electrical steel sheets by rapid heating is disclosed in, for example, Japanese Patent Laid-Open Nos. 1-290716 and 6-212262. However, these patents are applied to a method for producing a grain-oriented electrical steel sheet by high-temperature slab heating, and the effect is that the secondary recrystallized grain size is reduced and the iron loss characteristics are improved.
【0018】本発明の製品に及ぼす効果はこれらの結果
と異なり磁束密度(B8)の向上に大きな影響を及ぼす
ものである。また、集合組織制御の効果を酸可溶性Al量
や窒化量でインヒビターを制御することによって高磁束
密度が得られるために必要な脱炭焼鈍時の加熱速度の下
限値が下がるというものである。上記の結果に対する理
由について、本発明者らは次のように考えている。本発
明における様な(Al,Si)N等の窒化物のように熱
的に安定な(強い)インヒビタ−を用いた場合には、粒
界移動の粒界性格依存性が高くなるために、ゴス方位粒
の数よりもゴス方位とΣ9対応方位関係にあるマトリッ
クス粒(具体的には{111}<112>、{411}
<148>)の数および結晶方位分散がより重要となる
が、熱的に安定な(強い)インヒビタ−を増やすことに
よって、同様な結晶方位分散であっても高いB8が得られ
やすくなったということである。また、[Al]を増やすと
インヒビターへの影響の他に、一次再結晶集合組織への
効果もあり、このことも磁束密度を高くすることに対し
て相乗的に寄与したものと考えている。具体的には、実
施例1に示してあるように[Al]を増やすとI{111}
/I{411}の値が減少しており、このことは二次再
結晶粒となる一次再結晶組織中の[110]<001>方
位粒の成長を促進する{111}方位粒と{411}方
位粒のうち、結晶方位分散が小さい{411}方位粒の
発達が促されたことを意味している。その結果として、
2次再結晶粒(ゴス粒)の方位分散も小さくなり、高い
B8が得られる。Unlike the above results, the effect of the present invention on the product has a great influence on the improvement of the magnetic flux density (B8). Further, the effect of texture control is to lower the lower limit of the heating rate during decarburization annealing, which is necessary for obtaining a high magnetic flux density by controlling the inhibitor with the amount of acid-soluble Al or the amount of nitriding. The present inventors consider the reason for the above results as follows. When a thermally stable (strong) inhibitor such as a nitride such as (Al, Si) N in the present invention is used, the grain boundary character dependence of the grain boundary migration increases, Matrix grains that have a Σ9-corresponding orientation relationship with the Goth orientation rather than the number of Goth orientation grains (specifically, {111} <112>, {411}
It is said that the number of <148>) and the crystal orientation dispersion are more important, but by increasing the number of thermally stable (strong) inhibitors, high B8 can be easily obtained even with the similar crystal orientation dispersion. That is. In addition, increasing [Al] has an effect on the primary recrystallization texture in addition to the effect on the inhibitor, and this is also considered to have contributed synergistically to increasing the magnetic flux density. Specifically, when [Al] is increased as shown in Example 1, I {111}
The value of / I {411} is decreased, which means that {111} oriented grains and {411} oriented grains that promote the growth of [110] <001> oriented grains in the primary recrystallized structure that becomes the secondary recrystallized grains. } Of the oriented grains, it means that the development of {411} oriented grains having a small crystal orientation dispersion was promoted. As a result,
The orientation dispersion of the secondary recrystallized grains (goss grains) is also small, and high B8 can be obtained.
【0019】本発明に用いる鋼の成分としては、Si:
0.8〜4.8%、C:0.085%以下、酸可溶性A
l:0.01〜0.065%、N:0.012%以下が
必要である。Siは添加量を多くすると電気抵抗が高く
なり、鉄損特性が改善される。しかしながら、4.8%
を超えると圧延時に割れやすくなってしまう。また、
0.8%より少ないと仕上げ焼鈍時にγ変態が生じ結晶
方位が損なわれてしまう。The components of the steel used in the present invention are Si:
0.8-4.8%, C: 0.085% or less, acid-soluble A
1: 0.01 to 0.065% and N: 0.012% or less are required. When Si is added in a large amount, the electric resistance becomes high and the iron loss characteristic is improved. However, 4.8%
If it exceeds the range, it tends to crack during rolling. Also,
If it is less than 0.8%, γ-transformation occurs during finish annealing and the crystal orientation is impaired.
【0020】Cは一次再結晶組織を制御するうえで有効
な元素であるが、磁気特性に悪影響を及ぼすので仕上げ
焼鈍前に脱炭する必要がある。Cが0.085%より多
いと脱炭焼鈍時間が長くなり生産性が損なわれてしま
う。酸可溶性Alは、本願発明においてNと結合して
(Al,Si)Nとしてインヒビターとしての機能をは
たすために必須の元素である。二次再結晶が安定する
0.01〜0.065%を限定範囲とする。C is an element effective in controlling the primary recrystallized structure, but it has an adverse effect on the magnetic properties, so it must be decarburized before finish annealing. When C is more than 0.085%, decarburization annealing time becomes long and productivity is impaired. The acid-soluble Al is an essential element in order to combine with N in the present invention to function as (Al, Si) N as an inhibitor. The limited range is 0.01 to 0.065% at which the secondary recrystallization is stable.
【0021】Nは0.012%をこえると冷延時にブリ
スターとよばれる鋼板中の空孔を生じる。その他、Sは
磁気特性に悪影響を及ぼすので0.015%以下とする
ことが望ましい。Snは脱炭焼鈍後の集合組織を改善
し、二次再結晶を安定化するため0.02〜0.15%
添加することが望ましい。Crは脱炭焼鈍の酸化層を改
善し、グラス被膜形成に有効な元素であり、0.03〜
0.2%添加することが望ましい。その他、微量のC
u,Sb,Mo,Bi,Ti等を鋼中に含有すること
は、本発明の主旨を損なうものではない。When N exceeds 0.012%, voids in the steel sheet called blister are generated during cold rolling. In addition, since S adversely affects the magnetic properties, S is preferably set to 0.015% or less. Sn improves the texture after decarburization annealing and stabilizes the secondary recrystallization, so 0.02 to 0.15%
It is desirable to add. Cr is an element that improves the oxide layer of decarburization annealing and is effective in forming a glass film.
It is desirable to add 0.2%. Other traces of C
The inclusion of u, Sb, Mo, Bi, Ti, etc. in the steel does not impair the gist of the present invention.
【0022】上記の組成を有する珪素鋼スラブは転炉、
または電気炉等により鋼を溶製し、必要に応じて溶鋼を
真空脱ガス処理し、ついで連続鋳造もしくは造塊後分塊
圧延することによって得られる。その後、熱間圧延に先
だってスラブ加熱が施される。本発明においては、スラ
ブ加熱温度は1280℃以下として、先述の高温スラブ
加熱の諸問題を回避する。A silicon steel slab having the above composition is a converter,
Alternatively, it can be obtained by smelting steel in an electric furnace or the like, subjecting the molten steel to vacuum degassing treatment if necessary, and then continuously casting or ingoting and then slabbing. After that, slab heating is performed prior to hot rolling. In the present invention, the slab heating temperature is set to 1280 ° C. or lower to avoid the above-mentioned problems of high temperature slab heating.
【0023】上記、熱間圧延板は、通常、磁気特性を高
めるために900〜1200℃で30秒〜30分間の短
時間焼鈍を施す。その後、一回もしくは焼鈍を挟んだ二
回以上に冷間圧延により最終板厚とする。冷間圧延とし
ては、特公昭40ー15644号公報に示されるように
最終冷延圧下率を80%以上とすることが、{11
1}、{411}等の一次再結晶方位を発達させるうえ
で必要である。特に、{411}の方位の発達が顕著に
なるように最終冷延圧下率を85%以上とすることが望
ましい。またさらに、冷延圧下率が95%より大きくな
ってしまうと冷延工程での負荷が大きくなり、実操業の
観点から95%以下が現実的である。また、本発明のポ
イントは高B8を得るために、インヒビターの強さに応
じて脱炭焼鈍加熱速度を制御し、一次再結晶集合組織を
制御する点にあるが、この制御技術によって、従来、冷
延一回法においてはB8の劣化を招いていたような高冷
延圧下率の条件においても極めて良好な二次再結晶を実
現させることが可能となった。具体的には、例えば、中
島らの論文(鉄と鋼77(1991)p.1710)な
どには、冷延圧下率の増加にともなってB8が向上し、
圧下率が88%で最高となり、90%程度になると急激
にB8の劣化が起こってしまうことが報告されている
が、本発明では90%超の圧下率においても高いB8が
実現できる。このことは特に、従来二回冷延法でしか製
造できなかった0.20mm以下の薄手高B8材製造に
おいて、冷延一回法で製造することを可能とする。第4
図にそれを導いた実験結果を示す。実験は[Al]が
0.030%である板厚1.6〜2.8mmの熱延板か
ら冷延した板厚0.20mmの冷延板を60℃/秒の加
熱速度で室温から800℃まで加熱した後、800〜8
50℃の所定の温度において雰囲気ガスの酸化度0.5
5で120秒焼鈍した。その後窒化処理により窒素量を
0.020〜0.030%としたのちマグネシアを主成
分とする焼鈍分離剤を塗布して仕上げ焼鈍を行った。図
4から明らかなように90%超の圧下率で特に高いB8
を得ることができる。The hot rolled sheet is usually annealed at 900 to 1200 ° C. for 30 seconds to 30 minutes for a short time in order to improve the magnetic properties. Then, the final plate thickness is obtained by cold rolling once or twice or more with annealing. For cold rolling, as disclosed in Japanese Patent Publication No. 40-15644, the final cold rolling reduction should be 80% or more {11.
It is necessary for developing primary recrystallization orientations such as 1} and {411}. In particular, it is desirable to set the final cold rolling reduction to 85% or more so that the development of the {411} orientation becomes remarkable. Furthermore, if the cold rolling reduction ratio becomes larger than 95%, the load in the cold rolling process becomes large, and it is practically 95% or less from the viewpoint of actual operation. Further, the point of the present invention is to control the decarburization annealing heating rate according to the strength of the inhibitor to control the primary recrystallization texture in order to obtain high B8. It has become possible to realize extremely good secondary recrystallization even under the condition of a high cold rolling reduction rate that causes deterioration of B8 in the cold rolling once method. Specifically, for example, in the paper by Nakajima et al. (Iron and Steel 77 (1991) p.1710), B8 is improved with an increase in cold rolling reduction ratio.
It has been reported that the reduction rate reaches a maximum at 88%, and when it reaches about 90%, the B8 rapidly deteriorates. However, in the present invention, a high B8 can be realized even at a reduction rate of more than 90%. This makes it possible to manufacture by the cold-rolling once method in the manufacture of the thin high B8 material of 0.20 mm or less, which can be conventionally manufactured only by the cold-rolling method twice. Fourth
The experimental results that led to this are shown in the figure. In the experiment, a cold-rolled sheet having a sheet thickness of 0.20 mm cold-rolled from a hot-rolled sheet having a sheet thickness of 1.6 to 2.8 mm containing [Al] of 0.030% and a heating rate of 60 ° C./sec. 800 ~ 8 after heating to ℃
Oxidation degree of atmospheric gas is 0.5 at a predetermined temperature of 50 ° C.
It was annealed at 5 for 120 seconds. After that, a nitrogen content was adjusted to 0.020 to 0.030% by nitriding treatment, and then an annealing separator having magnesia as a main component was applied to finish annealing. As is clear from FIG. 4, B8 is particularly high at a reduction rate of more than 90%.
Can be obtained.
【0024】冷間圧延後の鋼板は、鋼中に含まれるCを
除去するために湿潤雰囲気中で脱炭焼鈍を施す。その
際、脱炭焼鈍加熱速度および脱炭焼鈍均熱温度等を制御
し、脱炭焼鈍後の一次再結晶集合組織のI[111]/I[411]
の値を3以下に調整することが磁気特性B8を1.88T
以上の製品を得るためにまず必要である。さらに、本発
明のポイントである脱炭焼鈍工程の焼鈍サイクルにおけ
る加熱速度:HR℃/秒を酸可溶性Alの量:[Al]%に対し
てHR≧−6250[Al]+200を満たすように調整することによ
ってB8が1.92T以上の製品を得ることができる
(即ち、[Al]を多くしていった場合のHRの下限値は、HR
≧−6250[Al]+200かつI[111]/I[411]の値が3以下とな
るために必要な加熱速度ということになる)。また、こ
の加熱速度で加熱する必要がある温度域は少なくとも6
00℃から750〜900℃までの温度域である。The steel sheet after cold rolling is subjected to decarburization annealing in a wet atmosphere in order to remove C contained in the steel. At that time, by controlling the decarburization annealing heating rate and the decarburization annealing soaking temperature, I [111] / I [411] of the primary recrystallization texture after decarburization annealing
It is possible to adjust the value of to 3 or less to set the magnetic characteristic B8 to 1.88T.
First of all, it is necessary to obtain the above products. Further, the heating rate in the annealing cycle of the decarburizing annealing step, which is the point of the present invention, is set so that the heating rate: HR ° C./sec satisfies HR ≧ −6250 [Al] +200 with respect to the amount of acid-soluble Al: [Al]%. A product with B8 of 1.92T or more can be obtained by adjusting (that is, the lower limit of HR when increasing [Al] is HR.
≧ −6250 [Al] +200 and the heating rate necessary for the value of I [111] / I [411] to be 3 or less). Also, the temperature range that needs to be heated at this heating rate is at least 6
The temperature range is from 00 ° C to 750 to 900 ° C.
【0025】図2、図3に上記の結論を導いた実験結果
を示す。[Al]が0.026%である冷延板を40℃/秒
の加熱速度で室温から600℃〜1000℃の温度域の
所定の温度まで加熱した後、窒素ガスで室温まで冷却し
た。その後20℃/秒の加熱速度で850℃まで加熱
し、雰囲気ガスの酸化度0.33で120秒焼鈍した。
その後、窒化処理により窒素量を0.021%としたの
ちMgOを主成分とする焼鈍分離剤を塗布して仕上げ焼
鈍を行った。図2に示すように40℃/秒の加熱速度で
の到達温度が750℃以上、900℃以下の範囲で磁束
密度が向上していることが分かる。750℃未満で効果
が発揮されないのは、750℃未満では一次再結晶が十
分に進行しておらず、一次再結晶集合組織を変えるため
には再結晶を十分に進行させる必要があるためである。
また、900℃超の温度まで加熱すると、試料の一部に
変態組織が生じ、その後の脱炭焼鈍完了時点での組織が
混粒組織になるためであると考えられる。2 and 3 show the experimental results that led to the above conclusion. A cold-rolled sheet having [Al] of 0.026% was heated at a heating rate of 40 ° C./second from room temperature to a predetermined temperature in a temperature range of 600 ° C. to 1000 ° C., and then cooled to room temperature with nitrogen gas. Then, it was heated to 850 ° C. at a heating rate of 20 ° C./second, and annealed for 120 seconds at an oxidation degree of atmospheric gas of 0.33.
After that, the amount of nitrogen was adjusted to 0.021% by nitriding treatment, and then an annealing separator containing MgO as a main component was applied to finish annealing. As shown in FIG. 2, it is understood that the magnetic flux density is improved in the range where the reached temperature at the heating rate of 40 ° C./sec is 750 ° C. or higher and 900 ° C. or lower. The reason why the effect is not exhibited below 750 ° C is that the primary recrystallization is not sufficiently advanced below 750 ° C, and the recrystallization needs to be sufficiently advanced in order to change the primary recrystallization texture. .
It is also considered that when heated to a temperature higher than 900 ° C., a transformation structure is generated in a part of the sample, and the structure at the time of subsequent completion of decarburization annealing becomes a mixed grain structure.
【0026】次いで、上記冷延板を加熱速度20℃/秒
で300℃から750℃の温度域の所定の温度まで加熱
し、その温度から加熱速度40℃/秒で850℃まで加
熱した後、窒素ガスで室温まで冷却した。その後20℃
/秒の加熱速度で850℃まで加熱し、雰囲気ガスの酸
化度0.33で120秒焼鈍した。その後窒化処理によ
り窒素量を0.021%としたのちMgOを主成分とす
る焼鈍分離剤を塗布して仕上げ焼鈍を行った。図3に示
すように加熱速度40℃/秒の加熱開始温度が600℃
超では磁束密度向上効果が無いことが分かる。Next, the cold-rolled sheet is heated at a heating rate of 20 ° C./sec to a predetermined temperature in the temperature range of 300 ° C. to 750 ° C., and from that temperature to 850 ° C. at a heating rate of 40 ° C./sec, It was cooled to room temperature with nitrogen gas. Then 20 ℃
It was heated to 850 ° C. at a heating rate of / sec and annealed for 120 seconds at an oxidation degree of atmospheric gas of 0.33. After that, the amount of nitrogen was adjusted to 0.021% by nitriding treatment, and then an annealing separator containing MgO as a main component was applied to finish annealing. As shown in FIG. 3, the heating start temperature at a heating rate of 40 ° C./sec is 600 ° C.
It can be seen that there is no effect of improving the magnetic flux density in the super range.
【0027】これらの結果から、加熱速度40℃/秒以
上で加熱する必要がある温度域は少なくとも600℃か
ら750〜900℃までの温度域であることが分かる。
従って、脱炭焼鈍工程の昇温過程において鋼板温度が6
00℃以下の温度域から40℃/秒以上で加熱すること
が必要となる。また、上記のような脱炭焼鈍工程の昇温
過程での加熱は冷延工程から脱炭焼鈍工程の間に加熱焼
鈍を行ったとしても本発明の趣旨を損なうものではな
い。From these results, it is understood that the temperature range in which it is necessary to heat at a heating rate of 40 ° C./sec or more is at least 600 ° C. to 750 to 900 ° C.
Therefore, in the temperature rising process of the decarburization annealing process, the steel plate temperature is 6
It is necessary to heat from a temperature range of 00 ° C or lower at 40 ° C / sec or higher. Further, the heating in the temperature rising process of the decarburization annealing process as described above does not impair the gist of the present invention even if the heat annealing is performed between the cold rolling process and the decarburization annealing process.
【0028】また、上記の加熱速度の調整の効果を安定
して発揮させるためには後述の実施例4に示しているよ
うに、加熱した後に770〜900℃の温度域で雰囲気
ガスの酸化度(PH2O/PH2)を0.15超1.1以下
として鋼板の酸素量を2.3g/m2以下とすることが有
効である。雰囲気ガスの酸化度が0.15未満では鋼板
表面に形成されるグラス被膜の密着性が劣化し、1.1
を越えるとグラス被膜に欠陥が生じる。特に、昇温段階
での加熱速度を40℃/s以上に高めた場合には均熱時の酸
化が促進されるので、酸素量を一定の範囲内に管理する
ためには雰囲気酸化度を低めにする、または均熱時間を
短くする必要がある。Further, in order to stably exert the above effect of adjusting the heating rate, as shown in Example 4 to be described later, after the heating, the degree of oxidation of the atmospheric gas is maintained in the temperature range of 770 to 900 ° C. It is effective to set (PH 2 O / PH 2 ) to more than 0.15 and 1.1 or less so that the oxygen content of the steel sheet is 2.3 g / m 2 or less. If the degree of oxidation of the atmospheric gas is less than 0.15, the adhesion of the glass film formed on the surface of the steel sheet deteriorates, and 1.1
Above the range, defects occur in the glass film. In particular, if the heating rate in the temperature raising stage is increased to 40 ° C / s or higher, the oxidation during soaking is promoted, so in order to control the oxygen content within a certain range, lower the atmospheric oxidation degree. Or the soaking time needs to be shortened.
【0029】加熱の方法は特に限定するものではなく、
40〜100℃/秒程度の加熱速度に対しては、従来の
通常輻射熱を利用したラジアントチューブや発熱体によ
る脱炭焼鈍設備を改造した設備、また100℃/秒以上
の加熱速度に対しては、新たなレーザー、プラズマ等の
高エネルギー熱源を利用する方法、誘導加熱、通電加熱
装置等を適用することができる。また、従来の通常輻射
熱を利用したラジアントチューブや発熱体による脱炭焼
鈍設備に新たなレーザー、プラズマ等の高エネルギー熱
源を利用する方法、誘導加熱、通電加熱装置等を適用す
る方法等を組み合わせることも有効である。The heating method is not particularly limited,
For a heating rate of about 40 to 100 ° C / sec, a conventional radiant tube utilizing normal radiant heat or a remodeled decarburization annealing facility with a heating element, or a heating rate of 100 ° C / sec or more is used. It is possible to apply a method using a high energy heat source such as a new laser or plasma, an induction heating apparatus, an electric heating apparatus, or the like. In addition, combining methods such as the use of high energy heat sources such as new laser and plasma in decarburization annealing equipment using conventional radiant tubes and heating elements that use conventional radiant heat, methods of applying induction heating, electric heating equipment, etc. Is also effective.
【0030】均熱温度に関しては、例えば特開平2−1
82866号公報に示されるような一次再結晶粒組織の
調整を勘案して設定する。通常は770〜900℃の範
囲で行う。また、均熱の前段で脱炭した後に、粒調整の
ために均熱の後段の温度を高めることや後段の雰囲気ガ
スの酸化度を下げて均熱時間をのばすことも有効であ
る。Regarding the soaking temperature, for example, Japanese Patent Laid-Open No. 2-1
It is set in consideration of the adjustment of the primary recrystallized grain structure as shown in Japanese Patent No. 82866. Usually, it is performed in the range of 770 to 900 ° C. It is also effective to elevate the temperature in the latter stage of soaking for grain adjustment after decarburization in the former stage of soaking, or lower the oxidation degree of the atmosphere gas in the latter stage to extend the soaking time.
【0031】窒化処理としては、アンモニア等の窒化能
のあるガスを含有する雰囲気中で焼鈍する方法、MnN
等の窒化能のある粉末を焼鈍分離剤中に添加して仕上げ
焼鈍中に行う方法等がある。脱炭焼鈍の加熱速度を高め
た場合に二次再結晶を安定的に行わせるためは、(A
l,Si)Nの組成比率を調整する必要があり、窒化処
理後の窒素量としては鋼中のAl量に対してN/Alを
質量比として0.67以上とする必要がある。As the nitriding treatment, a method of annealing in an atmosphere containing a gas having a nitriding ability such as ammonia, MnN
There is a method in which a powder having nitriding ability such as the above is added to the annealing separator during the finish annealing. In order to stably perform the secondary recrystallization when the heating rate of decarburization annealing is increased, (A
It is necessary to adjust the composition ratio of l, Si) N, and the nitrogen amount after nitriding treatment needs to be 0.67 or more as a mass ratio of N / Al to the amount of Al in steel.
【0032】その後、マグネシアを主成分とする焼鈍分
離剤を塗布した後に、仕上げ焼鈍を行い{110}<0
01>方位粒を二次再結晶により優先成長させる。After that, after applying an annealing separator containing magnesia as a main component, finish annealing is carried out {110} <0.
01> oriented grains are preferentially grown by secondary recrystallization.
【0033】[0033]
【実施例】<実施例1>重量%で、Si:3.3%、
C:0.06%、酸可溶性Al:0.020、0.02
6、0.031%、N:0.008%、Mn:0.1
%、S:0.007%含有するスラブを1150℃の温
度で加熱した後、2.0mm厚に熱間圧延した。その
後、1120℃で焼鈍した後、0.22mm厚まで冷間
圧延後、脱炭焼鈍の加熱速度を15〜100℃/秒と
し、830〜860℃の温度で脱炭焼鈍した後、アンモ
ニア含有雰囲気で焼鈍して鋼板中の窒素を0.02〜
0.03%とした。ついでMgOを主成分とする焼鈍分
離剤を塗布した後、仕上げ焼鈍を行った。製品の特性値
を表1に示す。一次再結晶集合組織に関してI[111]/I[4
11]の値が3以下であり、脱炭焼鈍工程の加熱速度:HR
が酸可溶性Alの量:[Al]%に対してHR≧−6250[Al]+200
を満足する場合、B8が1.92T以上の高い磁束密度
を得られていることが分かる。換言すれば、[Al]を増加
させた場合、同じ脱炭焼鈍速度に対するB8が向上し、高
いB8を得られる脱炭焼鈍加熱速度の領域が小さな加熱速
度の領域まで広がっていることがわかる。EXAMPLE <Example 1> Weight% Si: 3.3%,
C: 0.06%, acid-soluble Al: 0.020, 0.02
6, 0.031%, N: 0.008%, Mn: 0.1
%, S: 0.007%, was heated at a temperature of 1150 ° C., and then hot-rolled to a thickness of 2.0 mm. After that, after annealing at 1120 ° C., after cold rolling to a thickness of 0.22 mm, the heating rate for decarburizing annealing is set to 15 to 100 ° C./sec, and after decarburizing and annealing at a temperature of 830 to 860 ° C., an ammonia-containing atmosphere Nitrogen in the steel plate is annealed at 0.02-
It was set to 0.03%. Then, after applying an annealing separator containing MgO as a main component, finish annealing was performed. The characteristic values of the product are shown in Table 1. Regarding primary recrystallization texture I [111] / I [4
11] value is 3 or less, heating rate in decarburization annealing process: HR
Amount of acid-soluble Al: HR ≧ −6250 [Al] +200 for [Al]%
It is understood that when the above condition is satisfied, B8 achieves a high magnetic flux density of 1.92 T or more. In other words, when [Al] is increased, B8 for the same decarburization annealing rate is improved, and the decarburization annealing heating rate range where a high B8 can be obtained spreads to a small heating rate range.
【0034】[0034]
【表1】 [Table 1]
【0035】<実施例2>質量%で、Si:3.3%、
C:0.05%、酸可溶性Al:0.027、0.03
1%、N:0.007%、Cr:0.1%、Sn:0.
05%、Mn:0.1%、S:0.008%含有するス
ラブを1150℃の温度で加熱した後、熱間圧延によっ
て、2.0mm厚にし、この熱間圧延板を1120℃で焼
鈍し、その後、0.22mm厚に冷間圧延した。この冷
延板を10〜600℃/秒の加熱速度で800℃に加熱
した後、800〜890℃で120秒間、雰囲気酸化度
0.44で脱炭焼鈍した。この時の鋼板の酸素量は1.
9〜2.1g/m2であった。<Example 2> Mass%, Si: 3.3%,
C: 0.05%, acid-soluble Al: 0.027, 0.03
1%, N: 0.007%, Cr: 0.1%, Sn: 0.
A slab containing 05%, Mn: 0.1% and S: 0.008% is heated at a temperature of 1150 ° C., and then hot rolled to a thickness of 2.0 mm, and the hot rolled plate is annealed at 1120 ° C. Then, it was cold-rolled to a thickness of 0.22 mm. This cold-rolled sheet was heated to 800 ° C. at a heating rate of 10 to 600 ° C./sec, and then decarburized and annealed at 800 to 890 ° C. for 120 seconds at an atmospheric oxidation degree of 0.44. The oxygen content of the steel sheet at this time was 1.
It was 9 to 2.1 g / m 2 .
【0036】その後、750℃で30秒間アンモニア含
有雰囲気中で焼鈍し、アンモニア含有量を変えることに
より鋼板中の窒素量を0.023〜0.029%とし
た。その後、マグネシアを主成分とする焼鈍分離剤を塗
布した後、1200℃で20時間仕上げ焼鈍を施した。
これらの試料に張力コーテイング処理を施した。得られ
た製品の特性を表2に示す。表2より、一次再結晶集合
組織に関してI[111]/I[411]の値が3以下であり、脱炭
焼鈍工程の加熱速度:HRが酸可溶性Alの量:[Al]%に対
してHR≧−6250[Al]+200を満足する場合、B8が1.9
2T以上の高い磁束密度を得られていることが分かる。
また特に、HRが75℃/秒〜140℃/秒で特にB8が高
く、その領域が[Al]が増えると下限側に広がることがわ
かる。After that, annealing was performed at 750 ° C. for 30 seconds in an atmosphere containing ammonia, and the amount of nitrogen was changed to 0.023 to 0.029% by changing the amount of ammonia. Then, after applying an annealing separator containing magnesia as a main component, finish annealing was performed at 1200 ° C. for 20 hours.
These samples were subjected to tension coating treatment. The characteristics of the obtained product are shown in Table 2. From Table 2, the value of I [111] / I [411] regarding the primary recrystallization texture is 3 or less, and the heating rate in the decarburization annealing step: HR is the amount of acid-soluble Al: [Al]% When HR ≧ −6250 [Al] +200 is satisfied, B8 is 1.9
It can be seen that a high magnetic flux density of 2T or more is obtained.
It is also found that B8 is particularly high when HR is 75 ° C./sec to 140 ° C./sec, and that region spreads to the lower limit side when [Al] increases.
【0037】[0037]
【表2】 [Table 2]
【0038】<実施例3>質量%で、Si:3.2%、
Mn:0.1%、C:0.05%、S:0.008%、
酸可溶性Al:0.024%、N:0.008%、S
n:0.05%を含む板厚2.0mm珪素鋼熱延板を最
終板厚0.22mmに冷延した。この冷延板を酸化度
0.33の窒素と水素の混合ガス中において、加熱速度
(1)20℃/秒(2)100℃/秒で840℃まで加
熱し840℃で150秒焼鈍し一次再結晶させた。その
後、750℃で30秒間アンモニア含有雰囲気中で焼鈍
し、アンモニア含有量を変えることにより鋼板中の窒素
量を0.022〜0.026%とした。<Example 3> Mass% of Si: 3.2%,
Mn: 0.1%, C: 0.05%, S: 0.008%,
Acid-soluble Al: 0.024%, N: 0.008%, S
A 2.0 mm thick hot-rolled silicon steel sheet containing n: 0.05% was cold-rolled to a final thickness of 0.22 mm. This cold-rolled sheet was heated to 840 ° C. at a heating rate (1) 20 ° C./second (2) 100 ° C./second and annealed at 840 ° C. for 150 seconds in a mixed gas of nitrogen and hydrogen with an oxidation degree of 0.33. It was recrystallized. Then, it was annealed at 750 ° C. for 30 seconds in an atmosphere containing ammonia, and the amount of nitrogen in the steel sheet was adjusted to 0.022 to 0.026% by changing the content of ammonia.
【0039】これらの鋼板にマグネシアを主成分とする
焼鈍分離剤を塗布した後、仕上げ焼鈍を施した。仕上げ
焼鈍は1200℃まではN2:25%+H2:75%の雰
囲気ガス中で15℃/hrの加熱速度で行い、1200
℃でH2:100%に切りかえ20時間焼鈍を行った。
これらの試料を張力コーテイング処理を施した。得られ
た製品の磁気特性を表3に示す。実施例1、2と比較す
ると、冷延前の焼鈍を行っていないので全体の磁束密度
は低いが、本発明の磁束密度向上効果が確認できる。After applying an annealing separator containing magnesia as a main component to these steel sheets, finish annealing was performed. The finish annealing is performed up to 1200 ° C. in an atmosphere gas of N 2 : 25% + H 2 : 75% at a heating rate of 15 ° C./hr and 1200
It was annealed for 20 hours by switching to H2: 100% at ℃.
These samples were subjected to tension coating treatment. Table 3 shows the magnetic properties of the obtained product. Compared with Examples 1 and 2, since the annealing before cold rolling is not performed, the overall magnetic flux density is low, but the effect of improving the magnetic flux density of the present invention can be confirmed.
【0040】[0040]
【表3】 [Table 3]
【0041】<実施例4>質量%で、Si:3.2%、
C:0.05%、酸可溶性Al:0.029%、N:
0.008%、Mn:0.1%、S:0.007%、含
有する珪素鋼スラブを1100℃に加熱し、2.0mm
厚とした。この熱間圧延板を1100℃で焼鈍し、冷間
圧延し最終板厚0.2mmとした。その後、加熱速度1
00℃/秒で850℃まで加熱した後に室温まで冷却し
た。その後加熱速度30℃/秒で加熱し、830℃で、
酸化度0.12〜0.72の雰囲気ガスで90秒間焼鈍
した後、アンモニア含有雰囲気中で750℃で30秒焼
鈍し、鋼板中の窒素量を0.02〜0.03%とした。
次いで、MgOを主成分とする焼鈍分離剤を塗布した
後、1200℃で20時間仕上げ焼鈍を施した。<Example 4> In mass%, Si: 3.2%,
C: 0.05%, acid-soluble Al: 0.029%, N:
0.008%, Mn: 0.1%, S: 0.007%, containing silicon steel slab heated to 1100 ° C., 2.0 mm
Made thick This hot rolled plate was annealed at 1100 ° C. and cold rolled to a final plate thickness of 0.2 mm. After that, heating rate 1
After heating to 850 ° C. at 00 ° C./sec, it was cooled to room temperature. After that, heat at a heating rate of 30 ° C./sec and at 830 ° C.,
After annealing for 90 seconds in an atmosphere gas with an oxidation degree of 0.12 to 0.72, it was annealed for 30 seconds at 750 ° C. in an atmosphere containing ammonia, and the nitrogen content in the steel sheet was set to 0.02 to 0.03%.
Then, after applying an annealing separator containing MgO as a main component, finish annealing was performed at 1200 ° C. for 20 hours.
【0042】製品の特性を表4に示す。表4より、本発
明で規定した雰囲気の酸化度0.15超1.1以下の範
囲および、脱炭焼鈍後の酸素量2.3g/m2以下の範
囲を外れた場合には製品のグラス被膜特性が劣化してい
ることがわかる。The characteristics of the product are shown in Table 4. From Table 4, the glass of the product when the oxidation degree of the atmosphere specified by the present invention exceeds the range of 0.15 or more and 1.1 or less and the amount of oxygen after decarburization annealing of 2.3 g / m 2 or less It can be seen that the film characteristics are deteriorated.
【0043】[0043]
【表4】 [Table 4]
【0044】<実施例5>質量%で、Si:3.2%、
C:0.05%、酸可溶性Al:0.024%、N:
0.007%、Cr:0.1%、Sn:0.05%、M
n:0.1%、S:0.008%を含有する珪素鋼スラ
ブを1150℃加熱し、板厚2.3mmに熱間圧延し
た。この熱間圧延板を1120℃で焼鈍し、その後、
0.22mm厚に冷間圧延した。この冷延板を100℃
/秒で800℃に加熱した後、820℃で90〜600
秒間、雰囲気酸化度0.52で脱炭焼鈍し、I{11
1}/I{411}の値を2.7以下にし、一次再結晶
集合組織を請求項1の不等式が成り立つよう調整した。
その後、750℃で30秒間アンモニア含有雰囲気中で
焼鈍し、鋼板中の窒素量を0.023〜0.029%と
した。MgOを主成分とする焼鈍分離剤を塗布した後、
1200℃で20時間仕上げ焼鈍を施した。<Example 5> In mass%, Si: 3.2%,
C: 0.05%, acid-soluble Al: 0.024%, N:
0.007%, Cr: 0.1%, Sn: 0.05%, M
A silicon steel slab containing n: 0.1% and S: 0.008% was heated at 1150 ° C and hot-rolled to a plate thickness of 2.3 mm. The hot-rolled sheet was annealed at 1120 ° C., then
Cold rolled to a thickness of 0.22 mm. This cold rolled sheet is at 100 ° C
90 ~ 600 at 820 ℃ after heating to 800 ℃ / sec
Decarburization annealing with an atmospheric oxidation degree of 0.52 for 1 second, I {11
The value of 1} / I {411} was set to 2.7 or less, and the primary recrystallization texture was adjusted so that the inequality of claim 1 holds.
Then, it was annealed at 750 ° C. for 30 seconds in an atmosphere containing ammonia to adjust the nitrogen content in the steel sheet to 0.023 to 0.029%. After applying an annealing separator containing MgO as a main component,
Finish annealing was performed at 1200 ° C. for 20 hours.
【0045】製品の特性値を表5に示す。鋼板の酸素量
が2.41g/m2と多くなった場合には、磁気特性が
劣化していることが分かる。The characteristic values of the product are shown in Table 5. It can be seen that when the oxygen content of the steel sheet is as large as 2.41 g / m 2 , the magnetic properties are deteriorated.
【0046】[0046]
【表5】 [Table 5]
【0047】<実施例6>質量%で、Si:3.2%、
C:0.05%、酸可溶性Al:0.024%、N:
0.007%、Cr:0.1%、Sn:0.05%、M
n:0.1%、S:0.008%含有する珪素鋼スラブ
を1150℃加熱し、板厚2.3mmに熱間圧延した。
この熱間圧延板を1120℃で焼鈍し、その後、0.2
2mm厚に冷間圧延した。この冷延板を100℃/秒で
800℃に加熱した後、820℃で110秒間、雰囲気
酸化度0.44で脱炭焼鈍した。集合組織:I{11
1}/I{411}の値は1.7、鋼板酸素量は1.9
g/m2であった。その後、750℃で30秒間アンモ
ニア含有雰囲気中で焼鈍し、アンモニア含有量を変える
ことにより鋼板中の窒素量を0.012〜0.026%
とした。その後、マグネシアを主成分とする焼鈍分離剤
を塗布した後、1200℃で20時間仕上げ焼鈍を施し
た。<Example 6> In mass%, Si: 3.2%,
C: 0.05%, acid-soluble Al: 0.024%, N:
0.007%, Cr: 0.1%, Sn: 0.05%, M
A silicon steel slab containing n: 0.1% and S: 0.008% was heated at 1150 ° C and hot-rolled to a plate thickness of 2.3 mm.
This hot-rolled sheet was annealed at 1120 ° C., then 0.2
Cold rolled to a thickness of 2 mm. This cold-rolled sheet was heated to 800 ° C. at 100 ° C./sec, and then decarburized and annealed at 820 ° C. for 110 seconds at an atmospheric oxidation degree of 0.44. Organization: I {11
The value of 1} / I {411} was 1.7, and the steel sheet oxygen content was 1.9.
It was g / m 2 . Then, it is annealed in an atmosphere containing ammonia for 30 seconds at 750 ° C., and the amount of nitrogen in the steel sheet is 0.012 to 0.026% by changing the content of ammonia.
And Then, after applying an annealing separator containing magnesia as a main component, finish annealing was performed at 1200 ° C. for 20 hours.
【0048】製品の特性値を表6に示す。窒化処理後の
窒素量が0.017%以上([N]/[Al]≧0.6
7)で磁束密度が高くなることが分かる。The characteristic values of the product are shown in Table 6. Nitrogen content after nitriding is 0.017% or more ([N] / [Al] ≧ 0.6
It can be seen that the magnetic flux density increases in 7).
【0049】[0049]
【表6】 [Table 6]
【0050】<実施例7>質量%で、Si:3.3%、
C:0.06%、酸可溶性Al:0.020,0.02
6,0.031%、N:0.008%、Mn:0.1
%、S:0.007%含有するスラブを1150℃の温
度で加熱した後、2.0mm厚に熱間圧延した。その熱
延板を、前段1120℃、後段900℃で焼鈍した後、
0.15mm厚まで冷間圧延後、脱炭焼鈍の加熱速度を
15〜100℃/秒とし、810〜860℃の温度で脱
炭焼鈍した後、アンモニア含有雰囲気で焼鈍して鋼板中
の窒素を0.02〜0.03%とした。ついでマグネシ
アを主成分とする焼鈍分離剤を塗布した後、仕上げ焼鈍
を行った。製品の特性値を表7に示す。脱炭焼鈍工程の
加熱速度:HRが酸可溶性Alの量:[Al]%に対し
てHR≧−6250[Al]+200となっている場
合、B8が1.92T以上の高い磁束密度を得られてい
ることが分かる。<Example 7> Mass% of Si: 3.3%,
C: 0.06%, acid-soluble Al: 0.020, 0.02
6, 0.031%, N: 0.008%, Mn: 0.1
%, S: 0.007%, was heated at a temperature of 1150 ° C., and then hot-rolled to a thickness of 2.0 mm. After annealing the hot rolled sheet at 1120 ° C in the first stage and 900 ° C in the second stage,
After cold rolling to a thickness of 0.15 mm, the heating rate of decarburization annealing was set to 15 to 100 ° C / sec, decarburization annealing was performed at a temperature of 810 to 860 ° C, and then annealing was performed in an ammonia-containing atmosphere to remove nitrogen in the steel sheet. It was set to 0.02 to 0.03%. Then, after applying an annealing separator containing magnesia as a main component, finish annealing was performed. The characteristic values of the product are shown in Table 7. Heating rate in decarburization annealing step: When HR is HR ≧ −6250 [Al] +200 with respect to the amount of acid-soluble Al: [Al]%, B8 can obtain a high magnetic flux density of 1.92 T or more. I understand that.
【0051】[0051]
【表7】 [Table 7]
【0052】<実施例8>質量%で、Si:3.3%、
C:0.05%、酸可溶性Al:0.025%,0.0
35%、N:0.007%、Cr:0.1%、Sn:
0.05%、Mn:0.1%、S:0.008%含有す
るスラブを1150℃の温度で加熱した後、熱間圧延に
よって、2.3mm厚にし、この熱間圧延板を1120
℃で焼鈍し、その後、0.18mm厚に冷間圧延した。
この冷延板を5〜600℃/秒の加熱速度で800℃に
加熱した後、800〜890℃で120秒間、雰囲気酸
化度0.52で脱炭焼鈍し、一次再結晶集合組織を図1
で示した高B8が得られる領域に調整した。その後、7
50℃で30秒間アンモニア含有雰囲気中で焼鈍し、ア
ンモニア含有量を変えることにより鋼板中の窒素量を
0.025〜0.035%とした。その後、マグネシア
を主成分とする焼鈍分離剤を塗布した後、1200℃で
20時間仕上げ焼鈍を施した。得られた製品の特性を表
8に示す。表8より、脱炭焼鈍工程の加熱速度:HRが
酸可溶性Alの量:[Al]%に対してHR≧−625
0[Al]+200となっている場合、B8が1.92
T以上の高い磁束密度を得られていることが分かる。特
に、[Al]を増加された場合、冷延一回法による高B
8効果がより顕著に見られ、脱炭焼鈍加熱速度が小さく
ても高B8効果が得られると共に、より高いB8をえる
ことができる。<Example 8> Mass% of Si: 3.3%,
C: 0.05%, acid-soluble Al: 0.025%, 0.0
35%, N: 0.007%, Cr: 0.1%, Sn:
A slab containing 0.05%, Mn: 0.1%, and S: 0.008% was heated at a temperature of 1150 ° C., and then hot-rolled to a thickness of 2.3 mm.
It was annealed at 0 ° C. and then cold rolled to a thickness of 0.18 mm.
This cold-rolled sheet was heated to 800 ° C. at a heating rate of 5 to 600 ° C./sec, and then decarburized and annealed at 800 to 890 ° C. for 120 seconds at an atmospheric oxidation degree of 0.52 to obtain a primary recrystallization texture.
It adjusted to the area | region where the high B8 shown by was obtained. Then 7
Annealing was performed at 50 ° C. for 30 seconds in an atmosphere containing ammonia, and the amount of nitrogen in the steel sheet was adjusted to 0.025 to 0.035% by changing the content of ammonia. Then, after applying an annealing separator containing magnesia as a main component, finish annealing was performed at 1200 ° C. for 20 hours. The characteristics of the obtained product are shown in Table 8. From Table 8, heating rate in decarburization annealing step: HR is HR ≧ −625 with respect to the amount of acid-soluble Al: [Al]%.
When it is 0 [Al] +200, B8 is 1.92.
It can be seen that a high magnetic flux density of T or higher is obtained. Especially, when [Al] is increased, high B obtained by the cold rolling once method
8 effect is more prominent, and a high B8 effect can be obtained and a higher B8 can be obtained even if the decarburization annealing heating rate is low.
【0053】[0053]
【表8】 [Table 8]
【0054】[0054]
【発明の効果】本発明により、従来の高温スラブ加熱に
起因する諸問題の無い低温スラブ加熱による方向性電磁
鋼板の製造方法を基に、一次再結晶組織、酸可溶性Alに
対する脱炭焼鈍条件、表面酸化層及び窒化量を規定する
ことにより、磁束密度の高い優れた磁気特性をもつ方向
性電磁鋼板を工業的に安定して製造することができる。
特に、一回冷延法を前提とした製造方法において、酸可
溶性Alに対する脱炭焼鈍条件及び窒化量を規定するこ
とにより、磁束密度が高い優れた磁気特性をもつ薄手方
向性電磁鋼板を工業的に安定して製造することができ
る。このことにより、熱延に負荷が少なく、中間焼鈍を
省略し、従来よりも安価かつ鉄損に優れた方向性電磁鋼
板を得ることができる。According to the present invention, based on the method for producing a grain-oriented electrical steel sheet by low-temperature slab heating, which has no problems caused by conventional high-temperature slab heating, a primary recrystallization structure, decarburizing annealing conditions for acid-soluble Al, By defining the surface oxide layer and the nitriding amount, it is possible to industrially and stably manufacture the grain-oriented electrical steel sheet having a high magnetic flux density and excellent magnetic characteristics.
In particular, in a manufacturing method based on the single cold rolling method, by prescribing decarburization annealing conditions and nitriding amount for acid-soluble Al, a thin grain-oriented electrical steel sheet having high magnetic flux density and excellent magnetic properties is industrially produced. It can be stably manufactured. This makes it possible to obtain a grain-oriented electrical steel sheet which has less load on hot rolling, omits intermediate annealing, and is cheaper than conventional ones and has excellent iron loss.
【図1】製品の磁束密度(B8)に及ぼす酸可溶性Alと
脱炭焼鈍加熱速度の影響を示した図である。FIG. 1 is a diagram showing the influence of acid-soluble Al and decarburization annealing heating rate on the magnetic flux density (B8) of a product.
【図2】磁束密度に及ぼす脱炭焼鈍の急速加熱完了温度
の影響を示した図である。FIG. 2 is a diagram showing an influence of a rapid heating completion temperature of decarburization annealing on a magnetic flux density.
【図3】磁束密度に及ぼす脱炭焼鈍の急速加熱開始温度
の影響を示した図である。FIG. 3 is a diagram showing an influence of a rapid heating start temperature of decarburization annealing on a magnetic flux density.
【図4】磁束密度に及ぼす冷延圧下率の影響を示した図
である。FIG. 4 is a diagram showing the effect of cold rolling reduction on magnetic flux density.
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/18 C22C 38/18 (72)発明者 村上 健一 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 Fターム(参考) 4K033 AA02 CA02 CA07 DA02 FA01 FA13 FA14 HA02 HA04 JA05 LA01 RA04 SA02 SA03 TA02 5E041 AA02 CA02 HB11 NN01 NN18Front page continuation (51) Int.Cl. 7 identification code FI theme code (reference) C22C 38/18 C22C 38/18 (72) Inventor Kenichi Murakami 1-1 Hibatacho, Tobata-ku, Kitakyushu, Fukuoka F term in Yawata Works (reference) 4K033 AA02 CA02 CA07 DA02 FA01 FA13 FA14 HA02 HA04 JA05 LA01 RA04 SA02 SA03 TA02 5E041 AA02 CA02 HB11 NN01 NN18
Claims (7)
0.085%以下、酸可溶性Al:0.01〜0.06
5%、N:0.012%以下を含み、残部Fe及び不可
避的不純物からなる鋼を1280℃以下の温度で加熱し
た後に熱間圧延により熱延板となし、次いで一回もしく
は中間焼鈍を挟む二回以上の冷間圧延により最終板厚と
し、脱炭焼鈍後マグネシアを主成分とする焼鈍分離剤を
塗布し、仕上げ焼鈍を施す方向性電磁鋼板の製造方法に
おいて、酸可溶性Alの量:[Al]%に対応して、脱炭焼鈍
工程の昇温過程における、鋼板温度が600℃以下の領
域から750〜900℃の範囲内の所定の温度までの加
熱速度:HR℃/秒をHR≧−6250[Al]+200とすることによ
り、脱炭焼鈍後の集合組織におけるI[111]/I[411]の比
率を3以下に調整し、その後窒化処理を行なうことを特
徴とする磁束密度の高い方向性電磁鋼板の製造方法。1. By mass, Si: 0.8 to 4.8%, C:
0.085% or less, acid-soluble Al: 0.01 to 0.06
Steel containing 5% and N: 0.012% or less and the balance Fe and unavoidable impurities is heated at a temperature of 1280 ° C. or less and then hot-rolled to form a hot-rolled sheet, and then a single or intermediate annealing is sandwiched. In the manufacturing method of the grain-oriented electrical steel sheet, the final plate thickness is obtained by cold rolling two or more times, the annealing separator having magnesia as a main component is applied after decarburization annealing, and finish annealing is performed. Corresponding to Al]%, heating rate in the decarburization annealing temperature rising process from the region where the steel plate temperature is 600 ° C. or less to a predetermined temperature within the range of 750 to 900 ° C .: HR ° C./sec is HR ≧ By setting −6250 [Al] +200, the ratio of I [111] / I [411] in the texture after decarburization annealing is adjusted to 3 or less, and then nitriding treatment is performed. Of high grain oriented electrical steel sheet.
とすることを特徴とする請求項1に記載の磁束密度の高
い方向性電磁鋼板の製造方法。2. The method for manufacturing a grain-oriented electrical steel sheet having a high magnetic flux density according to claim 1, wherein the rolling reduction is set to more than 90% in the cold rolling.
域で30秒〜30分間の焼鈍を施すことを特徴とする請
求項1または2に記載の磁束密度の高い方向性電磁鋼板
の製造方法。3. The production of a grain-oriented electrical steel sheet having a high magnetic flux density according to claim 1, wherein the hot rolled sheet is annealed in a temperature range of 900 to 1200 ° C. for 30 seconds to 30 minutes. Method.
900℃の温度域で雰囲気ガスの酸化度(PH2O/P
H2):0.15超1.1以下の範囲内で鋼板の酸素量
が2.3g/m2以下となるような時間焼鈍することを
特徴とする請求項1乃至3のいずれかの項に記載の磁束
密度の高い方向性電磁鋼板の製造方法。4. In the decarburization annealing step, 770 ° C. to
Oxidation degree of atmosphere gas (PH 2 O / P
H 2 ): Annealing is performed for a time such that the oxygen content of the steel sheet is 2.3 g / m 2 or less in the range of more than 0.15 and 1.1 or less. The method for manufacturing a grain-oriented electrical steel sheet having a high magnetic flux density according to 1.
に応じて窒素量:[N]が[N]/[Al]≧0.67
を満足する量となるように窒化処理を施すことを特徴と
する請求項1乃至4のいずれかの項に記載の磁束密度の
高い方向性電磁鋼板の製造方法。5. The amount of acid-soluble Al in the steel sheet: [Al]
Amount of nitrogen: [N] is [N] / [Al] ≧ 0.67
The method for producing a grain-oriented electrical steel sheet having a high magnetic flux density according to any one of claims 1 to 4, wherein the nitriding treatment is performed so that the amount satisfies the above condition.
0.15%を添加することを特徴とする請求項1乃至5
のいずれかの項に記載の磁束密度の高い方向性電磁鋼板
の製造方法。6. In mass%, Sn: 0.02 to 0.02
6. The method according to claim 1, wherein 0.15% is added.
A method for manufacturing a grain-oriented electrical steel sheet having a high magnetic flux density according to any one of 1.
0.2%を添加することを特徴とする請求項1乃至6の
いずれかの項に記載の磁束密度の高い方向性電磁鋼板の
製造方法。7. In mass%, further, Cr: 0.03 to.
7. The method for producing a grain-oriented electrical steel sheet having a high magnetic flux density according to claim 1, wherein 0.2% is added.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002053688A JP4456317B2 (en) | 2001-04-16 | 2002-02-28 | Method for producing grain-oriented electrical steel sheet |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001117267 | 2001-04-16 | ||
JP2001-117267 | 2001-04-16 | ||
JP2002053688A JP4456317B2 (en) | 2001-04-16 | 2002-02-28 | Method for producing grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003003215A true JP2003003215A (en) | 2003-01-08 |
JP4456317B2 JP4456317B2 (en) | 2010-04-28 |
Family
ID=26613660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002053688A Expired - Fee Related JP4456317B2 (en) | 2001-04-16 | 2002-02-28 | Method for producing grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4456317B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007136137A1 (en) * | 2006-05-24 | 2007-11-29 | Nippon Steel Corporation | Process for producing grain-oriented magnetic steel sheet with high magnetic flux density |
WO2007136127A1 (en) * | 2006-05-24 | 2007-11-29 | Nippon Steel Corporation | Process for producing grain-oriented magnetic steel sheet with high magnetic flux density |
JP2008001983A (en) * | 2006-05-24 | 2008-01-10 | Nippon Steel Corp | Method for producing grain-oriented magnetic steel sheet with high magnetic flux density |
JP2008001981A (en) * | 2006-05-24 | 2008-01-10 | Nippon Steel Corp | Process for producing grain-oriented magnetic steel sheet with high magnetic flux density |
JP2009235574A (en) * | 2008-03-05 | 2009-10-15 | Nippon Steel Corp | Method for producing grain-oriented electrical steel sheet having extremely high magnetic flux density |
WO2010110217A1 (en) | 2009-03-23 | 2010-09-30 | 新日本製鐵株式会社 | Process for producing grain-oriented magnetic steel sheet, grain-oriented magnetic steel sheet for wound core, and wound core |
KR101237190B1 (en) | 2011-02-25 | 2013-02-25 | 신닛테츠스미킨 카부시키카이샤 | Producing method of grain-oriented electrical steel sheet |
JP2019163516A (en) * | 2018-03-20 | 2019-09-26 | 日本製鉄株式会社 | Production method of grain-oriented electromagnetic steel sheet |
JP2020169367A (en) * | 2019-04-05 | 2020-10-15 | 日本製鉄株式会社 | Method for manufacturing grain oriented electrical steel sheet |
-
2002
- 2002-02-28 JP JP2002053688A patent/JP4456317B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101062127B1 (en) | 2006-05-24 | 2011-09-02 | 신닛뽄세이테쯔 카부시키카이샤 | Method for manufacturing directional electromagnetic steel sheet with high magnetic flux density |
WO2007136127A1 (en) * | 2006-05-24 | 2007-11-29 | Nippon Steel Corporation | Process for producing grain-oriented magnetic steel sheet with high magnetic flux density |
JP2008001983A (en) * | 2006-05-24 | 2008-01-10 | Nippon Steel Corp | Method for producing grain-oriented magnetic steel sheet with high magnetic flux density |
JP2008001981A (en) * | 2006-05-24 | 2008-01-10 | Nippon Steel Corp | Process for producing grain-oriented magnetic steel sheet with high magnetic flux density |
KR101070064B1 (en) | 2006-05-24 | 2011-10-04 | 신닛뽄세이테쯔 카부시키카이샤 | Process for producing grain-oriented magnetic steel sheet with high magnetic flux density |
US7976644B2 (en) | 2006-05-24 | 2011-07-12 | Nippon Steel Corporation | Method of production of grain-oriented electrical steel sheet with high magnetic flux density |
US7976645B2 (en) | 2006-05-24 | 2011-07-12 | Nippon Steel Corporation | Method of production of grain-oriented electrical steel sheet having a high magnetic flux density |
WO2007136137A1 (en) * | 2006-05-24 | 2007-11-29 | Nippon Steel Corporation | Process for producing grain-oriented magnetic steel sheet with high magnetic flux density |
JP2009235574A (en) * | 2008-03-05 | 2009-10-15 | Nippon Steel Corp | Method for producing grain-oriented electrical steel sheet having extremely high magnetic flux density |
JP4746716B2 (en) * | 2009-03-23 | 2011-08-10 | 新日本製鐵株式会社 | Method for producing grain-oriented electrical steel sheet, grain-oriented electrical steel sheet for wound iron core, and wound iron core |
WO2010110217A1 (en) | 2009-03-23 | 2010-09-30 | 新日本製鐵株式会社 | Process for producing grain-oriented magnetic steel sheet, grain-oriented magnetic steel sheet for wound core, and wound core |
CN102361993A (en) * | 2009-03-23 | 2012-02-22 | 新日本制铁株式会社 | Process for producing grain-oriented magnetic steel sheet, grain-oriented magnetic steel sheet for wound core, and wound core |
CN104087823A (en) * | 2009-03-23 | 2014-10-08 | 新日铁住金株式会社 | Grain oriented electrical steel sheet for wound core and wound core |
EP3696288A2 (en) | 2009-03-23 | 2020-08-19 | Nippon Steel Corporation | Manufacturing method of grain oriented electrical steel sheet, grain oriented electrical steel sheet for wound core, and wound core |
KR101237190B1 (en) | 2011-02-25 | 2013-02-25 | 신닛테츠스미킨 카부시키카이샤 | Producing method of grain-oriented electrical steel sheet |
JP2019163516A (en) * | 2018-03-20 | 2019-09-26 | 日本製鉄株式会社 | Production method of grain-oriented electromagnetic steel sheet |
JP7063032B2 (en) | 2018-03-20 | 2022-05-09 | 日本製鉄株式会社 | Manufacturing method of grain-oriented electrical steel sheet |
JP2020169367A (en) * | 2019-04-05 | 2020-10-15 | 日本製鉄株式会社 | Method for manufacturing grain oriented electrical steel sheet |
JP7284392B2 (en) | 2019-04-05 | 2023-05-31 | 日本製鉄株式会社 | Manufacturing method of grain-oriented electrical steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP4456317B2 (en) | 2010-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6613160B2 (en) | Method to produce grain-oriented electrical steel sheet having high magnetic flux density | |
JP5273944B2 (en) | Manufacturing method of mirror-oriented electrical steel sheet | |
JP2013189712A (en) | Method for producing grain-oriented flat rolled magnetic steel sheet and strip with high magnetic flux density | |
JPS6245285B2 (en) | ||
JP5300210B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2008001979A (en) | Process for producing grain-oriented magnetic steel sheet and decarburization/annealing furnace used for the production method | |
JP2001152250A (en) | Method for producing grain-oriented silicon steel sheet excellent in magnetic property | |
JP3481567B2 (en) | Method for producing grain-oriented electrical steel sheet having B8 of 1.88T or more | |
JP4714637B2 (en) | Method for producing grain-oriented electrical steel sheet with high magnetic flux density | |
JP4456317B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP3943837B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP4427226B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP3323052B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP3474837B2 (en) | Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more | |
JP4205816B2 (en) | Method for producing unidirectional electrical steel sheet with high magnetic flux density | |
JP2001192787A (en) | Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method | |
JP4119614B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP3485532B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JPH06256847A (en) | Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic | |
JP3485475B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP2004204337A (en) | Method of producing grain-oriented electromagnetic steel sheet having high magnetic flux density | |
JPH07305116A (en) | Production of high magnetic flux density grain-oriented silicon steel sheet | |
JP2002069532A (en) | Method for producing bidirectionally oriented silicon steel sheet having high magnetic flux density | |
JP4267320B2 (en) | Manufacturing method of unidirectional electrical steel sheet | |
JP2003268452A (en) | Method for manufacturing grain-oriented electromagnetic steel sheet with adequate magnetic property and mirror plane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060822 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080610 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100126 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100205 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130212 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4456317 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130212 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130212 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140212 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |