JP2003003243A - High-strength martensitic stainless steel with excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance - Google Patents
High-strength martensitic stainless steel with excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistanceInfo
- Publication number
- JP2003003243A JP2003003243A JP2001189138A JP2001189138A JP2003003243A JP 2003003243 A JP2003003243 A JP 2003003243A JP 2001189138 A JP2001189138 A JP 2001189138A JP 2001189138 A JP2001189138 A JP 2001189138A JP 2003003243 A JP2003003243 A JP 2003003243A
- Authority
- JP
- Japan
- Prior art keywords
- less
- mass
- content
- carbon dioxide
- during tempering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 49
- 230000007797 corrosion Effects 0.000 title claims abstract description 49
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 22
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 22
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 title claims abstract description 21
- 238000005336 cracking Methods 0.000 title claims abstract description 21
- 229910001105 martensitic stainless steel Inorganic materials 0.000 title claims abstract description 17
- 238000005496 tempering Methods 0.000 claims abstract description 39
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 22
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 21
- 229910001068 laves phase Inorganic materials 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims abstract description 18
- 239000012535 impurity Substances 0.000 claims abstract description 15
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 12
- 150000001247 metal acetylides Chemical class 0.000 claims abstract description 12
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 12
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 11
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 10
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 8
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 8
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 8
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 8
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 7
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 5
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 55
- 239000010959 steel Substances 0.000 claims description 55
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 238000001556 precipitation Methods 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 abstract description 3
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 9
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 6
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000003129 oil well Substances 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- -1 chlorine ions Chemical class 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
(57)【要約】
【課題】耐力860MPa以上の高強度、且つ優れた耐炭酸ガ
ス腐食性および耐硫化物応力腐食割れ性を有するマルテ
ンサイトステンレス鋼の提供。
【解決手段】C、Si、Mn、P、S、Cr、Ni、Mo、Al、お
よびNを含み、または更に、Ti、V、NbおよびZrから選
択される1種以上を含み、場合によってはCuを含有し、
更に必要に応じて、Ca、Mg、LaおよびCeから選択される
1種以上を含み、残部がFeおよび不純物からなり、且
つ、下記の(1)式を満足し、金属組織が主として焼戻し
マルテンサイト、焼戻し時に析出した炭化物および微細
析出したラーベス相主体の金属間化合物であるマルテン
サイトステンレス鋼。
Mo≧1.5−0.89Si+32.2C …(1)(57) [Summary] [PROBLEMS] To provide a martensitic stainless steel having high strength of 860 MPa or more and excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance. The present invention includes C, Si, Mn, P, S, Cr, Ni, Mo, Al, and N, or further includes one or more selected from Ti, V, Nb, and Zr. Contains Cu,
Further, if necessary, it contains at least one selected from Ca, Mg, La and Ce, and the balance consists of Fe and impurities, and satisfies the following formula (1), and the metal structure is mainly tempered martensite. A martensitic stainless steel which is an intermetallic compound mainly composed of carbides precipitated during tempering and Laves phase precipitated finely. Mo ≧ 1.5−0.89Si + 32.2C… (1)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、炭酸ガス、硫化水
素、塩素イオン等の腐食性物質を含む厳しい腐食環境に
おいて使用するのに適した鋼材に係り、特に、石油、天
然ガスの生産設備用または輸送用ラインパイプ、脱炭酸
ガス設備用配管、地熱発電用配管等の用途に使用するシ
ームレス鋼管、電縫鋼管、レーザー溶接鋼管、スパイラ
ル溶接管等のシーム溶接管等の配管用鋼、または、炭酸
ガス含有液のタンク等を構成する鋼材に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material suitable for use in a severe corrosive environment containing corrosive substances such as carbon dioxide gas, hydrogen sulfide and chlorine ions, and more particularly to a production facility for oil and natural gas. Or steel for pipes such as line pipes for transportation, pipes for decarbonation equipment, pipes for geothermal power generation, seamless steel pipes, electric resistance welded pipes, laser welded pipes, seam welded pipes such as spiral welded pipes, or The present invention relates to a steel material that constitutes a tank for a carbon dioxide gas-containing liquid.
【0002】[0002]
【従来の技術】近い将来に予想される石油資源の枯渇化
の観点から、近年、過酷な環境下の井戸、即ち、深層の
油井、サワーガス田等の開発が盛んに行われるようにな
ってきている。従って、このような用途に使用されるラ
インパイプ等の鋼管には、高い強度を有するとともに、
耐食性および耐硫化物応力腐食割れ性に優れることが求
められている。2. Description of the Related Art From the viewpoint of depletion of petroleum resources expected in the near future, wells under harsh environments, that is, deep oil wells and sour gas fields have been actively developed in recent years. There is. Therefore, steel pipes such as line pipes used for such applications have high strength and
It is required to have excellent corrosion resistance and sulfide stress corrosion cracking resistance.
【0003】従来、油井管等の鋼材として、炭素鋼や低
合金鋼を使用するのが一般的であったが、井戸の環境が
過酷になるに従って、合金量を増加させた鋼が用いられ
るようになってきた。例えば、炭酸ガスを多量に含む油
井用鋼材には、SUS420に代表されるような13Cr系マルテ
ンサイトステンレス鋼が用いられるようになってきてい
る。Conventionally, carbon steel or low alloy steel has been generally used as a steel material for oil country tubular goods and the like, but as the well environment becomes severer, steel with an increased alloy amount is used. Has become. For example, as a steel material for oil wells containing a large amount of carbon dioxide gas, 13Cr-based martensitic stainless steel represented by SUS420 has come to be used.
【0004】しかし、上記のSUS420鋼は、炭酸ガスに対
する耐食性には優れるものの、硫化水素に対する耐食性
が芳しくなく、炭酸ガスと硫化水素を同時に含むような
環境下では硫化物応力腐食割れ(SSCC)が発生し易い。
そこで、この鋼に替わる種々の鋼材が提案されている。However, although the above-mentioned SUS420 steel is excellent in corrosion resistance to carbon dioxide gas, it is poor in corrosion resistance to hydrogen sulfide, and sulfide stress corrosion cracking (SSCC) occurs in an environment containing carbon dioxide gas and hydrogen sulfide at the same time. It is easy to occur.
Therefore, various steel materials replacing this steel have been proposed.
【0005】特許第2861024号公報、特開平5-287455号
公報および特開平7-62499号公報には、上記のSUS420を
ベースとして炭素含有量を低減することによって耐食性
を向上させた鋼が開示されている。しかし、これらの公
報に記載されるような炭素含有量が低い鋼は、深井戸に
使用するのに必要な強度、即ち、耐力860MPa以上を得る
ことができない場合があった。Japanese Patent No. 2861024, Japanese Unexamined Patent Publication No. 5-287455 and Japanese Unexamined Patent Publication No. 7-62499 disclose steels whose corrosion resistance is improved by reducing the carbon content based on the above SUS420. ing. However, the steels having a low carbon content as described in these publications sometimes fail to obtain the strength required for use in deep wells, that is, the yield strength of 860 MPa or more.
【0006】特開2000-192196号公報には、材料を高強
度化し、且つ良好な耐硫化物応力割れ性を有する鋼とし
てCo:0.5〜7%、Mo:3.1〜7%を含むマルテンサイト単
相組織の鋼が開示されている。同公報に記載される発明
は、Coを上記の範囲で含有させることによって、冷却時
の残留オーステナイトの生成を抑制して、組織をマルテ
ンサイト単相とするものである。しかし、Coは高価な元
素であるため、使用しないのが望ましい。[0006] Japanese Patent Laid-Open No. 2000-192196 discloses a martensite single steel containing Co: 0.5 to 7% and Mo: 3.1 to 7% as a steel having a high strength material and good resistance to sulfide stress cracking. A phase-structured steel is disclosed. The invention described in this publication suppresses the formation of retained austenite during cooling by containing Co in the above range, and makes the structure a martensite single phase. However, since Co is an expensive element, it is desirable not to use it.
【0007】[0007]
【発明が解決しようとする課題】本発明は、上記の実状
に鑑みてなされたものであって、深井戸への使用に充分
な強度、即ち、耐力860MPa以上の高強度を有し、且つ炭
酸ガス、硫化水素、塩素イオンまたはこれらの2種以上
を含む環境下でも使用できるような優れた耐炭酸ガス腐
食性および耐硫化物応力腐食割れ性を有するマルテンサ
イトステンレス鋼を提供することを目的とする。DISCLOSURE OF THE INVENTION The present invention has been made in view of the above situation, and has sufficient strength for use in deep wells, that is, high strength with a yield strength of 860 MPa or more, and carbonic acid. An object of the present invention is to provide a martensitic stainless steel having excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance that can be used even in an environment containing gas, hydrogen sulfide, chlorine ions or two or more of these. To do.
【0008】[0008]
【課題を解決するための手段】本発明は、下記のに示
すマルテンサイトステンレス鋼を要旨とする。なお、以
下の説明において、成分含有量に関する%は「質量%」
を意味する。The gist of the present invention is martensitic stainless steel shown below. In the following description,% related to the content of components is "mass%"
Means
【0009】 C:0.001〜0.04%、Si:0.5%以下、
Mn:0.1〜3.0%、P:0.04%以下、S:0.01%以下、C
r:10〜15%、Ni:0.7〜8%、Mo:1.5〜5.0%、Al:0.0
01〜0.10%およびN:0.07%以下を含有し、残部がFeお
よび不純物からなり、且つ、下記の(1)式を満足し、金
属組織が主として焼戻しマルテンサイト、焼戻し時に析
出した炭化物および焼戻し時に微細析出したラーベス相
主体の金属間化合物からなることを特徴とする耐炭酸ガ
ス腐食性および耐硫化物応力腐食割れ性に優れた高強度
マルテンサイトステンレス鋼。ただし、(1)式中の各元
素記号は、それぞれの元素の含有量(質量%)を示す。C: 0.001 to 0.04%, Si: 0.5% or less,
Mn: 0.1-3.0%, P: 0.04% or less, S: 0.01% or less, C
r: 10-15%, Ni: 0.7-8%, Mo: 1.5-5.0%, Al: 0.0
01 to 0.10% and N: 0.07% or less, the balance consisting of Fe and impurities, and satisfying the following formula (1), the metal structure is mainly tempered martensite, carbides precipitated during tempering and during tempering A high-strength martensitic stainless steel having excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance, which is characterized by comprising an intermetallic compound mainly composed of finely precipitated Laves phase. However, each element symbol in the formula (1) indicates the content (mass%) of each element.
【0010】Mo≧1.5−0.89Si+32.2C …(1)
本発明はまた上記のに記載の合金成分に加えて下記第
1群、第2群および第3群の少なくとも1群の中から選
んだ少なくとも1種の合金成分を含むマルテンサイトス
テンレス鋼を要旨とする。この鋼においても前記(1)式
が満たされ、また金属組織も上記に記載のとおりであ
る。Mo ≧ 1.5−0.89Si + 32.2C (1) The present invention is also selected from at least one of the following first group, second group and third group in addition to the alloy components described above. The gist is martensitic stainless steel containing at least one alloying constituent. Also in this steel, the above formula (1) is satisfied, and the metal structure is as described above.
【0011】第1群…Ti:0.005〜0.25%、V:0.005〜
0.25%、Nb:0.005〜0.25%およびZr:0.005〜0.25%
第2群…Cu:0.01〜3%
第3群…Ca:0.0002〜0.005%、Mg:0.0002〜0.005%、
La:0.0002〜0.005%およびCe:0.0002〜0.005%First group: Ti: 0.005 to 0.25%, V: 0.005 to
0.25%, Nb: 0.005-0.25% and Zr: 0.005-0.25% Second group: Cu: 0.01-3% Third group: Ca: 0.0002-0.005%, Mg: 0.0002-0.005%,
La: 0.0002 to 0.005% and Ce: 0.0002 to 0.005%
【0012】[0012]
【発明の実施の形態】以下、本発明で規定する各元素に
ついての含有量の限定理由を説明する。なお、各含有量
の%は質量%を意味する。BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the content of each element specified in the present invention will be described below. In addition,% of each content means mass%.
【0013】C:0.001〜0.04%
Cは、鋼の強度を向上させるのに有効な元素であるが、
耐食性の面からはできるだけ少ない方がよい。経済的に
製造容易なことを考慮して、その含有量の下限を0.001
%とした。一方、その含有量が0.04%を超えると、焼戻
し後の硬度が高くなりすぎ、硫化物応力腐食割れ感受性
が高くなる。従って、Cの含有量を0.001〜0.04%とし
た。C: 0.001 to 0.04% C is an element effective for improving the strength of steel,
From the viewpoint of corrosion resistance, it is better to reduce the amount as much as possible. Considering that it is economically easy to manufacture, the lower limit of its content is 0.001.
%. On the other hand, if its content exceeds 0.04%, the hardness after tempering becomes too high and the sulfide stress corrosion cracking susceptibility becomes high. Therefore, the content of C is set to 0.001 to 0.04%.
【0014】Si:0.5%以下
Siは、脱酸剤として必要な元素である。鋼中残留量は不
純物レベルであっても良い。しかし、より大きな脱酸効
果を得るためには、その含有量を0.01%以上とするのが
望ましい。一方、その含有量が0.5%を超えると、靱性
が低下するとともに、熱間加工性を低下させる。従っ
て、Siの含有量を0.5%以下とした。Si: 0.5% or less Si is an element necessary as a deoxidizing agent. The residual amount in steel may be at the impurity level. However, in order to obtain a greater deoxidizing effect, it is desirable that its content be 0.01% or more. On the other hand, if its content exceeds 0.5%, the toughness decreases and the hot workability also decreases. Therefore, the content of Si is set to 0.5% or less.
【0015】Mn:0.1〜3.0%
Mnは、熱間加工性を向上させるのに有効な元素である。
この効果を得るためには、その含有量を0.1%以上とす
る必要がある。一方、その含有量が3.0%を超えると、
その効果は飽和し、コスト上昇を招く。従って、Mnの含
有量を0.1〜3.0%とした。Mn: 0.1-3.0% Mn is an element effective for improving hot workability.
To obtain this effect, its content must be 0.1% or more. On the other hand, if its content exceeds 3.0%,
The effect is saturated and the cost is increased. Therefore, the content of Mn is set to 0.1 to 3.0%.
【0016】P:0.04%以下
Pは、鋼中に含まれる不純物であり、その含有量はでき
るだけ少ない方がよい。特に、その含有量が0.04%を超
えると耐硫化物応力腐食割れ性が著しく低下する。従っ
て、Pの含有量を0.04%以下とした。P: 0.04% or less P is an impurity contained in steel, and its content should be as small as possible. In particular, if its content exceeds 0.04%, the sulfide stress corrosion cracking resistance is significantly reduced. Therefore, the content of P is set to 0.04% or less.
【0017】S:0.01%以下
Sも鋼中に含まれる不純物であり、その含有量はできる
だけ少ない方がよい。特に、その含有量が0.01%を超え
ると熱間加工性、耐食性および靱性が著しく低下する。
従って、Sの含有量を0.01%以下とした。S: 0.01% or less S is also an impurity contained in steel, and its content should be as small as possible. In particular, if the content exceeds 0.01%, the hot workability, corrosion resistance and toughness are significantly reduced.
Therefore, the content of S is set to 0.01% or less.
【0018】Cr:10〜15%
Crは、耐炭酸ガス腐食性を向上させるのに有効な元素で
ある。この効果を得るためには、その含有量を10%以上
とする必要がある。一方、その含有量が15%を超える場
合には、焼戻し後の組織を主としてマルテンサイト相に
するのが困難となる。従って、Crの含有量を10〜15%と
した。Cr: 10 to 15% Cr is an element effective for improving carbon dioxide corrosion resistance. In order to obtain this effect, its content must be 10% or more. On the other hand, if the content exceeds 15%, it becomes difficult to make the structure after tempering mainly a martensite phase. Therefore, the content of Cr is set to 10 to 15%.
【0019】Ni:0.7〜8%
Niは、焼戻し後の組織を主としてマルテンサイト相にす
るために必要な元素である。しかし、その含有量が0.7
%未満の場合には、焼戻し後の組織が主としてフェライ
ト相となり、その含有量が8%を超える場合には、焼戻
し後の組織が主としてオーステナイト相となる。従っ
て、Niの含有量を0.7〜8%とした。更に望ましいのは、
0.7〜7%である。Ni: 0.7 to 8% Ni is an element necessary for mainly making the structure after tempering into a martensite phase. However, its content is 0.7
When the content is less than%, the structure after tempering mainly becomes a ferrite phase, and when the content exceeds 8%, the structure after tempering becomes mainly austenite phase. Therefore, the content of Ni is set to 0.7 to 8%. More desirable is
It is 0.7 to 7%.
【0020】Mo:1.5〜5.0%
Moは、Crとの共存下で炭酸ガス環境での局部腐食を防止
するのに有効な元素である。この効果を得るためには、
その含有量を1.5%以上とする必要がある。しかし、そ
の含有量が5.0%を超えると、この効果は飽和し、コス
ト上昇を招く。従って、Moの含有量を1.5〜5.0%とし
た。望ましいのは2.0〜5.0%であり、更に望ましいの
は、2.8〜5.0%である。Mo: 1.5 to 5.0% Mo is an element effective in preventing local corrosion in a carbon dioxide environment in the presence of Cr. To get this effect,
Its content must be 1.5% or more. However, if its content exceeds 5.0%, this effect is saturated, resulting in an increase in cost. Therefore, the content of Mo is set to 1.5 to 5.0%. 2.0 to 5.0% is preferable, and 2.8 to 5.0% is more preferable.
【0021】Al:0.001〜0.10%
Alは、溶製過程において脱酸剤として使用する元素であ
る。この効果を得るためには、その含有量を0.001%以
上とする必要がある。しかし、その含有量が0.10%を超
えると、介在物が多くなって耐食性が損なわれる。従っ
て、Alの含有量を0.001〜0.10%とした。Al: 0.001 to 0.10% Al is an element used as a deoxidizing agent in the melting process. In order to obtain this effect, its content must be 0.001% or more. However, if its content exceeds 0.10%, the amount of inclusions increases and the corrosion resistance is impaired. Therefore, the content of Al is set to 0.001 to 0.10%.
【0022】N:0.07%以下
Nは、鋼中に含まれる不純物であり、その含有量はでき
るだけ少ない方がよい。特に、その含有量が0.07%を超
えると、介在物が多くなって耐食性が劣化する。従っ
て、Nの含有量を0.07%以下とした。N: 0.07% or less N is an impurity contained in steel, and its content should be as small as possible. In particular, if the content exceeds 0.07%, the amount of inclusions increases and the corrosion resistance deteriorates. Therefore, the content of N is set to 0.07% or less.
【0023】本発明のマルテンサイト系ステンレス鋼の
一つは、上記各成分のほか、残部がFeおよび不純物から
なるものである。もう一つは、上記の成分に加えて更に
下記に示す第1群、第2群および第3群の少なくとも1
群から選んだ少なくとも1種の合金成分を含むものであ
る。以下、各群の成分について説明する。One of the martensitic stainless steels of the present invention is one in which, in addition to the above components, the balance is Fe and impurities. The other is at least one of the following first, second and third groups in addition to the above components.
It contains at least one alloy component selected from the group. The components of each group will be described below.
【0024】第1群(Ti、V、Nb、Zr:それぞれ0.005
〜0.25%)
Ti、V、NbおよびZrは、いずれもCを固定し、強度のば
らつきを小さくする作用を有するので、必要に応じて、
これらのうちから選択される1種以上を含有してもよ
い。しかし、いずれの元素もその含有量が0.005%未満
では上記の効果が得られない。一方、いずれの元素もそ
の含有量が0.25%を超えると、焼戻し後の組織を主とし
てマルテンサイト相とすることができない。従って、こ
れらの元素を選択的に含有させる場合の含有量をそれぞ
れ0.005〜0.25%とした。First group (Ti, V, Nb, Zr: 0.005 each)
.About.0.25%) Ti, V, Nb, and Zr all have the effect of fixing C and reducing the variation in strength. Therefore, if necessary,
You may contain 1 or more types selected from these. However, if the content of any element is less than 0.005%, the above effect cannot be obtained. On the other hand, if the content of any of the elements exceeds 0.25%, the structure after tempering cannot be mainly made into a martensite phase. Therefore, the content in the case of selectively containing these elements is set to 0.005 to 0.25%, respectively.
【0025】第2群(Cu:0.01〜3%)
Cuは、Niと同様に、焼戻し後の組織を主としてマルテン
サイト相とするのに有効な元素である。Cuの添加によっ
てこの効果を得るためには、その含有量を0.01%以上と
すればよい。ただし、その含有量が3%を超えると、鋼
の熱間加工性が低下する。従って、Cuを含有させる場合
には、その含有量を0.01〜3%とした。望ましいのは0.0
5〜1.0%である。Second group (Cu: 0.01 to 3%) Cu, like Ni, is an element effective for making the structure after tempering mainly a martensite phase. In order to obtain this effect by adding Cu, its content may be 0.01% or more. However, if its content exceeds 3%, the hot workability of steel deteriorates. Therefore, when Cu is contained, its content is set to 0.01 to 3%. 0.0 preferred
5 to 1.0%.
【0026】第3群(Ca、Mg、La、Ce:それぞれ0.0002
〜0.005%)
Ca、Mg、LaおよびCeはいずれも、鋼の熱間加工性を向上
させるのに有効な元素であるので、必要に応じて、これ
らのうちから選択される1種以上を含有してもよい。し
かし、いずれの元素もその含有量が0.0002%未満では上
記の効果が得られない。一方、いずれの元素もその含有
量が0.005%を超えると、粗大な酸化物が生成し、鋼の
耐食性が低下する。従って、これらの元素を選択的に含
有させる場合の含有量を0.0002〜0.005%とした。特
に、Caおよび/またはLaを含有させるのが望ましい。Third group (Ca, Mg, La, Ce: 0.0002 each)
~ 0.005%) Ca, Mg, La and Ce are all effective elements for improving the hot workability of steel, so they contain at least one selected from these, if necessary. You may. However, if the content of any element is less than 0.0002%, the above effect cannot be obtained. On the other hand, if the content of any of the elements exceeds 0.005%, coarse oxides are formed, and the corrosion resistance of steel decreases. Therefore, the content in the case of selectively containing these elements is set to 0.0002 to 0.005%. In particular, it is desirable to contain Ca and / or La.
【0027】本発明の鋼は、上記の化学組成を有すると
ともに、下記の(1)式を満足しなければならない。これ
は、上記の(1)式を満たす場合には、鋼の強度を向上さ
せることができるからである。
Mo≧1.5−0.89Si+32.2C …(1)
ただし、(1)式中の各元素記号は、それぞれの元素の含
有量(質量%)を示す。The steel of the present invention must have the above chemical composition and satisfy the following formula (1). This is because the strength of steel can be improved when the above formula (1) is satisfied. Mo ≧ 1.5−0.89Si + 32.2C (1) However, each element symbol in the formula (1) indicates the content (mass%) of each element.
【0028】図1は、後述する実施例で試験した各種の
鋼のMo含有量と、(1)式の右辺、即ち、「1.5−0.89Si+
32.2C」(これをL値という)との関係を示す図であ
る。図中の「○」は0.2%耐力が860MPa以上であった場
合を示し、「×」は0.2%耐力が860MPa未満であった場
合を示す。FIG. 1 shows the Mo contents of various steels tested in Examples described later and the right side of the formula (1), that is, "1.5-0.89Si +".
It is a figure which shows the relationship with "32.2C" (this is called L value). In the figure, “◯” indicates that the 0.2% proof stress was 860 MPa or more, and “x” indicates that the 0.2% proof stress was less than 860 MPa.
【0029】図1に示すとおり、Mo含有量が本発明で規
定する範囲外(即ち、1.5%未満)の場合には、0.2%耐
力が860MPa未満であり、また、Moの含有量が本発明で規
定する範囲内(即ち、1.5〜5%)の場合でも、上記の
(1)式を満たさなければ、0.2%耐力が860MPa未満であ
る。しかし、上記の(1)式を満たす鋼であれば、0.2%耐
力が860MPa以上となり、油井用鋼材としての使用に耐え
うる充分な強度が得られる。従って、本発明の鋼は、前
記の化学組成の範囲内で、しかも上記の(1)式を満たす
必要がある。As shown in FIG. 1, when the Mo content is out of the range specified by the present invention (that is, less than 1.5%), the 0.2% proof stress is less than 860 MPa, and the Mo content is less than that of the present invention. Even within the range specified in (that is, 1.5 to 5%),
If the formula (1) is not satisfied, the 0.2% proof stress is less than 860 MPa. However, if the steel satisfies the above formula (1), the 0.2% proof stress will be 860 MPa or more, and sufficient strength to withstand use as a steel material for oil wells will be obtained. Therefore, the steel of the present invention must satisfy the above formula (1) within the range of the above chemical composition.
【0030】本発明者らは、さらに、金属組織の影響に
ついて検討した結果、金属組織が主として焼戻しマルテ
ンサイト、焼戻し時に析出した炭化物および焼戻し時に
微細析出したラーベス相主体の金属間化合物からなる組
織であれば、耐硫化物応力腐食割れ性を低下させること
なく、鋼の強度を向上させることができることを見出し
た。As a result of further studying the influence of the metallic structure, the present inventors have found that the metallic structure is a structure mainly composed of tempered martensite, carbides precipitated during tempering and intermetallic compounds mainly composed of laves phase finely precipitated during tempering. It has been found that the strength of the steel can be improved without lowering the sulfide stress corrosion cracking resistance.
【0031】なお、「主として焼戻しマルテンサイト」
とは、金属組織の70vol%以上が焼戻しマルテンサイト
組織であることをいい、焼戻しマルテンサイト組織の外
に残留オーステナイト組織やフェライト組織が存在して
いてもよい。[Mainly tempered martensite]
The term means that 70 vol% or more of the metal structure is a tempered martensite structure, and a retained austenite structure or a ferrite structure may be present outside the tempered martensite structure.
【0032】また、「ラーベス相主体の金属間化合物」
は、Fe2Mo等のラーベス相の金属間化合物の一部にσ
相、μ相、χ相等の金属間化合物を含んでもよいものと
する。Further, "intermetallic compound mainly composed of Laves phase"
Is σ in a part of the Laves phase intermetallic compound such as Fe 2 Mo.
Phase, μ phase, χ phase, etc. may be included.
【0033】図2は、焼入れ焼戻し後における鋼の抽出
レプリカ組織(倍率:30,000)を示す図である。同図
(a)は、本発明鋼の金属組織の一例を示し、(b)は、比較
例の鋼の金属組織の一例を示す。FIG. 2 is a diagram showing an extracted replica structure (magnification: 30,000) of steel after quenching and tempering. Same figure
(a) shows an example of the metallographic structure of the steel of the present invention, and (b) shows an example of the metallographic structure of the steel of the comparative example.
【0034】同図(b)に示すように、焼戻し後に粗大な
金属間化合物のみが析出し、微細なラーベス相主体の金
属間化合物が析出しない場合には、耐力860MPa以上の高
強度を実現することはできない。一方、本発明の鋼は、
焼戻し後には、微細なラーベス相主体の金属間化合物が
多数析出する(図2(a)参照)。焼戻し時に微細析出し
たラーベス相主体の金属間化合物は、その析出強化作用
によって鋼の強度を向上させる効果を有するが、このよ
うな金属間化合物によって鋼を高強度化しても、硫化物
応力腐食割れが発生しないのである。As shown in FIG. 2 (b), when only coarse intermetallic compounds are deposited after tempering and fine intermetallic compounds mainly composed of Laves phase are not deposited, high strength of proof stress of 860 MPa or more is realized. It is not possible. On the other hand, the steel of the present invention is
After tempering, many fine intermetallic compounds mainly composed of Laves phase are precipitated (see FIG. 2 (a)). The intermetallic compound mainly composed of Laves phase finely precipitated during tempering has the effect of improving the strength of the steel by its precipitation strengthening effect, but even if the steel is strengthened by such intermetallic compound, sulfide stress corrosion cracking Does not occur.
【0035】本発明鋼の金属組織中には焼戻し時に析出
した炭化物が含まれる。炭化物は、鋼の強度を確保する
ために有効な金属組織であるが、鋼中に炭化物が含まれ
ているだけでは、耐力860MPa以上の高強度を実現するこ
とはできない。従って、本発明においては、炭化物が析
出するとともに、上述のラーベス相主体の金属間化合物
が微細に析出する必要がある。The metal structure of the steel of the present invention contains carbides precipitated during tempering. Carbide is a metal structure effective for securing the strength of steel, but it is not possible to realize a high strength of proof pressure 860 MPa or more only by containing carbide in steel. Therefore, in the present invention, it is necessary for the carbide to be precipitated and for the intermetallic compound mainly composed of the Laves phase to be finely precipitated.
【0036】本発明鋼の熱処理は、通常の焼入れ−焼戻
しである。焼入れ温度は、800〜1,000℃が望ましい。な
お、微細なラーベス相主体の金属間化合物が析出し、耐
力を860MPa以上とできる焼戻し温度領域は600℃以下で
ある。これを超える温度で焼戻しをすると、転位密度が
減少し、または、金属間化合物が金属組織中に固溶化し
てしまい、耐力860MPa以上の高強度化ができない。従っ
て、焼戻しは600℃以下で行う。The heat treatment of the steel of the present invention is a conventional quenching-tempering. The quenching temperature is preferably 800-1,000 ℃. The tempering temperature range in which a fine intermetallic compound mainly composed of Laves phase is precipitated and the proof stress can be 860 MPa or higher is 600 ° C or lower. If tempering is performed at a temperature higher than this, the dislocation density decreases or the intermetallic compound becomes a solid solution in the metal structure, so that the yield strength cannot be increased to 860 MPa or more. Therefore, tempering is performed at 600 ° C or lower.
【0037】上記のような原理から、本発明の鋼は、先
に述べた化学組成を有し、(1)式を満たすとともに、そ
の金属組織が主として焼戻しマルテンサイト、焼戻し時
に析出した炭化物および焼戻し時に微細析出したラーベ
ス相主体の金属間化合物である必要がある。From the above principle, the steel of the present invention has the above-described chemical composition and satisfies the formula (1), and its metal structure is mainly tempered martensite, carbides precipitated during tempering and tempering. Sometimes it is necessary to be an intermetallic compound mainly composed of finely precipitated Laves phase.
【0038】[0038]
【実施例】表1に示す化学組成を有する鋼を溶製して鋳
造し、得られた鋳片を熱間鍛造し、熱間圧延して、厚
さ:15mm、幅:120mm、長さ:1,000mmの鋼板を作製し、
これらの鋼板に焼入れ(920℃水冷)および焼戻し(500
〜550℃空冷)を施したものを試験用鋼板として各種試
験に供した。EXAMPLES Steel having the chemical composition shown in Table 1 was melted and cast, and the obtained slab was hot forged and hot rolled to have a thickness of 15 mm, a width of 120 mm, and a length of: Produce 1,000mm steel plate,
Quenching (920 ℃ water cooling) and tempering (500
Those subjected to air cooling up to 550 ° C) were subjected to various tests as test steel plates.
【0039】[0039]
【表1】 [Table 1]
【0040】まず、それぞれの試験用鋼板から直径:6.
35mm、平行部長さ:25.4mmの丸棒試験片を採取し、常温
で引張試験を行った。このときの0.2%耐力を表2に示
す。First, from each test steel plate, diameter: 6.
A round bar test piece having a length of 35 mm and a parallel part length of 25.4 mm was sampled and subjected to a tensile test at room temperature. Table 2 shows the 0.2% proof stress at this time.
【0041】次に、上記の引張試験において0.2%耐力
が860MPa以上であった本発明例について、それぞれの試
験用鋼板から厚さ:3mm、幅:20mm、長さ:50mmの試験
片を採取し、この試験片を600番エメリー紙で研磨した
後、脱脂、乾燥したものを0.973MPaのCO2ガスおよび
0.0014MPaのH2Sガスを飽和させた25%NaCl水溶液
(温度:165℃)に720時間浸漬した。浸漬後に試験片の
腐食減量〔(試験前の質量)−(試験後の質量)〕の測
定し、また目視により試験片表面の局部腐食の有無を確
認した。この結果、全ての試験片で腐食速度は0.5mm/年
以下で、かつ表面に局部腐食は見られなかった。Next, for the examples of the present invention whose 0.2% proof stress was 860 MPa or more in the above tensile test, test pieces having a thickness of 3 mm, a width of 20 mm and a length of 50 mm were taken from each test steel plate. after polishing the test piece No. 600 emery paper, degreased, CO 2 gas 0.973MPa a material obtained by drying and
It was immersed in a 25% NaCl aqueous solution (temperature: 165 ° C.) saturated with H 2 S gas of 0.0014 MPa for 720 hours. After immersion, the corrosion weight loss [(mass before test)-(mass after test)] of the test piece was measured, and the presence or absence of local corrosion on the surface of the test piece was visually confirmed. As a result, all the test pieces had a corrosion rate of 0.5 mm / year or less, and no local corrosion was observed on the surface.
【0042】続いて、上記の引張試験において0.2%耐
力が860MPa以上であった実施例について、NACEのTM0177
-96 Method Aに従い、バネ式(プルーフリング式)試験
機を使用して定荷重試験を行った。具体的には、それぞ
れの試験用鋼板から直径:6.3mm、平行部長さ:25.4mm
の丸棒試験片を採取し、0.003MPaのH2Sガス(CO 2
bAl.)を飽和させた20%NaCl溶液(pH4.5)を使用し
て、試験温度:25℃で720時間の定荷重試験を行った。
この結果、全ての試験片で破断しなかった。Subsequently, 0.2% resistance was obtained in the above tensile test.
For the examples where the force was 860 MPa or more, NACE TM0177
-96 method A, spring type (proof ring type) test
A constant load test was performed using a machine. Specifically, that
From this test steel plate, diameter: 6.3 mm, parallel part length: 25.4 mm
Round bar test piece was sampled and 0.003 MPa HTwoS gas (CO Two
bAl.) saturated 20% NaCl solution (pH 4.5)
Then, a constant load test was performed at a test temperature of 25 ° C. for 720 hours.
As a result, all the test pieces did not break.
【0043】金属組織についても、光学顕微鏡および抽
出レプリカによって観察した。この結果を表2に併記す
る。The metal structure was also observed by an optical microscope and an extraction replica. The results are also shown in Table 2.
【0044】[0044]
【表2】 [Table 2]
【0045】表2に示すとおり、本発明例1〜28は、0.2
%耐力が860MPa以上であるとともに、優れた耐炭酸ガス
腐食性および耐硫化物応力腐食割れ性を有している。一
方、Crおよび/またはMoの含有量が本発明で規定する範
囲外の比較例29、32、33、38および39、ならびに前記
(1)式を満たさない比較例30、31および34〜37はいずれ
も、0.2%耐力が860MPa未満であり、油井用鋼材として
充分な強度が得られない。As shown in Table 2, the invention examples 1 to 28 had 0.2
It has a% proof stress of 860 MPa or more and excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance. On the other hand, Comparative Examples 29, 32, 33, 38 and 39 in which the content of Cr and / or Mo is out of the range specified in the present invention, and the above
Comparative Examples 30, 31 and 34 to 37 which do not satisfy the formula (1) all have a 0.2% proof stress of less than 860 MPa, and cannot provide sufficient strength as a steel material for oil wells.
【0046】[0046]
【発明の効果】本発明のマルテンサイトステンレス鋼
は、耐力860MPa以上の高強度であり、且つ優れた耐炭酸
ガス腐食性および耐硫化物応力腐食割れ性を有する。こ
の鋼は、炭酸ガス、硫化水素、塩素イオンまたはこれら
の2種以上を含む環境下で油井管その他の用途に広く使
用できる実用性の高い鋼である。The martensitic stainless steel of the present invention has high strength with a yield strength of 860 MPa or more, and has excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance. This steel is a highly practical steel that can be widely used for oil country tubular goods and other applications in an environment containing carbon dioxide gas, hydrogen sulfide, chlorine ions, or two or more of these.
【図1】鋼中のMo含有量と(1)式右辺値(L値)との関
係を示す図である。FIG. 1 is a diagram showing the relationship between the Mo content in steel and the value on the right side (L value) of expression (1).
【図2】焼入れ焼戻し後における鋼の抽出レプリカ組織
を示す図である。FIG. 2 is a diagram showing an extracted replica structure of steel after quenching and tempering.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 植田 昌克 和歌山県和歌山市湊1850番地 住友金属工 業株式会社和歌山製鉄所内 (72)発明者 近藤 邦夫 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Masakatsu Ueda Sumitomo Metal Works, 1850 Minato, Wakayama, Wakayama Prefecture Wakayama Steel Works Co., Ltd. (72) Inventor Kunio Kondo 4-53 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd.
Claims (8)
以下、Mn:0.1〜3.0%、P:0.04%以下、S:0.01%以
下、Cr:10〜15%、Ni:0.7〜8%、Mo:1.5〜5.0%、A
l:0.001〜0.10%およびN:0.07%以下を含有し、残部
がFeおよび不純物からなり、且つ、下記の(1)式を満足
し、金属組織が主として焼戻しマルテンサイト、焼戻し
時に析出した炭化物および焼戻し時に微細析出したラー
ベス相主体の金属間化合物からなることを特徴とする耐
炭酸ガス腐食性および耐硫化物応力腐食割れ性に優れた
高強度マルテンサイトステンレス鋼。 Mo≧1.5−0.89Si+32.2C …(1) ただし、(1)式中の各元素記号は、それぞれの元素の含
有量(質量%)を示す。1. In mass%, C: 0.001 to 0.04%, Si: 0.5%
Below, Mn: 0.1-3.0%, P: 0.04% or less, S: 0.01% or less, Cr: 10-15%, Ni: 0.7-8%, Mo: 1.5-5.0%, A
l: 0.001 to 0.10% and N: 0.07% or less, the balance consisting of Fe and impurities, and satisfying the following formula (1), the metal structure is mainly tempered martensite, carbide precipitated during tempering, and A high-strength martensitic stainless steel excellent in carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance, which is characterized by comprising an intermetallic compound mainly composed of a Laves phase finely precipitated during tempering. Mo ≧ 1.5−0.89Si + 32.2C (1) However, each element symbol in the formula (1) indicates the content (mass%) of each element.
以下、Mn:0.1〜3.0%、P:0.04%以下、S:0.01%以
下、Cr:10〜15%、Ni:0.7〜8%、Mo:1.5〜5.0%、A
l:0.001〜0.10%およびN:0.07%以下を含有し、更
に、Ti:0.005〜0.25%、V:0.005〜0.25%、Nb:0.00
5〜0.25%およびZr:0.005〜0.25%から選択される1種
以上を含み、残部がFeおよび不純物からなり、且つ、下
記の(1)式を満足し、金属組織が主として焼戻しマルテ
ンサイト、焼戻し時に析出した炭化物および焼戻し時に
微細析出したラーベス相主体の金属間化合物からなるこ
とを特徴とする耐炭酸ガス腐食性および耐硫化物応力腐
食割れ性に優れた高強度マルテンサイトステンレス鋼。 Mo≧1.5−0.89Si+32.2C …(1) ただし、(1)式中の各元素記号は、それぞれの元素の含
有量(質量%)を示す。2. In mass%, C: 0.001 to 0.04%, Si: 0.5%
Below, Mn: 0.1-3.0%, P: 0.04% or less, S: 0.01% or less, Cr: 10-15%, Ni: 0.7-8%, Mo: 1.5-5.0%, A
l: 0.001 to 0.10% and N: 0.07% or less, and further Ti: 0.005 to 0.25%, V: 0.005 to 0.25%, Nb: 0.00
5 to 0.25% and Zr: 0.005 to 0.25%, at least one selected from the group consisting of Fe and impurities, and the following formula (1) is satisfied, and the metal structure is mainly tempered martensite and tempered. A high-strength martensitic stainless steel having excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance, which is characterized by comprising carbides that are sometimes precipitated and intermetallic compounds mainly composed of a Laves phase that are finely precipitated during tempering. Mo ≧ 1.5−0.89Si + 32.2C (1) However, each element symbol in the formula (1) indicates the content (mass%) of each element.
以下、Mn:0.1〜3.0%、P:0.04%以下、S:0.01%以
下、Cr:10〜15%、Ni:0.7〜8%、Mo:1.5〜5.0%、A
l:0.001〜0.10%、N:0.07%以下およびCu:0.01〜3
%を含有し、残部がFeおよび不純物からなり、且つ、下
記の(1)式を満足し、金属組織が主として焼戻しマルテ
ンサイト、焼戻し時に析出した炭化物および焼戻し時に
微細析出したラーベス相主体の金属間化合物からなるこ
とを特徴とする耐炭酸ガス腐食性および耐硫化物応力腐
食割れ性に優れた高強度マルテンサイトステンレス鋼。 Mo≧1.5−0.89Si+32.2C …(1) ただし、(1)式中の各元素記号は、それぞれの元素の含
有量(質量%)を示す。3. In mass%, C: 0.001 to 0.04%, Si: 0.5%
Below, Mn: 0.1-3.0%, P: 0.04% or less, S: 0.01% or less, Cr: 10-15%, Ni: 0.7-8%, Mo: 1.5-5.0%, A
l: 0.001 to 0.10%, N: 0.07% or less and Cu: 0.01 to 3
%, The balance consisting of Fe and impurities, and satisfying the following formula (1), the metal structure is mainly tempered martensite, carbides precipitated during tempering and fine precipitation Laves phase-based metal during tempering A high-strength martensitic stainless steel excellent in carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance, which is characterized by comprising a compound. Mo ≧ 1.5−0.89Si + 32.2C (1) However, each element symbol in the formula (1) indicates the content (mass%) of each element.
以下、Mn:0.1〜3.0%、P:0.04%以下、S:0.01%以
下、Cr:10〜15%、Ni:0.7〜8%、Mo:1.5〜5.0%、A
l:0.001〜0.10%、N:0.07%以下およびCu:0.01〜3
%を含有し、更に、Ti:0.005〜0.25%、V:0.005〜0.
25%、Nb:0.005〜0.25%およびZr:0.005〜0.25%から
選択される1種以上を含み、残部がFeおよび不純物から
なり、且つ、下記の(1)式を満足し、金属組織が主とし
て焼戻しマルテンサイト、焼戻し時に析出した炭化物お
よび焼戻し時に微細析出したラーベス相主体の金属間化
合物からなることを特徴とする耐炭酸ガス腐食性および
耐硫化物応力腐食割れ性に優れた高強度マルテンサイト
ステンレス鋼。 Mo≧1.5−0.89Si+32.2C …(1) ただし、(1)式中の各元素記号は、それぞれの元素の含
有量(質量%)を示す。4. C: 0.001 to 0.04%, Si: 0.5% in mass%
Below, Mn: 0.1-3.0%, P: 0.04% or less, S: 0.01% or less, Cr: 10-15%, Ni: 0.7-8%, Mo: 1.5-5.0%, A
l: 0.001 to 0.10%, N: 0.07% or less and Cu: 0.01 to 3
%, Ti: 0.005 to 0.25%, V: 0.005 to 0.
25%, Nb: 0.005 to 0.25% and Zr: 0.005 to 0.25%, and the balance consists of Fe and impurities, and the formula (1) below is satisfied. High-strength martensitic stainless steel with excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance, characterized by being composed of tempered martensite, carbides precipitated during tempering, and intermetallic compounds mainly composed of Laves phase finely precipitated during tempering steel. Mo ≧ 1.5−0.89Si + 32.2C (1) However, each element symbol in the formula (1) indicates the content (mass%) of each element.
以下、Mn:0.1〜3.0%、P:0.04%以下、S:0.01%以
下、Cr:10〜15%、Ni:0.7〜8%、Mo:1.5〜5.0%、A
l:0.001〜0.10%およびN:0.07%以下を含有し、さら
にCa:0.0002〜0.005%、Mg:0.0002〜0.005%、La:0.
0002〜0.005%およびCe:0.0002〜0.005%から選択され
る1種以上を含み、残部がFeおよび不純物からなり、且
つ、下記の(1)式を満足し、金属組織が主として焼戻し
マルテンサイト、焼戻し時に析出した炭化物および焼戻
し時に微細析出したラーベス相主体の金属間化合物から
なることを特徴とする耐炭酸ガス腐食性および耐硫化物
応力腐食割れ性に優れた高強度マルテンサイトステンレ
ス鋼。 Mo≧1.5−0.89Si+32.2C …(1) ただし、(1)式中の各元素記号は、それぞれの元素の含
有量(質量%)を示す。5. In mass%, C: 0.001 to 0.04%, Si: 0.5%
Below, Mn: 0.1-3.0%, P: 0.04% or less, S: 0.01% or less, Cr: 10-15%, Ni: 0.7-8%, Mo: 1.5-5.0%, A
l: 0.001 to 0.10% and N: 0.07% or less, further Ca: 0.0002 to 0.005%, Mg: 0.0002 to 0.005%, La: 0.
0002 to 0.005% and Ce: 0.0002 to 0.005%, one or more selected, the balance consisting of Fe and impurities, and satisfying the following formula (1), the metal structure is mainly tempered martensite, tempered A high-strength martensitic stainless steel having excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance, which is characterized by comprising carbides that are sometimes precipitated and intermetallic compounds mainly composed of a Laves phase that are finely precipitated during tempering. Mo ≧ 1.5−0.89Si + 32.2C (1) However, each element symbol in the formula (1) indicates the content (mass%) of each element.
以下、Mn:0.1〜3.0%、P:0.04%以下、S:0.01%以
下、Cr:10〜15%、Ni:0.7〜8%、Mo:1.5〜5.0%、A
l:0.001〜0.10%およびN:0.07%以下を含有し、更
に、Ti:0.005〜0.25%、V:0.005〜0.25%、Nb:0.00
5〜0.25%およびZr:0.005〜0.25%から選択される1種
以上を含み、Ca:0.0002〜0.005%、Mg:0.0002〜0.005
%、La:0.0002〜0.005%およびCe:0.0002〜0.005%か
ら選択される1種以上を含み、残部がFeおよび不純物か
らなり、且つ、下記の(1)式を満足し、金属組織が主と
して焼戻しマルテンサイト、焼戻し時に析出した炭化物
および焼戻し時に微細析出したラーベス相主体の金属間
化合物からなることを特徴とする耐炭酸ガス腐食性およ
び耐硫化物応力腐食割れ性に優れた高強度マルテンサイ
トステンレス鋼。 Mo≧1.5−0.89Si+32.2C …(1) ただし、(1)式中の各元素記号は、それぞれの元素の含
有量(質量%)を示す。6. In mass%, C: 0.001 to 0.04%, Si: 0.5%
Below, Mn: 0.1-3.0%, P: 0.04% or less, S: 0.01% or less, Cr: 10-15%, Ni: 0.7-8%, Mo: 1.5-5.0%, A
l: 0.001 to 0.10% and N: 0.07% or less, and further Ti: 0.005 to 0.25%, V: 0.005 to 0.25%, Nb: 0.00
Includes one or more selected from 5 to 0.25% and Zr: 0.005 to 0.25%, Ca: 0.0002 to 0.005%, Mg: 0.0002 to 0.005
%, La: 0.0002 to 0.005% and Ce: 0.0002 to 0.005%, the balance consists of Fe and impurities, and the following formula (1) is satisfied, and the metal structure is mainly tempered. High-strength martensitic stainless steel with excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance, which consists of martensite, carbides precipitated during tempering, and intermetallic compounds mainly composed of Laves phase finely precipitated during tempering. . Mo ≧ 1.5−0.89Si + 32.2C (1) However, each element symbol in the formula (1) indicates the content (mass%) of each element.
以下、Mn:0.1〜3.0%、P:0.04%以下、S:0.01%以
下、Cr:10〜15%、Ni:0.7〜8%、Mo:1.5〜5.0%、A
l:0.001〜0.10%、N:0.07%以下およびCu:0.01〜3
%を含有し、更にCa:0.0002〜0.005%、Mg:0.0002〜
0.005%、La:0.0002〜0.005%およびCe:0.0002〜0.00
5%から選択される1種以上を含み、残部がFeおよび不
純物からなり、且つ、下記の(1)式を満足し、金属組織
が主として焼戻しマルテンサイト、焼戻し時に析出した
炭化物および焼戻し時に微細析出したラーベス相主体の
金属間化合物からなることを特徴とする耐炭酸ガス腐食
性および耐硫化物応力腐食割れ性に優れた高強度マルテ
ンサイトステンレス鋼。 Mo≧1.5−0.89Si+32.2C …(1) ただし、(1)式中の各元素記号は、それぞれの元素の含
有量(質量%)を示す。7. In mass%, C: 0.001 to 0.04%, Si: 0.5%
Below, Mn: 0.1-3.0%, P: 0.04% or less, S: 0.01% or less, Cr: 10-15%, Ni: 0.7-8%, Mo: 1.5-5.0%, A
l: 0.001 to 0.10%, N: 0.07% or less and Cu: 0.01 to 3
%, Further Ca: 0.0002 to 0.005%, Mg: 0.0002 to
0.005%, La: 0.0002 to 0.005% and Ce: 0.0002 to 0.00
Contains at least one selected from 5%, the balance consisting of Fe and impurities, and satisfies the following formula (1), and the metal structure is mainly tempered martensite, carbides precipitated during tempering and fine precipitation during tempering. A high-strength martensitic stainless steel excellent in carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance, which is characterized by comprising an intermetallic compound mainly composed of a Laves phase. Mo ≧ 1.5−0.89Si + 32.2C (1) However, each element symbol in the formula (1) indicates the content (mass%) of each element.
以下、Mn:0.1〜3.0%、P:0.04%以下、S:0.01%以
下、Cr:10〜15%、Ni:0.7〜8%、Mo:1.5〜5.0%、A
l:0.001〜0.10%、N:0.07%以下およびCu:0.01〜3
%を含有し、更に、Ti:0.005〜0.25%、V:0.005〜0.
25%、Nb:0.005〜0.25%およびZr:0.005〜0.25%から
選択される1種以上を含み、Ca:0.0002〜0.005%、M
g:0.0002〜0.005%、La:0.0002〜0.005%およびCe:
0.0002〜0.005%から選択される1種以上を含み、残部
がFeおよび不純物からなり、且つ、下記の(1)式を満足
し、金属組織が主として焼戻しマルテンサイト、焼戻し
時に析出した炭化物および焼戻し時に微細析出したラー
ベス相主体の金属間化合物からなることを特徴とする耐
炭酸ガス腐食性および耐硫化物応力腐食割れ性に優れた
高強度マルテンサイトステンレス鋼。 Mo≧1.5−0.89Si+32.2C …(1) ただし、(1)式中の各元素記号は、それぞれの元素の含
有量(質量%)を示す。8. In mass%, C: 0.001 to 0.04%, Si: 0.5%
Below, Mn: 0.1-3.0%, P: 0.04% or less, S: 0.01% or less, Cr: 10-15%, Ni: 0.7-8%, Mo: 1.5-5.0%, A
l: 0.001 to 0.10%, N: 0.07% or less and Cu: 0.01 to 3
%, Ti: 0.005 to 0.25%, V: 0.005 to 0.
25%, Nb: 0.005 to 0.25% and Zr: 0.005 to 0.25%, including one or more selected, Ca: 0.0002 to 0.005%, M
g: 0.0002 to 0.005%, La: 0.0002 to 0.005% and Ce:
It contains at least one selected from 0.0002 to 0.005%, the balance consists of Fe and impurities, and satisfies the following formula (1), and the metallographic structure is mainly tempered martensite, carbides precipitated during tempering and during tempering. A high-strength martensitic stainless steel having excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance, which is characterized by comprising an intermetallic compound mainly composed of finely precipitated Laves phase. Mo ≧ 1.5−0.89Si + 32.2C (1) However, each element symbol in the formula (1) indicates the content (mass%) of each element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001189138A JP2003003243A (en) | 2001-06-22 | 2001-06-22 | High-strength martensitic stainless steel with excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001189138A JP2003003243A (en) | 2001-06-22 | 2001-06-22 | High-strength martensitic stainless steel with excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003003243A true JP2003003243A (en) | 2003-01-08 |
Family
ID=19028105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001189138A Pending JP2003003243A (en) | 2001-06-22 | 2001-06-22 | High-strength martensitic stainless steel with excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003003243A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007238983A (en) * | 2006-03-07 | 2007-09-20 | Jfe Steel Kk | Martensitic stainless steel having superior efficiency and stability in tempering |
WO2008023702A1 (en) * | 2006-08-22 | 2008-02-28 | Sumitomo Metal Industries, Ltd. | Martensitic stainless steel |
WO2008117721A1 (en) * | 2007-03-26 | 2008-10-02 | Sumitomo Metal Industries, Ltd. | Process for producing bend pipe for line pipe and bend pipe for line pipe |
US7767039B2 (en) | 2003-07-22 | 2010-08-03 | Sumitomo Metal Industries, Ltd. | Martensitic stainless steel |
CN106435373A (en) * | 2016-12-21 | 2017-02-22 | 重庆中鼎三正科技有限公司 | Low-alloy high-strength hydrogen sulphide-proof steel and preparation method thereof |
JP6315159B1 (en) * | 2016-10-25 | 2018-04-25 | Jfeスチール株式会社 | Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same |
WO2018181404A1 (en) | 2017-03-28 | 2018-10-04 | 新日鐵住金株式会社 | Martensitic stainless steel material |
CN109082591A (en) * | 2018-08-22 | 2018-12-25 | 东北大学 | The high-strength oil annular tube steel of 125ksi anti-H 2 S stress corrosion and its preparation process |
CN110846553A (en) * | 2019-09-27 | 2020-02-28 | 邯郸钢铁集团有限责任公司 | Rich in H2Low-yield-ratio corrosion-resistant pipeline steel strip for S environment and production method thereof |
WO2020067247A1 (en) | 2018-09-27 | 2020-04-02 | 日本製鉄株式会社 | Martensitic stainless steel material |
EP3690072A4 (en) * | 2017-09-29 | 2020-08-05 | JFE Steel Corporation | Oil well pipe martensitic stainless seamless steel pipe and production method for same |
CN112063922A (en) * | 2020-09-02 | 2020-12-11 | 衡阳华菱钢管有限公司 | Steel pipe, its preparation method and application |
EP3805420A4 (en) * | 2018-05-25 | 2021-04-14 | JFE Steel Corporation | Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same |
CN114622125A (en) * | 2022-03-07 | 2022-06-14 | 包头钢铁(集团)有限责任公司 | Method for manufacturing rare earth treated high-strength high-toughness multipurpose hydrogen sulfide corrosion-resistant oil well pipe |
EP3862451A4 (en) * | 2018-10-02 | 2022-06-15 | Nippon Steel Corporation | MARTENSITE STAINLESS STEEL SEAMLESS PIPE |
CN115491606A (en) * | 2022-09-28 | 2022-12-20 | 延安嘉盛石油机械有限责任公司 | A low Cr content CO2 corrosion resistant oil casing and its preparation method |
CN115698358A (en) * | 2020-04-01 | 2023-02-03 | 日本制铁株式会社 | Steel material |
CN118084495A (en) * | 2024-02-02 | 2024-05-28 | 哈尔滨工业大学 | High-strength and high-toughness hard (TiZrVNb) CxPreparation method of complex-phase multi-component carbide ceramic material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000144337A (en) * | 1998-11-04 | 2000-05-26 | Nkk Corp | Low c-high chromium alloy steel having high corrosion resistance and high strength and its production |
JP2001098348A (en) * | 1999-09-24 | 2001-04-10 | Kawasaki Steel Corp | High strength martensitic stainless steel oil well pipe |
-
2001
- 2001-06-22 JP JP2001189138A patent/JP2003003243A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000144337A (en) * | 1998-11-04 | 2000-05-26 | Nkk Corp | Low c-high chromium alloy steel having high corrosion resistance and high strength and its production |
JP2001098348A (en) * | 1999-09-24 | 2001-04-10 | Kawasaki Steel Corp | High strength martensitic stainless steel oil well pipe |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7767039B2 (en) | 2003-07-22 | 2010-08-03 | Sumitomo Metal Industries, Ltd. | Martensitic stainless steel |
JP2007238983A (en) * | 2006-03-07 | 2007-09-20 | Jfe Steel Kk | Martensitic stainless steel having superior efficiency and stability in tempering |
WO2008023702A1 (en) * | 2006-08-22 | 2008-02-28 | Sumitomo Metal Industries, Ltd. | Martensitic stainless steel |
EP2060644A4 (en) * | 2006-08-22 | 2016-02-17 | Nippon Steel & Sumitomo Metal Corp | Martensitic stainless steel |
JP5124857B2 (en) * | 2006-08-22 | 2013-01-23 | 新日鐵住金株式会社 | Martensitic stainless steel |
EP2128278A1 (en) * | 2007-03-26 | 2009-12-02 | Sumitomo Metal Industries Limited | Process for producing bend pipe for line pipe and bend pipe for line pipe |
EP2128278A4 (en) * | 2007-03-26 | 2010-12-01 | Sumitomo Metal Ind | METHOD FOR PRODUCING A BOW TUBE FOR A TUBE AND A BOW TUBE FOR A TUBE |
US8038811B2 (en) | 2007-03-26 | 2011-10-18 | Sumitomo Metal Industries, Ltd. | Process for producing bent pipe for line pipe |
JP2008240021A (en) * | 2007-03-26 | 2008-10-09 | Sumitomo Metal Ind Ltd | Manufacturing method of bend pipe for line pipe and bend pipe for line pipe |
WO2008117721A1 (en) * | 2007-03-26 | 2008-10-02 | Sumitomo Metal Industries, Ltd. | Process for producing bend pipe for line pipe and bend pipe for line pipe |
JP6315159B1 (en) * | 2016-10-25 | 2018-04-25 | Jfeスチール株式会社 | Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same |
WO2018079111A1 (en) * | 2016-10-25 | 2018-05-03 | Jfeスチール株式会社 | Seamless pipe of martensitic stainless steel for oil well pipe, and method for producing seamless pipe |
CN106435373A (en) * | 2016-12-21 | 2017-02-22 | 重庆中鼎三正科技有限公司 | Low-alloy high-strength hydrogen sulphide-proof steel and preparation method thereof |
WO2018181404A1 (en) | 2017-03-28 | 2018-10-04 | 新日鐵住金株式会社 | Martensitic stainless steel material |
US11401570B2 (en) | 2017-09-29 | 2022-08-02 | Jfe Steel Corporation | Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same |
EP3690072A4 (en) * | 2017-09-29 | 2020-08-05 | JFE Steel Corporation | Oil well pipe martensitic stainless seamless steel pipe and production method for same |
EP3805420A4 (en) * | 2018-05-25 | 2021-04-14 | JFE Steel Corporation | Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same |
US11773461B2 (en) | 2018-05-25 | 2023-10-03 | Jfe Steel Corporation | Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same |
CN109082591A (en) * | 2018-08-22 | 2018-12-25 | 东北大学 | The high-strength oil annular tube steel of 125ksi anti-H 2 S stress corrosion and its preparation process |
JPWO2020067247A1 (en) * | 2018-09-27 | 2021-08-30 | 日本製鉄株式会社 | Martensitic stainless steel |
WO2020067247A1 (en) | 2018-09-27 | 2020-04-02 | 日本製鉄株式会社 | Martensitic stainless steel material |
US11834725B2 (en) | 2018-09-27 | 2023-12-05 | Nippon Steel Corporation | Martensitic stainless steel material |
EP3862451A4 (en) * | 2018-10-02 | 2022-06-15 | Nippon Steel Corporation | MARTENSITE STAINLESS STEEL SEAMLESS PIPE |
CN110846553A (en) * | 2019-09-27 | 2020-02-28 | 邯郸钢铁集团有限责任公司 | Rich in H2Low-yield-ratio corrosion-resistant pipeline steel strip for S environment and production method thereof |
CN115698358A (en) * | 2020-04-01 | 2023-02-03 | 日本制铁株式会社 | Steel material |
CN115698358B (en) * | 2020-04-01 | 2023-08-29 | 日本制铁株式会社 | steel |
CN112063922A (en) * | 2020-09-02 | 2020-12-11 | 衡阳华菱钢管有限公司 | Steel pipe, its preparation method and application |
CN114622125A (en) * | 2022-03-07 | 2022-06-14 | 包头钢铁(集团)有限责任公司 | Method for manufacturing rare earth treated high-strength high-toughness multipurpose hydrogen sulfide corrosion-resistant oil well pipe |
CN115491606A (en) * | 2022-09-28 | 2022-12-20 | 延安嘉盛石油机械有限责任公司 | A low Cr content CO2 corrosion resistant oil casing and its preparation method |
CN115491606B (en) * | 2022-09-28 | 2023-08-25 | 延安嘉盛石油机械有限责任公司 | CO-resistant low Cr content 2 Corrosion oil casing and preparation method thereof |
CN118084495A (en) * | 2024-02-02 | 2024-05-28 | 哈尔滨工业大学 | High-strength and high-toughness hard (TiZrVNb) CxPreparation method of complex-phase multi-component carbide ceramic material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4428237B2 (en) | High strength martensitic stainless steel with excellent carbon dioxide corrosion resistance and sulfide stress corrosion cracking resistance | |
JP4893196B2 (en) | High strength stainless steel pipe for oil well with high toughness and excellent corrosion resistance | |
EP0545753B1 (en) | Duplex stainless steel having improved strength and corrosion resistance | |
JP4367412B2 (en) | Martensitic stainless steel | |
JP2003003243A (en) | High-strength martensitic stainless steel with excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance | |
JP5446335B2 (en) | Evaluation method of high strength stainless steel pipe for oil well | |
JP4462005B2 (en) | High strength stainless steel pipe for line pipe with excellent corrosion resistance and method for producing the same | |
WO2005017222A1 (en) | High strength stainless steel pipe excellent in corrosion resistance for use in oil well and method for production thereof | |
JPWO2004001082A1 (en) | Stainless steel pipe for oil well and manufacturing method thereof | |
WO2005042793A1 (en) | High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof | |
WO1999041422A1 (en) | Corrosion resisting steel and corrosion resisting oil well pipe having high corrosion resistance to carbon dioxide gas | |
JPWO2016079920A1 (en) | High strength stainless steel seamless steel pipe for oil well | |
JP3555579B2 (en) | High corrosion resistance martensitic stainless steel | |
JPH032227B2 (en) | ||
JP7207557B2 (en) | Stainless seamless steel pipe for oil country tubular goods and manufacturing method thereof | |
JPH0841599A (en) | Martensitic stainless steel with excellent corrosion resistance in the weld | |
JP3470418B2 (en) | High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance | |
US4278465A (en) | Corrosion-resistant alloys | |
JPH0643626B2 (en) | Martensitic stainless steel for oil country tubular goods | |
JP3201081B2 (en) | Stainless steel for oil well and production method thereof | |
JP2962098B2 (en) | Method for producing 110 Ksi grade high strength corrosion resistant martensitic stainless steel pipe | |
JPH04224656A (en) | Martensitic stainless steel for oil well casting, tubing and drill pipe | |
EP0378752A1 (en) | Corrosion-resistant iron-nickel-chromium alloy | |
JP3422880B2 (en) | High corrosion resistance martensitic stainless steel with low weld hardness | |
JP3422877B2 (en) | High corrosion resistance martensitic stainless steel with low weld hardness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100420 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100907 |