JP2003091839A - Focal error detector and optical information recorder using the same - Google Patents
Focal error detector and optical information recorder using the sameInfo
- Publication number
- JP2003091839A JP2003091839A JP2001282430A JP2001282430A JP2003091839A JP 2003091839 A JP2003091839 A JP 2003091839A JP 2001282430 A JP2001282430 A JP 2001282430A JP 2001282430 A JP2001282430 A JP 2001282430A JP 2003091839 A JP2003091839 A JP 2003091839A
- Authority
- JP
- Japan
- Prior art keywords
- objective lens
- light
- optical
- light beam
- focus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacturing Optical Record Carriers (AREA)
- Optical Head (AREA)
- Optical Recording Or Reproduction (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光ディスク原盤を
製造するための光ディスク原盤露光装置に用いられ、特
に露光用光源波長と焦点制御用光源波長とで焦点距離が
異なる対物レンズを用いる光ディスク原盤露光装置に用
いられる焦点誤差検出装置および光学的情報記録装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in an optical disk master exposure apparatus for manufacturing an optical disk master, and in particular, an optical disk master exposure that uses an objective lens having a different focal length between the exposure light source wavelength and the focus control light source wavelength. The present invention relates to a focus error detection device and an optical information recording device used in the device.
【0002】[0002]
【従来の技術】光ディスクの量産にあたっては、硝子基
板上にフォトレジストを塗布した原盤を露光して記録ピ
ットや案内溝(グルーブ)を形成し、この原盤から所定
の金型を製作して、スタンパにより量産するというプロ
セスが一般的に採用されている。フォトレジストを塗布
された原盤に対して、常にフォーカスが最適化された露
光用レーザを照射するために、露光用レーザとは波長の
異なる焦点制御用レーザを使用し、原盤からの戻り光に
より生成した焦点誤差信号を基に対物レンズの焦点制御
を行っている。焦点誤差検出方法としては、非点収差法
が多く用いられている。非点収差法の原理説明は、例え
ば、インプレスコミュニケーションズ 光ディスク技術
ISBN4-8443-0198-5に記載されている。2. Description of the Related Art In mass production of optical discs, a master coated with a photoresist on a glass substrate is exposed to form recording pits and guide grooves (grooves), and a predetermined die is manufactured from the master to make a stamper. The process of mass production is generally adopted. A focus control laser with a different wavelength from the exposure laser is used to constantly irradiate the master coated with photoresist with the exposure-optimized laser, which is generated by the light returned from the master. The focus of the objective lens is controlled based on the focus error signal. Astigmatism is often used as a focus error detection method. For an explanation of the principle of the astigmatism method, see, for example, Impress Communications Optical Disc Technology.
It is described in ISBN 4-8443-0198-5.
【0003】近年、DVD(Digital Versatile Disc)
の数倍の記録容量(20GB/層級)の次世代高密度光
ディスクの開発が進められている。次世代高密度光ディ
スク用原盤露光装置の露光用レーザとしては深紫外(De
ep UV)レーザが使用されているが、深紫外波長域で
は、対物レンズに使用できる硝種が限られているため、
露光用レーザ波長と焦点制御用レーザ波長の焦点距離を
同一にしようとすると、必然的にレンズ枚数が増加して
しまい、小型軽量の高NA対物レンズを製作することが
甚だ困難である。そのため、次世代高密度光ディスク用
原盤露光装置には、露光用レーザ波長(例えば257n
m)と焦点制御用レーザ波長(例えば635nm)とで
焦点距離が異なる、即ち軸上色収差を有する対物レンズ
が用いられている。In recent years, DVD (Digital Versatile Disc)
The development of next-generation high-density optical discs with a recording capacity (20 GB / layer grade) several times higher than that of Deep ultraviolet (De UV
ep UV) laser is used, but in the deep ultraviolet wavelength range, the types of glass that can be used for the objective lens are limited, so
If the focal lengths of the exposure laser wavelength and the focus control laser wavelength are made to be the same, the number of lenses inevitably increases, and it is very difficult to manufacture a compact and lightweight high NA objective lens. Therefore, the next-generation high-density optical disc master exposure apparatus has an exposure laser wavelength (for example, 257n).
m) and the focus control laser wavelength (for example, 635 nm) have different focal lengths, that is, an objective lens having axial chromatic aberration is used.
【0004】軸上色収差を有する対物レンズを用いる場
合、対物レンズに平行光束で入射した露光用レーザの集
光点に焦点制御用レーザを集光するためには、焦点制御
用レーザを収束光束として対物レンズに入射する必要が
ある。しかし、図1に定性的に示すように、露光用レー
ザ20と焦点制御用レーザ21の集光点が一致している
図1(b)の状態から、原盤119の位置変化に伴い、
対物レンズ113の位置をボイスコイルアクチュエータ
114で光軸方向に変位させて図1(a)、図1(c)
の状態にすると、焦点制御用レーザ装置101と対物レ
ンズ113の距離が変化するため、露光用レーザ20と
焦点制御用レーザ21の集光点にずれが生じる。上述の
原盤の位置変化としては、原盤毎の原盤厚バラツキに因
る位置変化と、露光時(原盤回転時)の面振れ、或いは
原盤の厚み斑に因る位置変化がある。In the case of using an objective lens having axial chromatic aberration, in order to focus the focus control laser on the focus point of the exposure laser which is incident on the objective lens as a parallel light flux, the focus control laser is used as a convergent light flux. It is necessary to enter the objective lens. However, as qualitatively shown in FIG. 1, from the state of FIG. 1B in which the focus points of the exposure laser 20 and the focus control laser 21 coincide with each other, as the position of the master 119 changes,
The position of the objective lens 113 is displaced in the optical axis direction by the voice coil actuator 114, and the position shown in FIGS.
In this state, since the distance between the focus control laser device 101 and the objective lens 113 changes, the focus points of the exposure laser 20 and the focus control laser 21 deviate. The above-mentioned position change of the master includes a position change caused by the thickness difference of the master for each master, a surface fluctuation at the time of exposure (when the master rotates), or a position change caused by uneven thickness of the master.
【0005】原盤毎の原盤厚バラツキに因る原盤の位置
変化で生じる集光点ずれを解決する方法としては、原盤
に対して垂直方向に可動する昇降台に、焦点制御用レー
ザ装置と対物レンズを配置する方法が特開2000−3
48370号公報に開示されている。これは、露光用レ
ーザと焦点制御用レーザの集光点ずれを、露光前の光学
調整段階で容易に補正できる方法である。しかしなが
ら、露光時(原盤回転時)、面振れ或いは原盤厚み斑に
因る原盤の位置変化で生じる集光点ずれに対しては有効
ではない。露光時(原盤回転時)、±10μm程度の原
盤の位置変化があると、露光用レーザと焦点制御用レー
ザの集光点が、対物レンズ焦点深度程度ずれてしまい、
安定した焦点制御が実現できない。As a method of solving the light-converging point shift caused by the position change of the master disk due to the master disk thickness variation among the master disks, a focus control laser device and an objective lens are mounted on an elevator table movable in the vertical direction with respect to the master disk. Japanese Patent Laid-Open No. 2000-3
It is disclosed in Japanese Patent No. 48370. This is a method that can easily correct the focal point shift between the exposure laser and the focus control laser in the optical adjustment stage before exposure. However, it is not effective for the light-converging point shift caused by the surface fluctuation or the position change of the master due to the unevenness of the master during exposure (when the master rotates). During exposure (when the master rotates), if the position of the master is changed by about ± 10 μm, the focal points of the exposure laser and the focus control laser are displaced by the focal depth of the objective lens.
Stable focus control cannot be realized.
【0006】[0006]
【発明が解決しようとする課題】上述したように、軸上
色収差を有する対物レンズを用いる光ディスク原盤露光
装置では、露光時(原盤回転時)に、面振れ或いは原盤
厚み斑に因る原盤の位置変化で露光用レーザと焦点制御
用レーザの集光点にずれが生じる。その結果、露光用レ
ーザの集光点に焦点制御用レーザを集光させて焦点誤差
検出を行う従来の焦点誤差検出法(非点収差法)では、
安定した焦点制御が困難であった。As described above, in the optical disc master exposure apparatus using the objective lens having the axial chromatic aberration, the position of the master caused by the surface wobbling or the thickness unevenness of the master during exposure (when the master rotates). Due to the change, the focal points of the exposure laser and the focus control laser deviate from each other. As a result, in the conventional focus error detection method (astigmatism method) in which the focus control laser is focused on the focus point of the exposure laser to detect the focus error,
Stable focus control was difficult.
【0007】本発明は、対物レンズの軸上色収差に起因
する焦点誤差信号のオフセットを低減し、安定した焦点
制御が可能な焦点誤差検出装置を提供することを目的と
する。It is an object of the present invention to provide a focus error detection device capable of reducing the offset of the focus error signal due to the axial chromatic aberration of the objective lens and performing stable focus control.
【0008】[0008]
【課題を解決するための手段】本発明は、焦点制御用光
源と、対物レンズと、前記対物レンズの光軸に対して対
称的に偏心させて対物レンズに入射するように、前記焦
点制御用光源からの光束を複数の光束に分割する光束分
割手段と、前記対物レンズに対向している合焦対象で反
射して前記対物レンズを透過した光束の光量分布により
光束の位置を検出する複数の光検出器と、前記光検出器
の出力信号から前記合焦対象に対する前記対物レンズの
焦点誤差を演算し、焦点誤差信号を生成する演算手段と
を具備することを特徴とする焦点誤差検出装置を提供す
る。According to the present invention, there is provided a focus control light source, an objective lens, and the focus control light source which is symmetrically decentered with respect to the optical axis of the objective lens and enters the objective lens. A light beam dividing means for dividing a light beam from the light source into a plurality of light beams, and a plurality of light beam position detecting means for detecting the position of the light beam by the light amount distribution of the light beam reflected by the focusing object facing the objective lens and transmitted through the objective lens. A focus error detection device comprising: a photodetector; and a calculation unit that calculates a focus error of the objective lens with respect to the focusing target from an output signal of the photodetector to generate a focus error signal. provide.
【0009】本発明に係る焦点誤差検出装置では、対物
レンズ光軸から対称的に偏心させた複数の焦点制御用レ
ーザを対物レンズに入射し、合焦対象である光学的情報
記録媒体或いは観察対象物からの反射光により焦点誤差
信号を検出することにより、対物レンズの軸上色収差に
起因する焦点誤差信号へのオフセットを低減し、安定し
た焦点制御を実現できる。In the focus error detecting apparatus according to the present invention, a plurality of focus control lasers which are symmetrically decentered from the optical axis of the objective lens are made incident on the objective lens, and the optical information recording medium or the observation target which is the focus object. By detecting the focus error signal by the reflected light from the object, the offset to the focus error signal due to the axial chromatic aberration of the objective lens can be reduced, and stable focus control can be realized.
【0010】本発明は、合焦対象である光学的情報記録
媒体または観察対象物に対する前記対物レンズの傾き誤
差を算出し、傾き誤差信号を生成する演算回路を更に具
備し、前記光学的情報記録媒体または観察対象物で反射
して対物レンズを透過した光束を光検出手段で受光して
傾き誤差検出を行う機能も有する焦点誤差検出装置を提
供する。The present invention further comprises an arithmetic circuit for calculating an inclination error of the objective lens with respect to an optical information recording medium or an observation object which is an object to be focused and for producing an inclination error signal. Provided is a focus error detection device which also has a function of detecting a tilt error by receiving a light beam reflected by a medium or an observation object and transmitted through an objective lens by a light detection means.
【0011】本発明に係る焦点誤差検出装置では、対物
レンズ光軸から対照的に偏心させた複数の焦点制御用レ
ーザを対物レンズに入射し、光学的情報記録媒体或いは
観察対象物からの反射光により焦点誤差信号を検出する
ことにより、対物レンズの軸上色収差に起因する焦点誤
差信号へのオフセットを低減し、安定した焦点制御を実
現できる。又、原盤の傾き誤差信号も生成することがで
きる。In the focus error detecting apparatus according to the present invention, a plurality of focus control lasers, which are symmetrically decentered from the optical axis of the objective lens, are incident on the objective lens, and the reflected light from the optical information recording medium or the object to be observed is reflected. By detecting the focus error signal, the offset to the focus error signal due to the axial chromatic aberration of the objective lens can be reduced, and stable focus control can be realized. It is also possible to generate a master tilt error signal.
【0012】本発明は、露光用光源と、露光用光源より
長い波長の焦点制御用光源と、露光用光源の波長と焦点
制御用光源の波長で焦点距離が異なる対物レンズと、前
記対物レンズの光軸に対して対称的に偏心させて対物レ
ンズに入射するように、前記焦点制御用光源からの光束
を複数の光束に分割する光束分割手段と、前記対物レン
ズに対向している合焦対象である光学的情報記録媒体で
反射して前記対物レンズを透過した光束の光量分布によ
り光束の位置を検出する複数の光検出器と、前記光検出
器の出力信号から前記合焦対象に対する前記対物レンズ
の焦点誤差を演算し、焦点誤差信号を生成する演算手段
とを具備することを特徴とする光学的情報記録装置を提
供する。The present invention provides an exposure light source, a focus control light source having a wavelength longer than that of the exposure light source, an objective lens having a different focal length between the exposure light source wavelength and the focus control light source wavelength, and the objective lens. A light beam splitting unit that splits a light beam from the focus control light source into a plurality of light beams so as to be symmetrically decentered with respect to the optical axis and incident on the objective lens, and a focusing target facing the objective lens. A plurality of photodetectors for detecting the position of the light flux by the light amount distribution of the light flux reflected by the optical information recording medium and transmitted through the objective lens; and the objective for the focusing target from the output signal of the photodetector. An optical information recording apparatus is provided, which comprises: a calculating unit that calculates a focus error of a lens and generates a focus error signal.
【0013】本発明は、前記光学的情報録媒体として光
ディスク原盤を用い、前記焦点制御用光源と前記光束分
割手段と前記対物レンズと、前記光検出手段とを搭載
し、前記光ディスク原盤の半径方向に移動するスライダ
を備えたことを特徴とする光ディスク原盤露光装置を提
供する。According to the present invention, an optical disk master is used as the optical information recording medium, the focus control light source, the light beam splitting means, the objective lens, and the light detecting means are mounted, and the optical disk master is arranged in a radial direction. Provided is an optical disk master exposure apparatus, which is equipped with a slider that moves to the front.
【0014】尚、本発明に係る光ディスク原盤露光装置
における焦点制御用レーザは、可干渉性が低いレーザで
あることが好ましい。The focus control laser in the optical disk master exposure apparatus according to the present invention is preferably a laser with low coherence.
【0015】[0015]
【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して詳細に説明する。尚、以下の説明で
は、本発明に係る焦点誤差検出装置を用いた光ディスク
原盤露光装置として説明する。又、光束分割用光学部材
により分割する光束を2光束として説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, an optical disc master exposure device using the focus error detection device according to the present invention will be described. Further, the light beam split by the light beam splitting optical member will be described as two light beams.
【0016】(第1の実施形態)本発明に係る光ディス
ク原盤露光装置の光学構成の主要部を図2に示す。光デ
ィスク原盤露光装置は、波長257nmの露光用レーザ
装置124と波長635nmの焦点制御用レーザ装置1
01と、光束径拡大部103と、集光レンズ104と、
虹彩絞り123と、2枚のミラーで構成される光束分割
ミラー(光束分割用光学部材)105と、偏光ビームス
プリッタ108と、立下げミラー109と、4分の1波
長板110と、収差補正用平行平板111と、両レーザ
光路の合成/分離を行うダイクロイックミラー112
と、両レーザ波長で焦点距離が異なる、即ち軸上色収差
を有する開口数0.9の対物レンズ113と、対物レン
ズを上下に駆動するボイスコイルアクチュエータ114
と、2分割光検出器115、116と、演算回路117
と、ターンテーブル120と、スピンドルモータ121
とを具備する。移動光学系118は光ディスク原盤11
9の半径方向に移動するスライダ122上に配置され
る。(First Embodiment) FIG. 2 shows a main part of an optical configuration of an optical disk master exposure apparatus according to the present invention. The optical disc master exposure apparatus includes an exposure laser device 124 having a wavelength of 257 nm and a focus control laser device 1 having a wavelength of 635 nm.
01, a luminous flux diameter expanding portion 103, a condenser lens 104,
An iris diaphragm 123, a light beam splitting mirror (light beam splitting optical member) 105 including two mirrors, a polarization beam splitter 108, a falling mirror 109, a quarter-wave plate 110, and aberration correction. A parallel plate 111 and a dichroic mirror 112 for combining / separating both laser optical paths.
And an objective lens 113 having a numerical aperture of 0.9 having different focal lengths at both laser wavelengths, that is, having axial chromatic aberration, and a voice coil actuator 114 for driving the objective lens up and down.
, Two-division photodetectors 115 and 116, and arithmetic circuit 117
, Turntable 120, and spindle motor 121
And. The moving optical system 118 is the optical disc master 11.
9 is arranged on a slider 122 which moves in the radial direction.
【0017】焦点誤差検出系の構成は以下の通りであ
る。焦点制御用レーザ装置101から出射したレーザ
を、光束径拡大部103で光束径を拡大し、虹彩絞り1
23で所望の光束径とした後、集光レンズ104で平行
光束から収束光束に変換する。平行光束を収束光束に変
換する理由については後述する。The structure of the focus error detection system is as follows. A laser beam emitted from the focus control laser device 101 is expanded in the beam diameter by a beam diameter expanding section 103, and the iris diaphragm 1
After setting the desired light beam diameter at 23, the parallel light beam is converted into a convergent light beam by the condenser lens 104. The reason why the parallel light flux is converted into the convergent light flux will be described later.
【0018】集光光束は、光束分割ミラー105によ
り、図中、二点鎖線106と破線107で示した2本の
光束に分割する。尚、光束分割ミラー105以降の光束
を描くと2本の光束が錯綜して図が紛然となるため、光
束分割ミラー105以降は中心光線のみを示す。光束分
割ミラー105で分割した2本の光束を偏光ビームスプ
リッタ108を透過させ、4分の1波長板110により
直線偏光から円偏光に変換し、収差補正用平行平板11
1、ダイクロイックミラー112を透過させた後、2光
束を対物レンズ113の光軸に対して対称的に偏心する
ように対物レンズ113に入射する。The condensed light flux is split by the light flux splitting mirror 105 into two light fluxes indicated by a chain double-dashed line 106 and a broken line 107 in the figure. It should be noted that drawing the light beam after the light beam splitting mirror 105 causes the two light beams to be intricate and the figure becomes confusing. Therefore, only the central ray is shown after the light beam splitting mirror 105. The two light beams split by the light beam splitting mirror 105 are transmitted through the polarization beam splitter 108, converted from linearly polarized light to circularly polarized light by the quarter-wave plate 110, and the aberration correcting parallel plate 11 is used.
1. After passing through the dichroic mirror 112, the two light beams enter the objective lens 113 so as to be symmetrically decentered with respect to the optical axis of the objective lens 113.
【0019】収差補正用平行平板111は、収束光束を
ダイクロイックミラー112に透過させた際に発生する
収差を補正するためであり、ダイクロイックミラー11
2と同材質、同厚の平行平板である。対物レンズ113
から出射した2光束が集光されるべき合焦対象である原
盤119で反射する。その後、対物レンズ113、ダイ
クロイックミラー112、収差補正用平行平板111を
透過させ、4分の1波長板110で円偏光から直線偏光
に変換した後、偏光ビームスプリッタ108で反射し、
それぞれ2分割光検出器115、116に導く。2分割
光検出器115、116の出力信号を演算回路117に
入力し、原盤119に対する対物レンズ113の焦点誤
差信号を生成する。The aberration-correcting parallel plate 111 is for correcting the aberration generated when the convergent light beam is transmitted through the dichroic mirror 112, and the dichroic mirror 11 is used.
It is a parallel plate having the same material and thickness as those of No. 2. Objective lens 113
The two light fluxes emitted from are reflected by the master 119 which is the focus object to be condensed. After that, the objective lens 113, the dichroic mirror 112, and the aberration correcting parallel plate 111 are transmitted, and the quarter-wave plate 110 converts circularly polarized light into linearly polarized light, and then is reflected by the polarization beam splitter 108.
They are led to the two-divided photodetectors 115 and 116, respectively. The output signals of the two-divided photodetectors 115 and 116 are input to the arithmetic circuit 117, and the focus error signal of the objective lens 113 with respect to the master 119 is generated.
【0020】集光レンズ104により、平行光束を収束
光束に変換する理由は次の通りである。対物レンズ11
3は波長257nmと波長635nmとで焦点距離が異
なるため、露光用レーザの合焦時に、波長635nmの
平行光束を対物レンズ113に入射すると、原盤119
で反射して対物レンズ113から出射する光束が拡散し
てしまう。そのため、集光レンズ104により収束光束
として対物レンズ113に入射することによって、2分
割光検出器面上の光束径を小さくして、十分な焦点誤差
検出感度/検出範囲を確保できるようにしている。尚、
対物レンズ113に入射する2光束の光束径は、対物レ
ンズ113において問題となる収差が発生しないよう
に、対物レンズ開口径と比較して十分小さく設定され
る。The reason why the parallel light flux is converted into the convergent light flux by the condenser lens 104 is as follows. Objective lens 11
Since the focal length of No. 3 is different between the wavelength of 257 nm and the wavelength of 635 nm, when a parallel light flux of wavelength 635 nm enters the objective lens 113 when the exposure laser is focused, the master disk 119
Thus, the light flux reflected by and emitted from the objective lens 113 is diffused. Therefore, the convergent lens 104 enters the objective lens 113 as a convergent light beam to reduce the light beam diameter on the two-divided photodetector surface, so that sufficient focus error detection sensitivity / detection range can be secured. . still,
The light flux diameters of the two light fluxes entering the objective lens 113 are set to be sufficiently smaller than the objective lens aperture diameter so that the aberration that causes a problem does not occur in the objective lens 113.
【0021】次に図3により、入射光束を2本のずれた
光束に分割する光束分割ミラー105について説明す
る。2光束の中心光線の標準的な間隔L1は、0.1m
mから0.5mm程度である。2光束の中心光線の間隔
が小さい場合には、例えば、図3に示すように一部の光
を透過させるミラー105a(部分反射ミラー)と全て
反射させるミラー105b(全反射ミラー)とを反射面
が向き合うように組み合わせて構成する。2つのミラー
を、ミラー間にスペーサを挟んで固定することによっ
て、間隔と平行度を確保することができる。部分反射ミ
ラーを裏面鏡として用い、全反射ミラーを表面鏡として
用いる。Next, referring to FIG. 3, description will be given of the light beam splitting mirror 105 which splits the incident light beam into two light beams which are deviated from each other. The standard distance L1 between the central rays of the two light fluxes is 0.1 m
It is about m to 0.5 mm. When the distance between the central rays of the two light beams is small, for example, as shown in FIG. 3, a mirror 105a (partial reflection mirror) that transmits a part of the light and a mirror 105b (total reflection mirror) that totally reflects the light are used as reflecting surfaces. Composed so that they face each other. A space and parallelism can be secured by fixing the two mirrors with a spacer sandwiched between the mirrors. The partial reflection mirror is used as a back surface mirror, and the total reflection mirror is used as a front surface mirror.
【0022】ミラーの間隔がL2の時に、間隔L1=2
1/2・L2だけ離れた2本の光束を作ることが可能に
なる。スペーサの厚さでL1が決まるので、0.1mm
程度の間隔も高精度で容易に実現できる。L1が0.5
mm程度の場合には、1枚の硝子板の表と裏にそれぞれ
部分反射ミラーと全反射ミラーをつけた素子を用いるこ
とも可能である。この場合は、部品点数も少なく組立も
不要なので、より低いコストで実現できる。尚、2分割
光検出器115、116からの出力信号の信号レベルは
同程度であることが望ましいので、光束分割ミラー10
5で分割された2つの光束の光パワーは同程度であるこ
とが望ましい。これを実現するためには、部分反射ミラ
ーの反射率Rは、0.38程度とすれば良い。When the mirror interval is L2, the interval L1 = 2
It becomes possible to create two light beams separated by 1 / 2.L2. Since L1 is determined by the spacer thickness, 0.1 mm
It is possible to easily realize a high degree of accuracy with a high degree of accuracy. L1 is 0.5
In the case of about mm, it is possible to use an element having a partial reflection mirror and a total reflection mirror on the front and back of one glass plate. In this case, since the number of parts is small and no assembly is required, it can be realized at a lower cost. Since it is desirable that the signal levels of the output signals from the two-split photodetectors 115 and 116 are about the same, the beam splitting mirror 10
It is desirable that the optical powers of the two light beams divided by 5 are about the same. In order to realize this, the reflectance R of the partial reflection mirror may be set to about 0.38.
【0023】次に、本発明に係る焦点誤差検出法の原理
を、図4を参照して説明する。図4(a)は原盤119
が257nm光の焦点より対物レンズ113の近くに位
置する場合、図4(b)は原盤119が257nm光の
焦点に位置する場合、即ち合焦時の場合、図4(c)は
原盤119が257nm光の焦点より遠くに位置する場
合である。尚、対物レンズ113から2分割光検出器1
15,116までの間の光学素子は、本発明に係る焦点
誤差検出法の原理説明においては本質的でないために省
略する。Next, the principle of the focus error detecting method according to the present invention will be described with reference to FIG. FIG. 4A shows a master 119.
4 (b) is located closer to the objective lens 113 than the focus of 257 nm light, FIG. 4 (b) shows that the master 119 is located at the focus of 257 nm light, that is, when focusing, and FIG. This is the case in which it is located far from the focal point of 257 nm light. In addition, from the objective lens 113 to the two-split photodetector 1
The optical elements between 15 and 116 are omitted because they are not essential in the explanation of the principle of the focus error detection method according to the present invention.
【0024】図中の二点鎖線70は、波長257nmで
の対物レンズ焦平面を表す。図示しない焦点制御用レー
ザ装置からの2光束106、107を対物レンズ113
の光軸に対してそれぞれ対称的に距離Δx、−Δxだけ
偏心させて対物レンズ113に入射する。対物レンズ1
13を透過した2光束は、原盤119で反射した後、対
物レンズ113から出射して、それぞれ2分割光検出器
115、116に導き、2分割光検出器115,116
からの出力信号を演算回路117に入力する。尚、波長
257nmと波長635nmとで対物レンズ113の焦
点距離が異なるため、対物レンズ113からの出射光
(中心光線)は、図示したように対物レンズ光軸に対し
て平行とはならない。The chain double-dashed line 70 in the figure represents the focal plane of the objective lens at a wavelength of 257 nm. The two light beams 106 and 107 from the laser device for focus control (not shown) are passed through the objective lens 113.
Are symmetrically deviated by distances Δx and −Δx with respect to the optical axis of the light beam and enter the objective lens 113. Objective lens 1
The two light fluxes that have passed through 13 are reflected by the master 119, then emitted from the objective lens 113, and guided to the two-split photodetectors 115 and 116, respectively, and the two-split photodetectors 115 and 116.
The output signal from is input to the arithmetic circuit 117. Since the focal length of the objective lens 113 is different between the wavelength of 257 nm and the wavelength of 635 nm, the emitted light (center ray) from the objective lens 113 is not parallel to the optical axis of the objective lens as shown.
【0025】2分割光検出器の受光面115a、115
b、116a、116bから得られる出力信号を各々D
1、D2、D3、D4とすると、焦点誤差信号Sfは、
演算回路117によって次式(1)の演算を行うことで
生成する。Light receiving surfaces 115a, 115 of the two-division photodetector
The output signals from b, 116a, and 116b are respectively D
Assuming 1, D2, D3 and D4, the focus error signal Sf is
It is generated by the operation circuit 117 performing the operation of the following expression (1).
【0026】
Sf=(D1−D2)−(D3−D4) (1)
対物レンズ113と原盤119の焦点ずれに伴い、図示
したように対物レンズ113からの出射光の方向が変化
し、2分割光検出器115,116面上の光束の位置が
変化するため、上式(1)の演算により焦点誤差信号S
fを生成することができる。尚、対物レンズ光軸から偏
心させた1光束を用いた焦点誤差検出法は、スキュービ
ーム法として公知であるが(例えば、昭晃堂 応用光エ
レクトロニクスハンドブックISBN4-7856-9031-3)、対
物レンズ光軸から対称的に偏心させた複数の光束を用い
る点が本発明の新規な点である。Sf = (D1−D2) − (D3−D4) (1) As the focus between the objective lens 113 and the master 119 shifts, the direction of the light emitted from the objective lens 113 changes as shown in the drawing, and the light is divided into two. Since the positions of the light beams on the surfaces of the photodetectors 115 and 116 change, the focus error signal S is calculated by the above equation (1).
f can be generated. The focus error detection method using one light beam decentered from the optical axis of the objective lens is known as the skew beam method (for example, Shokodo Applied Optical Electronics Handbook ISBN4-7856-9031-3). The novel point of the present invention is to use a plurality of light beams symmetrically decentered from the optical axis.
【0027】次に、(i)本発明に係る光ディスク原盤
露光装置における、対物レンズ変位に伴う焦点誤差信号
へのオフセット、(ii)本発明に係る光ディスク原盤露
光装置において、2光束を使用する理由について説明す
る。Next, (i) the offset to the focus error signal due to the displacement of the objective lens in the optical disc master exposure apparatus according to the present invention, and (ii) the reason why two light fluxes are used in the optical disc master exposure apparatus according to the present invention. Will be described.
【0028】(i)焦点誤差信号へのオフセット
本発明に係る光ディスク原盤露光装置では、対物レンズ
変位に伴う焦点誤差信号へのオフセットが十分小さいこ
とを、焦点ずれに対する2分割光検出器面上の光束の位
置変位量と、対物レンズ変位に伴う2分割光検出器面上
の光束の位置変位量とを比較することで説明する。(I) Offset to Focus Error Signal In the optical disc master exposure apparatus according to the present invention, the fact that the offset to the focus error signal due to the displacement of the objective lens is sufficiently small means that on the two-divided photodetector surface with respect to defocus. This will be described by comparing the positional displacement amount of the light flux with the positional displacement amount of the light flux on the two-division photodetector surface due to the displacement of the objective lens.
【0029】図4に示したように、入射光束の対物レン
ズ光軸からの偏心量をΔx、又、焦点制御用レーザ波長
での対物レンズ焦点距離をf635、焦点ずれ量をΔ
d、対物レンズ主平面から2分割光検出器までの距離を
D(負値)とする。又、露光用レーザ波長の対物レンズ
焦点位置F257と焦点制御用レーザ波長での対物レン
ズ焦点位置F635の距離(F635−F237)をΔ
Fとする。2分割光検出器面上の光束位置h(対物レン
ズ光軸からの距離)は、近軸計算により、ΔxとΔdと
Dの関数として次式(2)で与えられる。As shown in FIG. 4, the eccentric amount of the incident light beam from the optical axis of the objective lens is Δx, the objective lens focal length at the focus control laser wavelength is f 635 , and the defocus amount is Δ.
d, the distance from the principal plane of the objective lens to the two-division photodetector is D (negative value). Also, the distance (F 635 −F 237 ) between the objective lens focus position F 257 at the exposure laser wavelength and the objective lens focus position F 635 at the focus control laser wavelength is Δ.
Let it be F. The light beam position h (distance from the optical axis of the objective lens) on the two-divided photodetector surface is given by the following equation (2) as a function of Δx, Δd and D by paraxial calculation.
【0030】[0030]
【数1】 [Equation 1]
【0031】従って、合焦点位置からの焦点ずれΔdに
伴う光検出器面上での光束の位置変位量は次式(3)で
与えられる。Therefore, the positional displacement of the light beam on the photodetector surface due to the defocus Δd from the in-focus position is given by the following equation (3).
【0032】[0032]
【数2】 [Equation 2]
【0033】次に、図5に示すように、対物レンズが合
焦状態を保持したまま、光軸方向にΔz変位した場合を
考える。2分割光検出器面上での光束の位置変位量hは
上式(2)より、次式(4)で与えられる。この光束の
位置変位により、合焦状態にも拘らず、焦点誤差信号が
零にならずオフセットとなる。Next, as shown in FIG. 5, let us consider a case where the objective lens is displaced by Δz in the optical axis direction while maintaining the in-focus state. The positional displacement amount h of the light flux on the two-divided photodetector surface is given by the following equation (4) from the above equation (2). Due to this positional displacement of the light flux, the focus error signal does not become zero but becomes an offset regardless of the in-focus state.
【0034】[0034]
【数3】 [Equation 3]
【0035】以下、具体的な数値を用いて、2分割光検
出器面上での光束の位置変位量hを計算する。露光用レ
ーザ波長257nmでの対物レンズ焦点距離f257を
2.0mm、焦点制御用レーザ波長635nmでの対物
レンズ焦点距離f635を2.4mmとする。波長25
7nmと波長635nmの対物レンズ主点位置は一般的
には異なるが、両者の距離は0.1mm以下と考えられ
るので、ΔF≒f635−f257=0.4mmとす
る。こられの数値は、特開2000−348370号公
報に記載されている。又、入射光束の対物レンズ光軸か
らの偏心量Δxを0.3mm、対物レンズ主平面から2
分割光検出器までの距離Dを−400mmとする。焦点
ずれΔdによる2分割光検出器面上の光束の位置変位量
を図6に示す。又、対物レンズ変位Δzに伴う2分割光
検出器面上の光束の位置変位量hを図7に示す。The positional displacement amount h of the light beam on the two-divided photodetector surface will be calculated below using specific numerical values. The objective lens focal length f 257 at the exposure laser wavelength 257 nm is 2.0 mm, and the objective lens focal length f 635 at the focus control laser wavelength 635 nm is 2.4 mm. Wavelength 25
The positions of the principal points of the objective lens of 7 nm and the wavelength of 635 nm are generally different, but the distance between them is considered to be 0.1 mm or less, so ΔF≈f 635 −f 257 = 0.4 mm. These numerical values are described in Japanese Patent Laid-Open No. 2000-348370. Also, the amount of eccentricity Δx of the incident light beam from the optical axis of the objective lens is 0.3 mm, which is 2 from the main plane of the objective lens.
The distance D to the split photodetector is -400 mm. FIG. 6 shows the amount of positional displacement of the light beam on the two-divided photodetector surface due to defocus Δd. Further, FIG. 7 shows the positional displacement amount h of the light beam on the two-divided photodetector surface due to the displacement Δz of the objective lens.
【0036】対物レンズ焦点深度は、レーザ波長をλ、
対物レンズ開口数をNAとすれば、±λ/(2NA2)
で与えられ、波長257nm、NA0.9では±0.1
59μmである。焦点ずれ±0.159μm(焦点深
度)に対する2分割光検出器面上の光束の位置変位量は
±6.59μmであるのに対して、対物レンズ変位±1
0μmに伴う2分割光検出器面上の光束の位置変位量は
±0.42μmである。本発明による光ディスク原盤露
光装置を用いれば、対物レンズ焦点深度と比較して、対
物レンズ変位に伴う焦点誤差信号へのオフセットを十分
小さくできる。The objective lens focal depth is λ at the laser wavelength,
If the numerical aperture of the objective lens is NA, then ± λ / (2NA 2 )
Is given by, and the wavelength is 257 nm, NA is ± 0.1
It is 59 μm. The positional displacement of the light beam on the two-divided photodetector surface with respect to the defocus of ± 0.159 μm (depth of focus) is ± 6.59 μm, whereas the displacement of the objective lens is ± 1.
The positional displacement of the light flux on the two-division photodetector surface due to 0 μm is ± 0.42 μm. By using the optical disk master exposure apparatus according to the present invention, the offset to the focus error signal due to the displacement of the objective lens can be made sufficiently smaller than the depth of focus of the objective lens.
【0037】(ii)2光束を使用する理由
本発明に係る光ディスク原盤露光装置において、対物レ
ンズ光軸に対して対称的に偏心させた2光束を使用する
のは、原盤の傾きに因る焦点誤差信号へのオフセットを
低減するためである。図8は合焦時、原盤に傾きがある
場合の2分割光検出器面上の光束の位置を示す。図8
(a)は、紙面と平行な回転軸まわりの傾きがある場合
であり、他方、図8(b)は紙面に垂直な回転軸まわり
の傾きがある場合である。紙面と平行な回転軸まわりの
傾きがある図8(a)の場合、2分割光検出器面上の光
束は、2分割光検出器115,116の分割線方向に変
位するため、原盤の傾きに起因する焦点誤差信号のオフ
セットは発生しない。他方、紙面に垂直な回転軸まわり
の傾きがある図8(b)の場合は、2分割光検出器面上
の2つの光束の位置が2分割光検出器115,116の
分割線と直交する方向に変位する。(Ii) Reason for using two light fluxes In the optical disk master exposure apparatus according to the present invention, two light fluxes symmetrically decentered with respect to the optical axis of the objective lens are used because of the focus caused by the tilt of the master. This is to reduce the offset to the error signal. FIG. 8 shows the position of the light beam on the two-division photodetector surface when the master disc is tilted during focusing. Figure 8
FIG. 8A shows the case where there is an inclination around the rotation axis parallel to the paper surface, while FIG. 8B shows the case where there is an inclination around the rotation axis perpendicular to the paper surface. In the case of FIG. 8A in which there is an inclination around the rotation axis parallel to the paper surface, the light flux on the two-division photodetector surface is displaced in the division line direction of the two-division photodetectors 115 and 116, so the inclination of the master disc The offset of the focus error signal due to the above does not occur. On the other hand, in the case of FIG. 8B in which there is an inclination around the rotation axis perpendicular to the paper surface, the positions of the two light beams on the two-division photodetector surface are orthogonal to the division line of the two-division photodetectors 115 and 116. Displace in the direction.
【0038】1光束のみを用いて生成した焦点誤差信号
S1=(D1−D2)とS2=(D3−D4)を図9
(a)、(b)に、又、2光束を用いて生成した焦点誤
差信号Sf=(D1−D2)−(D3−D4)を図9
(c)に示す。図中、横軸は対物レンズ113と原盤1
19との距離であり、又、破線130が原盤119に傾
きがない場合の焦点誤差信号、実線131が原盤119
に傾きがある場合の焦点誤差信号である。図示したよう
に、1光束のみを用いて焦点誤差信号を生成した場合、
原盤119の傾きにより焦点誤差信号へのオフセットが
発生する。しかしながら、対物レンズ光軸から対称的に
偏心させた2光束を用いて、(D1−D2)−(D3−
D4)の演算により焦点誤差信号を生成すれば、図から
明らかなように原盤119の傾きによる焦点誤差信号へ
のオフセットを低減することができ、安定した焦点制御
が可能となる。尚、原盤119の反り、或いは、原盤表
面のうねりによる焦点誤差信号へのオフセットも同様に
低減することができ、安定した焦点制御が可能になる。FIG. 9 shows the focus error signals S1 = (D1-D2) and S2 = (D3-D4) generated using only one light beam.
9A and 9B, the focus error signal Sf = (D1-D2)-(D3-D4) generated using two light fluxes is shown in FIG.
It shows in (c). In the figure, the horizontal axis is the objective lens 113 and the master 1.
19, the broken line 130 is the focus error signal when the master 119 is not tilted, and the solid line 131 is the master 119.
This is the focus error signal when there is an inclination in. As shown, when the focus error signal is generated using only one light flux,
The tilt of the master 119 causes an offset to the focus error signal. However, by using two light fluxes that are symmetrically decentered from the optical axis of the objective lens, (D1-D2)-(D3-
If the focus error signal is generated by the calculation of D4), the offset to the focus error signal due to the inclination of the master 119 can be reduced as shown in the figure, and stable focus control can be performed. Incidentally, the warp of the master 119 or the offset to the focus error signal due to the waviness of the master surface can be similarly reduced, and stable focus control can be performed.
【0039】次に、焦点制御用レーザについて説明す
る。光ディスク原盤露光装置で使用される対物レンズ1
13は、多数のレンズから構成されており、レンズ各面
は露光用レーザ波長に対して反射防止が施されている。
しかし、露光用レーザ波長が深紫外波長域になると、そ
れ以外の波長に対して反射防止条件を同時に満足させる
ことは困難となる。そのため、焦点制御用レーザを対物
レンズ113に入射すると、レンズ各面での反射光が迷
光となる。この迷光同士、或いは、迷光と原盤119か
らの戻り光が干渉すると問題がある。つまり、対物レン
ズ変位によって焦点制御用レーザ装置と対物レンズの距
離が変化するに伴い、干渉状態が変化し、焦点誤差信号
にリップル状のノイズが重畳されてしまうという問題が
発生する。また、深紫外波長域の露光用レーザを用いる
場合、従来使用されていた波長351nmの紫外レーザ
を用いる場合と比較して焦点深度が浅いため、僅かなノ
イズでも記録状態に大きく影響する虞がある。Next, the focus control laser will be described. Objective lens 1 used in optical disc master exposure device
Reference numeral 13 is composed of a large number of lenses, and each surface of the lenses is antireflection against the exposure laser wavelength.
However, when the exposure laser wavelength is in the deep ultraviolet wavelength range, it becomes difficult to simultaneously satisfy the antireflection condition for other wavelengths. Therefore, when the focus control laser enters the objective lens 113, the reflected light on each surface of the lens becomes stray light. There is a problem if these stray lights interfere with each other or the stray lights interfere with the return light from the master 119. That is, as the distance between the focus control laser device and the objective lens changes due to the displacement of the objective lens, the interference state changes and ripple noise is superimposed on the focus error signal. Further, when the exposure laser in the deep ultraviolet wavelength range is used, the depth of focus is shallower than that in the case where an ultraviolet laser having a wavelength of 351 nm which has been conventionally used is used. Therefore, even a slight noise may greatly affect the recording state. .
【0040】従って、焦点制御用レーザ装置としては、
高周波重畳で駆動した可干渉性が低い半導体レーザ、或
いは、可干渉性が低いSLD(Super Luminescent Diod
e)等が好ましい。Therefore, as the focus control laser device,
Semiconductor laser with low coherence driven by high frequency superposition, or SLD (Super Luminescent Diode) with low coherence
e) and the like are preferable.
【0041】(第2の実施形態)第1実施形態の光束分
割ミラー105を他の光学部材で構成した第2の実施形
態を説明する。図3に示した光束分割ミラー105は、
構成は簡素であるが、原盤119の傾きの影響を完全に
除去することはできない。それは分割された2つの光束
106、107に光路差が生じるからである。この問題
を回避する光束分割ミラーユニット211が図10に示
されている。この光束分割ミラーユニット211は、第
1の光束分割ミラー202と2分の1波長板203と第
2の光束分割ミラー204とで構成される。この光束分
割ミラーユニット211は図3の光束分割ミラー105
に対応する。これによると、光束を分割する機能を偏光
ビームスプリッタ202aに持たせ、分割した光束をず
らす機能を第1の光束分割ミラー202と第2の光束分
割ミラー204に分けることで分割した光束の光路差を
無くしている。(Second Embodiment) A second embodiment in which the light beam splitting mirror 105 of the first embodiment is formed of another optical member will be described. The light beam splitting mirror 105 shown in FIG.
Although the structure is simple, the influence of the inclination of the master 119 cannot be completely removed. This is because an optical path difference is generated between the two divided light beams 106 and 107. A light beam splitting mirror unit 211 that avoids this problem is shown in FIG. The light beam splitting mirror unit 211 includes a first light beam splitting mirror 202, a half-wave plate 203, and a second light beam splitting mirror 204. The light beam splitting mirror unit 211 is the light beam splitting mirror 105 shown in FIG.
Corresponding to. According to this, the polarization beam splitter 202a has a function of splitting the light flux, and the first light flux splitting mirror 202 and the second light flux splitting mirror 204 have the function of shifting the split light flux. Is lost.
【0042】集光レンズ104を通り、ミラー201で
反射され、光束分割ミラー211に入射する光束は、p
偏光とs偏光の両方の成分を有するものとする。図10
では傾いた直線偏光の例を示しているが、円偏光でも構
わない。この入射光は、第1の光束分割ミラー202に
入射する。このミラー202に入射した光束のs偏光成
分は偏光ビームスプリッタ202aで反射される。他
方、p偏光成分は偏光ビームスプリッタ202aを透過
し、ミラー202bで反射され、再度偏光ビームスプリ
ッタ202aを透過する。The light beam which passes through the condenser lens 104, is reflected by the mirror 201, and is incident on the light beam splitting mirror 211 is p.
It is assumed to have both polarized light and s-polarized light components. Figure 10
Shows an example of tilted linearly polarized light, but circularly polarized light may also be used. This incident light enters the first light beam splitting mirror 202. The s-polarized component of the light beam incident on the mirror 202 is reflected by the polarization beam splitter 202a. On the other hand, the p-polarized light component passes through the polarization beam splitter 202a, is reflected by the mirror 202b, and passes through the polarization beam splitter 202a again.
【0043】入射光束は、こうして2つのずれた光束に
分割される。その後、2つの光束は、両方とも2分の1
波長板203により、偏光方向を90度回転され、第2
の光束分割ミラー204に入射する。第2の光束分割ミ
ラー204は、第1の光束分割ミラー202と同一仕様
の素子である。第2の光束分割ミラー204に入射した
s偏光成分(ミラー202bで反射された光束)は、偏
光ビームスプリッタ204aで反射される。他方、p偏
光成分(202aで反射された光束)は偏光ビームスプ
リッタ204aを透過し、ミラー204bで反射され、
再度偏光ビームスプリッタ204aを透過する。その結
果、2つの光束206、207の光路長は偏光ビームス
プリッタ204aを透過後の光軸に垂直な面、例えば、
無偏光ビームスプリッタ212の位置で同一になる。そ
の後、原盤で反射して戻ってきた光束を無偏光ビームス
プリッタ212によって光検出器115,116へ導く
構成である。The incident light beam is thus split into two deviated light beams. After that, the two luminous fluxes are both halved
The polarization direction is rotated 90 degrees by the wave plate 203, and the second
Is incident on the light beam splitting mirror 204. The second light beam splitting mirror 204 is an element having the same specifications as the first light beam splitting mirror 202. The s-polarized component (light flux reflected by the mirror 202b) that has entered the second light flux splitting mirror 204 is reflected by the polarization beam splitter 204a. On the other hand, the p-polarized component (light flux reflected by 202a) passes through the polarization beam splitter 204a and is reflected by the mirror 204b,
It again passes through the polarization beam splitter 204a. As a result, the optical path lengths of the two light beams 206 and 207 are determined by a plane perpendicular to the optical axis after passing through the polarization beam splitter 204a, for example,
It becomes the same at the position of the non-polarizing beam splitter 212. After that, the light beam reflected by the master and returned is guided to the photodetectors 115 and 116 by the non-polarizing beam splitter 212.
【0044】(第3の実施形態)第1実施形態の光束分
割ミラー105を他の光学部材で構成とした第3の実施
形態を説明する。図11は本実施形態の光束分割ミラー
ユニット210を示す。この第3の実施形態は、第2の
光束分割ミラー204の後に、波長板206を配置し、
光束分割ミラーユニット210の後ろに偏光ビームスプ
リッタ108を配置して構成される。波長板205は、
2分の1波長板と4分の1波長板の何れを用いてもよ
い。(Third Embodiment) A third embodiment in which the light beam splitting mirror 105 of the first embodiment is constituted by another optical member will be described. FIG. 11 shows a light beam splitting mirror unit 210 of this embodiment. In the third embodiment, a wave plate 206 is arranged after the second light beam splitting mirror 204,
A polarization beam splitter 108 is arranged behind the light beam splitting mirror unit 210. The wave plate 205 is
Either a half wave plate or a quarter wave plate may be used.
【0045】透過後に2つの光束の偏光方向がそれぞれ
45度と135度回転するように、即ち、一方の光束の
偏光方向と波長板の光軸方向が22.5度の角度をなす
ように、2分の1波長板を設置する。4分の1波長板の
場合は、透過後の2つの光束が両方とも円偏光になるよ
うに、即ち、一方の光束の偏光方向と波長板の結晶光軸
方向が45度の角度をなすように配置する。こうするこ
とで、2つの光束とも透過率50%で偏光ビームスプリ
ッタ108を透過し、効率良く光を利用することができ
る。After the transmission, the polarization directions of the two light beams rotate by 45 ° and 135 °, respectively, that is, the polarization direction of one light beam and the optical axis direction of the wave plate form an angle of 22.5 °. Install a half-wave plate. In the case of the quarter-wave plate, both of the two light fluxes after transmission are circularly polarized, that is, the polarization direction of one light flux and the crystal optical axis direction of the wavelength plate form an angle of 45 degrees. To place. By doing so, the two light fluxes can be transmitted through the polarization beam splitter 108 with a transmittance of 50%, and the light can be efficiently used.
【0046】(第4の実施形態)本発明の第4の実施形
態では、図12に示すように、第1の実施形態で示した
演算回路117に、原盤119の傾き誤差信号Stを出
力する演算回路125が付加されている。この第4の実
施形態は、演算回路125以外の構成要素は第1の実施
形態と同様なので説明を省略する。焦点誤差信号Sf、
及び原盤119の傾き誤差信号Stは、演算回路11
7、125によって次式(5)、(6)の演算を行うこ
とで生成する。(Fourth Embodiment) In the fourth embodiment of the present invention, as shown in FIG. 12, the tilt error signal St of the master 119 is output to the arithmetic circuit 117 shown in the first embodiment. The arithmetic circuit 125 is added. The components of the fourth embodiment other than the arithmetic circuit 125 are the same as those of the first embodiment, and thus the description thereof will be omitted. Focus error signal Sf,
And the tilt error signal St of the master 119 is calculated by the arithmetic circuit 11
It is generated by performing the operations of the following equations (5) and (6) using Nos. 7 and 125.
【0047】
Sf=(D1−D2)−(D3−D4) (5)
St=(D1−D2)+(D3−D4) (6)
上式(5)の演算により生成した焦点誤差信号に基づい
て焦点制御した時、原盤119の傾きがない場合は、上
式(6)の信号Stは零の信号を出力する。他方、原盤
119に傾きがある場合は、図8(b)から明らかなよ
うに、Stが非零の信号を出力する。即ち、(6)の演
算により原盤の傾き誤差信号を生成することができる。Sf = (D1-D2)-(D3-D4) (5) St = (D1-D2) + (D3-D4) (6) Based on the focus error signal generated by the calculation of the above formula (5). When the master disc 119 has no inclination when the focus control is performed by the focus control, the signal St of the above equation (6) outputs a signal of zero. On the other hand, when the master disk 119 has a tilt, as is apparent from FIG. 8B, a signal in which St is non-zero is output. That is, the tilt error signal of the master can be generated by the calculation of (6).
【0048】以上、具体例を参照しつつ本発明の実施の
形態について説明した。尚、実施形態の説明において、
光検出器を2分割光検出器としたが、2分割光検出器の
代わりに、光量分布の重心位置を検出するPSD(位置
検出素子)を用いてもよい。又、上述の実施形態では、
光束分割ミラーで分割される光束を2本として説明した
が、これに限定されるものではなく、それ以上の複数本
使用してもよい。又、上記説明では、本発明を光ディス
ク原盤露光装置に適用したが、半導体製造におけるマス
クの検査装置またはマスク位置決めに適用できる。The embodiments of the present invention have been described above with reference to specific examples. In the description of the embodiment,
Although the photodetector is a two-division photodetector, a PSD (position detection element) that detects the barycentric position of the light amount distribution may be used instead of the two-division photodetector. Also, in the above-described embodiment,
Although the description has been made assuming that the number of light beams split by the light beam splitting mirror is two, the number of light beams is not limited to this, and a plurality of more light beams may be used. Further, in the above description, the present invention is applied to the optical disk master exposure apparatus, but it can be applied to a mask inspection apparatus or mask positioning in semiconductor manufacturing.
【0049】なお、本発明は、上記実施形態に限定され
るものではなく、実施段階ではその要旨を逸脱しない範
囲で種々に変形することが可能である。更に、上記実施
形態には種々の段階の発明が含まれており、開示される
複数の構成要件における適宜な組み合わせにより種々の
発明が抽出され得る。例えば、実施形態に示される全構
成要件から幾つかの構成要件が削除されても、発明が解
決しようとする課題の欄で述べた課題の少なくとも1つ
が解決でき、発明の効果の欄で述べられている効果の少
なくとも1つが得られる場合には、この構成要件が削除
された構成が発明として抽出され得る。The present invention is not limited to the above embodiment, and can be variously modified at the stage of implementation without departing from the spirit of the invention. Furthermore, the embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some of the constituent elements are deleted from all the constituent elements shown in the embodiment, at least one of the problems described in the section of the problem to be solved by the invention can be solved and described in the section of the effect of the invention. When at least one of the effects described above is obtained, a configuration in which this constituent element is deleted can be extracted as an invention.
【0050】[0050]
【発明の効果】以上説明したように、本発明によれば、
露光用レーザ波長と焦点制御用レーザ波長で焦点距離が
異なる対物レンズを用いる場合、対物レンズの光軸に対
して対称的に入射した複数の光束を用いることで、対物
レンズ変位及び原盤の傾きに伴って発生する焦点誤差信
号へのオフセットを低減でき、安定した焦点制御が可能
な光ディスク原盤露光装置を提供できる。又、露光用レ
ーザとは波長の異なる焦点制御用レーザにより安定した
焦点制御が実現できるため、ROM、RAM等の種々の
フォーマットの光ディスクに対応可能である。又、焦点
誤差信号のみならず、原盤の傾き誤差信号をも生成する
ことができる。又、本発明によれば、軸上色収差が補正
された重量で高価な対物レンズを用いる場合と比較し
て、アクチュエータ部の構成が容易で、安価な光ディス
ク原盤露光装置を提供できる。As described above, according to the present invention,
When using an objective lens with different focal lengths for the exposure laser wavelength and the focus control laser wavelength, use multiple light beams that are symmetrically incident with respect to the optical axis of the objective lens, and It is possible to provide an optical disc master exposure apparatus that can reduce the offset to the focus error signal that occurs with it and can perform stable focus control. Further, stable focus control can be realized by a focus control laser having a wavelength different from that of the exposure laser, so that it can be applied to optical disks of various formats such as ROM and RAM. Further, not only the focus error signal but also the tilt error signal of the master can be generated. Further, according to the present invention, it is possible to provide an inexpensive optical disk master exposure apparatus in which the actuator part has a simpler structure and is cheaper than the case where an objective lens which is expensive and has a corrected axial chromatic aberration is used.
【図1】対物レンズ変位に伴う、露光用レーザと焦点制
御用レーザの集光状態を示す図。FIG. 1 is a diagram showing a focusing state of an exposure laser and a focus control laser according to displacement of an objective lens.
【図2】本発明の第1の実施形態に係る光ディスク原盤
露光装置の主要光学系を示す図。FIG. 2 is a diagram showing a main optical system of the optical disk master exposure apparatus according to the first embodiment of the present invention.
【図3】部分透過ミラーと全反射ミラーにより構成した
光束分割ミラーを示す図。FIG. 3 is a diagram showing a light beam splitting mirror configured by a partial transmission mirror and a total reflection mirror.
【図4】本発明の係る焦点誤差検出原理を示す図。FIG. 4 is a diagram showing the principle of focus error detection according to the present invention.
【図5】対物レンズ変位に伴う光検出器面上の光束の位
置変位を示す図。FIG. 5 is a diagram showing positional displacement of a light beam on a photodetector surface due to displacement of an objective lens.
【図6】焦点ずれに対する光検出器面上の光束の位置変
位量を示す図。FIG. 6 is a diagram showing a positional displacement amount of a light beam on a photodetector surface with respect to defocus.
【図7】対物レンズ変位に対する光検出器面上の光束の
位置変位量を示す図。FIG. 7 is a diagram showing a positional displacement amount of a light beam on a photodetector surface with respect to displacement of an objective lens.
【図8】原盤の傾きがある場合の光検出器面上の光束の
位置を示す図。FIG. 8 is a diagram showing the position of a light beam on the photodetector surface when the master disc is tilted.
【図9】原盤の傾きがある場合の焦点誤差信号を示す
図。FIG. 9 is a diagram showing a focus error signal when the master disc is tilted.
【図10】本発明の第2の実施形態に係る光ディスク原
盤露光装置に用いる光束分割ミラーユニットを示す図。FIG. 10 is a view showing a light beam splitting mirror unit used in an optical disk master exposure apparatus according to the second embodiment of the present invention.
【図11】本発明の第3の実施形態に係る光ディスク原
盤露光装置に用いる光束分割ミラーユニットを示す図。FIG. 11 is a diagram showing a light beam splitting mirror unit used in an optical disk master exposure apparatus according to a third embodiment of the present invention.
【図12】本発明の第4の実施形態に係る光ディスク原
盤露光装置の演算回路を示す図。FIG. 12 is a diagram showing an arithmetic circuit of an optical disc master exposure apparatus according to a fourth embodiment of the present invention.
20…露光用レーザ 21…焦点制御用レーザ 70…波長257nmでの対物レンズ焦平面 101…焦点制御用レーザ装置 102…45度ミラー 103…光束径拡大部 104…集光レンズ 105…光束分割ミラー 106、107…焦点制御用レーザ 108…偏光ビームスプリッタ 109…立下げミラー 110…4分の1波長板 111…収差補正用平行平板 112…ダイクロイックミラー 113…対物レンズ 114…ボイスコイルアクチュエータ 115、116…2分割光検出器 117…焦点誤差演算回路 118…移動光学系 119…原盤 120…ターンテーブル 121…スピンドルモータ 122…スライダ 123…虹彩絞り 124…露光用レーザ装置 125…傾き誤差演算回路 130…原盤の傾きがある場合の焦点誤差信号 131…原盤の傾きがない場合の焦点誤差信号 201…ミラー 202…第1の光束分割ミラー 203…2分の1波長板 204…第2の光束分割ミラー 205…2分の1波長板、或いは、4分の1波長板 206…焦点制御用レーザ 207…焦点制御用レーザ 210…光束分割ミラーユニット 211…光束分割ミラーユニット 212…無偏光ビームスプリッタ 20 ... Laser for exposure 21 ... Laser for focus control 70 ... Objective lens focal plane at wavelength 257 nm 101 ... Laser device for focus control 102 ... 45 degree mirror 103 ... Enlarged part of luminous flux diameter 104 ... Condensing lens 105 ... Beam splitting mirror 106, 107 ... Focus control laser 108 ... Polarizing beam splitter 109 ... Falling mirror 110 ... Quarter wave plate 111 ... Parallel plate for aberration correction 112 ... Dichroic mirror 113 ... Objective lens 114 ... Voice coil actuator 115, 116 ... 2-split photodetector 117 ... Focus error calculation circuit 118 ... Moving optical system 119 ... Master 120 ... turntable 121 ... Spindle motor 122 ... slider 123 ... Iris diaphragm 124 ... Laser device for exposure 125 ... Inclination error calculation circuit 130 ... Focus error signal when the master disc is tilted 131 ... Focus error signal when the master does not tilt 201 ... Mirror 202 ... First light beam splitting mirror 203 ... Half wave plate 204 ... Second beam splitting mirror 205 ... Half wave plate or quarter wave plate 206 ... Focus control laser 207 ... Laser for focus control 210 ... Luminous flux splitting mirror unit 211 ... Luminous flux splitting mirror unit 212 ... Non-polarizing beam splitter
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5D118 AA01 AA03 AA18 BA01 BB09 BF03 CA11 CC04 CC12 CD02 CF03 CG03 CG07 CG17 CG26 DA19 DA33 5D119 AA01 AA20 AA29 BA01 BB09 CA05 DA01 EA03 EB12 EC26 EC40 FA05 JA21 JA32 JA43 JB01 KA10 KA17 5D121 BB21 BB38 5D789 AA01 AA20 AA29 BA01 BB09 CA05 DA01 EA03 EB12 EC26 EC40 FA05 JA21 JA32 JA43 JB01 KA10 KA17 ─────────────────────────────────────────────────── ─── Continued front page F-term (reference) 5D118 AA01 AA03 AA18 BA01 BB09 BF03 CA11 CC04 CC12 CD02 CF03 CG03 CG07 CG17 CG26 DA19 DA33 5D119 AA01 AA20 AA29 BA01 BB09 CA05 DA01 EA03 EB12 EC26 EC40 FA05 JA21 JA32 JA43 JB01 KA10 KA17 5D121 BB21 BB38 5D789 AA01 AA20 AA29 BA01 BB09 CA05 DA01 EA03 EB12 EC26 EC40 FA05 JA21 JA32 JA43 JB01 KA10 KA17
Claims (8)
対物レンズの光軸に対して対称的に偏心させて対物レン
ズに入射するように、前記焦点制御用光源からの光束を
複数の光束に分割する光束分割手段と、前記対物レンズ
に対向している合焦対象で反射して前記対物レンズを透
過した光束の光量分布により光束の位置を検出する複数
の光検出器と、前記光検出器の出力信号から前記合焦対
象に対する前記対物レンズの焦点誤差を演算し、焦点誤
差信号を生成する演算手段とを具備することを特徴とす
る焦点誤差検出装置。1. A light source for focus control, an objective lens, and a plurality of light fluxes from the light source for focus control so as to be symmetrically decentered with respect to the optical axis of the objective lens and enter the objective lens. A light beam splitting means for splitting the light beam into a plurality of light detectors, a plurality of light detectors for detecting the position of the light beam by the light amount distribution of the light beam reflected by the focusing object facing the objective lens and transmitted through the objective lens, and the light detection. Error detecting apparatus for calculating a focus error of the objective lens with respect to the focusing object from an output signal of the instrument and generating a focus error signal.
の焦点制御用光源と、露光用光源の波長と焦点制御用光
源の波長で焦点距離が異なる対物レンズと、前記対物レ
ンズの光軸に対して対称的に偏心させて対物レンズに入
射するように、前記焦点制御用光源からの光束を複数の
光束に分割する光束分割手段と、前記対物レンズに対向
している合焦対象である光学的情報記録媒体で反射して
前記対物レンズを透過した光束の光量分布により光束の
位置を検出する複数の光検出器と、前記光検出器の出力
信号から前記合焦対象に対する前記対物レンズの焦点誤
差を演算し、焦点誤差信号を生成する演算手段とを具備
することを特徴とする光学的情報記録装置。2. An exposure light source, a focus control light source having a wavelength longer than that of the exposure light source, an objective lens having a different focal length depending on the wavelength of the exposure light source and the wavelength of the focus control light source, and the optical axis of the objective lens. A beam splitting means for splitting the light beam from the focus control light source into a plurality of light beams so as to be symmetrically decentered and incident on the objective lens; and a focus object facing the objective lens. A plurality of photodetectors for detecting the position of the light flux by the light amount distribution of the light flux reflected by the optical information recording medium and transmitted through the objective lens, and the objective lens for the focusing target from the output signal of the photodetector. An optical information recording device, comprising: a calculating unit that calculates a focus error and generates a focus error signal.
配設された部分透過ミラーと全反射ミラーとを具備する
ことを特徴とする請求項1又は請求項2に記載の装置。3. The apparatus according to claim 1, wherein the light beam splitting means comprises a partial transmission mirror and a total reflection mirror which are arranged with a predetermined distance therebetween.
て配設された、部分透過ミラーとして機能する偏光ビー
ムスプリッタと全反射ミラーで構成される複数の光学素
子と、これら光学素子の間に配設された2分の1波長板
とを具備することを特徴とする請求項1又は請求項2に
記載の装置。4. The light beam splitting means is provided with a plurality of optical elements, which are arranged at a predetermined distance apart and are composed of a polarization beam splitter functioning as a partial transmission mirror and a total reflection mirror, and between these optical elements. An apparatus according to claim 1 or 2, further comprising: a half-wave plate disposed on the.
て配設された、部分透過ミラーとして機能する偏光ビー
ムスプリッタと全反射ミラーで構成される複数の光学素
子と、これら光学素子の間に配設された2分の1波長板
と、出射側に配設された4分の1波長板とを具備するこ
とを特徴とする請求項1又は請求項2に記載の装置。5. The light beam splitting means is provided with a plurality of optical elements, which are arranged at a predetermined distance from each other and are composed of a polarization beam splitter functioning as a partial transmission mirror and a total reflection mirror, and between these optical elements. The apparatus according to claim 1 or 2, further comprising: a half-wave plate disposed on the output side and a quarter-wave plate disposed on the emission side.
傾き誤差を演算し、傾き誤差信号を生成する演算手段を
更に具備し、前記合焦対象で反射して対物レンズを透過
した光束を前記光検出器で受光して傾き誤差検出を行う
機能も有することを特徴とする請求項1乃至請求項5の
いずれか1項に記載の装置。6. A calculation means for calculating a tilt error of the objective lens with respect to the focusing object to generate a tilt error signal, further comprising: a light beam reflected by the focusing object and transmitted through the objective lens. The apparatus according to claim 1, further comprising a function of detecting light by a detector to detect an inclination error.
より構成され、前記光学的情報録媒体として光ディスク
原盤を用い、前記焦点制御用光源と前記光束分割手段と
前記対物レンズと、前記光検出手段とを搭載し、前記光
ディスク原盤の半径方向に移動するスライダを備えたこ
とを特徴とする光ディスク原盤露光装置。7. The optical information recording device according to claim 2, wherein an optical disk master is used as the optical information recording medium, the focus control light source, the light beam splitting means, the objective lens, and the light. An optical disk master exposure apparatus, comprising: a detection unit and a slider that moves in a radial direction of the optical disk master.
を備えた請求項7に記載の光ディスク原盤露光装置。8. The optical disk master exposure device according to claim 7, wherein the optical information recording device is provided with a tilt detecting beam function.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001282430A JP3663164B2 (en) | 2001-09-17 | 2001-09-17 | Focus error detection device and optical information recording device using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001282430A JP3663164B2 (en) | 2001-09-17 | 2001-09-17 | Focus error detection device and optical information recording device using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003091839A true JP2003091839A (en) | 2003-03-28 |
JP3663164B2 JP3663164B2 (en) | 2005-06-22 |
Family
ID=19106078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001282430A Expired - Fee Related JP3663164B2 (en) | 2001-09-17 | 2001-09-17 | Focus error detection device and optical information recording device using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3663164B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007145437A1 (en) * | 2006-06-14 | 2007-12-21 | Samsung Electronics Co., Ltd. | Method of correcting chromatic aberration generated during conversion from reproducing mode to recording mode, and recording method and recording and reproducing apparatus adopting the correction method |
-
2001
- 2001-09-17 JP JP2001282430A patent/JP3663164B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007145437A1 (en) * | 2006-06-14 | 2007-12-21 | Samsung Electronics Co., Ltd. | Method of correcting chromatic aberration generated during conversion from reproducing mode to recording mode, and recording method and recording and reproducing apparatus adopting the correction method |
Also Published As
Publication number | Publication date |
---|---|
JP3663164B2 (en) | 2005-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101663588A (en) | Distortion measurement imaging system | |
JP2002288873A (en) | Optical information recording and reproducing device | |
JPH01105338A (en) | Optical recording and reproducing device | |
JPS62191812A (en) | Optical type image former and mask pattern image former | |
JPS6161178B2 (en) | ||
JP3663164B2 (en) | Focus error detection device and optical information recording device using the same | |
US20050002312A1 (en) | Optical pickup apparatus and method therefor | |
US8184519B2 (en) | Optical pickup apparatus | |
US7064308B2 (en) | Method of and apparatus for adjusting the focus position of an optical pickup | |
JP2000020993A (en) | Optical disk device | |
JP2003329408A (en) | Laser length-measurement device | |
KR20040062673A (en) | Optical scanning device | |
JP3101504B2 (en) | Optical pickup device | |
JPH1196583A (en) | Astigmatic difference correcting method and correcting device for optical head | |
JPS605440A (en) | Optical disk checking device | |
JP4184320B2 (en) | Optical head adjustment device | |
JP2002150592A (en) | Multilayer optical recording pickup | |
JPH08124206A (en) | Optical pickup, light receiving element therefor and light spot diameter adjusting method therefor | |
JPH06267100A (en) | Apparatus for optically recording/reproducing data | |
JPH0434738A (en) | Optical information recording and reproducing device | |
JPH07220287A (en) | Position adjusting method for optical path in exposure device | |
JPH02278522A (en) | Focus controller for master optical disk exposing machine | |
JPH02292735A (en) | Focus detector | |
JPH06258505A (en) | Beam shaping prism and optical system | |
JP2006268890A (en) | Optical information recording/reproducing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041019 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050325 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080401 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090401 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100401 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100401 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110401 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130401 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140401 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |