[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003077543A - Flat nonaqueous electrolyte secondary battery - Google Patents

Flat nonaqueous electrolyte secondary battery

Info

Publication number
JP2003077543A
JP2003077543A JP2001269077A JP2001269077A JP2003077543A JP 2003077543 A JP2003077543 A JP 2003077543A JP 2001269077 A JP2001269077 A JP 2001269077A JP 2001269077 A JP2001269077 A JP 2001269077A JP 2003077543 A JP2003077543 A JP 2003077543A
Authority
JP
Japan
Prior art keywords
electrode
secondary battery
electrolyte secondary
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001269077A
Other languages
Japanese (ja)
Inventor
Masami Suzuki
正美 鈴木
Munehito Hayami
宗人 早見
Yuichi Kikuma
祐一 菊間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2001269077A priority Critical patent/JP2003077543A/en
Publication of JP2003077543A publication Critical patent/JP2003077543A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flat nonaqueous electrolyte secondary battery having a smaller size, superior heavy load property and higher discharge capacity. SOLUTION: The flat nonaqueous electrolyte secondary battery includes an electrode group consisting of a positive electrode 2, a negative electrode 4 and a separator 3 and a nonaqueous electrolyte in a negative electrode case 5 and a positive electrode case 1 in a sealed state. The electrode group is formed with the positive electrode, the negative electrode and the separator wound, having three or more faces opposed to the positive and negative electrodes in a cross section perpendicular to a flat plane, and a positive electrode constituent material and a negative electrode constituent material are exposed to the outside of the electrode group and connected to the positive electrode case and to the negative electrode case, respectively. The positive and negative electrodes and the separator, wound, are formed with a plurality of continued unit faces using a predetermined shape as one unit. As a result, larger area of the electrodes and the higher discharge capacity are achieved than those of a conventional one having straps wound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は扁平形非水電解質二
次電池に係り、特に重負荷特性に優れ、かつ放電容量の
大きな扁平形非水電解質二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat type non-aqueous electrolyte secondary battery, and more particularly to a flat type non-aqueous electrolyte secondary battery having excellent heavy load characteristics and large discharge capacity.

【0002】[0002]

【従来の技術】正極作用物質にコバルト酸リチウム、ニ
ッケル酸リチウム、マンガン酸リチウムなどのリチウム
酸化物を用い、負極にリチウムを吸蔵・放出可能な炭素
質材料、あるいはリチウム含有錫酸化物、リチウム含有
珪素酸化物、チタン酸リチウムのようなリチウム含有酸
化物を用い、電解質にプロピレンカーボネート、エチレ
ンカーボネート、ブチレンカーボネート、ジエチルカー
ボネート、ジメチルカーボネート、メチルエチルカーボ
ネート、ジメトキシエタン、γ−ブチルラクトンなどの
非水溶媒にLiClO、LiPF、LiBF、L
iCFSO、LiN(CFSO、LiN
(CSOなどの支持塩を溶解した非水電解
質を用いたリチウムイオン二次電池はすでに実用化され
ており、携帯電話やノート型PCの主電源として広く一
般に使用されている。
2. Description of the Related Art A lithium oxide such as lithium cobalt oxide, lithium nickel oxide, or lithium manganate is used as a positive electrode active material, and a carbonaceous material capable of inserting and extracting lithium into the negative electrode, or a lithium-containing tin oxide or lithium-containing material. A non-aqueous solvent such as propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, or γ-butyl lactone is used as an electrolyte using a lithium-containing oxide such as silicon oxide or lithium titanate. LiClO 4 , LiPF 6 , LiBF 4 , L
iCF 3 SO 3, LiN (CF 3 SO 2) 2, LiN
A lithium ion secondary battery using a non-aqueous electrolyte in which a supporting salt such as (C 2 F 5 SO 2 ) 2 is dissolved has already been put into practical use and is widely and commonly used as a main power source for mobile phones and notebook PCs. There is.

【0003】近年、使用機器の小型化に伴い、上記の二
次電池に関してもより小型化することが要求されてお
り、これに対応して本発明者らは、扁平形非水電解質二
次電池であって、正負極対向面(正極と負極がセパレー
タを介して対向している面)が扁平面に垂直な断面にお
いて少なくとも3面以上あり、この正負極対向面の総面
積が絶縁ガスケットの開口面積より大きいような二次電
池を開発した(特開2001−068160号、特開2001−068143
号)。例えば、正極と負極をセパレータを介して積層し
て正負極対向面を3面以上としたものや、正極と負極を
セパレータを介して捲回して正負極対向面を3面以上と
したものなどがある。
In recent years, with the miniaturization of the equipment used, it has been required that the secondary battery be further miniaturized, and in response to this, the present inventors have responded to the flat non-aqueous electrolyte secondary battery. The positive and negative electrode facing surfaces (the surface where the positive electrode and the negative electrode face each other via the separator) are at least three or more in a cross section perpendicular to the flat surface, and the total area of the positive and negative electrode facing surfaces is the opening of the insulating gasket. A secondary battery having a larger area has been developed (Japanese Patent Laid-Open Nos. 2001-068160 and 2001-068143).
issue). For example, a positive electrode and a negative electrode may be laminated with a separator to have three or more positive and negative electrode facing surfaces, or a positive electrode and a negative electrode may be wound with a separator to have three or more positive and negative electrode facing surfaces. is there.

【0004】これらの電池は、電池群の最外側におい
て、導電性の正極構成材および負極構成材がそれぞれ水
平方向に露出しており、これらが直接、正極ケースおよ
び負極ケースに接触し、それによって集電が行われるよ
うになっている。したがって、集電構造としては、円筒
形電池のように電極群の中心部からタブ端子を取り出
し、これを複雑に曲げ加工して安全素子や封口ピン、電
池缶などに溶接しする、というような複雑さがなく、作
業性がよいという利点がある。
In these batteries, conductive positive electrode constituents and negative electrode constituents are exposed in the horizontal direction at the outermost side of the battery group, and these are in direct contact with the positive electrode case and the negative electrode case. Current collection is done. Therefore, as a current collecting structure, like a cylindrical battery, a tab terminal is taken out from the center of the electrode group, and this is complicatedly bent and welded to a safety element, a sealing pin, a battery can, or the like. It has the advantages of low complexity and good workability.

【0005】[0005]

【発明が解決しようとする課題】上記の正負極対向面を
3面以上とした扁平形非水電解質二次電池は、従来のタ
ブレット状の電極を用いた同型の電池に比べて、重負荷
特性を飛躍的に向上させることができた。しかしなが
ら、従来の円筒形や角形のリチウム二次電池に比べる
と、電池が小型である故に放電容量は小さいという欠点
があることは否めなかった。
The flat type non-aqueous electrolyte secondary battery having three or more positive and negative electrode facing surfaces has a heavy load characteristic as compared with a conventional battery of the same type using a tablet-shaped electrode. Was able to improve dramatically. However, it is undeniable that the battery has a small discharge capacity as compared with the conventional cylindrical or prismatic lithium secondary battery, and thus the discharge capacity is small.

【0006】本発明は上記問題に対処してなされたもの
で、小型サイズを維持したまま、極限まで放電容量を増
加させることを目的としたものであって、すなわち、小
型で重負荷特性に優れ、かつ放電容量の大きな扁平形非
水電解質二次電池を提供することを目的とするものであ
る。
The present invention has been made to solve the above problems, and is intended to increase the discharge capacity to the limit while maintaining the small size, that is, the small size and the excellent heavy load characteristics. It is also an object of the present invention to provide a flat non-aqueous electrolyte secondary battery having a large discharge capacity.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記扁平形
電池の高容量化を図るために、電極群以外の占める空間
部分を極力なくして、容積を有効に活用することを試み
た。例えば、特開2001−068160号で提案した積層タイプ
の電極群では複数の薄形電極の通電部を溶接により一体
化しており、通電部の占める容積が大きいので、電池内
の空間を有効に利用できない。特に放電容量の大きな電
池を得るために電池総高を厚くした場合は、複数の電極
同士をつなぐ通電部を長く取らざるを得ず、電池内の空
間を有効に利用することは困難であった。
In order to increase the capacity of the flat battery, the present inventors have tried to minimize the space occupied by the electrode group and utilize the volume effectively. For example, in the laminated type electrode group proposed in Japanese Patent Laid-Open No. 2001-068160, the current-carrying parts of a plurality of thin electrodes are integrated by welding, and the volume occupied by the current-carrying parts is large, so the space inside the battery is effectively used. Can not. Especially when the total battery height was increased to obtain a battery with a large discharge capacity, it was difficult to effectively use the space inside the battery because the current-carrying part connecting the plurality of electrodes had to be long. .

【0008】一方、特開2001−068143号で提案した捲回
電極群の場合は、通電部を作用物質層の塗布された電極
以外の空間に設ける必要がないので、容量の増加を図る
余地がある。しかしながら、方形の電極を捲回して電極
群を形成しているため、電池の扁平面方向の電極群の形
は方形となり、例えば円形の扁平形電池では、電極群の
平面形状は円形の電池ケースまたはガスケットに内接す
る正方形又は長方形とせざるを得ず、その結果、電極群
の周囲に空間ができる。この空間を有効利用することは
できなかった。
On the other hand, in the case of the wound electrode group proposed in Japanese Patent Laid-Open No. 2001-068143, it is not necessary to provide the current-carrying portion in a space other than the electrode coated with the active substance layer, and there is room for increasing the capacity. is there. However, since the rectangular electrode is wound to form the electrode group, the shape of the electrode group in the flat plane direction of the battery becomes square. For example, in the case of a circular flat battery, the planar shape of the electrode group is a circular battery case. Alternatively, it is inevitable that the gasket is inscribed in a square or a rectangle, and as a result, a space is formed around the electrode group. It was not possible to make effective use of this space.

【0009】本発明者らはこの点に着目して研究を重ね
た結果、捲回する電極の形状を方形とせず、電池の扁平
面形状により適合した形状を一単位とし、これを複数個
連ねた形状とすることによって、これを捲回した電極群
の平面形状を電池形状に適合したものとし、電池内空間
を有効利用してこの問題を解決した。
As a result of repeated studies focusing on this point, the inventors of the present invention have determined that the shape of the wound electrode is not rectangular, but that the shape conforming to the flat shape of the battery is defined as one unit, and a plurality of such shapes are connected in series. By adopting the different shape, the planar shape of the wound electrode group is adapted to the shape of the battery, and the space inside the battery is effectively used to solve this problem.

【0010】すなわち本発明は、負極端子を兼ねる金属
製の負極ケースと、正極端子を兼ねる金属製の正極ケー
スが、絶縁ガスケットを介し嵌合されて封口され、その
内部に正極、セパレータおよび負極を含む電極群と非水
電解質を内包し、該電極群の正負極対向面が扁平面に垂
直な断面において3面以上あり、電極群の最外側には導
電性を有する正極構成材と負極構成材が露出してそれぞ
れ正極ケースおよび負極ケースに接続している扁平形非
水電解質二次電池において、上記電極群が、所定の形状
を一単位とする単位面を複数個連ねた形状の正極、セパ
レータおよび負極を捲回して構成されていることを特徴
とする。
That is, according to the present invention, a metal negative electrode case also serving as a negative electrode terminal and a metal positive electrode case also serving as a positive electrode terminal are fitted and sealed via an insulating gasket, and the positive electrode, the separator and the negative electrode are housed therein. A positive electrode constituent member and a negative electrode constituent member that include a group of electrodes and a non-aqueous electrolyte, and the positive and negative electrode facing surfaces of the electrode unit are three or more in a cross section perpendicular to a flat surface, and have conductivity on the outermost side of the electrode group. In the flat non-aqueous electrolyte secondary battery exposed to be connected to the positive electrode case and the negative electrode case, respectively, the electrode group, a positive electrode having a shape in which a plurality of unit surfaces having a predetermined shape as one unit, are connected, a separator And the negative electrode is wound.

【0011】上記の一単位となる形状は、例えば六角形
や八角形等の多角形、円、楕円などであって、円や楕円
の場合には各単位面の接続部分が円弧となるのを避け
て、周囲に少なくとも2辺ができるように切除した形と
するとよい。このような単位面が連続した形状のものを
捲回すると、電池の扁平面の上面から電極群の形状を見
た場合に、電池ケースおよびガスケットに近い形状にな
る。その結果、電池内の空間の大部分を電極構成材で埋
めることができ、従来より放電容量が飛躍的に上昇す
る。
The above-mentioned one unit shape is, for example, a polygon such as a hexagon or an octagon, a circle, an ellipse, etc. In the case of a circle or an ellipse, the connecting portion of each unit surface is an arc. It is better to avoid it so that it has at least two edges around it. When such a unit surface having a continuous shape is wound, the shape of the electrode group is similar to that of the battery case and the gasket when the shape of the electrode group is viewed from the upper surface of the flat surface of the battery. As a result, most of the space in the battery can be filled with the electrode constituent material, and the discharge capacity is dramatically increased compared to the conventional case.

【0012】例えば、従来の円に内接した正方形と本発
明の多角形の場合とを比較すると、電極面積は正方形を
1として内接正六角形では1.3、内接正八角形では
1.4となり、円や楕円の場合は前記したように2方を
直線で切除した形とすると約1.5以上になる。単位面
の形状は上記の形状に限らず、小判形など特殊な形状の
扁平形電池ではその形状に合わせて任意に選ぶことがで
きる。
For example, comparing the conventional square inscribed in a circle with the polygon of the present invention, the electrode area is 1.3 with the square being 1 for an inscribed regular hexagon and 1.4 for an inscribed regular octagon. In the case of a circle or an ellipse, if the two sides are cut off by a straight line as described above, it becomes about 1.5 or more. The shape of the unit surface is not limited to the above shape, and can be arbitrarily selected according to the shape of a flat battery having a special shape such as an oval shape.

【0013】本発明ではこのように電極群の水平方向面
の面積を大きくすることによって、放電容量を増加する
ことができるが、電極の捲回に伴う次のような問題も発
生する。すなわち、捲回に伴う電極の内周と外周の周長
差により、電極群の捲回方向に正負極やセパレータの位
置ずれや皺が発生し、その結果、充電時にセミショート
を招いたり、充放電サイクル特性の低下を招くなどの不
具合が生ずる。
According to the present invention, the discharge capacity can be increased by increasing the area of the horizontal surface of the electrode group in this way, but the following problems occur when the electrodes are wound. That is, due to the difference in circumferential length between the inner circumference and the outer circumference of the electrode due to winding, positional deviation or wrinkles of the positive and negative electrodes and the separator occur in the winding direction of the electrode group, resulting in a semi-short circuit during charging or charging. Problems such as deterioration of discharge cycle characteristics occur.

【0014】この問題に対しては、連結された単位面の
中心間隔を、捲回内周のものほど短く、捲回外周のもの
ほど長くする。このように予め補正しておくことで、捲
回時の内外周差による電極の撓みやずれ、あるいはそれ
に伴う活物質層の脱落を防止できる。
To solve this problem, the center interval of the connected unit surfaces is made shorter for the inner circumference of the winding and longer for the outer circumference of the winding. By making such a correction in advance, it is possible to prevent the electrode from being bent or displaced due to the difference between the inner and outer circumferences during winding, or the active material layer from falling off.

【0015】このことは電極の捲回周縁部において特に
重要となる。本発明の電池は、扁平形に捲回された電極
群の上下両面を電池ケースに当てて通電処理する構造で
あるので、正負極の捲回終端部の僅かなずれが通電不良
や内部短絡の発生を招くからである。従来の短冊状の電
極を捲回した電池では電極端を巻き止めテープで保護
し、電池ケースと絶縁することで多少のずれは防ぐこと
ができたが、本発明の場合、電極形状が複雑でしかも電
池ケース形状いっぱいに広がっているので、電極の捲回
周縁部の位置や形状を安定させることは極めて重要な技
術である。
This is particularly important at the winding peripheral portion of the electrode. Since the battery of the present invention has a structure in which the upper and lower surfaces of the flatly wound electrode group are applied to the battery case to carry out the energization treatment, a slight deviation of the winding end portions of the positive and negative electrodes may result in improper energization or internal short circuit. This is because it will occur. In a conventional battery in which strip-shaped electrodes are wound, the electrode end is protected by a winding tape and insulated from the battery case to prevent some deviation, but in the case of the present invention, the electrode shape is complicated. In addition, since the battery case is spread over the entire shape of the battery case, it is a very important technique to stabilize the position and shape of the winding periphery of the electrode.

【0016】さらに本発明者らは電極について工夫を重
ね、電極の単位面を連ねる際に、隣接する単位面間にご
く短い帯状の中間領域を設け、これを連結部とすると好
ましいことがわかった。すなわち、前記したように、単
位面間の中心間隔を外周側ほど長くした場合、例えば単
位面が円の場合を考えると、各円は同一半径であるから
外周側ほど連結部の幅は狭くなる。したがって、外周側
の単位面連結部の強度が低下し、充放電サイクルを繰り
返した際の電極の緊張収縮による応力によって、この部
位が破断するという不具合が生じる。
Furthermore, the present inventors have found that it is preferable to devise an electrode so that when connecting the unit surfaces of the electrodes, a very short strip-shaped intermediate region is provided between adjacent unit surfaces, and this is used as a connecting portion. . That is, as described above, when the center distance between the unit surfaces is made longer toward the outer peripheral side, for example, when the unit surface is a circle, since the circles have the same radius, the width of the connecting portion becomes narrower toward the outer peripheral side. . Therefore, the strength of the unit surface connecting portion on the outer peripheral side is reduced, and this portion is broken due to the stress due to the tension and contraction of the electrode during repeated charge and discharge cycles.

【0017】この改善策として、前記したように帯状の
連結部を設けると、この部分が補強されて電極強度が向
上する。捲回時の電極切れや充放電サイクルによる電極
切れを防ぐためには連結部の幅を最適化することが望ま
しく、電極が最も切れやすい外周部において、次の式
(1)を満たすことが好ましいことを見出した。 B/A≧0.15 (1)
As a measure for improving this, if a strip-shaped connecting portion is provided as described above, this portion is reinforced and the electrode strength is improved. In order to prevent electrode breakage during winding and electrode breakage due to charge / discharge cycles, it is desirable to optimize the width of the connecting part.
It has been found that it is preferable to satisfy (1). B / A ≧ 0.15 (1)

【0018】ここで、Aは捲回方向に対して垂直方向の
単位面の最大幅、Bは捲回方向に対して垂直方向の連結
部の幅である。B/A値が0.15より小さいと、連結
部の強度が弱くなり、電池組立時や充放電サイクルを繰
り返した時に電極切れが起こる。また、下記式(2)の範
囲とすれば、電極の破断不良を皆無にできるので、さら
に好ましい。 B/A≧0.2 (2)
Here, A is the maximum width of the unit surface in the direction perpendicular to the winding direction, and B is the width of the connecting portion in the direction perpendicular to the winding direction. When the B / A value is less than 0.15, the strength of the connecting portion becomes weak, and the electrode breaks when the battery is assembled or the charge / discharge cycle is repeated. Further, it is more preferable to set it in the range of the following formula (2), because it is possible to eliminate the breakage failure of the electrode. B / A ≧ 0.2 (2)

【0019】また、放電容量をできるだけ大きくとると
いう観点から見た場合、B/A値は下記式(3)の範囲で
あることが望ましい。 B/A≦0.7 (3)
Further, from the viewpoint of taking the discharge capacity as large as possible, the B / A value is preferably within the range of the following formula (3). B / A ≦ 0.7 (3)

【0020】なぜならば、B/A値が0.7より大きい
と、連結部がガスケットに当たるので、これを避けるた
めに単位面の大きさを小さくして単位面間の距離を狭め
なければならない。そうすると、電極面積が減少して放
電容量が低下する。
When the B / A value is larger than 0.7, the connecting portion hits the gasket, and in order to avoid this, it is necessary to reduce the size of the unit surface to reduce the distance between the unit surfaces. Then, the electrode area is reduced and the discharge capacity is reduced.

【0021】B/A値を下記式(4)の範囲とすれば、放
電容量を極限まで高めることができるので、好ましい。 B/A≦0.6 (4)
When the B / A value is within the range of the following formula (4), the discharge capacity can be increased to the limit, which is preferable. B / A ≦ 0.6 (4)

【0022】実際に本発明の電池を製造するに際して
は、電極やセパレータを予め希望の形状に裁断または打
ち抜きした後、捲回を実施して電極群を作成することが
好ましいが、生産性を高めるために捲回後裁断または打
ち抜きを行ってもよい。
In the actual production of the battery of the present invention, it is preferable to cut or punch electrodes or separators into a desired shape in advance and then wind the electrodes to form an electrode group, but the productivity is increased. Therefore, cutting or punching may be performed after winding.

【0023】[0023]

【発明の実施の形態】(実施例1)本実施例の電池の扁
平面に垂直方向の断面図を図1に、扁平面に水平方向の
断面図を図2に、用いた正極板の模式図を図3に、図3
における最外周部の拡大図を図4に示す。
BEST MODE FOR CARRYING OUT THE INVENTION (Embodiment 1) FIG. 1 is a sectional view of a battery of this embodiment in a direction perpendicular to a flat surface, FIG. 2 is a sectional view in a horizontal direction of a flat surface, and a schematic view of a positive electrode plate used. Figure 3 and Figure 3
FIG. 4 shows an enlarged view of the outermost peripheral portion in FIG.

【0024】次に本実施例の電池の製造方法を説明す
る。まず、LiCoO100質量部に対し、導電剤と
してアセチレンブラック5質量部と黒鉛粉末5質量部を
加え、結着剤としてポリフッ化ビニリデンを5質量部加
え、N−メチルピロリドンで希釈し、混合してスラリー
状の正極合剤を得た。次にこの正極合剤を、正極集電体
である厚さ0.02mmのアルミ箔の両面にドクターブレー
ド法により塗工し、乾燥後、電極厚さが0.12mmとなる
ように圧延処理を行った。続いてその片面の端から17.7
mmの部分まで塗工した正極合剤を除去してアルミ箔を
露出させ、集電部とした。
Next, a method for manufacturing the battery of this embodiment will be described. First, with respect to 100 parts by mass of LiCoO 2 , 5 parts by mass of acetylene black and 5 parts by mass of graphite powder were added as a conductive agent, 5 parts by mass of polyvinylidene fluoride was added as a binder, diluted with N-methylpyrrolidone, and mixed. To obtain a slurry-like positive electrode mixture. Next, this positive electrode mixture was applied on both sides of a 0.02 mm-thick aluminum foil, which is a positive electrode current collector, by the doctor blade method, dried, and then rolled so that the electrode thickness would be 0.12 mm. . Then 17.7 from the edge of one side
The positive electrode mixture coated up to the area of mm was removed to expose the aluminum foil, which was used as a current collector.

【0025】このようにして得られた電極を、図3に示
す形状に切り出し、正極板2とした。この正極板2の詳
細な形状は、直径18mmの円形状の単位面が8面列な
る形状をしており、負極やセパレータと共に捲回したと
きに最外周となる単位面は正極合剤が片面除去されてア
ルミ箔が露出し、正極集電部2aを形成している。
The electrode thus obtained was cut into the shape shown in FIG. The detailed shape of this positive electrode plate 2 is a shape in which eight circular circular unit surfaces having a diameter of 18 mm are arranged in eight rows, and the positive electrode mixture is one surface on the outermost unit surface when wound together with the negative electrode and the separator. The removed aluminum foil is exposed to form the positive electrode current collector 2a.

【0026】図3に示すように、円形状の単位面が列な
る際の単位面間の中心距離は、捲回の外周側(図の左
側)が18.1mm、巻心側(図の右側)が15.4mmとなる
ようにして、徐々に巻心側ほど短くなるようにした。単
位面を繋ぐ連結部の幅は、外周側で最も狭くなり、6m
mである。この部分の拡大図を図4に示す。この正極板
2の全長は133.7mmであり、作用物質含有層の塗布さ
れた総面積は表裏両面を合わせて37.1cmである。
As shown in FIG. 3, when the circular unit surfaces are lined up, the center distance between the unit surfaces is 18.1 mm on the outer peripheral side of the winding (left side in the drawing) and on the winding core side (right side in the drawing). Was set to 15.4 mm, and gradually became shorter toward the core side. The width of the connecting part that connects the unit faces is the narrowest on the outer peripheral side, 6m
m. An enlarged view of this portion is shown in FIG. The total length of the positive electrode plate 2 is 133.7 mm, and the total area of the active substance-containing layer applied is 37.1 cm 2 on both front and back sides.

【0027】次に負極合剤の作成について説明する。黒
鉛化メソフェーズピッチ炭素繊維粉末100質量部に、結
着剤としてスチレンブタジエンゴム(SBR)とカルボ
キシメチルセルロース(CMC)をそれぞれ2.5質量部
添加し、イオン交換水で希釈、混合し、スラリー状の負
極合剤を得た。この負極合剤を負極集電体である厚さ0.
02mmの銅箔の両面に塗工し、乾燥後、電極厚さが0.12
mmとなるように圧延処理を行い、続いて正極の場合と
同様に、片面の端から17.7mmの部分まで塗工した負極
合剤を除去して銅箔を露出させ、集電部とした。
Next, preparation of the negative electrode mixture will be described. To 100 parts by mass of graphitized mesophase pitch carbon fiber powder, 2.5 parts by mass of styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC) were added as binders, respectively, diluted with ion-exchanged water and mixed to prepare a slurry negative electrode mixture. I got an agent. This negative electrode mixture is a negative electrode current collector with a thickness of 0.
After coating on both sides of 02mm copper foil and drying, the electrode thickness is 0.12
Then, the negative electrode mixture applied to the portion 17.7 mm from the edge of one surface was removed to expose the copper foil, and the copper foil was exposed to form a current collecting portion, as in the case of the positive electrode.

【0028】このようにして得られた電極を、円形単位
面の直径を18.5mmとし、単位面間の連結幅を正極より
0.5mm広くして、それ以外は正極の場合と同様にして
切り出し、負極板4とした。このように負極板面積を正
極板面積より一回り大きくしたのは、充電時に金属リチ
ウムの析出を防止し、良好な充放電サイクル特性を得る
ためである。
The electrode thus obtained has a circular unit surface with a diameter of 18.5 mm, and the connecting width between the unit surfaces is greater than that of the positive electrode.
It was widened by 0.5 mm, and was otherwise cut out in the same manner as in the case of the positive electrode to obtain a negative electrode plate 4. The reason why the area of the negative electrode plate is made slightly larger than the area of the positive electrode plate is to prevent the deposition of metallic lithium during charging and to obtain good charge / discharge cycle characteristics.

【0029】次に、厚さ25μmのポリエチレン製微多
孔膜からなるセパレータを電極2枚分の長さに相当する
形状に切り出した。このセパレータも捲回外周部の単位
面間距離は長く、巻芯部の単位面間距離は短い。なお、
内部ショートを防止するため、セパレータの単位面の直
径を20mmとし、連結幅を正極板に比べて2mm広く
して、前記負極板よりさらに一回り大きくした。
Next, a separator made of a polyethylene microporous film having a thickness of 25 μm was cut into a shape corresponding to the length of two electrodes. Also in this separator, the unit surface distance of the winding outer peripheral portion is long, and the unit surface distance of the winding core portion is short. In addition,
In order to prevent an internal short circuit, the diameter of the unit surface of the separator was set to 20 mm, and the connection width was made wider by 2 mm than that of the positive electrode plate, which was one size larger than that of the negative electrode plate.

【0030】このようにして得られた正負極板およびセ
パレータを用いて、扁平形の捲回電極群を製作した。ま
ず、正極板2の巻芯側の端部にセパレータ3の中心部を
合わせて折り返し、正極板2をセパレータ3で包み込ん
だ。続いて、巻芯側の単位面が相重なるように負極板4
を重ね、これらを重ねたまま扁平形に捲回し、正負極板
の端部をそれぞれポリプロピレンに粘着剤を塗布した巻
止めテープ7で固定し、電極群を得た。この時、正負極
の集電部が共に最外周に露出するように捲回する。
A flat wound electrode group was produced using the positive and negative electrode plates and the separator thus obtained. First, the center portion of the separator 3 was aligned with the end of the positive electrode plate 2 on the winding core side and folded back, and the positive electrode plate 2 was wrapped in the separator 3. Then, the negative electrode plate 4 is arranged so that the unit surfaces on the winding core side overlap each other.
And were wound in a flat shape while stacking these, and the ends of the positive and negative electrode plates were fixed with a winding tape 7 in which an adhesive was applied to polypropylene, to obtain an electrode group. At this time, it is wound so that both the positive and negative electrode current collectors are exposed at the outermost periphery.

【0031】製作した電極群を85℃で12時間乾燥し
た後、厚さ0.1mmのステンレスネット8を底面に溶接
した負極金属ケース5に負極集電部が接するように配置
し、エチレンカーボネートとγ−ブチルラクトンを体積
比1:2の割合で混合した溶媒に支持塩としてLiBF
を1.5mol/lの割合で溶解せしめた非水電解質を注液
した。さらに内面がアルミで被覆されたステンレス製の
正極ケース1の底面にアルミネット9を溶接したものを
嵌合し、上下反転後、負極ケース5を電池の扁平面に垂
直の方向に加圧して、電池内部の電極群を圧縮しながら
正極ケース1にカシメ加工を施し、厚さ3mm、直径24.
5mmの扁平形非水電解質二次電池を作製した。
After the manufactured electrode group was dried at 85 ° C. for 12 hours, it was placed so that the negative electrode current collector was in contact with the negative electrode metal case 5 having a 0.1 mm thick stainless net 8 welded to the bottom surface, and ethylene carbonate and γ were added. -Butyl lactone was mixed in a volume ratio of 1: 2, and LiBF was used as a supporting salt in a solvent.
A non-aqueous electrolyte prepared by dissolving 4 in a ratio of 1.5 mol / l was injected. Further, an aluminum net 9 was welded to the bottom surface of a positive electrode case 1 made of stainless steel whose inner surface was covered with aluminum. After fitting upside down, the negative electrode case 5 was pressed in a direction perpendicular to the flat surface of the battery, While crimping the electrode group inside the battery, the positive electrode case 1 is caulked, and the thickness is 3 mm and the diameter is 24.
A 5 mm flat non-aqueous electrolyte secondary battery was produced.

【0032】(実施例2)正極板として、図6に示す正
八角形の単位面を有するものを用いた。これは直径18
mmの円に内接する正八角形を連結した形状を有するも
ので、連結した単位面の中心間隔は実施例1と同じであ
る。この正極板の作用物質含有層の塗布された総面積は
表裏両面合わせて34.3cmである。
Example 2 A positive electrode plate having a regular octagonal unit surface shown in FIG. 6 was used. This is diameter 18
It has a shape in which regular octagons inscribed in a circle of mm are connected, and the center interval of the connected unit surfaces is the same as that in the first embodiment. The total coated area of the active substance-containing layer of this positive electrode plate is 34.3 cm 2 on both front and back surfaces.

【0033】同様に、直径18.5mmの円に内接する正八
角形を連結した形状を有する負極と、直径20mmの円
に内接する正八角形を連結した形状を有するセパレータ
とを準備し、それ以外は実施例1と同様にして扁平形非
水電解質二次電池を作製した。この電池の扁平面に水平
な方向の断面図を図5に示す。
Similarly, a negative electrode having a shape in which a regular octagon inscribed in a circle having a diameter of 18.5 mm is connected, and a separator having a shape in which a regular octagon inscribed in a circle having a diameter of 20 mm are connected are prepared. A flat non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1. FIG. 5 shows a sectional view of this battery in a direction horizontal to the flat surface.

【0034】(比較例1)電極板が上記各実施例のよう
に単位面の連続する形状ではなく、従来と同様に短冊状
の形状のものとした。すなわち、図9に示すように、幅
12.5mm、長さ101.9mm、作用物質含有層除去部(正
極集電部2a)の長さが13.8mm、作用物質含有層の総
塗布面積が表裏両面合わせて23.8cmである短冊状の
電極板を正極板2として用い、同様に電極幅が13mmで
ある帯状の負極板4と幅15mmの帯状のセパレータ3を
用いて、これらを捲回して電極群とした。それ以外は実
施例1と同様にして電池を作製した。この比較例1の電
池の扁平面に垂直方向の断面図を図7に、扁平面に水平
方向の断面図を図8に示す。
(Comparative Example 1) The electrode plate was not in the continuous shape of the unit surface as in each of the above-mentioned Examples, but in the strip shape as in the conventional case. That is, as shown in FIG.
12.5 mm, length 101.9 mm, strip-shaped electrode with active substance-containing layer removed portion (positive electrode current collector 2a) length of 13.8 mm, total coated area of active substance-containing layer is 23.8 cm 2 on both front and back sides A plate was used as the positive electrode plate 2, and similarly, a strip-shaped negative electrode plate 4 having an electrode width of 13 mm and a strip-shaped separator 3 having a width of 15 mm were used to wind these into an electrode group. A battery was produced in the same manner as in Example 1 except for the above. FIG. 7 shows a sectional view of the battery of Comparative Example 1 in the direction perpendicular to the flat surface, and FIG. 8 shows a sectional view in the direction horizontal to the flat surface.

【0035】以上の通り作製した実施例1、実施例2お
よび比較例1の各電池について、4.2V、5mAの定電
流定電圧で48時間初充電を実施した。その後、50mAの
定電流で3.0Vまで放電を実施し、放電容量を求めた。
これを表1に示す。また、実施例1、実施例2の放電容
量を比較例1の放電容量と比較して向上比率(%)を求
めた。その結果を表1に合わせて示す。
The batteries of Example 1, Example 2 and Comparative Example 1 produced as described above were initially charged for 48 hours at a constant current and a constant voltage of 4.2 V and 5 mA. After that, discharge was carried out at a constant current of 50 mA to 3.0 V to obtain the discharge capacity.
This is shown in Table 1. Further, the improvement ratio (%) was obtained by comparing the discharge capacities of Example 1 and Example 2 with the discharge capacity of Comparative Example 1. The results are also shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】表1に示すように、実施例1の電池および
実施例2の電池は、比較例1の電池に比べて著しく放電
容量が大きく、単位面を連ねた形状の電極を用いたこと
によって放電容量が大きく向上したことがわかる。
As shown in Table 1, the batteries of Example 1 and the battery of Example 2 had significantly larger discharge capacities than the battery of Comparative Example 1, and the use of electrodes having a shape in which unit faces were connected to each other It can be seen that the discharge capacity is greatly improved.

【0038】次に単位面の連結幅を種々変えてそれが及
ぼす影響について調べた。 (実施例3〜8)円形の単位面を連ねた形状を有する正
極板を用い、捲回した時に外側となる単位面の連結部の
連結幅(B)を、表2に示すように2.0mmから15.0m
mまで変化させた。単位面の幅(A)はいずれも18.0m
mである。負極板およびセパレータは実施例1と同様に
正極板より一回り大きくした。それ以外は実施例1と同
様にして扁平形非水電解質二次電池を製作した。なお、
実施例6〜8の電池は、電極およびセパレータの連結部
がガスケットへ当たることを避けるため、外周部の正極
板単位面中心距離を表2に示すように設定した。また、
負極板およびセパレータの単位面中心距離も正極板に合
わせて変更した。
Next, the connecting widths of the unit surfaces were variously changed and the influence thereof was examined. (Examples 3 to 8) Using a positive electrode plate having a shape in which circular unit surfaces are connected, the connecting width (B) of the connecting portion of the unit surface which is the outer side when wound is 2.0 mm as shown in Table 2. From 15.0m
It was changed to m. The width of the unit surface (A) is 18.0m
m. As in Example 1, the negative electrode plate and the separator were made one size larger than the positive electrode plate. A flat non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 except for the above. In addition,
In the batteries of Examples 6 to 8, in order to prevent the connecting portion of the electrode and the separator from coming into contact with the gasket, the positive electrode plate unit surface center distance of the outer peripheral portion was set as shown in Table 2. Also,
The unit surface center distance between the negative electrode plate and the separator was also changed according to the positive electrode plate.

【0039】以上のように作製した実施例3〜8の電池
について、前述の方法で放電容量を求めた。得られた放
電容量と、比較例1に対する放電容量の向上比率を表2
に示す。
The discharge capacities of the batteries of Examples 3 to 8 produced as described above were determined by the method described above. The obtained discharge capacity and the improvement rate of the discharge capacity with respect to Comparative Example 1 are shown in Table 2.
Shown in.

【0040】[0040]

【表2】 [Table 2]

【0041】表2に示されるように、実施例1,3〜8
の電池は、比較例1の電池に比べて放電容量が大きく、
特に単位面最大幅Aと連結部幅Bとの比B/Aが0.7以
下の電池は放電容量に優れており、B/Aが0.6以下の
場合はさらに優れていた。
As shown in Table 2, Examples 1, 3 to 8
Battery has a larger discharge capacity than the battery of Comparative Example 1,
In particular, the battery having a ratio B / A of the maximum width A of the unit surface to the width B of the connecting portion of 0.7 or less was excellent in discharge capacity, and was more excellent when the ratio B / A was 0.6 or less.

【0042】次に実施例1および実施例3〜8の電池を
各100個作製し、4.2V、5mAの定電流定電圧で48時間
初充電を実施した。次に、50mAの定電流で3.0Vまで
放電し、4.2V、50mAの定電流定電圧で3時間充電す
る充放電サイクル試験を実施した。試験は200サイクル
まで実施したが、試験途中で急激に充放電容量が低下す
る電池が見られた。200サイクル後の電池を分解調査し
たところ、充放電容量が低下した電池は電極の外周側の
連結部で電極の破断が起きており、捲回電極の中心部と
の導通が絶えていた。
Next, 100 batteries of each of Example 1 and Examples 3 to 8 were produced and initially charged for 48 hours at a constant current and a constant voltage of 4.2V and 5 mA. Next, a charge / discharge cycle test was performed in which the battery was discharged to a constant current of 50 mA to 3.0 V and then charged to a constant current and constant voltage of 4.2 V and 50 mA for 3 hours. The test was carried out up to 200 cycles, but during the test, some batteries were found to have a sharp decrease in charge / discharge capacity. As a result of disassembling and examining the battery after 200 cycles, the battery with reduced charge / discharge capacity had electrode breakage at the connecting portion on the outer peripheral side of the electrode, and electrical continuity with the center of the wound electrode was lost.

【0043】表2に電極の破断不良の発生率を示す。前
記B/A値が0.15未満である実施例3の電池は不良発生
数が8%と多く、B/A値が0.15を超えている実施例4
の電池は不良発生数が3%と少なかった。B/A値が0.
2以上になると、実施例1および実施例5〜8の電池に
見られるように不良発生が全くなかった。
Table 2 shows the rate of occurrence of electrode breakage defects. The battery of Example 3 having a B / A value of less than 0.15 had a high defect occurrence rate of 8%, and the B / A value of exceeding 0.15.
The number of defective batteries was as small as 3%. B / A value is 0.
When it was 2 or more, no defects occurred at all as seen in the batteries of Example 1 and Examples 5-8.

【0044】なお、上記各実施例では非水電解質に非水
溶媒を用いた扁平形非水電解質二次電池で説明したが、
非水電解質にポリマー電解質を用いたポリマー二次電池
や、固体電解質を用いた固体電解質二次電池についても
適用可能である。また樹脂製セパレータの代わりにポリ
マー薄膜や固体電解質膜を用いることも可能である。さ
らに、電池形状については、正極ケースの加締め加工に
より封口するコイン形電池について説明したが、負極ケ
ースの加締め加工によるものでもよく、またコイン形に
限定されることなく、一部にR形状を有する小判形や楕
円形などの特殊形状を有する扁平形でもよい。
In each of the above embodiments, the flat non-aqueous electrolyte secondary battery using the non-aqueous solvent as the non-aqueous electrolyte has been described.
It is also applicable to a polymer secondary battery using a polymer electrolyte as a non-aqueous electrolyte and a solid electrolyte secondary battery using a solid electrolyte. It is also possible to use a polymer thin film or a solid electrolyte membrane instead of the resin separator. Further, regarding the battery shape, the coin-shaped battery which is sealed by crimping the positive electrode case has been described, but it may be one which is crimped by the negative electrode case, and the shape is not limited to the coin shape, and a part of the R shape is used. It may be a flat shape having a special shape such as an oval shape or an oval shape.

【0045】また、上記実施例では正極作用物質として
コバルト酸リチウム、負極作用物質として炭素質材料を
用いて説明したが、これらに限定されるものではなく、
他の正負極作用物質を用いた電池においても適用可能で
ある。
In the above embodiments, lithium cobalt oxide was used as the positive electrode acting substance and carbonaceous material was used as the negative electrode acting substance, but the present invention is not limited to these.
It is also applicable to batteries using other positive and negative electrode acting substances.

【0046】[0046]

【発明の効果】以上説明したように、本発明によればこ
れまで改良してきた扁平形非水電解質二次電池にさらに
改良を重ねた結果、電池サイズが非常に小さくて放電容
量が大きく、かつサイクル特性に優れた扁平形非水電解
質二次電池を提供することができる。
As described above, according to the present invention, as a result of further improvements made to the flat type non-aqueous electrolyte secondary battery which has been improved so far, the battery size is very small and the discharge capacity is large, and It is possible to provide a flat non-aqueous electrolyte secondary battery having excellent cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の電池の扁平面に垂直な方向の断面
図。
FIG. 1 is a cross-sectional view of a battery of Example 1 in a direction perpendicular to a flat surface.

【図2】実施例1の電池の扁平面に水平な方向の断面
図。
FIG. 2 is a sectional view of the battery of Example 1 in a direction horizontal to a flat surface.

【図3】実施例1の電池に用いた正極板の上面図。3 is a top view of the positive electrode plate used in the battery of Example 1. FIG.

【図4】実施例1の電池に用いた正極板の最外周部の拡
大図。
FIG. 4 is an enlarged view of the outermost peripheral portion of the positive electrode plate used in the battery of Example 1.

【図5】実施例2の電池の扁平面に水平な方向の断面
図。
FIG. 5 is a cross-sectional view of the battery of Example 2 in a direction horizontal to the flat surface.

【図6】実施例2の電池に用いた正極板の上面図。6 is a top view of the positive electrode plate used in the battery of Example 2. FIG.

【図7】比較例1の電池の扁平面に垂直な方向の断面
図。
7 is a cross-sectional view of the battery of Comparative Example 1 in a direction perpendicular to the flat surface.

【図8】比較例1の電池の扁平面に水平な方向の断面
図。
8 is a cross-sectional view of the battery of Comparative Example 1 in a direction horizontal to the flat surface.

【図9】比較例1の電池に用いた正極板の上面図。9 is a top view of the positive electrode plate used in the battery of Comparative Example 1. FIG.

【符号の説明】[Explanation of symbols]

1…正極ケース、2…正極板、2a…正極集電部、2b
…正極作用物質含有層塗工部、3…セパレータ、4…負
極板、4a…負極集電部、4b…負極作用物質含有層塗
工部、5…負極ケース、6…絶縁ガスケット、7…巻き
止めテープ、8…ステンレスネツト、9…アルミネツ
ト、10…電極群。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode case, 2 ... Positive electrode plate, 2a ... Positive electrode current collecting part, 2b
... Positive electrode active substance-containing layer coating part, 3 ... Separator, 4 ... Negative electrode plate, 4a ... Negative electrode current collecting part, 4b ... Negative electrode active substance containing layer coating part, 5 ... Negative electrode case, 6 ... Insulating gasket, 7 ... Winding Stopping tape, 8 ... Stainless steel net, 9 ... Aluminum net, 10 ... Electrode group.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊間 祐一 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内 Fターム(参考) 5H011 AA03 CC06 GG02 JJ02 5H022 AA09 AA18 BB01 CC08 CC21 EE01 EE04 5H029 AJ03 AJ05 AK03 AL03 AL06 AM02 AM03 AM05 AM07 BJ03 BJ14 CJ07 DJ02 DJ03 DJ05 EJ04 EJ12 HJ04 5H050 AA07 AA08 BA17 CA08 CA09 CB03 CB07 EA10 EA23 EA24 FA05 GA09 HA04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yuichi Kikuma             3-4-10 Minami-Shinagawa, Shinagawa-ku, Tokyo Toshiba             Battery Co., Ltd. F-term (reference) 5H011 AA03 CC06 GG02 JJ02                 5H022 AA09 AA18 BB01 CC08 CC21                       EE01 EE04                 5H029 AJ03 AJ05 AK03 AL03 AL06                       AM02 AM03 AM05 AM07 BJ03                       BJ14 CJ07 DJ02 DJ03 DJ05                       EJ04 EJ12 HJ04                 5H050 AA07 AA08 BA17 CA08 CA09                       CB03 CB07 EA10 EA23 EA24                       FA05 GA09 HA04

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 負極端子を兼ねる金属製の負極ケース
と、正極端子を兼ねる金属製の正極ケースが、絶縁ガス
ケットを介し嵌合されて封口され、その内部に正極、セ
パレータおよび負極を含む電極群と非水電解質を内包
し、該電極群の正負極対向面が扁平面に垂直な断面にお
いて3面以上あり、電極群の最外側には導電性を有する
正極構成材と負極構成材が露出してそれぞれ正極ケース
および負極ケースに接続している扁平形非水電解質二次
電池において、上記電極群が、所定の形状を一単位とす
る単位面を複数個連ねた形状の正極、セパレータおよび
負極を捲回して構成されていることを特徴とする扁平形
非水電解質二次電池。
1. A metal negative electrode case which also serves as a negative electrode terminal and a metal positive electrode case which also serves as a positive electrode terminal are fitted and sealed with an insulating gasket interposed therebetween, and an electrode group including a positive electrode, a separator and a negative electrode therein. And a non-aqueous electrolyte are included, and the positive and negative electrode facing surfaces of the electrode group are three or more in a cross section perpendicular to the flat surface, and the positive electrode constituent material and the negative electrode constituent material having conductivity are exposed on the outermost side of the electrode group. In the flat nonaqueous electrolyte secondary battery connected to the positive electrode case and the negative electrode case, respectively, the electrode group includes a positive electrode, a separator, and a negative electrode having a shape in which a plurality of unit surfaces each having a predetermined shape as one unit are connected. A flat non-aqueous electrolyte secondary battery, which is configured by being wound.
【請求項2】 所定の形状を一単位とする単位面が、
円、楕円または多角形であり、単位面と単位面との間の
連結部は直線状となっている請求項1記載の扁平形非水
電解質二次電池。
2. A unit surface having a predetermined shape as one unit,
The flat non-aqueous electrolyte secondary battery according to claim 1, wherein the flat non-aqueous electrolyte secondary battery is a circle, an ellipse, or a polygon, and a connecting portion between the unit surfaces is linear.
【請求項3】 単位面と単位面とは帯状の連結部で連結
されている請求項1記載の扁平形非水電解質二次電池。
3. The flat non-aqueous electrolyte secondary battery according to claim 1, wherein the unit surfaces are connected to each other by a belt-shaped connecting portion.
【請求項4】 単位面は、連結された単位面間の中心間
距離が、捲回した際の巻芯側において外周側におけるよ
りも短くなるように連結されている請求項1記載の扁平
形非水電解質二次電池。
4. The flat type according to claim 1, wherein the unit surfaces are connected such that the center-to-center distance between the connected unit surfaces is shorter on the core side when wound than on the outer peripheral side. Non-aqueous electrolyte secondary battery.
【請求項5】 電極の捲回外周部に位置する単位面とそ
の連結部は、捲回方向に垂直な方向の、単位面最大幅A
と連結部幅Bが、B/A≧0.15の関係にある請求項
1記載の扁平形非水電解質二次電池。
5. The maximum unit surface width A in the direction perpendicular to the winding direction is defined by the unit surface located on the outer circumference of the electrode and its connecting portion.
The flat type non-aqueous electrolyte secondary battery according to claim 1, wherein B and A have a relationship of B / A ≧ 0.15.
【請求項6】 B/A≧0.2の関係にある請求項5記
載の扁平形非水電解質二次電池。
6. The flat non-aqueous electrolyte secondary battery according to claim 5, which has a relationship of B / A ≧ 0.2.
【請求項7】 電極の捲回外周部に位置する単位面とそ
の連結部は、捲回方向に垂直な方向の、単位面最大幅A
と連結部幅Bが、B/A≦0.7の関係にある請求項1
記載の扁平形非水電解質二次電池。
7. The maximum unit surface width A in the direction perpendicular to the winding direction is defined by the unit surface located on the outer circumference of the electrode and its connecting portion.
The width B of the connecting portion has a relationship of B / A ≦ 0.7.
The flat non-aqueous electrolyte secondary battery described.
【請求項8】 B/A≦0.6の関係にある請求項7記
載の扁平形非水電解質二次電池。
8. The flat non-aqueous electrolyte secondary battery according to claim 7, which has a relationship of B / A ≦ 0.6.
JP2001269077A 2001-09-05 2001-09-05 Flat nonaqueous electrolyte secondary battery Withdrawn JP2003077543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001269077A JP2003077543A (en) 2001-09-05 2001-09-05 Flat nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001269077A JP2003077543A (en) 2001-09-05 2001-09-05 Flat nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2003077543A true JP2003077543A (en) 2003-03-14

Family

ID=19094956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001269077A Withdrawn JP2003077543A (en) 2001-09-05 2001-09-05 Flat nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2003077543A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342478A (en) * 2003-05-16 2004-12-02 Toshiba Battery Co Ltd Flat type non-aqueous electrolyte secondary battery
JP2005032671A (en) * 2003-07-11 2005-02-03 Hitachi Maxell Ltd Coin-form nonaqueous secondary battery
JP2005038673A (en) * 2003-07-18 2005-02-10 Toshiba Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2005135634A (en) * 2003-10-28 2005-05-26 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2005310578A (en) * 2004-04-22 2005-11-04 Matsushita Electric Ind Co Ltd Coin type secondary battery
WO2011036960A1 (en) * 2009-09-28 2011-03-31 日立ビークルエナジー株式会社 Lithium-ion secondary cell
JP2020080277A (en) * 2018-11-14 2020-05-28 セイコーインスツル株式会社 Electrochemical cell
US20200185755A1 (en) 2009-02-09 2020-06-11 Varta Microbattery Gmbh Button cells and method of producing same
US10804506B2 (en) 2009-06-18 2020-10-13 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
WO2021065337A1 (en) 2019-09-30 2021-04-08 株式会社村田製作所 Flat secondary cell

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342478A (en) * 2003-05-16 2004-12-02 Toshiba Battery Co Ltd Flat type non-aqueous electrolyte secondary battery
JP2005032671A (en) * 2003-07-11 2005-02-03 Hitachi Maxell Ltd Coin-form nonaqueous secondary battery
JP2005038673A (en) * 2003-07-18 2005-02-10 Toshiba Battery Co Ltd Non-aqueous electrolyte secondary battery
JP4509500B2 (en) * 2003-07-18 2010-07-21 東芝電池株式会社 Nonaqueous electrolyte secondary battery
JP2005135634A (en) * 2003-10-28 2005-05-26 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2005310578A (en) * 2004-04-22 2005-11-04 Matsushita Electric Ind Co Ltd Coin type secondary battery
US11791493B2 (en) 2009-02-09 2023-10-17 Varta Microbattery Gmbh Button cells and method of producing same
US11276875B2 (en) 2009-02-09 2022-03-15 Varta Microbattery Gmbh Button cells and method of producing same
US20200185755A1 (en) 2009-02-09 2020-06-11 Varta Microbattery Gmbh Button cells and method of producing same
US11258092B2 (en) 2009-02-09 2022-02-22 Varta Microbattery Gmbh Button cells and method of producing same
US11233265B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US11233264B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US11024869B2 (en) 2009-02-09 2021-06-01 Varta Microbattery Gmbh Button cells and method of producing same
US11217844B2 (en) 2009-06-18 2022-01-04 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US10971776B2 (en) 2009-06-18 2021-04-06 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024907B1 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024905B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11158896B2 (en) 2009-06-18 2021-10-26 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024904B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11791512B2 (en) 2009-06-18 2023-10-17 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024906B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US10804506B2 (en) 2009-06-18 2020-10-13 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11362384B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11362385B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
WO2011036960A1 (en) * 2009-09-28 2011-03-31 日立ビークルエナジー株式会社 Lithium-ion secondary cell
JP2020080277A (en) * 2018-11-14 2020-05-28 セイコーインスツル株式会社 Electrochemical cell
WO2021065337A1 (en) 2019-09-30 2021-04-08 株式会社村田製作所 Flat secondary cell

Similar Documents

Publication Publication Date Title
US9231245B2 (en) Positive electrode plate for nonaqueous electrolyte secondary battery, method for manufacturing the positive electrode plate, nonaqueous electrolyte secondary battery, and method for manufacturing the battery
JP5260838B2 (en) Non-aqueous secondary battery
US20070269711A1 (en) Battery and Center Pin
CN109891640B (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US20140255779A1 (en) Secondary battery
JP4052537B2 (en) Non-aqueous secondary battery
JP4097443B2 (en) Lithium secondary battery
JP2003092148A (en) Nonaqueous secondary battery
JP7247353B2 (en) Electrodes, batteries and battery packs
JP2003077543A (en) Flat nonaqueous electrolyte secondary battery
WO2018100853A1 (en) Cylindrical battery
JP5337418B2 (en) Non-aqueous electrolyte secondary battery
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
JP4563002B2 (en) Flat non-aqueous electrolyte secondary battery
JP2003045494A (en) Flat non-aqueous electrolyte secondary battery
JPH10241735A (en) Lithium ion battery
JP2003077457A (en) Flat non-aqueous electrolyte secondary battery
WO2022264419A1 (en) Electrode group, battery, and battery pack
JP2001068143A (en) Flat nonaqueous electrolyte secondary battery
JP2019121500A (en) Cylindrical secondary cell
JP3414729B1 (en) Lithium ion secondary battery
JP4901017B2 (en) Flat nonaqueous electrolyte secondary battery with lead terminals
WO2018079292A1 (en) Electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US20200313241A1 (en) Cylindrical secondary battery
JP4827112B2 (en) Flat non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202