JP2003071907A - Twin-screw kneading extruder - Google Patents
Twin-screw kneading extruderInfo
- Publication number
- JP2003071907A JP2003071907A JP2001261946A JP2001261946A JP2003071907A JP 2003071907 A JP2003071907 A JP 2003071907A JP 2001261946 A JP2001261946 A JP 2001261946A JP 2001261946 A JP2001261946 A JP 2001261946A JP 2003071907 A JP2003071907 A JP 2003071907A
- Authority
- JP
- Japan
- Prior art keywords
- kneading
- section
- screw
- twin
- transport
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/68—Barrels or cylinders
- B29C48/685—Barrels or cylinders characterised by their inner surfaces, e.g. having grooves, projections or threads
- B29C48/686—Barrels or cylinders characterised by their inner surfaces, e.g. having grooves, projections or threads having grooves or cavities
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/255—Flow control means, e.g. valves
- B29C48/2552—Flow control means, e.g. valves provided in the feeding, melting, plasticising or pumping zone, e.g. screw, barrel, gear-pump or ram
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/53—Screws having a varying channel depth, e.g. varying the diameter of the longitudinal screw trunk
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、二軸スクリュ式混
練押出機に関し、特に、混練度調整部の上流側の第1ス
クリュ直径に対して、その下流側の第2スクリュ直径を
それよりも小径とすることにより、押出部での樹脂の充
満率を上昇させ、より効率良く安定して樹脂を搬送する
ための新規な改良に関する。
【0002】
【従来の技術】一般に、合成装置により生産された合成
樹脂原料は、合成樹脂としての特性の均質化および改質
のために、多くの場合、二軸スクリュ式混練押出機によ
り大容量の連続加工処理が行われている。従来より使用
されている二軸スクリュ式混練押出機を図2の正面断面
図および図3の断面図にて示す。すなわち、図2および
図3において、符号1で示されるものは二軸スクリュ式
混練押出機であり、この二軸スクリュ式混練押出機1
は、長尺筒形状のシリンダ2と、このシリンダ2内に回
転自在に配設された2本のスクリュ3、4とにより構成
されている。この二軸スクリュ式混練押出機1は、上流
側から下流側へ向けて順次、少なくとも輸送部5、混練
部6、混練度調整部7および押出部8により構成されて
いる。
【0003】前記シリンダ2は、2本の前記スクリュ
2、3が回転自在に配設される貫通内孔9が形成され、
上流側には上方からこの貫通内孔9へ壁内を貫通する原
料供給口10が、下流側には貫通内孔9から一方の側面
へ壁内を貫通して原料排出口11がそれぞれ形成されて
いる。尚、前記シリンダ2はこの貫通内孔9内を流動す
る合成樹脂原料を所定の温度に加温維持可能とするよう
に構成されている。前記シリンダ2の貫通内孔9内の前
記スクリュ2、3は、噛合い状態あるいは非噛合い状態
で同方向回転あるいは異方向回転可能に配設され、それ
ぞれの両端部は軸受12、13により回転自在に支持さ
れている。また、このスクリュ2、3は、上流側から下
流側へ向けて順次、輸送フライト部20、混練ロータ部
21、リング部22および押出フライト部23により構
成され、また、このリング部22を除いて前述の輸送フ
ライト部20、混練ロータ部21、および押出フライト
部23は同一のスクリュ径に構成されている。前記シリ
ンダ2の原料排出口11の側面には、ダイバータバルブ
30、ギァポンプ31およびダイス32を介して、造粒
装置33が連結されている。
【0004】次に、動作について説明する。まず、シリ
ンダ2が所定の設定温度に制御され、各スクリュ3、4
が回転駆動されている状態で、原料供給口10から貫通
内孔9内へ粉粒体状あるいはフレーク状の合成樹脂原料
が連続的に定量供給される。この合成樹脂原料は回転す
るスクリュ2、3の輸送フライト部20の輸送作用によ
り加温されつつ輸送部5を流動し、混練部6に到る。こ
の混練部6において、合成樹脂原料はシリンダ2からの
加温と回転する混練部6の混練作用とにより溶融混練さ
れる。また、下流側の混練度調整部7において流路断面
積が調節されて流動抵抗を調節することにより、合成樹
脂原料の混練部6における滞留時間が調節され、混練度
合が調節され、合成樹脂原料の所望の均質化および改質
が行われる。
【0005】前記混練度調整部7を通過した溶融状態の
合成樹脂原料は、押出部8を流動し、原料排出口11か
ら押出される。この原料排出口11から押出された合成
樹脂原料は、ダイバータバルブ30を介してギァポンプ
31に送られ、ギァポンプ31により昇圧され、ダイス
32を介して造粒装置33へ押出されてペレット状に造
粒加工される。
【0006】
【発明が解決しようとする課題】従来の二軸スクリュ式
混練押出機は、以上のように構成されていたため、次の
ような課題が存在していた。すなわち、スクリュのスク
リュ直径が上流側から下流側まで同一でフライトの高さ
も同一であるため、押出フライト部では押出能力が低
く、ギァポンプへの安定した供給が困難で、特に、合成
樹脂原料の粘度が高い場合にこの傾向は顕著に現れる。
この現象は、さらにギァポンプを介して造粒装置に影響
し、安定して定量的な造粒が行えなくなり、品質の低下
となっていた。
【0007】本発明は以上のような課題を解決するため
になされたもので、特に、混練度調整部の上流側の第1
スクリュ直径に対して、その下流側の第2スクリュ直径
をそれよりも小径とすることにより、押出部での樹脂の
充満率を上昇させ、より効率良く安定して樹脂を搬送す
るようにした二軸スクリュ式混練押出機を提供すること
を目的とする。
【0008】
【課題を解決するための手段】本発明による二軸スクリ
ュ式混練押出機は、シリンダ内に2本のスクリュが回転
可能に配設され、上流側から下流側へ向けて順次、輸送
部、混練部、混練度調整部および押出部が形成された二
軸スクリュ式混練押出機において、前記輸送部及び混練
部の第1スクリュ直径よりも前記押出部の第2スクリュ
直径を小とし、前記混練度調整部は前記混練部と押出部
との間に位置している構成である。
【0009】
【発明の実施の形態】以下、図面と共に本発明による二
軸スクリュ式混練押出機の好適な実施の形態について詳
細に説明する。図1は、本発明による二軸スクリュ式混
練押出機の正面断面図である。尚、従来例と同一又は同
等の部分は同一符号で説明する。図1において、符号1
で示されるものは二軸スクリュ式混練押出機であり、こ
の二軸スクリュ式混練押出機1は、長尺筒形状のシリン
ダ2と、このシリンダ2内に回転自在に配設された2本
のスクリュ3、4とにより構成されている。この二軸ス
クリュ式混練押出機1は、上流側から下流側へ向けて順
次、少なくとも輸送部5、混練部6、混練度調整部7お
よび押出部8により構成されている。
【0010】前記シリンダ2には、2本の前記スクリュ
3、4が回転自在に配設される貫通内孔9が形成され、
この貫通内孔9内には混練度調整部7よりも上流側の上
流孔30およびこの混練度調整部7よりも下流側の下流
孔31が形成されている。この下流孔31は前記上流孔
30よりも小径に構成されている。従って、前記上流孔
30内に位置する各スクリュ3、4の輸送部5および混
練部6のフライト外径である第1スクリュ径D1よりも
前記下流孔31内に位置する各スクリュ3、4の押出部
8のフライト外径である第2スクリュ径D2の方が小径
で、D1>D2の関係で構成されている。また、前記シ
リンダ2の上流側には上方から壁内を貫通する原料供給
口10が、下流側には貫通内孔9から壁面を貫通して原
料排出口11がそれぞれ形成されている。尚、前記シリ
ンダ2は前記貫通内孔9内を流動する合成樹脂原料を所
定の温度に加温維持することができるように構成されて
いる。
【0011】前記シリンダ2の貫通内孔9に配設された
前記スクリュ3、4は、噛合い状態あるいは非噛合い状
態で同方向回転あるいは異方向回転可能に挿入され、そ
れぞれの両端部は軸受12、13により回転自在に支持
されている。また、このスクリュ3、4は、前記二軸ス
クリュ式混練押出機1の各構成部に対応して、上流側か
ら下流側へ向けて順次、輸送フライト部20、混練ロー
タ部21、混練度調整リング部7および押出フライト部
23により構成されている。さらに、前記輸送フライト
部20および前記混練ロータ部21すなわち輸送部5お
よび混練部6のフライトの外径を示す第1スクリュ直径
D1は同一の外周径に構成され、前記押出フライト部2
3すなわち押出部8の外周径である第2スクリュ直径D
2は前記第1スクリュ直径D1よりも小径に構成されて
いる。前記シリンダ2の原料排出口11が開口する下流
部側面には、図3に示されるダイバータバルブ30、ギ
ァポンプ31およびダイス32を介して、造粒装置33
が連結されている。尚、ここでは図3の詳細説明は省略
している。
【0012】次に、動作について説明する。まず、シリ
ンダ2が所定の設定温度に制御され、各スクリュ3、4
が回転駆動されている状態で、原料供給口10から上流
孔30内へ粉粒体状あるいはフレーク状の合成樹脂原料
が連続的に定量供給される。この合成樹脂原料は回転す
るスクリュ3、4すなわち輸送フライト部20の輸送作
用により、シリンダ2から加温されつつ輸送部5を流動
し、混練部6に到る。この混練部6において、合成樹脂
原料はシリンダ2からの加温と回転する混練ロータ部2
1との混練作用とにより溶融混練される。また、下流の
混練度調整部7において流路断面積が調節されて流動抵
抗を調節することにより、合成樹脂原料の混練部6にお
ける滞留時間が調節され、混練度合が調節され、合成樹
脂原料の所望の均質化および改質が行われる。
【0013】混練部6に所定時間滞留して混練度調整部
7を通過した溶融状態の合成樹脂原料は、シリンダ2か
ら所定温度に加温維持されながら、回転するスクリュ
3、4すなわち押出フライト部20の輸送作用により押
出部8を流動し、原料排出口11から押出される。この
押出フライト部23の第2スクリュ直径D2が輸送フラ
イト部20の第1スクリュ直径D1よりも小さく構成さ
れ、押出部8における合成樹脂原料の流路断面積が輸送
部5におけるそれよりも小さく構成されていることによ
り、溶融状態の合成樹脂原料は、充満率を上げた状態で
押出部8を流動し、原料排出口10から定量的に連続し
て押出される。原料排出口13から押出された合成樹脂
原料は、ダイバータバルブ30を介してギァポンプ31
に到り、ギァポンプ31により昇圧され、ダイス32を
介して造粒装置33へ押出され、ペレット状に加工され
る。尚、図3で示される造粒装置等は、本発明において
も、前述と同様に構成されているため、重複説明を省略
し、図3を兼用とする。
【0014】
【発明の効果】本発明による二軸スクリュ式混練押出機
は、以上のように構成されているため、次のような効果
を得ることができる。すなわち、押出部におけるスクリ
ュの第2スクリュ直径を輸送部および混練部におけるス
クリュの第1スクリュ直径より小として流路断面積を輸
送部のそれよりも小さく構成したことにより、押出部に
おいて合成樹脂原料の充満率が上昇して十分に流動し、
品質の低下を防止できる。また、押出部での樹脂の押出
しが円滑となり、安定した造粒運転が可能となった。ま
た、樹脂の円滑な押出しによって粒度の揃った良品質の
ペレットが生産されるようになった。また、押出部にお
いて合成樹脂原料が充満して流動することにより、その
上流側の混練度調整部からの流出を抑制して流動抵抗と
なり、混練度調整部の機能を補強し向上させることが出
来た。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a twin-screw kneading extruder, and more particularly, to a first screw diameter on the upstream side of a kneading degree adjusting section and a downstream side thereof. The present invention relates to a new improvement for increasing the filling rate of the resin in the extruded portion by making the second screw diameter on the side smaller than that, and for more efficiently and stably conveying the resin. 2. Description of the Related Art In general, a synthetic resin raw material produced by a synthesizing apparatus is often supplied to a large-capacity twin-screw kneading extruder in order to homogenize and improve the properties of the synthetic resin. Is performed. A conventionally used twin-screw kneading extruder is shown in a front sectional view of FIG. 2 and a sectional view of FIG. That is, in FIGS. 2 and 3, what is indicated by reference numeral 1 is a twin-screw kneading extruder.
Is constituted by a long cylindrical cylinder 2 and two screws 3 and 4 rotatably arranged in the cylinder 2. The twin-screw kneading extruder 1 includes at least a transport unit 5, a kneading unit 6, a kneading degree adjusting unit 7, and an extruding unit 8 in order from the upstream side to the downstream side. [0003] The cylinder 2 has a through-hole 9 in which the two screws 2 and 3 are rotatably arranged.
On the upstream side, a raw material supply port 10 penetrating through the wall from above to the through hole 9 is formed, and on the downstream side, a raw material discharge port 11 is formed penetrating through the wall from the through hole 9 to one side surface. ing. The cylinder 2 is configured so that the synthetic resin material flowing in the through-hole 9 can be maintained at a predetermined temperature. The screws 2 and 3 in the through hole 9 of the cylinder 2 are arranged so as to be rotatable in the same direction or different directions in a meshing state or a non-meshing state, and both ends are rotated by bearings 12 and 13. It is freely supported. The screws 2 and 3 are sequentially composed of a transport flight section 20, a kneading rotor section 21, a ring section 22, and an extrusion flight section 23 in order from the upstream side to the downstream side. The transport flight section 20, the kneading rotor section 21, and the extrusion flight section 23 have the same screw diameter. A granulating device 33 is connected to a side surface of the raw material discharge port 11 of the cylinder 2 via a diverter valve 30, a gear pump 31 and a die 32. Next, the operation will be described. First, the cylinder 2 is controlled to a predetermined set temperature, and each of the screws 3, 4
While the is rotated, the powdery or flake-shaped synthetic resin raw material is continuously and quantitatively supplied from the raw material supply port 10 into the through hole 9. The synthetic resin material flows through the transport section 5 while being heated by the transport action of the transport flight section 20 of the rotating screws 2 and 3, and reaches the kneading section 6. In the kneading section 6, the synthetic resin raw material is melt-kneaded by the heating from the cylinder 2 and the kneading action of the rotating kneading section 6. Also, by adjusting the flow cross-sectional area in the downstream-side kneading degree adjusting section 7 to adjust the flow resistance, the residence time of the synthetic resin raw material in the kneading section 6 is adjusted, the kneading degree is adjusted, and the synthetic resin raw material is adjusted. The desired homogenization and modification of [0005] The synthetic resin raw material in a molten state that has passed through the kneading degree adjusting section 7 flows through an extruding section 8 and is extruded from a raw material discharge port 11. The synthetic resin raw material extruded from the raw material discharge port 11 is sent to a gear pump 31 via a diverter valve 30, pressurized by the gear pump 31, extruded to a granulating device 33 via a die 32, and granulated into pellets. Processed. [0006] The conventional twin-screw kneading extruder has the following problems because it is configured as described above. That is, since the screw diameter of the screw is the same from upstream to downstream and the flight height is the same, the extrusion capacity is low in the extrusion flight section, and it is difficult to supply it to the gear pump in a stable manner. This tendency is conspicuous when is high.
This phenomenon further affects the granulating apparatus via the gear pump, making it impossible to perform stable and quantitative granulation, resulting in a decrease in quality. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and in particular, a first upstream side of a kneading degree adjusting section.
By making the second screw diameter downstream of the screw diameter smaller than the screw diameter, the filling rate of the resin in the extruding section is increased, and the resin is conveyed more efficiently and stably. An object of the present invention is to provide a shaft screw type kneading extruder. [0008] In the twin screw kneading extruder according to the present invention, two screws are rotatably disposed in a cylinder, and are sequentially transported from an upstream side to a downstream side. Part, a kneading part, a kneading degree adjusting part and a twin-screw kneading extruder in which an extruding part is formed, wherein the second screw diameter of the extruding part is smaller than the first screw diameter of the transport part and the kneading part, The kneading degree adjusting section is configured to be located between the kneading section and the extruding section. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a twin-screw kneading extruder according to the present invention will be described below in detail with reference to the drawings. FIG. 1 is a front sectional view of a twin-screw kneading extruder according to the present invention. Parts that are the same as or equivalent to those in the conventional example will be described using the same reference numerals. In FIG.
Is a twin-screw kneading extruder. The twin-screw kneading extruder 1 has a long cylindrical cylinder 2 and two cylinders 2 rotatably arranged in the cylinder 2. It is composed of screws 3 and 4. The twin-screw kneading extruder 1 includes at least a transport unit 5, a kneading unit 6, a kneading degree adjusting unit 7, and an extruding unit 8 in order from the upstream side to the downstream side. The cylinder 2 has a through hole 9 in which the two screws 3 and 4 are rotatably arranged.
An upstream hole 30 upstream of the kneading degree adjusting section 7 and a downstream hole 31 downstream of the kneading degree adjusting section 7 are formed in the through hole 9. The downstream hole 31 has a smaller diameter than the upstream hole 30. Therefore, each of the screws 3 and 4 located in the downstream hole 31 with respect to the first screw diameter D1 which is the flight outer diameter of the transport portion 5 and the kneading portion 6 of each screw 3 and 4 located in the upstream hole 30. The second screw diameter D2, which is the flight outer diameter of the push-out portion 8, is smaller and has a relationship of D1> D2. A raw material supply port 10 penetrating through the wall from above is formed on the upstream side of the cylinder 2, and a raw material discharge port 11 is formed on the downstream side through the wall surface from the through hole 9. The cylinder 2 is configured so that the synthetic resin material flowing in the through-hole 9 can be heated to a predetermined temperature. The screws 3, 4 arranged in the through hole 9 of the cylinder 2 are inserted in a meshing state or a non-meshing state so as to be rotatable in the same direction or in different directions. It is rotatably supported by 12 and 13. The screws 3 and 4 correspond to the respective components of the twin-screw kneading extruder 1, and sequentially from the upstream side to the downstream side, the transport flight section 20, the kneading rotor section 21, and the kneading degree adjustment. It is composed of a ring part 7 and an extrusion flight part 23. Furthermore, the first screw diameter D1 indicating the outer diameter of the flight of the transport flight section 20 and the kneading rotor section 21, that is, the transport section 5 and the kneading section 6, is configured to have the same outer diameter.
3, the second screw diameter D which is the outer diameter of the push-out portion 8
2 has a smaller diameter than the first screw diameter D1. On the downstream side of the cylinder 2 where the raw material discharge port 11 is opened, a granulating device 33 is provided via a diverter valve 30, a gear pump 31 and a die 32 shown in FIG.
Are connected. Here, detailed description of FIG. 3 is omitted. Next, the operation will be described. First, the cylinder 2 is controlled to a predetermined set temperature, and each of the screws 3, 4
In a state where is rotated, the powdery or flake-shaped synthetic resin raw material is continuously and quantitatively supplied from the raw material supply port 10 into the upstream hole 30. The synthetic resin material flows through the transport section 5 while being heated from the cylinder 2 by the transport action of the rotating screws 3 and 4, that is, the transport flight section 20, and reaches the kneading section 6. In the kneading section 6, the synthetic resin material is heated by the cylinder 2 and rotated by the kneading rotor section 2.
The mixture is melt-kneaded by the kneading action with 1. Also, by adjusting the flow cross-sectional area in the downstream kneading degree adjusting section 7 to adjust the flow resistance, the residence time of the synthetic resin raw material in the kneading section 6 is adjusted, the kneading degree is adjusted, and the synthetic resin raw material is adjusted. The desired homogenization and modification take place. The synthetic resin raw material in the molten state, which stays in the kneading section 6 for a predetermined time and passes through the kneading degree adjusting section 7, is heated from the cylinder 2 to a predetermined temperature while rotating the rotating screws 3, 4, ie, the extrusion flight section. Due to the transport action of 20, the fluid flows through the extruding section 8 and is extruded from the raw material discharge port 11. The second screw diameter D2 of the extrusion flight section 23 is configured to be smaller than the first screw diameter D1 of the transportation flight section 20, and the cross-sectional area of the synthetic resin material in the extrusion section 8 is smaller than that in the transportation section 5. As a result, the synthetic resin raw material in the molten state flows through the extruding section 8 in a state where the filling rate is increased, and is continuously and quantitatively extruded from the raw material discharge port 10. The synthetic resin raw material extruded from the raw material discharge port 13 is supplied to a gear pump 31 through a diverter valve 30.
Then, the pressure is increased by a gear pump 31, extruded through a die 32 to a granulating device 33, and processed into pellets. The granulating device shown in FIG. 3 and the like are also configured in the same manner as described above in the present invention, and thus redundant description is omitted and FIG. 3 is also used. The twin screw kneading extruder according to the present invention is constructed as described above, so that the following effects can be obtained. That is, the second screw diameter of the screw in the extruding section is smaller than the first screw diameter of the screw in the transport section and the kneading section, and the cross-sectional area of the flow passage is smaller than that of the transport section. Fill rate rises and flows well,
Quality deterioration can be prevented. In addition, the extrusion of the resin in the extruder became smooth, and a stable granulation operation became possible. In addition, smooth extrusion of resin has resulted in production of high-quality pellets with uniform particle sizes. In addition, since the synthetic resin raw material is filled and flows in the extruding section, the outflow from the kneading degree adjusting section on the upstream side is suppressed, and flow resistance is obtained, and the function of the kneading degree adjusting section can be reinforced and improved. Was.
【図面の簡単な説明】
【図1】本発明による二軸スクリュ式混練押出機の正面
断面図である。
【図2】従来の二軸スクリュ式混練押出機の正面断面図
である。
【図3】図2におけるA−A矢視断面図である。
【符号の説明】
1 二軸スクリュ式混練押出機
2 シリンダ
3、4 スクリュ
5 輸送部
6 混練部
7 混練度調整部
8 押出部
9 貫通内孔
12、13 軸受
20 輸送フライト部
21 混練ロータ部
22 リング部
23 押出フライト部
30 上流孔
31 下流孔
D1 第1スクリュ直径
D2 第2スクリュ直径BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front sectional view of a twin-screw kneading extruder according to the present invention. FIG. 2 is a front sectional view of a conventional twin-screw kneading extruder. FIG. 3 is a sectional view taken along the line AA in FIG. 2; DESCRIPTION OF SYMBOLS 1 Twin-screw kneading extruder 2 Cylinder 3, 4 Screw 5 Transport section 6 Kneading section 7 Kneading degree adjusting section 8 Extruding section 9 Through-holes 12, 13 Bearing 20 Transport flight section 21 Kneading rotor section 22 Ring part 23 Extrusion flight part 30 Upstream hole 31 Downstream hole D1 First screw diameter D2 Second screw diameter
Claims (1)
が回転可能に配設され、上流側から下流側へ向けて順
次、輸送部(5)、混練部(6)、混練度調整部(7)および押
出部(8)が形成された二軸スクリュ式混練押出機におい
て、前記輸送部(5)及び混練部(6)の第1スクリュ直径(D
1)よりも前記押出部(8)の第2スクリュ直径(D2)を小と
し、前記混練度調整部(7)は前記混練部(6)と押出部(8)
との間に位置していることを特徴とする二軸スクリュ式
混練押出機。[Claim 1] Two screws (3, 4) in a cylinder (2)
Are rotatably arranged, and sequentially from the upstream side to the downstream side, a twin-screw screw formed with a transport section (5), a kneading section (6), a kneading degree adjusting section (7), and an extruding section (8). In the kneading extruder, the first screw diameter (D) of the transport section (5) and the kneading section (6)
The second screw diameter (D2) of the extruding section (8) is smaller than 1), and the kneading degree adjusting section (7) includes the kneading section (6) and the extruding section (8).
And a twin-screw kneading extruder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001261946A JP2003071907A (en) | 2001-08-30 | 2001-08-30 | Twin-screw kneading extruder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001261946A JP2003071907A (en) | 2001-08-30 | 2001-08-30 | Twin-screw kneading extruder |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003071907A true JP2003071907A (en) | 2003-03-12 |
Family
ID=19088916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001261946A Pending JP2003071907A (en) | 2001-08-30 | 2001-08-30 | Twin-screw kneading extruder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003071907A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009057753A1 (en) | 2007-11-02 | 2009-05-07 | Kabushiki Kaisha Kobe Seiko Sho | Mechanism for regulating kneadability, extruder, continuous kneading machine, method for regulating kneadability and kneading method |
-
2001
- 2001-08-30 JP JP2001261946A patent/JP2003071907A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009057753A1 (en) | 2007-11-02 | 2009-05-07 | Kabushiki Kaisha Kobe Seiko Sho | Mechanism for regulating kneadability, extruder, continuous kneading machine, method for regulating kneadability and kneading method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210316492A1 (en) | Screw for extruder comprising a passage crossing over between adjacent cylindrical bodies | |
US8231264B2 (en) | Extruder with feed-back means | |
TWI532582B (en) | Kneading and extruding apparatus | |
US3782870A (en) | Apparatus for extruding a partially foamed thermoplastic product | |
WO2016175081A1 (en) | Extruder screw, extruder, and extrusion method | |
JP7478064B2 (en) | Apparatus for producing resin melt for porous thin film and method for using the apparatus | |
TW319735B (en) | ||
JP2003071907A (en) | Twin-screw kneading extruder | |
JPH091630A (en) | Kneading extruder | |
JP3113879B2 (en) | Continuous kneading extruder | |
JP2010184372A (en) | Kneading method and device using twin screw extruder | |
JPH05237914A (en) | Bilateral extruder rotating in same direction | |
JP3738422B2 (en) | Kneading extruder for granulation | |
WO2018142936A1 (en) | Screw-type extruder | |
AU2006297719B2 (en) | A method to increase production rate of a continuous mixer or extruder | |
JPH05104609A (en) | Vent extruding machine | |
JP3208738B2 (en) | Different direction twin screw kneading extruder | |
CN214983053U (en) | Reducing screw rod thread insert subassembly | |
JP2527515B2 (en) | Kneading and mixing method of raw materials and screw cylinder structure | |
JP7421612B1 (en) | Twin-screw continuous kneading extrusion device | |
JP3598072B2 (en) | Kneading ring and screw type kneading extruder | |
JP4020387B2 (en) | Screw type reaction extruder | |
KR20130019790A (en) | Grooved barrel typed extruder having venting apparatus | |
JP4563739B2 (en) | Extruded product manufacturing method and manufacturing apparatus | |
JP3165680B2 (en) | Kneading extruder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050329 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051108 |