JP2003065334A - Hydraulic gas bearing - Google Patents
Hydraulic gas bearingInfo
- Publication number
- JP2003065334A JP2003065334A JP2002172611A JP2002172611A JP2003065334A JP 2003065334 A JP2003065334 A JP 2003065334A JP 2002172611 A JP2002172611 A JP 2002172611A JP 2002172611 A JP2002172611 A JP 2002172611A JP 2003065334 A JP2003065334 A JP 2003065334A
- Authority
- JP
- Japan
- Prior art keywords
- housing
- inner peripheral
- porous body
- peripheral surface
- shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Turning (AREA)
- Machine Tool Units (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、精密機械、超精密
機械等の主軸や回転テーブルを支持する軸等に好適に用
いられる静圧気体軸受の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a hydrostatic gas bearing suitable for use as a main shaft of a precision machine, an ultra-precision machine, a shaft supporting a rotary table, or the like.
【0002】[0002]
【従来の技術】従来、静圧気体軸受の中空スピンドル軸
の一端に回転継手を取り付けると共に他端には真空吸着
機構を配設し、その回転継手を介して真空ポンプの配管
を接続するようにした真空吸着機構付き静圧気体軸受が
知られている。しかし、この真空吸着機構付き静圧気体
軸受は、スピンドル軸の真空吸着側とは反対側の軸端に
回転継手が接続されているため、スピンドルの軸方向長
さが長くなるばかりではなく、回転継手のシールの摩擦
抵抗が加わるために大きなトルクが必要となり、また回
転継手の部品代金の分だけコスト高となり、更にスピン
ドルの軸端に回転継手以外の部品を取り付けることがで
きない等の問題があった。2. Description of the Related Art Conventionally, a rotary joint is attached to one end of a hollow spindle shaft of a static pressure gas bearing, a vacuum adsorption mechanism is arranged at the other end, and a vacuum pump pipe is connected through the rotary joint. A static pressure gas bearing with a vacuum suction mechanism is known. However, this static pressure gas bearing with a vacuum suction mechanism has a rotary joint connected to the shaft end of the spindle shaft opposite to the vacuum suction side. There is a problem that a large torque is required because the frictional resistance of the seal of the joint is added, the cost is increased by the cost of the parts of the rotary joint, and parts other than the rotary joint cannot be attached to the shaft end of the spindle. It was
【0003】これに対して、本出願人は、先に、上記の
問題を改善した真空吸着機構付き静圧気体軸受を出願し
た(特開昭62−218889号公報)。このものは、
スピンドル軸端に取り付けられる回転継手の代わりに、
静圧気体軸受のハウジングと中空軸とに回転継手と同等
の機構を設けたものである。図2はその軸受の要部を示
した断面図で、固定のハウジング1の内側に中空の円筒
状の軸体2が回転自在に非接触で支承されるもので、そ
のハウジング1の内面には中間部3を隔てて一対のリン
グ状の多孔質体4が取り付けられており、その内周面が
一方の軸受面であるラジアル軸受面5を形成するととも
に、その一端面がスラスト軸受面6を形成している。軸
体2は一端にワークWを真空吸着(真空チャック)する
開口を有し、その外周面が他方の軸受面であるラジアル
受面7を形成し、軸受すき間8を介してラジアル軸受面
5に対向している。On the other hand, the applicant of the present invention has previously applied for a static pressure gas bearing with a vacuum adsorption mechanism that solves the above problems (Japanese Patent Laid-Open No. 62-218889). This one is
Instead of a rotary joint attached to the spindle shaft end,
The static pressure gas bearing housing and the hollow shaft are provided with a mechanism equivalent to a rotary joint. FIG. 2 is a sectional view showing the main part of the bearing, in which a hollow cylindrical shaft body 2 is rotatably supported in a fixed housing 1 in a non-contact manner. A pair of ring-shaped porous bodies 4 are attached with an intermediate portion 3 therebetween, the inner peripheral surface of which forms a radial bearing surface 5, which is one bearing surface, and one end surface of which forms a thrust bearing surface 6. Is forming. The shaft body 2 has an opening for vacuum suction (vacuum chuck) of the work W at one end, and an outer peripheral surface of the shaft body 2 forms a radial bearing surface 7 which is the other bearing surface, and a radial clearance 5 is formed on the radial bearing surface 5 through a bearing clearance 8. Facing each other.
【0004】また、軸体2に設けた中空孔Hが設けら
れ、その中空孔Hの長手方向の中間部位には連通孔9が
設けられて軸体の外周面に開口している。一方、ハウジ
ング1の中間部3には、内周面に円周方向に連続する内
周溝10を連通孔9に対向させて設けると共に、その内
周溝10からハウジング外面に貫通する通気孔11を設
けてある。そして、この通気孔11に真空配管を接続し
て吸引すると、連通孔9,内周溝10,通気孔11で構
成される通気径路が回転継手として機能して回転する軸
体2内が排気され、軸端のワークWを軸体2の端面に吸
着するようにしている。Further, a hollow hole H provided in the shaft body 2 is provided, and a communication hole 9 is provided at an intermediate portion in the longitudinal direction of the hollow hole H and opens to the outer peripheral surface of the shaft body. On the other hand, in the intermediate portion 3 of the housing 1, an inner peripheral groove 10 which is continuous in the circumferential direction is provided on the inner peripheral surface so as to face the communicating hole 9, and a vent hole 11 which penetrates from the inner peripheral groove 10 to the outer surface of the housing. Is provided. Then, when a vacuum pipe is connected to the ventilation hole 11 and suction is performed, the ventilation path constituted by the communication hole 9, the inner circumferential groove 10 and the ventilation hole 11 functions as a rotary joint, and the rotating shaft body 2 is exhausted. The work W at the shaft end is attracted to the end surface of the shaft body 2.
【0005】軸体2は給気孔12から供給した圧力気体
を多孔質体4のラジアル軸受面5から軸受すき間8に噴
出せしめることにより、軸受すき間8を介してハウジン
グ1に非接触で支持される。そして、例えば軸端に取り
付けられた図示されない円盤状のロータと、これに対向
するハウジング1の側壁に取り付けられた図示されない
円盤状のステータとによって回転駆動するようにしてあ
る。The shaft body 2 is supported by the housing 1 through the bearing gap 8 in a non-contact manner by ejecting the pressure gas supplied from the air supply hole 12 from the radial bearing surface 5 of the porous body 4 into the bearing gap 8. . Then, for example, a disk-shaped rotor (not shown) attached to the shaft end and a disk-shaped stator (not shown) attached to the side wall of the housing 1 facing the rotor are rotationally driven.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記従
来の静圧気体軸受にあっては、多孔質体4がハウジング
1の両端部の内径側に段部を加工して軸方向に一対に装
着されているため、以下のような種々の問題点が生じて
いた。
同一径で軸受面積を大きくして耐負荷性能を高めよう
とすると、装置の全長が長くなり装置全体が大型化す
る。また、多孔質体4の取り付け構造が複雑で製造コス
トが高くなる。However, in the above-mentioned conventional hydrostatic gas bearing, the porous bodies 4 are axially machined at the inner diameter sides of both ends of the housing 1 and mounted in a pair in the axial direction. Therefore, the following various problems have occurred. If the bearing area is increased with the same diameter to improve load bearing performance, the overall length of the device becomes long and the entire device becomes large. Further, the attachment structure of the porous body 4 is complicated and the manufacturing cost becomes high.
【0007】多孔質体4の内側端面がハウジングの中
間部3の段部の面に対向しているから、給気孔12から
加圧気体を供給したときハウジング1と多孔質体4が軸
方向に相対移動してずれてしまうおそれがある。
万一、回転中に加圧気体の供給が停止するなどの事故
が生じた場合に、ハウジング1の中間部3の内径面と軸
体2の外径面とが多孔質体4を介さずに直接に接触して
摩擦熱で焼きつくおそれがある。Since the inner end surface of the porous body 4 faces the stepped surface of the intermediate portion 3 of the housing, when the pressurized gas is supplied from the air supply hole 12, the housing 1 and the porous body 4 are axially moved. There is a risk of relative movement and displacement. If an accident such as the supply of pressurized gas is stopped during rotation, the inner diameter surface of the intermediate portion 3 of the housing 1 and the outer diameter surface of the shaft body 2 do not go through the porous body 4. There is a risk of direct contact and burning due to frictional heat.
【0008】そこで本発明は、ハウジングの内面の多孔
質体を軸方向に連続させて形成することにより構造を単
純化して、小型で、製作容易で、ハウジングと多孔質部
材とが軸方向にずれるおそれがなく、また加圧気体の供
給に事故があっても焼きつくおそれがない静圧気体軸受
を安価に提供することを目的としている。Therefore, the present invention simplifies the structure by continuously forming the porous body on the inner surface of the housing in the axial direction, is small in size, and is easy to manufacture, and the housing and the porous member are displaced from each other in the axial direction. It is an object of the present invention to provide a static pressure gas bearing that does not have a fear and that does not burn even if there is an accident in the supply of pressurized gas at a low cost.
【0009】[0009]
【課題を解決するための手段】請求項1の発明は、ハウ
ジングの内周面に取り付けた多孔質体の内周に軸体を配
設し、該軸体に設けた中空孔は連通孔を介して軸体の外
周面に開口し、前記多孔質体から軸体に加圧気体を噴出
する静圧気体軸受において、前記多孔質体は前記ハウジ
ング内に該ハウジングの内周面全体を覆うように連続し
て設けられ、前記多孔質体の内周面と前記軸体の外周面
との少なくとも一方には前記連通孔と対向する位置に内
側の内周溝を設け、該内側の内周溝は多孔質体に設けた
通気孔およびハウジングに設けた排気孔を介してハウジ
ングの外面に開口し、かつ前記多孔質体の内周面と前記
軸体の外周面との少なくとも一方には内側の内周溝の両
側に外側の内周溝をそれぞれ設け、該外側の内周溝は多
孔質体に設けた通気孔およびハウジングに設けた排気孔
を介してハウジングの外面に開口する構成とした。According to a first aspect of the present invention, a shaft body is arranged on the inner periphery of a porous body attached to the inner peripheral surface of a housing, and the hollow hole provided in the shaft body is a communication hole. In the hydrostatic gas bearing that opens to the outer peripheral surface of the shaft body and ejects pressurized gas from the porous body to the shaft body, the porous body covers the entire inner peripheral surface of the housing in the housing. And an inner inner circumferential groove is provided at a position facing the communicating hole on at least one of the inner circumferential surface of the porous body and the outer circumferential surface of the shaft body. Is opened to the outer surface of the housing through a vent hole provided in the porous body and an exhaust hole provided in the housing, and at least one of the inner peripheral surface of the porous body and the outer peripheral surface of the shaft body is an inner surface. Outer inner circumferential grooves are provided on both sides of the inner circumferential groove, and the outer inner circumferential grooves are provided on the porous body. It has a configuration which is open to the outer surface of the housing through an exhaust hole provided in the hole and the housing.
【0010】請求項2の発明は、前記多孔質体をグラフ
ァイトから形成したことを特徴とする。また、請求項3
の発明は、前記多孔質体が前記ハウジングの内周面に連
続して一体に取り付けられていることを特徴とする。The invention of claim 2 is characterized in that the porous body is formed of graphite. Further, claim 3
The invention of (1) is characterized in that the porous body is continuously and integrally attached to the inner peripheral surface of the housing.
【0011】[0011]
【作用】本発明の多孔質体は、ハウジングの内周面全体
を覆うように連続しており、軸方向に分割されていな
い。そのため軸受の構造が単純になり、製作が容易であ
る。また、多孔質体のラジアル軸受面積が同一の従来品
より軸方向長さが短くなって小型化される。The porous body of the present invention is continuous so as to cover the entire inner peripheral surface of the housing and is not axially divided. Therefore, the structure of the bearing is simple and easy to manufacture. In addition, the axial length of the porous body is shorter than that of the conventional product having the same radial bearing area, and the size is reduced.
【0012】また、多孔質体は軸方向でハウジングと対
向する面を有しないため、多孔質体から噴出する加圧気
体でハウジングと多孔質体との両者の間に相対的な軸方
向加圧力が作用することはない。また、ハウジングの内
周面全面が多孔質部材で構成されているため、摺動性の
良い多孔質部材を使用すれば、回転中に多孔質体と軸が
接触しても焼きつくことはない。Further, since the porous body does not have a surface facing the housing in the axial direction, the pressurized gas ejected from the porous body exerts a relative axial pressure between the housing and the porous body. Does not work. Further, since the entire inner peripheral surface of the housing is made of a porous member, if a porous member having good slidability is used, it will not be burned even if the porous body and the shaft come into contact with each other during rotation. .
【0013】本発明の静圧気体軸受は、軸体に設けた中
空孔内を連通孔,内側の内周溝,通気孔を介して排気し
た場合は、真空チャックとして機能する。一方、軸体に
設けた中空孔内に連通孔,内側の内周溝,通気孔を介し
て加圧気体を送った場合は、加圧チャックとして機能す
る。The static pressure gas bearing of the present invention functions as a vacuum chuck when the inside of the hollow hole provided in the shaft body is evacuated through the communication hole, the inner peripheral groove, and the ventilation hole. On the other hand, when the pressurized gas is sent into the hollow hole provided in the shaft body through the communication hole, the inner peripheral groove inside, and the ventilation hole, it functions as a pressure chuck.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施例を図面を参
照して説明する。図1は、本発明の静圧気体軸受の一実
施例の縦断面図である。なお、従来と同一または相当部
分には同一の符号を付してある。まず構成を説明する
と、固定のハウジング1の内部に、軸体2が回転自在に
支持されている。回転体2の円筒部の両軸端には、フラ
ンジ状の鍔部2aがそれぞれに取り付けてあり、一方の
鍔部2aは盲とされ他方の鍔部2aは開口3aを有して
いる。図示されてはいないが、そのうち少なくとも一方
の鍔部2aは、ハウジング1への回転体2の組付けを考
慮して、着脱可能にネジ止めされている。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a vertical sectional view of an embodiment of the static pressure gas bearing of the present invention. The same or corresponding parts as in the conventional case are designated by the same reference numerals. First, the structure will be described. A shaft 2 is rotatably supported inside a fixed housing 1. Flange-shaped collar portions 2a are attached to both shaft ends of the cylindrical portion of the rotating body 2, one of the collar portions 2a is blind, and the other collar portion 2a has an opening 3a. Although not shown, at least one of the collar portions 2a is detachably screwed in consideration of the assembling of the rotating body 2 to the housing 1.
【0015】ハウジング1の内周面には、1個の長円筒
状の多孔質体24が全面に固着されている。またハウジ
ング1には、外周面に開口するねじ付給気孔12から多
孔質体24の軸方向端部近傍の外周面に設けた円周方向
の溝25,25に至る給気通路26が形成され、多孔質
体24に圧力気体を送り込む構造になっている。多孔質
体24の内周面は一方の軸受面としてのラジアル軸受面
5であって、ラジアル軸受すきま8を介して軸体2の外
周面の他方の軸受面であるラジアル受面7に対向してい
る。また、多孔質体24の軸方向の両端面はスラスト軸
受面6とされ、軸体2の各鍔部2aの内側面であるスラ
スト受面27とスラスト軸受すきま28を介して対向し
ている。On the inner peripheral surface of the housing 1, one long cylindrical porous body 24 is fixedly attached to the entire surface. Further, the housing 1 is provided with an air supply passage 26 extending from the screwed air supply hole 12 opening on the outer peripheral surface to the circumferential grooves 25, 25 provided on the outer peripheral surface near the axial end of the porous body 24. The structure is such that pressurized gas is sent to the porous body 24. The inner peripheral surface of the porous body 24 is a radial bearing surface 5 as one bearing surface, and faces the radial bearing surface 7 which is the other bearing surface of the outer peripheral surface of the shaft body 2 through the radial bearing clearance 8. ing. Further, both axial end surfaces of the porous body 24 are thrust bearing surfaces 6 and are opposed to the thrust receiving surfaces 27, which are the inner side surfaces of the flange portions 2 a of the shaft body 2, through the thrust bearing clearances 28.
【0016】軸体2の長さ方向の中間位置には、肉厚を
径方向に貫通して連通孔9が180度の位相で二箇所に
形成されている。この連通孔9は二個以上でもよいが、
できるだけ円周等分位置に設けるのが好ましい。多孔質
体24の内周面の長さ方向の中間位置には、円周方向に
連続する内側の内周溝30が軸体2の連通孔9に対向さ
せて設けてある。また、その内側の内周溝30から多孔
質体24とハウジング1の各側壁を貫通して外部に開口
する径方向の通気孔31が設けてあり、連通孔9,内側
の内周溝30,通気孔31で回転継手の通気経路を構成
している。更に、内側の内周溝30を挟んで両側の二箇
所に、円環状の内周ランド部32,32を隔てて円周方
向に連続する溝が外側の内周溝33,33として形成さ
れている。そして、それらの各外側の内周溝33,33
から多孔質体24とハウジング1の各側壁を貫通して外
部に開口する径方向の排気孔35が設けられている。Communication holes 9 are formed at two intermediate positions in the lengthwise direction of the shaft body 2 so as to penetrate through the wall in the radial direction at a phase of 180 degrees. Two or more communication holes 9 may be provided,
It is preferable to provide them at equally circumferential positions. An inner circumferential groove 30 continuous in the circumferential direction is provided at the intermediate position in the lengthwise direction of the inner circumferential surface of the porous body 24 so as to face the communication hole 9 of the shaft body 2. Further, there is provided a ventilation hole 31 in the radial direction which penetrates the porous body 24 and each side wall of the housing 1 from the inner peripheral groove 30 inside thereof and is opened to the outside. The communicating hole 9, the inner peripheral groove 30 inside, The ventilation hole 31 constitutes a ventilation path of the rotary joint. Further, grooves which are continuous in the circumferential direction with annular inner peripheral land portions 32, 32 are formed as outer inner peripheral grooves 33, 33 at two positions on both sides of the inner inner peripheral groove 30. There is. Then, the inner circumferential grooves 33, 33 on the respective outer sides thereof
A radial exhaust hole 35 that penetrates through the porous body 24 and each side wall of the housing 1 and opens to the outside is provided.
【0017】上記の内周ランド部32,32はラジアル
受面7との間に微小すき間を形成して内側の内周溝30
と外側の内周溝33,33との間に圧力差を確保するた
めのもので、当該微小すき間の大きさは、内側の内周溝
30内の圧力の大きさ(減圧の場合と加圧の場合とでは
かなり異なる)に応じて適宜に調整される。次に作用を
説明する。The above-mentioned inner peripheral land portions 32, 32 form a minute gap with the radial receiving surface 7 to form the inner peripheral groove 30.
This is for ensuring a pressure difference between the inner inner circumferential groove 33 and the outer inner circumferential groove 33, and the size of the minute gap corresponds to the magnitude of the pressure in the inner inner circumferential groove 30 (in the case of depressurization and pressurization). (It is considerably different from the case of)). Next, the operation will be described.
【0018】ハウジング1の給気孔12から圧力気体を
供給すると、その圧力気体は給気路26を経て多孔質体
24の外周の溝25,25に至り、そこから多孔質体2
4に供給されて、多孔質体24内を通り内周面のラジア
ル軸受面5及び外側面のスラスト軸受面6から均一に噴
出する。これにより、ラジアル軸受すきま8及びスラス
ト軸受すきま28に圧力の高い気体層が形成されて、軸
体2はハウジング1に非接触に浮上支持される。噴出し
た圧力気体は外側の内周溝33,33から排気孔35を
経て大気中へ放出される。また、噴出した圧力気体の一
部は、スラスト軸受すきま28からも大気中へ放出され
る。When the pressurized gas is supplied from the air supply hole 12 of the housing 1, the pressurized gas reaches the grooves 25, 25 on the outer periphery of the porous body 24 through the air supply passage 26, and from there, the porous body 2 is reached.
4 is supplied to the inner peripheral surface of the radial bearing surface 5 and the outer surface of the thrust bearing surface 6 and is uniformly ejected. As a result, a gas layer having a high pressure is formed in the radial bearing clearance 8 and the thrust bearing clearance 28, and the shaft body 2 is levitationally supported by the housing 1 in a non-contact manner. The ejected pressure gas is discharged into the atmosphere from the outer peripheral grooves 33, 33 through the exhaust hole 35. Further, a part of the ejected pressure gas is also released into the atmosphere from the thrust bearing clearance 28.
【0019】この場合、多孔質体24はハウジング1の
内周全面に形成されていて、従来例のようにハウジング
1と軸方向に対向する面を有しないことから、多孔質体
24からの圧力気体の噴出でハウジング1と多孔質体2
4とが軸方向に相対移動してずれるという現象は全く生
じない。また、なんらかの事故でハウジングの給気孔1
2への圧力気体の供給が止まると、軸受すき間28の圧
力が低下してそれまで多孔質体24に非接触状態で回転
中の軸体2が沈み、多孔質体のラジアル軸受面5と中空
軸のラジアル受面7とが接触して回転することになる。
その場合も、金属製のハウジング1の内面が直接に金属
製のラジアル受面7に接触することはなく、多孔質体2
4とラジアル受面7との接触であるから、多孔質体24
を摺動性の良いグラファイトなどの材料を用いて形成す
れば、ラジアル軸受面5の焼きつきを防止できる。In this case, since the porous body 24 is formed on the entire inner peripheral surface of the housing 1 and does not have a surface facing the housing 1 in the axial direction as in the conventional example, the pressure from the porous body 24 is applied. The housing 1 and the porous body 2 by the ejection of gas
The phenomenon that 4 and 4 move relative to each other in the axial direction and are displaced does not occur at all. Also, due to some accident, the air supply hole 1 of the housing
When the supply of the pressurized gas to 2 is stopped, the pressure in the bearing gap 28 decreases and the rotating shaft body 2 sinks in the non-contact state with the porous body 24 until then, and the radial bearing surface 5 and hollow of the porous body are hollowed. The radial receiving surface 7 of the shaft contacts and rotates.
Even in that case, the inner surface of the metal housing 1 does not directly contact the metal radial receiving surface 7, and the porous body 2
4 is in contact with the radial receiving surface 7, the porous body 24
If the material is formed using a material having good slidability such as graphite, seizure of the radial bearing surface 5 can be prevented.
【0020】この静圧気体軸受を真空チャックとして機
能させる場合は、通気孔31に真空配管を接続して吸引
する。これにより、回転中の軸体内の空気が連通孔9,
内側の内周溝30,通気孔31を経て吸引されて軸体の
中空孔H内が減圧され、ワークWは軸体2の開口3a側
の端面に真空吸着して保持される。この真空吸引に際し
て、内側の内周溝30の両隣は大気に開放された外側の
内周溝33であるが、内周ランド部32とラジアル受面
7とのすき間が微小であるから、その排気抵抗で内側の
内周溝30内は所定の減圧状態に維持される。When the static pressure gas bearing functions as a vacuum chuck, a vacuum pipe is connected to the vent hole 31 to suck the gas. As a result, the air in the rotating shaft body communicates with the communication holes 9,
The inside of the hollow hole H of the shaft body is decompressed by being sucked through the inner peripheral groove 30 and the ventilation hole 31, and the work W is vacuum-adsorbed and held by the end surface of the shaft body 2 on the side of the opening 3a. At the time of this vacuum suction, both sides of the inner inner circumferential groove 30 are the outer inner circumferential groove 33 which is open to the atmosphere, but since the gap between the inner circumferential land portion 32 and the radial receiving surface 7 is very small, its exhaust The inside of the inner peripheral groove 30 is maintained at a predetermined reduced pressure by resistance.
【0021】反対に、この静圧気体軸受を加圧チャック
として機能させる場合は、軸体2の中空孔H内に、加圧
チャック用のバネ付きピストンを装着しておく。このピ
ストンは非加圧時はバネで押されて前進位置にあり、被
チャック部材であるワークWは開放されている。チャッ
ク時には、通気孔31にコンプレッサの配管を接続して
軸体2内に加圧気体を送りこむ。加圧気体は軸体2が回
転中でも通気孔31,内側の内周溝30,連通孔9を経
て中空孔Hに達し、加圧チャック用のバネ付きピストン
を加圧してバネの押圧に抗して後退させる。これにより
ワークWは軸体2の開口3a側の端面に保持される。On the contrary, when the static pressure gas bearing functions as a pressure chuck, a spring-loaded piston for the pressure chuck is mounted in the hollow hole H of the shaft body 2. When the piston is not pressed, it is pushed by the spring and is in the forward position, and the workpiece W, which is the member to be chucked, is open. At the time of chucking, a pipe of a compressor is connected to the ventilation hole 31 to send pressurized gas into the shaft body 2. The pressurized gas reaches the hollow hole H through the ventilation hole 31, the inner peripheral groove 30, and the communication hole 9 even when the shaft 2 is rotating, pressurizes the spring-loaded piston for the pressure chuck, and resists the pressure of the spring. To retreat. As a result, the work W is held on the end surface of the shaft body 2 on the side of the opening 3a.
【0022】この加圧の場合にも、内周ランド部32と
ラジアル受面7との微小なすき間が、外側の内周溝33
との圧力差を維持して内側の内周溝30の圧力低下を防
止する。なお、多孔質体24の三個の内周溝30,3
3,33、通気孔31の配管接続口及び内周ランド部3
2には樹脂含浸を行って気体が連通しにくくすることが
好ましい。しかし、例えば排気する場合の真空ポンプに
は十分な排気容量があり、加圧する場合のコンプレッサ
には十分な気体圧縮容量があるので、これらの樹脂含浸
は行わなくても、実用上の問題はない。Even in the case of this pressurization, the minute gap between the inner peripheral land portion 32 and the radial receiving surface 7 is the outer inner peripheral groove 33.
The pressure difference between the inner peripheral groove 30 and the inner peripheral groove 30 is prevented from decreasing. Incidentally, the three inner circumferential grooves 30, 3 of the porous body 24
3, 33, the pipe connection port of the ventilation hole 31 and the inner peripheral land portion 3
It is preferable to impregnate 2 with a resin to make it difficult for gas to communicate. However, for example, a vacuum pump for exhausting has a sufficient exhaust capacity, and a compressor for pressurizing has a sufficient gas compressing capacity, so there is no practical problem even if these resin impregnations are not performed. .
【0023】上記実施例では、円周方向に連続する内周
溝30,33,33を多孔質体24の内周面の三個所に
形成したものを示したが、これに限らず、それらの内周
溝30,33,33は軸体2の外周面に設けてもよく、
あるいは多孔質体24の内周面と軸体2の外周面との双
方に分けて設けても良い。また、円周方向に連続する溝
30,33,33は、多孔質部材24の軸方向長さ(ハ
ウジング1の軸方向長さ)に応じて三個所以上の個所に
設けてもよい。その場合、溝の配置個所が奇数であれば
内側の内周溝30を一個もしくは奇数個とし、この溝に
少なくとも一個の通気孔31を設けると共に、外側の内
周溝33にそれぞれ排気孔35を設けても良い。一方、
溝の配置個所が偶数であれば内側の内周溝30二個もし
くは偶数個としてこの溝に少なくとも一個の通気孔31
を設けると共に、外側の内周溝33にそれぞれ排気孔3
5を設けても良い。In the above embodiment, the inner circumferential grooves 30, 33, 33 which are continuous in the circumferential direction are formed at three positions on the inner circumferential surface of the porous body 24, but the present invention is not limited to this. The inner peripheral grooves 30, 33, 33 may be provided on the outer peripheral surface of the shaft body 2,
Alternatively, it may be provided separately on both the inner peripheral surface of the porous body 24 and the outer peripheral surface of the shaft body 2. Further, the circumferentially continuous grooves 30, 33, 33 may be provided at three or more locations depending on the axial length of the porous member 24 (axial length of the housing 1). In that case, if the locations of the grooves are odd, the number of the inner peripheral grooves 30 on the inside is one or an odd number, and at least one vent hole 31 is provided in this groove, and the exhaust holes 35 are provided on the outer peripheral grooves 33, respectively. It may be provided. on the other hand,
If the locations of the grooves are even, the number of inner circumferential grooves 30 is two or even, and at least one vent hole 31 is provided in this groove.
And the exhaust holes 3 are provided in the inner circumferential grooves 33 on the outer side.
5 may be provided.
【0024】[0024]
【発明の効果】以上説明したように、本発明によれば、
静圧気体軸受の一方の軸受面をハウジング内面の全面を
連続して覆う多孔質体で形成したため、構造が小型化,
単純化されて製作が容易になり、その結果、低コストに
製作できるという効果が得られる。As described above, according to the present invention,
Since one bearing surface of the hydrostatic gas bearing is formed of a porous body that continuously covers the entire inner surface of the housing, the structure is downsized.
This simplifies and facilitates production, and as a result, an effect that it can be produced at low cost is obtained.
【0025】また、多孔質体はハウジングと軸方向で対
向する面を有しないため、ハウジングと多孔質体とが圧
力気体の力に押されて相対移動し変形することがないと
いう効果が得られる。更に、ハウジングの内周面が多孔
質体に覆われることにより、軸体の回転中に加圧気体の
供給が停止しても軸体の外周面がハウジングの内周面に
接触することがないので、軸体が摩擦熱によってハウジ
ングに焼き付くことを防止できるという効果が得られ
る。Further, since the porous body does not have a surface that faces the housing in the axial direction, the effect that the housing and the porous body do not move and deform relative to each other due to the force of the pressure gas. . Further, since the inner peripheral surface of the housing is covered with the porous body, even if the supply of the pressurized gas is stopped during the rotation of the shaft, the outer peripheral surface of the shaft does not come into contact with the inner peripheral surface of the housing. Therefore, it is possible to obtain an effect that it is possible to prevent the shaft body from being seized on the housing due to frictional heat.
【図1】本発明の一実施例の要部の縦断面図である。FIG. 1 is a vertical cross-sectional view of a main part of an embodiment of the present invention.
【図2】従来の静圧気体軸受の要部の縦断面図である。FIG. 2 is a vertical sectional view of a main part of a conventional static pressure gas bearing.
1 ハウジング 2 軸体 9 連通孔 24 多孔質体 30 内側の内周溝 31 (ハウジングの)通気孔 33 外側の内周溝 35 排気孔 1 housing Biaxial body 9 communication holes 24 Porous body 30 Inner peripheral groove 31 Vents (on housing) 33 Outer circumferential groove 35 Exhaust hole
Claims (3)
体の内周に軸体を配設し、該軸体に設けた中空孔は連通
孔を介して軸体の外周面に開口し、前記多孔質体から軸
体に加圧気体を噴出する静圧気体軸受において、 前記多孔質体は前記ハウジング内に該ハウジングの内周
面全体を覆うように連続して設けられ、前記多孔質体の
内周面と前記軸体の外周面との少なくとも一方には前記
連通孔と対向する位置に内側の内周溝を設け、該内側の
内周溝は多孔質体に設けた通気孔およびハウジングに設
けた排気孔を介してハウジングの外面に開口し、かつ前
記多孔質体の内周面と前記軸体の外周面との少なくとも
一方には内側の内周溝の両側に外側の内周溝をそれぞれ
設け、該外側の内周溝は多孔質体に設けた通気孔および
ハウジングに設けた排気孔を介してハウジングの外面に
開口することを特徴とする静圧気体軸受。1. A shaft body is arranged on the inner circumference of a porous body attached to the inner circumference surface of a housing, and a hollow hole provided in the shaft body opens to the outer circumference surface of the shaft body through a communication hole. In a static pressure gas bearing for ejecting a pressurized gas from the porous body to a shaft body, the porous body is continuously provided in the housing so as to cover the entire inner peripheral surface of the housing. At least one of the inner peripheral surface of the shaft and the outer peripheral surface of the shaft body is provided with an inner inner peripheral groove at a position facing the communication hole, and the inner inner peripheral groove is a ventilation hole and a housing provided in the porous body. Through the exhaust hole provided on the outer surface of the housing, and at least one of the inner peripheral surface of the porous body and the outer peripheral surface of the shaft body has an outer inner peripheral groove on both sides of an inner inner peripheral groove. Are provided respectively, and the inner circumferential groove on the outside is provided with a ventilation hole provided in the porous body and an exhaust gas provided in the housing. Externally pressurized gas bearing, characterized in that the opening in the outer surface of the housing via a.
たことを特徴とする請求項1記載の静圧気体軸受。2. The static pressure gas bearing according to claim 1, wherein the porous body is formed of graphite.
に連続して一体に取り付けられていることを特徴とする
請求項1記載の静圧気体軸受。3. The hydrostatic gas bearing according to claim 1, wherein the porous body is continuously and integrally attached to the inner peripheral surface of the housing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002172611A JP2003065334A (en) | 2002-06-13 | 2002-06-13 | Hydraulic gas bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002172611A JP2003065334A (en) | 2002-06-13 | 2002-06-13 | Hydraulic gas bearing |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5271008A Division JPH07127641A (en) | 1993-10-28 | 1993-10-28 | Static pressure gas bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003065334A true JP2003065334A (en) | 2003-03-05 |
Family
ID=19195159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002172611A Pending JP2003065334A (en) | 2002-06-13 | 2002-06-13 | Hydraulic gas bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003065334A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008049473A (en) * | 2006-07-26 | 2008-03-06 | Nippei Toyama Corp | Pneumatic hydrostatic bearing spindle device |
JP2008115875A (en) * | 2006-10-31 | 2008-05-22 | Ckd Corp | Non-contact supporting device |
JP2009068649A (en) * | 2007-09-14 | 2009-04-02 | Ntn Corp | Spindle device |
JP2010283218A (en) * | 2009-06-05 | 2010-12-16 | Juki Corp | Suction head |
JP2011042014A (en) * | 2009-08-24 | 2011-03-03 | Tsudakoma Corp | Rotation indexing table |
JP2012519086A (en) * | 2009-03-05 | 2012-08-23 | ビエロマティク ロイゼ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト | Lance unit and spindle with lance unit |
CN106334805A (en) * | 2016-10-19 | 2017-01-18 | 北京海普瑞森科技发展有限公司 | Ultrasonic spindle |
CN109333077A (en) * | 2018-10-10 | 2019-02-15 | 西安理工大学 | The opposed pressurization slot oil sealing surface formula fluid pressure revolving platform of dislocation type |
CN109571062A (en) * | 2018-10-26 | 2019-04-05 | 广州市昊志机电股份有限公司 | A kind of aperture-porous restriction combination air-float main shaft |
CN110067811A (en) * | 2019-05-30 | 2019-07-30 | 中国工程物理研究院机械制造工艺研究所 | A kind of air-float turntable |
CN111536150A (en) * | 2020-05-18 | 2020-08-14 | 哈尔滨工业大学 | Surface throttling hydrostatic bearing, hydrostatic rotary table and hydrostatic spindle |
CN111894982A (en) * | 2020-07-27 | 2020-11-06 | 珠海格力电器股份有限公司 | High-reliability static pressure gas bearing and compressor |
-
2002
- 2002-06-13 JP JP2002172611A patent/JP2003065334A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008049473A (en) * | 2006-07-26 | 2008-03-06 | Nippei Toyama Corp | Pneumatic hydrostatic bearing spindle device |
JP2008115875A (en) * | 2006-10-31 | 2008-05-22 | Ckd Corp | Non-contact supporting device |
JP4757773B2 (en) * | 2006-10-31 | 2011-08-24 | シーケーディ株式会社 | Non-contact support device |
JP2009068649A (en) * | 2007-09-14 | 2009-04-02 | Ntn Corp | Spindle device |
JP2012519086A (en) * | 2009-03-05 | 2012-08-23 | ビエロマティク ロイゼ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト | Lance unit and spindle with lance unit |
JP2010283218A (en) * | 2009-06-05 | 2010-12-16 | Juki Corp | Suction head |
JP2011042014A (en) * | 2009-08-24 | 2011-03-03 | Tsudakoma Corp | Rotation indexing table |
CN101992405A (en) * | 2009-08-24 | 2011-03-30 | 津田驹工业株式会社 | Rotary index table |
CN106334805A (en) * | 2016-10-19 | 2017-01-18 | 北京海普瑞森科技发展有限公司 | Ultrasonic spindle |
CN106334805B (en) * | 2016-10-19 | 2019-08-06 | 北京海普瑞森超精密技术有限公司 | Ultrasonic main shaft |
CN109333077A (en) * | 2018-10-10 | 2019-02-15 | 西安理工大学 | The opposed pressurization slot oil sealing surface formula fluid pressure revolving platform of dislocation type |
CN109571062A (en) * | 2018-10-26 | 2019-04-05 | 广州市昊志机电股份有限公司 | A kind of aperture-porous restriction combination air-float main shaft |
CN110067811A (en) * | 2019-05-30 | 2019-07-30 | 中国工程物理研究院机械制造工艺研究所 | A kind of air-float turntable |
CN110067811B (en) * | 2019-05-30 | 2024-03-26 | 中国工程物理研究院机械制造工艺研究所 | Air-floating rotary table |
CN111536150A (en) * | 2020-05-18 | 2020-08-14 | 哈尔滨工业大学 | Surface throttling hydrostatic bearing, hydrostatic rotary table and hydrostatic spindle |
CN111536150B (en) * | 2020-05-18 | 2021-12-24 | 哈尔滨工业大学 | Surface throttling hydrostatic bearing, hydrostatic rotary table and hydrostatic spindle |
CN111894982A (en) * | 2020-07-27 | 2020-11-06 | 珠海格力电器股份有限公司 | High-reliability static pressure gas bearing and compressor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003065334A (en) | Hydraulic gas bearing | |
JP4727917B2 (en) | Index table | |
JPH07127641A (en) | Static pressure gas bearing | |
US5058927A (en) | Fluid coupling device | |
US3642389A (en) | Air motor rotor assembly | |
JP2007247762A (en) | Static pressure gas bearing spindle | |
US20050040608A1 (en) | Chuck assembly with a cooling mechanism | |
JPH08219159A (en) | Static pressure gas bearing | |
EP1108497A2 (en) | Spindle unit | |
JPH09273636A (en) | Mechanical seal | |
CN210919900U (en) | Power takeoff with braking function | |
JPH06173952A (en) | Static pressure fluid bearing | |
JPH03156176A (en) | Swash plate type liquid-operated rotating machine | |
JPH017917Y2 (en) | ||
JP3082022B2 (en) | Air chuck for machine tools | |
JP2800856B2 (en) | Air motor | |
JPS5833934B2 (en) | Rolling bearing device | |
JP2005188568A (en) | Spindle rotation supporting device | |
JP6139938B2 (en) | Fixed scroll body and scroll fluid machine using the same | |
JP4293807B2 (en) | Spindle device | |
JPS61279401A (en) | Main spindle device | |
JP2005249079A (en) | Sealing unit | |
JP2007321646A (en) | Scroll fluid machine | |
JP2000337374A (en) | Bearing device | |
JP2000061705A (en) | Main spindle device for machine tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041207 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050705 |