JP2003064418A - METHOD FOR PRODUCING X70 CLASS STEEL SHEET WITH SHEET THICKNESS OF <=15 mm HAVING HIGH IMPACT ABSORBED ENERGY AS NONWATER COLD-ROLLED - Google Patents
METHOD FOR PRODUCING X70 CLASS STEEL SHEET WITH SHEET THICKNESS OF <=15 mm HAVING HIGH IMPACT ABSORBED ENERGY AS NONWATER COLD-ROLLEDInfo
- Publication number
- JP2003064418A JP2003064418A JP2001255600A JP2001255600A JP2003064418A JP 2003064418 A JP2003064418 A JP 2003064418A JP 2001255600 A JP2001255600 A JP 2001255600A JP 2001255600 A JP2001255600 A JP 2001255600A JP 2003064418 A JP2003064418 A JP 2003064418A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- steel sheet
- steel
- less
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、延性破壊時に高い
吸収エネルギーを有する板厚15mm以下のX70級鋼
板を高い生産性のもとで製造するための技術である。鉄
鋼業では厚板製造工程に適用される。本発明によって製
造される鋼板は主に原油や天然ガス等の輸送用ラインパ
イプに使用される。このほかにも、延性破壊特性が重視
される各種の鋼構造物に適用することが可能である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a technique for producing an X70 grade steel sheet having a sheet thickness of 15 mm or less and having a high absorbed energy at the time of ductile fracture with high productivity. In the steel industry, it is applied to the plate manufacturing process. The steel sheet produced according to the present invention is mainly used for a line pipe for transportation of crude oil, natural gas and the like. In addition, it can be applied to various steel structures in which ductile fracture characteristics are important.
【0002】[0002]
【従来の技術】ラインパイプを現地溶接する際に、溶接
能率の観点から溶接パス数が少なくてすむ薄手化の要求
がある。一方で、輸送効率の観点からラインパイプの操
業圧力を高めるために高強度化の要求がある。加えて近
年では、ラインパイプの安全性の観点から不安定延性破
壊に対する抵抗力を高める要求がある。これらが高い次
元で要求されるラインパイプ用鋼板として、例えば下記
の仕様を満たす鋼板の提供が求められている。
板厚≦15mm
X70級強度(API規格)
−20℃での2mmVノッチフルサイズシャルピー衝撃
試験の吸収エネルギー(vE-20)≧250J2. Description of the Related Art In the field welding of line pipes, there is a demand for thinning from the viewpoint of welding efficiency so that the number of welding passes is small. On the other hand, from the viewpoint of transportation efficiency, there is a demand for higher strength in order to increase the operating pressure of the line pipe. In addition, in recent years, from the viewpoint of safety of line pipes, there is a demand for increasing resistance to unstable ductile fracture. As steel plates for line pipes, which are required to have high dimensions, it is required to provide steel plates that satisfy the following specifications, for example. Plate thickness ≤15 mm X70 grade strength (API standard) Absorbed energy in 2 mm V-notch full size Charpy impact test at -20 ° C (vE -20 ) ≥250J
【0003】本発明は上記三つの仕様を満たす鋼板を高
い生産性のもとで厚板製造する技術である。The present invention is a technique for manufacturing a steel plate satisfying the above-mentioned three specifications with high productivity.
【0004】厚板製造工程において、鋼板の強度と靭性
を高めるために圧延後に加速冷却を適用することは広く
行われている。このような加速冷却技術を駆使すれば、
上記の要求特性を兼ね備える鋼板の製造は不可能ではな
い。しかしながら、板厚が15mm以下のような非常に
薄い鋼板に加速冷却を適用すると、冷却が不均一になっ
て鋼板形状が劣化する問題がある。その結果、鋼板形状
を矯正するための余分な作業工程が発生し、生産現場で
の生産性が著しく阻害されることが課題であった。この
ような背景のもと、上記の要求特性を兼ね備える鋼板を
加速冷却を使わずに非水冷圧延ままで高生産に製造する
新たな大量生産技術が求められている(以後、圧延終了
後に水冷による冷却を行わない製造方法を非水冷圧延或
いは非水冷型圧延と称する)。In the thick plate manufacturing process, it is widely practiced to apply accelerated cooling after rolling in order to enhance the strength and toughness of the steel plate. If you make full use of such accelerated cooling technology,
It is not impossible to manufacture steel sheets that combine the above-mentioned required characteristics. However, when accelerated cooling is applied to a very thin steel plate having a plate thickness of 15 mm or less, there is a problem that the cooling becomes uneven and the steel plate shape deteriorates. As a result, an additional work process for correcting the shape of the steel sheet occurs, and the productivity at the production site is significantly impaired. Against this background, a new mass production technology is required to manufacture a steel sheet having the above-mentioned required characteristics to a high production level without using the accelerated cooling as it is in the non-water-cooled rolling. The manufacturing method without cooling is referred to as non-water cooling rolling or non-water cooling type rolling).
【0005】[0005]
【発明が解決しようとする課題】本発明は、板厚が15
mm以下で、X70級の強度を有し、250J以上のv
E-20を有する鋼板を非水冷圧延ままで製造する方法を
提供するものである。According to the present invention, the plate thickness is 15
mm or less, X70 grade strength, 250 J or more v
The present invention provides a method for producing a steel sheet having E- 20 as it is in non-water-cooled rolling.
【0006】[0006]
【課題を解決するための手段】本発明者は、鋼成分、圧
延条件の両面から鋼板の金属組織を制御することによ
り、−20℃での延性破面率を100%にでき、かつ、
延性破面率100%のもとで破壊抵抗を高めることがで
きること、そして、その結果高い衝撃吸収エネルギーを
有する板厚15mm以下のX70級鋼板が製造できるこ
とを見出し、本発明を完成した。Means for Solving the Problems The present inventor can control the ductile fracture rate at −20 ° C. to 100% by controlling the metallographic structure of the steel sheet from both aspects of steel composition and rolling conditions, and
The inventors have found that the fracture resistance can be increased under a ductile fracture surface ratio of 100%, and as a result, an X70 grade steel sheet having a thickness of 15 mm or less and having high impact absorption energy can be produced, and the present invention has been completed.
【0007】本発明の要旨は以下の通りである。The gist of the present invention is as follows.
【0008】(1) 質量%でC :0.03〜0.0
6%、Mn:1.4〜2.0%、Mo:0.05〜0.
5%、Nb:0.01〜0.1%、P :≦0.01
%、S :≦0.003%、O :≦0.005%を含
有し、さらにSi:0.05〜0.5%、Al:0.0
01〜0.05%、Ti:0.005〜0.05%の1
種または2種以上を含有し、残部が鉄および不可避的不
純物である化学成分の鋼片を、1000℃以上に加熱し
て熱間圧延を行うにあたって、圧延前の鋼片厚みを圧延
後の鋼板厚みの10倍以上とし、Ar3〜Ar3+100
℃の温度範囲の中で累積圧下量が20%以上60%未満
となるように圧延を終了し、その後空冷することを特徴
とする、高い衝撃吸収エネルギーを有する板厚15mm
以下のX70級鋼板の非水冷型製造方法。(1) C in mass%: 0.03 to 0.0
6%, Mn: 1.4-2.0%, Mo: 0.05-0.
5%, Nb: 0.01 to 0.1%, P: ≤ 0.01
%, S: ≤ 0.003%, O: ≤ 0.005%, Si: 0.05-0.5%, Al: 0.0
01-0.05%, Ti: 0.005-0.05% 1
Steel plate after the rolling, when a steel slab containing two or more kinds, and the balance being iron and unavoidable impurities, is hot-rolled by heating it to 1000 ° C. or higher. 10 times or more of the thickness, Ar 3 to Ar 3 +100
A plate thickness of 15 mm having high impact absorption energy, which is characterized in that rolling is finished so that the cumulative reduction amount becomes 20% or more and less than 60% in a temperature range of ℃, and then air cooling is performed.
The following non-water-cooled manufacturing method of X70 grade steel sheet.
【0009】(2) 質量%でCu:≦1%、Ni:≦
1%、Cr:≦1%、V:≦0.1%、B:≦0.00
5%の1種または2種以上を含有することを特徴とす
る、上記(1)に記載の高い衝撃吸収エネルギーを有す
る板厚15mm以下のX70級鋼板の非水冷型製造方
法。(2) Cu: ≤1%, Ni: ≤% by mass%
1%, Cr: ≤ 1%, V: ≤ 0.1%, B: ≤ 0.00
5% of 1 type (s) or 2 or more types are contained, The non-water-cooled manufacturing method of the X70 grade steel plate with a plate thickness of 15 mm or less which has high impact absorption energy as described in said (1).
【0010】(3) 質量%でCa:≦0.005%、
Mg:≦0.005%、REM:≦0.01%、Zr:
≦0.01%の1種または2種以上を含有することを特
徴とする、上記(1)または(2)に記載の高い衝撃吸
収エネルギーを有する板厚15mm以下のX70級鋼板
の非水冷型製造方法。(3) Ca in mass%: ≤0.005%,
Mg: ≤ 0.005%, REM: ≤ 0.01%, Zr:
Non-water cooling type X70 grade steel sheet having a thickness of 15 mm or less and having a high impact absorption energy according to the above (1) or (2), characterized by containing ≤0.01% of one type or two or more types. Production method.
【0011】[0011]
【発明の実施の形態】本発明における最大の技術的課題
は250J以上のvE-20を大量生産のもとで安定に獲
得することである。このための技術的思想を(1)と
(2)の二つに大別して説明する。BEST MODE FOR CARRYING OUT THE INVENTION The greatest technical problem in the present invention is to stably obtain vE- 20 of 250 J or more under mass production. The technical idea for this purpose will be roughly classified into (1) and (2).
【0012】(1) まず、シャルピー試験温度である
−20℃での破壊形態を完全な延性破壊にすることが高
いvE-20を得るための最低条件となる。つまり、−2
0℃での延性破面率を100%にしなければならない。
このためには、本発明が対象とする鋼材においては、破
面遷移温度を−60℃以下にする必要がある。これを実
現するために、本発明では下記の三つの条件によって鋼
板の金属組織を微細化する。
Nbを0.01%以上添加した鋼片を1000℃以上
に加熱した後に熱間圧延する。
熱間圧延におけるAr3〜Ar3+100℃での累積圧
下量を20%以上とする。
熱間圧延前の鋼片厚みは熱間圧延後の鋼板厚みの10
倍以上とする。(1) First, it is the minimum condition for obtaining high vE- 20 that the fracture mode at the Charpy test temperature of -20 ° C is made to be a complete ductile fracture. That is, -2
The ductile fracture rate at 0 ° C must be 100%.
For this purpose, in the steel material targeted by the present invention, the fracture surface transition temperature needs to be -60 ° C or lower. In order to realize this, in the present invention, the metal structure of the steel sheet is refined under the following three conditions. A steel slab to which 0.01% or more of Nb is added is heated to 1000 ° C. or higher and then hot rolled. The cumulative reduction amount at Ar 3 to Ar 3 + 100 ° C. in hot rolling is set to 20% or more. The thickness of the billet before hot rolling is 10 times the thickness of the steel sheet after hot rolling.
More than double.
【0013】これら三つの条件を同時に満たすことで圧
延時のオーステナイト(γ)組織が微細化され、その後
の放冷過程で生成する変態組織が微細化し、−60℃以
下の破面遷移温度が達成され、−20℃での延性破面率
が安定に100%となる。これら三つの条件が揃わない
と、鋼板の破面遷移温度が−60℃よりも高くなってし
まい、−20℃で100%の延性破面率を安定して確保
することが困難となる。について、Nbが0.01%
未満であったり、鋼片加熱温度が1000℃未満である
と、γ中に固溶するNbが不足するためにγ再結晶温度
域とγ未再結晶温度域での圧延を通じてγ組織が十分に
微細化しない。について、Ar3〜Ar3+100℃で
の累積圧下量が20%未満であると、γ未再結晶温度域
でのγの加工度が不足するためにγが十分に微細化しな
い。について、圧延前の鋼片厚みが圧延後の鋼板厚み
の10倍未満であると、Ar3+100℃以上の高温で
の加工量が不足してγが十分に微細化しない。By satisfying these three conditions at the same time, the austenite (γ) structure during rolling is refined, the transformation structure generated in the subsequent cooling process is refined, and the fracture surface transition temperature of -60 ° C or less is achieved. The ductile fracture surface ratio at −20 ° C. is stably 100%. If these three conditions are not met, the fracture surface transition temperature of the steel sheet becomes higher than −60 ° C., and it becomes difficult to stably secure a ductile fracture surface ratio of 100% at −20 ° C. About 0.01% Nb
When the steel billet heating temperature is less than 1000 ° C. or the billet heating temperature is less than 1000 ° C., the amount of Nb dissolved in γ is insufficient. Do not miniaturize. With respect to the above, if the cumulative reduction amount in Ar 3 to Ar 3 + 100 ° C. is less than 20%, the workability of γ in the γ non-recrystallization temperature region is insufficient, and γ is not sufficiently refined. With respect to the above, if the thickness of the billet before rolling is less than 10 times the thickness of the steel sheet after rolling, the working amount at a high temperature of Ar 3 + 100 ° C. or higher will be insufficient and γ will not be sufficiently refined.
【0014】(2) 次ぎに、延性破面率が100%の
もとで破壊抵抗を高めなければならない。このために本
発明では、セパレーションの抑制に着眼して鋼成分と圧
延条件の両面から金属組織を制御することを考案した。
セパレーションとは破面に垂直で圧延面に平行なわれで
ある。セパレーションが発生すると吸収エネルギーが低
下することが広く知られている。本発明が対象とする1
5mm以下の薄手鋼板を非水冷圧延ままで製造する場
合、従来のように破面遷移温度を重視して強力な制御圧
延を施すと、多数のセパレーションが発生し、延性破面
率がたとえ100%であっても250Jを超えるような
高い吸収エネルギーを安定に獲得することは困難であっ
た。セパレーションの発生原因として、例えば「鉄と
鋼、68(1982)、435」に記載されているよう
に、圧延集合組織の関与が広く知られている。そして、
圧延集合組織の発達を抑制するためにAr3以上で圧延
を終了することがセパレーション抑制に効果的であるこ
とが知られている。しかしながら、セパレーションの発
生に及ぼす鋼成分の影響に関して知見はなかった。(2) Next, the fracture resistance must be increased under a ductile fracture surface ratio of 100%. For this reason, the present invention has been devised to control the metallographic structure from both aspects of steel composition and rolling conditions, focusing on the suppression of separation.
Separation is a crack that is perpendicular to the fracture surface and parallel to the rolling surface. It is widely known that absorption energy decreases when separation occurs. 1 to which the present invention is directed
When a thin steel sheet of 5 mm or less is produced by non-water-cooled rolling, if strong control rolling is performed with emphasis on the fracture surface transition temperature as in the conventional case, a large number of separations occur and the ductile fracture surface ratio is 100%. However, it was difficult to stably obtain high absorbed energy exceeding 250 J. As a cause of separation, the involvement of rolling texture is widely known, as described in, for example, “Iron and Steel, 68 (1982), 435”. And
It is known that ending the rolling with Ar 3 or more in order to suppress the development of the rolling texture is effective for suppressing the separation. However, there was no knowledge about the effect of steel components on the occurrence of separation.
【0015】そこで発明者らは、セパレーションに及ぼ
す鋼成分の影響を詳細に検討した結果、C量が非常に大
きな影響を及ぼす実験事実を発見した。図1はC量を変
化させた12mm厚みX70級鋼板におけるシャルピー
衝撃特性の遷移曲線を示す。これらの鋼板は全ての鋼の
Ar3よりも高い同一の温度で圧延が終了され空冷され
た。Therefore, as a result of detailed examination of the effect of the steel composition on the separation, the inventors have found out the experimental fact that the C content has a very large effect. FIG. 1 shows a transition curve of the Charpy impact characteristics of a 12 mm-thick X70 grade steel sheet in which the amount of C is changed. These steel sheets were rolled and air-cooled at the same temperature higher than Ar 3 of all steels.
【0016】これらの全ての鋼は−60℃以下の破面遷
移温度を有しており、−20℃での延性破面率は全ての
鋼板で100%である。しかしながら、vE-20の値は
C量に依存して大きく異なる。C量が0.055%以下
では300Jを超え、C量が0.074%以上では25
0Jを下回る。このようにC量に依存してvE-20が変
動する理由は、セパレーションの発生量がC量に依存す
るからである。All of these steels have a fracture surface transition temperature of -60 ° C or less, and the ductile fracture surface ratio at -20 ° C is 100% for all steel sheets. However, the value of vE -20 varies greatly depending on the amount of C. When the C content is 0.055% or less, it exceeds 300 J, and when the C content is 0.074% or more, it is 25
Below 0J. The reason why vE -20 fluctuates depending on the amount of C is that the amount of separation generated depends on the amount of C.
【0017】−20℃でのセパレーション発生量(I
s:破面上に現れたセパレーション長さの総長)をみる
と、0.055%以下の低いC量ではセパレーションは
全く発生していない。一方、0.074%以上の高いC
量になるとセパレーションは発生する。−40℃でみる
とC量の増加に伴ってセパレーション発生量が順次増加
する傾向が明らかである。つまり、延性破面率が100
%のもとでセパレーションを抑制して高い吸収エネルギ
ーを獲得するためには、C量を低減することが極めて有
効であることがわかった。Amount of separation generated at −20 ° C. (I
s: the total length of the separation length that appeared on the fracture surface), no separation occurred at a low C content of 0.055% or less. On the other hand, high C of 0.074% or more
Separation occurs when the volume is reached. At −40 ° C., it is clear that the amount of separation generation gradually increases as the amount of C increases. That is, the ductility fracture rate is 100.
It has been found that reducing the amount of C is extremely effective for suppressing the separation under%, and obtaining a high absorbed energy.
【0018】C量が少なくなると、圧延集合組織の発達
が抑制されてセパレーションが発生しにくくなるのであ
る。C量を低減することの第二の効果は、鋼板の中心偏
析部に沿って発生するセパレーションが抑制されること
である。このような形態のセパレーションは破面に対し
て垂直に深く生成するために、吸収エネルギーを大きく
損なう。C量が少なくなると連続鋳造鋼片における中心
偏析が軽減されるので、鋼板の中心偏析部に生成するバ
ンド組織の発達が抑制され、中心偏析起因の深いセパレ
ーションが発生しにくくなるのである。When the amount of C is small, the development of the rolling texture is suppressed and the separation hardly occurs. The second effect of reducing the C content is that the separation that occurs along the center segregated portion of the steel sheet is suppressed. Since the separation of this form is deeply formed perpendicularly to the fracture surface, the absorbed energy is greatly impaired. When the C content is small, the center segregation in the continuously cast steel piece is reduced, so that the development of the band structure generated in the center segregation portion of the steel sheet is suppressed, and the deep separation due to the center segregation is less likely to occur.
【0019】このように、C量を低減することで、板厚
方向の表層から内部にわたる全域にわたってセパレーシ
ョンの発生を強力に抑制できることを突き止めた。この
全く新しい知見に基づき、本発明ではC量を0.06%
以下に制御することが技術的な柱である。As described above, it was found that by reducing the amount of C, the occurrence of separation can be strongly suppressed over the entire region from the surface layer in the plate thickness direction to the inside. Based on this completely new finding, in the present invention, the C content is 0.06%.
Controlling the following is a technical pillar.
【0020】さらに、圧延条件とセパレーションの関係
を検討した結果、従来知られているようにAr3以上で
圧延を終了することで圧延集合組織の回避を試みても、
Ar3〜Ar3+100℃の累積圧下量が60%以上にな
ると、γの圧延集合組織が変態組織に遺伝してセパレー
ションが発生しやくなることがわかった。従って、本発
明ではこの温度域での累積圧下量を60%未満に抑えて
徹底的にセパレーションの発生を抑制する。Further, as a result of studying the relationship between the rolling conditions and the separation, even if it is attempted to avoid the rolling texture by ending the rolling with Ar 3 or more as conventionally known,
It has been found that when the cumulative reduction amount of Ar 3 to Ar 3 + 100 ° C. is 60% or more, the rolling texture of γ is inherited to the transformation structure and separation easily occurs. Therefore, in the present invention, the cumulative reduction amount in this temperature range is suppressed to less than 60% to thoroughly suppress the occurrence of separation.
【0021】次に各化学成分の限定理由について説明す
る。Next, the reasons for limiting each chemical component will be described.
【0022】Cは本発明で最も重要な元素である。強度
を確保するためには0.03%以上のCが必要である。
しかし、Cが多くなるとセパレーションが発生しやすく
なり吸収エネルギーが低下する。また、Cが多くなると
中心偏析が助長されて、これに起因する深いセパレーシ
ョンが発生して吸収エネルギーが低下する。さらに、C
が多くなるとセメンタイト粒子やパーライト相の体積率
が増加し、これらが延性破壊におけるボイド発生の芽と
なって破壊を促し、吸収エネルギーが低下する。以上か
ら、Cの上限を0.06%としなければならない。C is the most important element in the present invention. To secure the strength, 0.03% or more of C is necessary.
However, when the amount of C is large, separation is likely to occur and the absorbed energy is lowered. Further, when the amount of C is large, center segregation is promoted, and deep separation due to this is generated to reduce the absorbed energy. Furthermore, C
As the content of cementite particles and pearlite phase increases, the volume ratio of cementite particles and pearlite phase becomes buds of void generation in ductile fracture, which promotes destruction and reduces absorbed energy. From the above, the upper limit of C must be 0.06%.
【0023】Mnは強度、靭性の確保に不可欠な元素で
あり、特に強度の観点から本発明の低いCに代替して積
極的に添加する必要がある。X70級の強度を低いCの
もとで確保するために1.4%以上のMnを添加する必
要がある。Mnが2.0%を超えると中心偏析が助長さ
れて、これに起因する深いセパレーションが発生して吸
収エネルギーが低下する。従って、Mnの上限を2.0
%とする。Mn is an element indispensable for securing strength and toughness, and particularly from the viewpoint of strength, it has to be positively added in place of the low C of the present invention. It is necessary to add 1.4% or more of Mn in order to secure X70 grade strength under low C. When Mn exceeds 2.0%, center segregation is promoted, deep separation resulting from this is generated, and absorbed energy is reduced. Therefore, the upper limit of Mn is 2.0
%.
【0024】Moは本発明で非常に重要な元素である。
Moは圧延後の変態において焼入れ性を高め、針状フェ
ライトとベイナイトが混じった微細組織の生成を促す。
同時に、圧延方向に平行なバンド組織が形成されること
を食い止め、より等方的な組織の生成を促す。セメンタ
イト粒子の分散状態も微細化される。その結果、組織微
細化によって破面遷移温度が低下して強度が増加する。
さらに、セパレーションとボイドが発生しにくくなって
吸収エネルギーが向上する。これらの効果を享受するた
めには0.05%以上のMoが必要である。Moが0.
5%を超えると焼入性が過剰となってMA(Marte
nsite austenite constitue
nt)と呼ばれる硬化相が増えて吸収エネルギーが低下
する。従って、Moの上限を0.5%とする。Mo is a very important element in the present invention.
Mo enhances hardenability in the transformation after rolling and promotes the formation of a fine structure in which acicular ferrite and bainite are mixed.
At the same time, it prevents the formation of a band structure parallel to the rolling direction and promotes the generation of a more isotropic structure. The dispersed state of the cementite particles is also miniaturized. As a result, the microstructure refinement lowers the fracture surface transition temperature and increases the strength.
Furthermore, separation and voids are less likely to occur, and absorbed energy is improved. In order to enjoy these effects, 0.05% or more of Mo is necessary. Mo is 0.
If it exceeds 5%, the hardenability becomes excessive and MA (Marte
nite austenite constitue
nt) increases the hardening phase and reduces the absorbed energy. Therefore, the upper limit of Mo is set to 0.5%.
【0025】Nbは本発明で重要な元素である。Nbは
圧延によるγ組織の微細化を促して変態組織を微細化す
る。その結果、破面遷移温度の低下と強度の増加をもた
らす。析出硬化によっても強度を増加させる。これらの
ためには0.01%以上のNbが必要である。Nbが
0.1%を超えると中心偏析が助長されて、これに起因
する深いセパレーションが発生して吸収エネルギーが低
下する。従って、Nbの上限を0.1%とする。Nb is an important element in the present invention. Nb promotes the refinement of the γ structure by rolling and refines the transformation structure. As a result, the fracture surface transition temperature is lowered and the strength is increased. Strength is also increased by precipitation hardening. For these, 0.01% or more of Nb is necessary. When Nb exceeds 0.1%, central segregation is promoted, and deep separation occurs due to this, and absorbed energy decreases. Therefore, the upper limit of Nb is set to 0.1%.
【0026】Pは本発明では好ましくない元素である。
Pは中心偏析を助長したり粒界偏析することで靭性の著
しい劣化を引き起こす。高い吸収エネルギーを得るため
には、Pを0.01%以下にしなければならない。P is an element which is not preferred in the present invention.
P promotes central segregation and segregates at the grain boundaries to cause a significant deterioration in toughness. To obtain high absorbed energy, P must be 0.01% or less.
【0027】SとOは本発明で好ましくない元素であ
る。これらは非金属介在物を形成してボイドの発生を促
し、吸収エネルギーを低下させる。Sは0.003%以
下、Oは0.005%以下にしなければならない。S and O are elements which are not preferred in the present invention. These form non-metallic inclusions, promote the generation of voids, and lower the absorbed energy. S must be 0.003% or less and O must be 0.005% or less.
【0028】Si、Al、Tiは脱酸元素として作用す
る。Oを0.005%以下にするためには、これらの1
種以上を添加する必要がある。このために、Siは0.
05%以上、Alは0.001%以上、Tiは0.00
5%以上が必要である。これらの脱酸元素が多すぎると
酸化物が粗大化して破壊の起点として悪影響を及ぼすた
め、Siは0.5%、Alは0.05%、Tiは0.0
5%を上限とする。Si, Al and Ti act as deoxidizing elements. In order to make O 0.005% or less, these 1
It is necessary to add more than one seed. For this reason, Si is 0.
05% or more, Al 0.001% or more, Ti 0.00
5% or more is required. If the amount of these deoxidizing elements is too large, the oxide becomes coarse and adversely affects the starting point of fracture. Therefore, Si is 0.5%, Al is 0.05%, and Ti is 0.0%.
The upper limit is 5%.
【0029】Cu、Ni、Cr、V、Bは強度の増加に
有効である。これらの添加量が多すぎるとHAZ靭性が
損なわれるので、Cuは1%、Niは1%、Crは1
%、Vは0.1%、Bは0.005%を上限とする。Cu, Ni, Cr, V and B are effective in increasing the strength. If the addition amount of these is too large, the HAZ toughness is impaired, so Cu is 1%, Ni is 1%, and Cr is 1%.
%, V is 0.1%, and B is 0.005%.
【0030】Ca、Mg、REM、ZrはMnに優先し
て硫化物を形成し、圧延で延伸化しにくい球状介在物を
つくる。その結果、セパレーションとボイドが発生しに
くくなって吸収エネルギーが向上する。これらの脱硫元
素が多すぎると硫化物が粗大化して破壊の起点として悪
影響を及ぼすため、Caは0.005%、Mgは0.0
05%、REMは0.01%、Zrは0.01%を上限
とする。Ca, Mg, REM and Zr form sulfides in preference to Mn and form spherical inclusions that are difficult to stretch by rolling. As a result, separation and voids are less likely to occur, and absorbed energy is improved. If the amount of these desulfurizing elements is too large, the sulfide becomes coarse and adversely affects the starting point of fracture, so 0.005% for Ca and 0.0 for Mg.
The upper limit is 05%, REM is 0.01%, and Zr is 0.01%.
【0031】以上のような低C−高Mn−Mo−Nb成
分を特徴とする鋼片を熱間圧延する際の条件を説明す
る。まず、鋼片の加熱温度を1000℃以上にする。こ
の理由は、加熱温度が1000℃未満であると、γ中に
固溶するNbが不足するため、圧延によるγ組織の微細
化が不十分となるうえ、Nbの析出硬化も小さくなるか
らである。つまり、強度と破面遷移温度がともに劣化す
るからである。次ぎに、Ar3〜Ar3+100℃での累
積圧下量を20%以上60%未満とする。この理由は、
この温度域での累積圧下量が20%未満のときには、圧
延によるγ組織の微細化が不十分となって破面遷移温度
が劣化するからである。また、この温度域での累積圧下
量が60%以上のときには、圧延によるγの集合組織が
発達して変態組織に遺伝し、セパレーションが発生しや
すくなって吸収エネルギーが劣化するからである。次ぎ
に、Ar3以上で圧延を終了する。この理由は、Ar3未
満で圧延を終えると、加工フェライトの形成によって圧
延集合組織の発達が著しくなり、セパレーションが多量
に発生して吸収エネルギーが劇的に低下するからであ
る。次ぎに、圧延終了後は空冷する。この理由は、板厚
が15mm以下のような非常に薄い鋼板に加速冷却を適
用すると、冷却が不均一になって鋼板形状が劣化し、こ
れを矯正するための余分な作業工程が発生して生産性が
著しく阻害されるからである。以上の熱間圧延におい
て、圧延前の鋼片厚みは圧延後の鋼板厚みの10倍以上
である。この理由は、圧延前の鋼片厚みが圧延後の鋼板
厚みの10倍未満であると、Ar3+100℃以上での
加工量が不足してγが十分に微細化しないため、破面遷
移温度が劣化するためである。The conditions for hot rolling a steel slab characterized by the above low C-high Mn-Mo-Nb components will be described. First, the heating temperature of the billet is set to 1000 ° C. or higher. The reason for this is that if the heating temperature is less than 1000 ° C., the amount of Nb dissolved in γ will be insufficient, so that the γ structure will not be finely refined by rolling and the precipitation hardening of Nb will be small. . That is, both the strength and the fracture surface transition temperature deteriorate. Next, the cumulative reduction amount at Ar 3 to Ar 3 + 100 ° C. is set to 20% or more and less than 60%. The reason for this is
This is because if the cumulative reduction amount in this temperature range is less than 20%, the γ structure is not sufficiently refined by rolling and the fracture surface transition temperature deteriorates. Further, when the cumulative reduction amount in this temperature range is 60% or more, the texture of γ due to rolling develops and is inherited in the transformation structure, separation easily occurs and the absorbed energy deteriorates. Next, the rolling is finished with Ar 3 or more. The reason for this is that when the rolling is finished with less than Ar 3 , the rolling texture is significantly developed due to the formation of worked ferrite, a large amount of separation is generated, and the absorbed energy is drastically reduced. Next, after the rolling is finished, air cooling is performed. The reason for this is that if accelerated cooling is applied to a very thin steel plate having a thickness of 15 mm or less, the cooling becomes uneven and the shape of the steel plate deteriorates, and an extra work process for correcting this occurs. This is because the productivity is significantly impaired. In the above hot rolling, the thickness of the billet before rolling is 10 times or more the thickness of the steel sheet after rolling. The reason for this is that if the thickness of the slab before rolling is less than 10 times the thickness of the steel sheet after rolling, the working amount at Ar 3 + 100 ° C. or higher will be insufficient and γ will not be sufficiently refined. Is deteriorated.
【0032】[0032]
【実施例】表1に示す化学成分を有する連続鋳造鋼片を
素材として、表2に示す厚板製造条件で板厚15mm以
下の鋼板を非水冷圧延ままで製造した。表3は鋼板の機
械的性質を示す。[Example] Using continuously cast steel pieces having the chemical composition shown in Table 1 as a raw material, steel plates having a plate thickness of 15 mm or less were produced under the non-water-cooled rolling condition under the thick plate production conditions shown in Table 2. Table 3 shows the mechanical properties of the steel sheet.
【0033】[0033]
【表1】 [Table 1]
【0034】[0034]
【表2】 [Table 2]
【0035】[0035]
【表3】 [Table 3]
【0036】鋼1〜8は本発明鋼であり、化学成分と製
造条件を特定の狭い範囲に最適化することで、X70級
の強度と250J以上の高いvE-20を同時に満足して
いる。非水冷圧延ままであるからこのときの生産性は高
い。一方、鋼9〜24は従来鋼であり、化学成分あるい
は製造条件が最適な範囲から外れるために、上記の強度
あるいは吸収エネルギーを達成することができない。鋼
9はCが少ないためにYSが不足している。鋼10はC
が多いためにvE-20が不足している。鋼11はMnが
少ないためにYSが不足している。鋼12はMnが多い
ためにvE-20が不足している。鋼13はMoが少ない
ためにvE-20が不足している。鋼14はMoが多いた
めにvE-20が不足している。鋼15はNbが少ないた
めにYS、FATT、SA-20、vE-20が劣化してい
る。鋼16はNbが多いためにvE -20が不足してい
る。鋼17はPが多いためにFATTとSA-20が劣化
してvE -20も不足している。鋼18はSが多いために
vE-20が不足している。鋼19は脱酸元素であるSi
が少ないためにOが多くなってしまい、vE-20が不足
している。鋼20は圧延前の鋼片厚みが圧延後の鋼板厚
みに対して小さいためにFATTとSA-20が劣化して
vE-20が不足している。鋼21は加熱温度が低いため
にYS、FATT、SA-20、vE-20が劣化している。
鋼22はAr3〜Ar3+100℃での累積圧下量が少な
いためにYS、FATT、SA-20、vE-20が劣化して
いる。鋼23はAr3〜Ar3+100℃での累積圧下量
が多いためにvE -20が劣化している。鋼24は圧延終
了温度がAr3未満であるためにvE-20が不足してい
る。Steels 1 to 8 are steels according to the present invention, which have chemical compositions and
By optimizing the building conditions to a specific narrow range, X70 grade
Strength and high vE over 250J-20Be satisfied at the same time
There is. Since it is still non-water-cooled, the productivity at this time is high.
Yes. On the other hand, Steels 9 to 24 are conventional steels and have no chemical composition.
Since the manufacturing conditions deviate from the optimum range,
Or the absorbed energy cannot be achieved. steel
No. 9 has a shortage of C and therefore lacks YS. Steel 10 is C
VE because there are many-20Is running out. Steel 11 has Mn
YS is insufficient due to the small number. Steel 12 has much Mn
For vE-20Is running out. Steel 13 has little Mo
For vE-20Is running out. Steel 14 has a lot of Mo
VE-20Is running out. Steel 15 has less Nb
For YS, FATT, SA-20, VE-20Has deteriorated
It Steel 16 has a large amount of Nb, so vE -20Is running out
It Steel 17 has a lot of P, so FATT and SA-20Is deteriorated
Then vE -20Is also lacking. Steel 18 has a lot of S
vE-20Is running out. Steel 19 is a deoxidizing element Si
O is increased because there is less vE-20Lack
is doing. Steel 20 is the steel plate thickness after rolling is the thickness of the billet before rolling
FATT and SA because they are small compared to-20Has deteriorated
vE-20Is running out. Steel 21 has a low heating temperature
To YS, FATT, SA-20, VE-20Is deteriorated.
Steel 22 is Ar3~ Ar3Small cumulative reduction at + 100 ° C
Because of YS, FATT, SA-20, VE-20Has deteriorated
There is. Steel 23 is Ar3~ Ar3Cumulative reduction at + 100 ℃
VE because there are many -20Is deteriorated. Steel 24 is finished rolling
End temperature is Ar3VE to be less than-20Is running out
It
【0037】[0037]
【発明の効果】本発明により、板厚が15mm以下で、
X70級の強度を有し、250J以上のvE-20を有す
る鋼板を高い生産性のもとで製造することが可能になっ
た。その結果、鋼板製造者は製造コストを低く抑え、製
造納期を短縮することが可能となった。本発明によって
製造された鋼板は、原油や天然ガス等の輸送用ラインパ
イプをはじめ、延性破壊特性が重視される各種の鋼構造
物に適用され、鋼構造物の安全性を高めることに貢献す
る。According to the present invention, when the plate thickness is 15 mm or less,
It has become possible to manufacture a steel sheet having a strength of X70 grade and a vE- 20 of 250 J or more with high productivity. As a result, it has become possible for the steel plate manufacturer to keep the manufacturing cost low and shorten the manufacturing delivery time. The steel sheet manufactured according to the present invention is applied to various steel structures in which ductile fracture characteristics are important, including line pipes for transporting crude oil, natural gas, etc., and contributes to improving the safety of steel structures. .
【図1】C量を変化させた12mm厚みX70級鋼板に
おけるシャルピー衝撃特性の遷移曲線を示す図である。FIG. 1 is a diagram showing a transition curve of a Charpy impact characteristic in a 12 mm-thick X70 grade steel sheet in which the amount of C is changed.
フロントページの続き (72)発明者 寺田 好男 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 Fターム(参考) 4K032 AA01 AA02 AA04 AA08 AA11 AA14 AA16 AA19 AA22 AA23 AA26 AA27 AA29 AA31 AA35 AA36 AA39 AA40 BA01 CA02 CA03 CB02 CC03 CD05 Continued front page (72) Inventor Yoshio Terada 1 Kimitsu, Kimitsu-shi Mr. Nippon Steel Corporation Tsu Steel Works F-term (reference) 4K032 AA01 AA02 AA04 AA08 AA11 AA14 AA16 AA19 AA22 AA23 AA26 AA27 AA29 AA31 AA35 AA36 AA39 AA40 BA01 CA02 CA03 CB02 CC03 CD05
Claims (3)
的不純物である化学成分の鋼片を、1000℃以上に加
熱して熱間圧延を行うにあたって、圧延前の鋼片厚みを
圧延後の鋼板厚みの10倍以上とし、Ar3〜Ar3+1
00℃の温度範囲の中で累積圧下量が20%以上60%
未満となるように圧延を終了し、その後空冷することを
特徴とする、高い衝撃吸収エネルギーを有する板厚15
mm以下のX70級鋼板の非水冷型製造方法。1. C: 0.03 to 0.06% by mass%, Mn: 1.4 to 2.0%, Mo: 0.05 to 0.5%, Nb: 0.01 to 0.1. %, P: ≦ 0.01%, S: ≦ 0.003%, O: ≦ 0.005%, further Si: 0.05 to 0.5%, Al: 0.001 to 0.05 %, Ti: 0.005 to 0.05% of one or two or more kinds, and the balance is steel and a slab of a chemical composition in which inevitable impurities are heated to 1000 ° C. or higher and hot rolled. When performing, the thickness of the billet before rolling is 10 times or more the thickness of the steel sheet after rolling, and Ar 3 to Ar 3 +1
Cumulative reduction is 20% or more and 60% in the temperature range of 00 ℃
A plate thickness 15 having high impact absorption energy, which is characterized in that the rolling is finished so as to be less than 1 and then air-cooled.
A non-water-cooled manufacturing method of X70 grade steel sheet having a size of mm or less.
求項1に記載の高い衝撃吸収エネルギーを有する板厚1
5mm以下のX70級鋼板の非水冷型製造方法。2. Cu: ≤ 1%, Ni: ≤ 1%, Cr: ≤ 1%, V: ≤ 0.1%, B: ≤ 0.005% by mass% and one or more kinds are contained. The plate thickness 1 having high shock absorption energy according to claim 1, characterized in that
A non-water-cooled manufacturing method of an X70 grade steel sheet having a size of 5 mm or less.
求項1または請求項2に記載の高い衝撃吸収エネルギー
を有する板厚15mm以下のX70級鋼板の非水冷型製
造方法。3. Content of one or more of Ca: ≦ 0.005%, Mg: ≦ 0.005%, REM: ≦ 0.01%, Zr: ≦ 0.01% in mass%. The method for producing a non-water-cooled X70 grade steel sheet having a high impact absorption energy according to claim 1 or 2 and having a thickness of 15 mm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001255600A JP4660034B2 (en) | 2001-08-27 | 2001-08-27 | A non-water-cooled manufacturing method of an X70 grade steel plate having a high impact absorption energy and a thickness of 15 mm or less. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001255600A JP4660034B2 (en) | 2001-08-27 | 2001-08-27 | A non-water-cooled manufacturing method of an X70 grade steel plate having a high impact absorption energy and a thickness of 15 mm or less. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003064418A true JP2003064418A (en) | 2003-03-05 |
JP4660034B2 JP4660034B2 (en) | 2011-03-30 |
Family
ID=19083542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001255600A Expired - Fee Related JP4660034B2 (en) | 2001-08-27 | 2001-08-27 | A non-water-cooled manufacturing method of an X70 grade steel plate having a high impact absorption energy and a thickness of 15 mm or less. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4660034B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2465345C1 (en) * | 2011-08-31 | 2012-10-27 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Manufacturing method of plates from low-alloy pipe steel with strength class k60 |
RU2479641C1 (en) * | 2012-02-22 | 2013-04-20 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Manufacturing method of cold-rolled strip from low-carbon steel grades |
RU2479639C1 (en) * | 2012-02-17 | 2013-04-20 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Manufacturing method of plates from low-alloy pipe steel with strength class k60 |
WO2015147055A1 (en) * | 2014-03-28 | 2015-10-01 | 株式会社神戸製鋼所 | Steel sheet for high-strength line pipe having excellent low temperature toughness, and steel tube for high-strength line pipe |
CN105886912A (en) * | 2016-04-27 | 2016-08-24 | 武汉钢铁股份有限公司 | Low-compression-ratio and thick-specification X70-grade gas transmission pipeline steel and production method |
RU2799195C1 (en) * | 2023-03-16 | 2023-07-04 | Публичное акционерное общество "Северсталь" (ПАО "Северсталь") | Method for the production of hot-rolled pickled steel |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6123714A (en) * | 1984-07-12 | 1986-02-01 | Nippon Steel Corp | Manufacture of steel having superior toughness at low temperature in weld heat-affected zone |
JPH05255744A (en) * | 1992-03-11 | 1993-10-05 | Nippon Steel Corp | Production of high tensile strength steel plate excellent in toughness at low temperature |
JPH07268457A (en) * | 1994-03-28 | 1995-10-17 | Sumitomo Metal Ind Ltd | Production of thick steel plate for line pipe, having high strength and high toughness |
JP2001152248A (en) * | 1999-11-24 | 2001-06-05 | Nippon Steel Corp | Method for producing high tensile strength steel plate and steel pipe excellent in low temperature toughness |
-
2001
- 2001-08-27 JP JP2001255600A patent/JP4660034B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6123714A (en) * | 1984-07-12 | 1986-02-01 | Nippon Steel Corp | Manufacture of steel having superior toughness at low temperature in weld heat-affected zone |
JPH05255744A (en) * | 1992-03-11 | 1993-10-05 | Nippon Steel Corp | Production of high tensile strength steel plate excellent in toughness at low temperature |
JPH07268457A (en) * | 1994-03-28 | 1995-10-17 | Sumitomo Metal Ind Ltd | Production of thick steel plate for line pipe, having high strength and high toughness |
JP2001152248A (en) * | 1999-11-24 | 2001-06-05 | Nippon Steel Corp | Method for producing high tensile strength steel plate and steel pipe excellent in low temperature toughness |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2465345C1 (en) * | 2011-08-31 | 2012-10-27 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Manufacturing method of plates from low-alloy pipe steel with strength class k60 |
RU2479639C1 (en) * | 2012-02-17 | 2013-04-20 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Manufacturing method of plates from low-alloy pipe steel with strength class k60 |
RU2479641C1 (en) * | 2012-02-22 | 2013-04-20 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Manufacturing method of cold-rolled strip from low-carbon steel grades |
WO2015147055A1 (en) * | 2014-03-28 | 2015-10-01 | 株式会社神戸製鋼所 | Steel sheet for high-strength line pipe having excellent low temperature toughness, and steel tube for high-strength line pipe |
JP2015190042A (en) * | 2014-03-28 | 2015-11-02 | 株式会社神戸製鋼所 | Steel plate for high strength line pipe and steel pipe for high strength line pipe excellent in low temperature toughness |
CN106103778A (en) * | 2014-03-28 | 2016-11-09 | 株式会社神户制钢所 | The effective steel plate of high-strength line-pipe of excellent in low temperature toughness and the effective steel pipe of high-strength line-pipe |
CN105886912A (en) * | 2016-04-27 | 2016-08-24 | 武汉钢铁股份有限公司 | Low-compression-ratio and thick-specification X70-grade gas transmission pipeline steel and production method |
CN105886912B (en) * | 2016-04-27 | 2017-12-29 | 武汉钢铁有限公司 | A kind of low compression ratio think gauge X70 levels steel for gas delivering pipeline and production method |
RU2799195C1 (en) * | 2023-03-16 | 2023-07-04 | Публичное акционерное общество "Северсталь" (ПАО "Северсталь") | Method for the production of hot-rolled pickled steel |
Also Published As
Publication number | Publication date |
---|---|
JP4660034B2 (en) | 2011-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2832879B1 (en) | High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel plate for line pipe using same, and method for manufacturing same | |
JP6857729B2 (en) | Super austenitic stainless steel rolled composite steel sheet and its manufacturing method | |
JP2003293089A (en) | High strength steel sheet having excellent deformability, high strength steel pipe and production method thereof | |
JP2006307334A (en) | High-strength thick steel plate and process for production thereof, and high-strength steel pipe | |
JP2009127069A (en) | High toughness steel plate for line pipe, and its manufacturing method | |
JP2006307324A (en) | High-strength and high-toughness steel plate excellent in resistance to crack by cutting and its manufacturing method | |
JP2010156016A (en) | High-strength hot-rolled steel sheet superior in bendability and anisotropy of toughness, and method for manufacturing the same | |
JP2017197787A (en) | High tensile strength thick steel sheet excellent in ductility and manufacturing method therefor | |
JP2006336065A (en) | Low yield-ratio high tensile-strength steel, and method for producing low yield-ratio high tensile-strength steel | |
JP4719313B2 (en) | Steel plate and line pipe steel pipe with excellent sour resistance | |
JP2004099930A (en) | High-strength welded steel pipe having excellent toughness of weld zone, and method for manufacturing the same | |
JP2002047531A (en) | High tensile strength steel for welded structure having excellent fatigue characteristic and its production method | |
JP2005015823A (en) | High strength steel pipe used for pipeline and having excellent deformability, and its production method | |
JP2007284712A (en) | Method for producing thick high-strength steel plate excellent in toughness and thick high-strength steel plate excellent in toughness | |
JP2004315925A (en) | Low yield ratio high strength steel having excellent toughness and weldability | |
JP4336294B2 (en) | Manufacturing method of high strength steel pipe for pipelines with excellent deformation characteristics after aging | |
JP2003064418A (en) | METHOD FOR PRODUCING X70 CLASS STEEL SHEET WITH SHEET THICKNESS OF <=15 mm HAVING HIGH IMPACT ABSORBED ENERGY AS NONWATER COLD-ROLLED | |
JP5008879B2 (en) | High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate | |
JP2005097694A (en) | Method for manufacturing non-heat-treated high-strength thick steel plate superior in brittle crack arrestability | |
JP2007119861A (en) | Method for producing high tensile-strength steel for welding structure excellent in high temperature strength and low temperature toughness | |
WO2011043287A1 (en) | Steel for linepipe having good strength and malleability, and method for producing the same | |
JP2003268498A (en) | H-type steel excellent in fillet section toughness and its production method | |
JPH1060576A (en) | H steel excellent in toughness in fillet part and its production | |
JP4705287B2 (en) | Non-water-cooled manufacturing method for thin high-strength steel sheet with high absorbed energy | |
JP7200588B2 (en) | ERW steel pipe for oil well and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101221 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101228 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4660034 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |