[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003045228A - Conductive paste - Google Patents

Conductive paste

Info

Publication number
JP2003045228A
JP2003045228A JP2001233714A JP2001233714A JP2003045228A JP 2003045228 A JP2003045228 A JP 2003045228A JP 2001233714 A JP2001233714 A JP 2001233714A JP 2001233714 A JP2001233714 A JP 2001233714A JP 2003045228 A JP2003045228 A JP 2003045228A
Authority
JP
Japan
Prior art keywords
conductive paste
powder
conductive
weight
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001233714A
Other languages
Japanese (ja)
Inventor
Junichi Kikuchi
純一 菊池
秀次 ▲桑島▼
Hideji Kuwajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2001233714A priority Critical patent/JP2003045228A/en
Publication of JP2003045228A publication Critical patent/JP2003045228A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Powder Metallurgy (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive paste that is superior in conductivity, adhesion strength, and handling performance. SOLUTION: This is a conductive paste that contains a conductive powder, a binder, and an organic solvent, and the conductive powder is made of a mixed powder of spherical or nearly spherical shape and flat shape, or a single powder of either one kind of spherical or nearly spherical shape or flat shape, and the main content of the binder contains a thermosetting resin and its hardening agent. And the gravity is 3-7.5 and the glass transition point of the hardened conductive paste is 40-180 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品、回路配
線材料、電極材料、導電性接合材料、導電性接着剤とし
て使用される導電ペーストに関する。
TECHNICAL FIELD The present invention relates to a conductive paste used as an electronic component, a circuit wiring material, an electrode material, a conductive bonding material, and a conductive adhesive.

【0002】[0002]

【従来の技術】電子部品を回路基板などへ実装するに
は、鉛を含むはんだを用いた接合法が広く知られてい
る。しかし近年、環境問題への認識の高まりから、はん
だに代わって鉛を含まない鉛フリーはんだや導電ペース
トが注目されるようになってきた。導電ペーストは、貴
金属を含むため鉛フリーはんだより高価ではあるが、実
装温度の低温化、接合部の柔軟性等の多くの利点が兼ね
備えられている。
2. Description of the Related Art A bonding method using a solder containing lead is widely known for mounting electronic components on a circuit board or the like. However, in recent years, due to increasing awareness of environmental problems, lead-free solders and conductive pastes that do not contain lead have been attracting attention in place of solders. The conductive paste is more expensive than lead-free solder because it contains a noble metal, but it has many advantages such as a lower mounting temperature and flexibility of the joint.

【0003】従来の導電ペーストは、電子材料、199
4年10月号の42〜46頁に記載されているように、
金、銀、銅、カーボン等の導電性粉末を用い、それにバ
インダ、有機溶剤及び必要に応じて添加剤を加えてペー
スト状に混合して作製していた。特に高導電性が要求さ
れる分野では、金粉又は銀粉を用いることが一般的に知
られていた。
A conventional conductive paste is an electronic material, 199.
As described on pages 42-46 of the October 4 issue,
A conductive powder such as gold, silver, copper, or carbon is used, and a binder, an organic solvent and, if necessary, additives are added thereto and mixed in a paste form. It has been generally known to use gold powder or silver powder particularly in the field where high conductivity is required.

【0004】最近導電ペーストは、価格、実績及び導電
性の観点から導電性粉末として銀又は銅を用いるのが一
般的である。銀粉を含有する導電ペーストは、導電性が
良好なことから印刷配線板、電子部品等の電気回路や電
極の形成に使用されているが、これらは高温多湿の雰囲
気下で電解が印可されると、電気回路や電極にマイグレ
ーションと称する銀の電析が生じ電極間又は配線間が短
絡するという欠点が生じる。このマイグレーションを防
止するための方策はいくつか行われており、導体の表面
に防湿塗料を塗布するか又は導電ペーストに含窒素化合
物などの腐食抑制剤を添加するなどの方策が検討されて
いるが十分な効果の得られるものではなかった。
Recently, the conductive paste generally uses silver or copper as a conductive powder from the viewpoints of price, performance and conductivity. Conductive paste containing silver powder is used for forming electric circuits and electrodes of printed wiring boards, electronic parts, etc. because of its good conductivity, but when these are electrolyzed in a hot and humid atmosphere. However, there is a drawback in that electroplating of silver called migration occurs in an electric circuit or an electrode and a short circuit occurs between electrodes or between wirings. Several measures have been taken to prevent this migration, and measures such as applying a moisture-proof coating to the surface of the conductor or adding a corrosion inhibitor such as a nitrogen-containing compound to the conductive paste have been studied. It was not a sufficient effect.

【0005】また、導通抵抗の良好な導体を得るには銀
粉の配合量を増加しなければならず、銀粉が高価である
ことから導電ペーストも高価になるという欠点があっ
た。銀被覆銅粉を使用すればマイグレーションを改善で
き、これを用いれば安価な導電ペーストが得られること
になる。しかし銀被覆を均一に、かつ厚く被覆するとマ
イグレーションの改善効果はない。
Further, in order to obtain a conductor having good conduction resistance, the amount of silver powder blended must be increased, and there is a drawback that the conductive paste is expensive because silver powder is expensive. If silver-coated copper powder is used, migration can be improved, and if this is used, an inexpensive conductive paste can be obtained. However, if the silver coating is applied uniformly and thickly, there is no effect of improving migration.

【0006】一方、銅粉を使用した導電ペーストは、加
熱硬化後の銅の被酸化性が大きいため、空気中及びバイ
ンダ中に含まれる酸素と銅粉が反応し、その表面に酸化
膜を形成し、導電性を著しく低下させる。そのため、各
種添加剤を加えて、銅粉の酸化を防止し、導電性が安定
した銅ペーストが開示されているが、その導電性は銀ペ
ーストには及ばず、また保存安定性にも欠点があった。
現在使用している導電ペーストでは、導電性、接着強
度、作業性及びマイグレーション性に優れ、かつ価格の
観点から鉛はんだに対抗できる導電ペーストが見あたら
ないのが現状である。
On the other hand, in the conductive paste using copper powder, the oxygen contained in the air and the binder reacts with the copper powder because the copper is highly oxidizable after being heated and hardened, and an oxide film is formed on the surface thereof. However, the conductivity is significantly reduced. Therefore, various additives are added to prevent oxidation of the copper powder, and a stable copper paste is disclosed, but its conductivity does not reach that of the silver paste, and there is also a drawback in storage stability. there were.
In the current state of the art, there is no electrically conductive paste that is excellent in electrical conductivity, adhesive strength, workability and migration property, and that can counter lead solder in terms of cost.

【0007】[0007]

【発明が解決しようとする課題】請求項1及び2記載の
発明は、導電性、接着強度、作業性に優れる導電ペース
トを提供するものである。請求項3記載の発明は、導電
性の向上効果及びマイグレーション性に優れる導電ペー
ストを提供するものである。請求項4及び5記載の発明
は、導電性、接着強度及び作業性のバランスに優れる導
電ペーストを提供するものである。
The invention described in claims 1 and 2 provides a conductive paste having excellent conductivity, adhesive strength and workability. The invention according to claim 3 provides a conductive paste excellent in conductivity improving effect and migration property. The inventions according to claims 4 and 5 provide a conductive paste having an excellent balance of conductivity, adhesive strength and workability.

【0008】請求項6及び7記載の発明は、導電性の向
上効果及び導電ペーストの保存安定性に優れる導電ペー
ストを提供するものである。請求項8及び9記載の発明
は、接着強度、作業性、導電ペーストの保存安定性の向
上効に優れる導電ペ−ストを提供するものである。請求
項10記載の発明は、導電性、接着強度のバランスに優
れる導電ペ−ストを提供するものである。
The inventions according to claims 6 and 7 provide a conductive paste which is excellent in conductivity improving effect and storage stability of the conductive paste. The inventions according to claims 8 and 9 provide a conductive paste which is excellent in improving the adhesive strength, workability, and storage stability of the conductive paste. The tenth aspect of the present invention provides a conductive paste having an excellent balance of conductivity and adhesive strength.

【0009】請求項11記載の発明は、作業性の向上効
果に優れる導電ペ−ストを提供するものである。請求項
12記載の発明は、導電性、接着強度、作業性のバラン
スに優れる導電ペ−ストを提供するものである。請求項
13記載の発明は、作業性の向上効果に優れる導電ペ−
ストを提供するものである。請求項14記載の発明は、
導電性、作業性の向上効果及び接合部の柔軟性に優れる
導電ペーストを提供するものである。
The eleventh aspect of the present invention provides a conductive paste excellent in workability improving effect. The invention according to claim 12 provides a conductive paste having an excellent balance of conductivity, adhesive strength and workability. The invention according to claim 13 is a conductive sheet excellent in the workability improving effect.
It provides a strike. The invention according to claim 14 is
The purpose of the present invention is to provide a conductive paste which is excellent in conductivity and workability and is excellent in flexibility of a joint.

【0010】[0010]

【課題を解決するための手段】本発明は、導電粉、バイ
ンダ及び有機溶剤を含み、かつ導電粉が球状若しくは略
球状と扁平状との混合粉又は球状、略球状、扁平状のい
ずれか1種の単独粉であり、バインダの主成分が熱硬化
性樹脂及びその硬化剤を含み、比重が3〜7.5及び導
電ペースト硬化物のガラス転移点が40〜180℃であ
る導電ペーストに関する。また、本発明は、有機溶剤
が、1種又は2種以上の混合溶剤である導電ペーストに
関する。また、本発明は、導電粉が、銅粉又は銅合金粉
の一部を露出して、表面が大略銀で被覆された銀被覆銅
粉又銀被覆銅合金粉であり、かつ銀の被覆量が5〜25
重量%及び銅粉又は銅合金粉の露出面積が10〜60%
である導電ペーストに関する。
According to the present invention, conductive powder, a binder and an organic solvent are contained, and the conductive powder is spherical or a mixed powder of substantially spherical and flat or spherical, substantially spherical or flat. The present invention relates to a conductive paste that is a single powder of a seed, contains a thermosetting resin and a curing agent thereof as a main component of a binder, has a specific gravity of 3 to 7.5, and a cured glass of the conductive paste having a glass transition point of 40 to 180 ° C. The present invention also relates to a conductive paste in which the organic solvent is one kind or a mixed solvent of two or more kinds. Further, the present invention is a conductive powder, a part of the copper powder or copper alloy powder is exposed, the surface is a silver-coated copper powder or silver-coated copper alloy powder substantially coated with silver, and the coating amount of silver Is 5 to 25
Weight% and exposed area of copper powder or copper alloy powder is 10 to 60%
Which is a conductive paste.

【0011】また、本発明は、球状又は略球状の導電粉
が、長径の平均粒径が1〜20μm、アスペクト比が1
〜1.5、タップ密度が4.5〜6.2g/cm、相
対密度が50〜68%及び比表面積が0.1〜1.0m
/gである導電ペーストに関する。また、本発明は、
扁平状の導電粉が、長径の平均粒径が5〜30μm、ア
スペクト比が3〜20、タップ密度が2.5〜5.8g
/cm、相対密度が27〜63%及び比表面積が0.
4〜1.3m/gである導電ペーストに関する。
According to the present invention, the spherical or substantially spherical conductive powder has an average major axis diameter of 1 to 20 μm and an aspect ratio of 1.
˜1.5, tap density 4.5 to 6.2 g / cm 3 , relative density 50 to 68% and specific surface area 0.1 to 1.0 m.
2 / g for a conductive paste. Further, the present invention is
The flat conductive powder has an average major particle diameter of 5 to 30 μm, an aspect ratio of 3 to 20, and a tap density of 2.5 to 5.8 g.
/ Cm 3 , relative density of 27 to 63% and specific surface area of 0.
It relates to a conductive paste that is 4 to 1.3 m 2 / g.

【0012】また、本発明は、熱硬化性樹脂が、エポキ
シ樹脂及びフェノール樹脂である導電ペーストに関す
る。また、本発明は、エポキシ樹脂が、常温で液状のエ
ポキシ樹脂及びフェノール樹脂が、アルコキシ基含有レ
ゾール型フェノール樹脂である導電ペーストに関する。
また、本発明は、エポキシ樹脂が、エポキシ当量が16
0〜330g/eq及びフェノール樹脂が、アルコキシ
基の炭素数が1〜6、アルコキシ化率が5〜95%、重
量平均分子量が500〜200,000である導電ペー
ストに関する。また、本発明は、エポキシ樹脂の硬化剤
が、融点が40〜240℃及びフェノール樹脂の硬化剤
が、官能基がマスキングされており解離温度が60〜1
40℃である導電ペーストに関する。また、本発明は、
エポキシ樹脂とフェノール樹脂の配合割合が、重量比で
エポキシ樹脂:フェノール樹脂が10:90〜95:5
である導電ペーストに関する。
The present invention also relates to a conductive paste in which the thermosetting resin is an epoxy resin or a phenol resin. The present invention also relates to a conductive paste in which the epoxy resin is a liquid epoxy resin at normal temperature and the phenol resin is an alkoxy group-containing resol-type phenol resin.
Further, in the present invention, the epoxy resin has an epoxy equivalent of 16
0-330 g / eq and phenol resin relates to a conductive paste having an alkoxy group having 1 to 6 carbon atoms, an alkoxylation rate of 5 to 95%, and a weight average molecular weight of 500 to 200,000. Further, in the present invention, the epoxy resin curing agent has a melting point of 40 to 240 ° C. and the phenol resin curing agent has a functional group masked so that the dissociation temperature is 60 to 1
It relates to a conductive paste that is 40 ° C. Further, the present invention is
The epoxy resin and the phenol resin are mixed in a weight ratio of epoxy resin: phenol resin of 10:90 to 95: 5.
Which is a conductive paste.

【0013】また、本発明は、有機溶剤が、蒸発速度が
30以下(0を除く)であり、沸点が150〜260℃
である導電ペーストに関する。また、本発明は、導電粉
とバインダの配合割合が、導電ペーストの固形分に対し
て重量比で導電粉:バインダが83:17〜97:3及
び体積比で導電粉:バインダが28:72〜84:16
である導電ペーストに関する。また、本発明は、有機溶
剤が、導電ペーストに対して2〜10重量%含有してな
る導電ペーストに関する。さらに、本発明は、粘度が1
00〜7,000dpa・s及びチキソ値が1.8〜
7.3である導電ペーストに関する。
In the present invention, the organic solvent has an evaporation rate of 30 or less (excluding 0) and a boiling point of 150 to 260 ° C.
Which is a conductive paste. Further, in the present invention, the mixing ratio of the conductive powder and the binder is 83:17 to 97: 3 by weight and the conductive powder: binder is 28:72 by volume with respect to the solid content of the conductive paste. ~ 84: 16
Which is a conductive paste. The present invention also relates to a conductive paste containing an organic solvent in an amount of 2 to 10% by weight based on the conductive paste. Further, the present invention has a viscosity of 1
00-7,000 dpa · s and thixo value of 1.8-
7.3 conductive paste.

【0014】[0014]

【発明の実施の形態】本発明に用いられる導電粉の形状
は、球状若しくは略球状と扁平状との混合粉又は球状、
略球状、扁平状のいずれか1種の単独粉とされるが、こ
れらの導電粉は導電ペーストの粘度、塗布面積、膜厚、
接合部材等の接合の仕様や要求特性により、組み合わせ
や比率が異なってくる。例えば、平面方向の導電性は、
導電粉同士の接触面積、配向等の点から扁平状の導電粉
が好ましく、断面方向の導電性は断面方向に対する単一
粒子が占める体積が増えるので球状又は略球状の導電粉
を用いることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The shape of the conductive powder used in the present invention is spherical or a mixed powder of spherical and substantially spherical, or spherical,
It is a single powder of either a substantially spherical shape or a flat shape. These conductive powders include the conductive paste viscosity, coating area, film thickness,
Combinations and ratios vary depending on the specifications and required characteristics of joining members and the like. For example, the conductivity in the plane direction is
A flat conductive powder is preferable in terms of contact area between conductive powders, orientation, etc., and conductivity in the cross-sectional direction is preferably spherical or substantially spherical because the volume occupied by a single particle in the cross-sectional direction increases. .

【0015】また、接着強度についても、接合の仕様に
よって異なるが、一般的に基材に対して平滑に塗布した
導電ペーストでは、扁平状の導電粉の方が球状又は略球
状の導電粉より高い値を示す。例えば図1に示すよう
に、導電ペースト2を用いて銅箔1にリードフレーム3
を接合する場合、導電性、接着強度、作業性、信頼性等
の点から球状又は略球状の導電粉と扁平状の導電粉との
比率が、重量比で球状又は略球状の導電粉:扁平状の導
電粉が40:60〜98:2の範囲で良好な結果が得ら
れている。
The adhesive strength also varies depending on the bonding specifications, but in the conductive paste applied to the base material evenly, the flat conductive powder is generally higher than the spherical or substantially spherical conductive powder. Indicates a value. For example, as shown in FIG. 1, the lead frame 3 is formed on the copper foil 1 using the conductive paste 2.
In the case of joining, the ratio of spherical or substantially spherical conductive powder to flat conductive powder in terms of conductivity, adhesive strength, workability, reliability, etc. is spherical or substantially spherical conductive powder by weight ratio: flat. Good results have been obtained in the range of 40:60 to 98: 2 of the conductive powder.

【0016】なお、扁平状の導電粉を主として用いた場
合、導電ペーストの粘度は高くなり、反面、球状又は略
球状の導電粉を主として用いた場合、扁平状の導電粉を
主とて用いた場合より粘度が低くなり作業性がよくな
る。また球状又は略球状の導電粉を主として用いた場合
と扁平状の導電粉を主として用いた場合の導電ペースト
の粘度を同一にする場合は、球状又は略球状の導電粉の
比率を扁平状の導電粉の比率より高くすることができ
る。
When the flat conductive powder is mainly used, the viscosity of the conductive paste is high. On the other hand, when the spherical or substantially spherical conductive powder is mainly used, the flat conductive powder is mainly used. The viscosity is lower than in the case and workability is improved. When the viscosity of the conductive paste is the same when the spherical or substantially spherical conductive powder is mainly used and when the flat conductive powder is mainly used, the ratio of the spherical or substantially spherical conductive powder is flat. It can be higher than the powder ratio.

【0017】本発明になる導電ペーストの比重は、3〜
7.5、好ましくは3.5〜6.5の範囲とされ、比重
が3未満であると導電粉の比率が低いため高導電性が得
られない。一方、7.5を超えると導電粉の比率は高い
がバインダの比率が低くなるため、接着強度が低くな
る。導電ペーストの比重を上記の範囲にするためには、
導電粉とバインダの比率を導電ペーストの固形分に対し
て重量比で導電粉:バインダが83:17〜97:3及
び体積比で導電粉:バインダが28:72〜84:16
の範囲にすることが好ましく、重量比で導電粉:バイン
ダが85:15〜95:5及び体積比で導電粉:バイン
ダが35:65〜65:35の範囲にすることがさらに
好ましい。
The specific gravity of the conductive paste according to the present invention is 3 to.
It is set to 7.5, preferably 3.5 to 6.5, and if the specific gravity is less than 3, high conductivity cannot be obtained because the ratio of the conductive powder is low. On the other hand, when it exceeds 7.5, the ratio of the conductive powder is high, but the ratio of the binder is low, so that the adhesive strength is low. In order to make the specific gravity of the conductive paste within the above range,
The weight ratio of the conductive powder to the binder is 83:17 to 97: 3 for the conductive powder: binder and 28:72 to 84:16 for the conductive powder: binder in the volume ratio.
The conductive powder: binder is preferably in the range of 85:15 to 95: 5 in weight ratio and the conductive powder: binder is in the range of 35:65 to 65:35 in volume ratio.

【0018】導電ペースト硬化物のガラス転移点は、4
0〜180℃、好ましくは70〜180℃の範囲とさ
れ、導電ペースト硬化物のガラス転移点が40℃未満で
あると導電性、接着強度、接合部の柔軟性等他の特性と
のバランスの良い導電ペーストの作製が非常に困難であ
るか又は作製できない場合がある。180℃を超えると
エポキシ樹脂の比率を低下させなければならず、そのた
め接着強度が低下する。
The glass transition point of the conductive paste cured product is 4
It is set in the range of 0 to 180 ° C., preferably 70 to 180 ° C., and when the glass transition point of the conductive paste cured product is less than 40 ° C., the balance with other properties such as conductivity, adhesive strength, and flexibility of the joint is obtained. Making a good conductive paste can be very difficult or impossible. If the temperature exceeds 180 ° C, the ratio of the epoxy resin has to be reduced, so that the adhesive strength is reduced.

【0019】本発明に用いられる導電粉は、銅粉又は銅
合金粉の一部を露出して、表面が大略銀で被覆された銀
被覆銅粉又は銀被覆銅合金粉を用いることが好ましい。
もし銅粉又は銅合金粉の一部を露出させないで全面に銀
を被覆したものを用いるとマイグレーション性が悪くな
る傾向がある。銅粉又は銅合金粉の露出面積は、マイグ
レ−ション性、露出部の酸化、導電性等の点から10〜
60%の範囲が好ましく、10〜55%の範囲がさらに
好ましい。
As the conductive powder used in the present invention, it is preferable to use a silver-coated copper powder or a silver-coated copper alloy powder in which a part of the copper powder or the copper alloy powder is exposed and the surface is substantially coated with silver.
If a copper powder or a copper alloy powder whose whole surface is covered with silver without exposing a part thereof is used, the migration property tends to deteriorate. The exposed area of the copper powder or the copper alloy powder is 10 to 10 in terms of the migration property, the oxidation of the exposed portion, the conductivity, and the like.
The range of 60% is preferable, and the range of 10-55% is more preferable.

【0020】銅粉又は銅合金粉は、アトマイズ法で作製
された粉体を用いることが好ましく、その粒径は小さい
ほど好ましい。例えば平均粒径が1〜20μmの範囲の
粉体を用いることが好ましく、1〜10μmの範囲の粉
体を用いることがさらに好ましい。銅粉又は銅合金粉の
表面に銀を被覆するには、置換めっき、電気めっき、無
電解めっき等の方法があり、銅粉又は銅合金粉と銀の付
着力が高いこと及びランニングコストが安価であること
から、置換めっきで被覆することが好ましい。銅粉又は
銅合金粉の表面への銀の被覆量は、耐マイグレーション
性、コスト、導電性向上等の点から銅粉に対して5〜2
5重量%の範囲が好ましく、10〜23重量%の範囲が
さらに好ましい。
As the copper powder or the copper alloy powder, it is preferable to use a powder produced by an atomizing method, and the smaller the particle size, the more preferable. For example, it is preferable to use a powder having an average particle size in the range of 1 to 20 μm, and it is more preferable to use a powder in the range of 1 to 10 μm. To coat silver on the surface of copper powder or copper alloy powder, there are methods such as displacement plating, electroplating, electroless plating, etc., high adhesion of copper powder or copper alloy powder and silver, and low running cost. Therefore, it is preferable to cover with displacement plating. The coating amount of silver on the surface of the copper powder or the copper alloy powder is 5 to 2 with respect to the copper powder from the viewpoint of migration resistance, cost, improvement of conductivity, and the like.
The range of 5% by weight is preferable, and the range of 10 to 23% by weight is more preferable.

【0021】さらに、本発明に用いられる導電粉のうち
球状又は略球状の導電粉は、長径の平均粒径が1〜20
μm、アスペクト比が1〜1.5、タップ密度が4.5
〜6.2g/cm、相対密度が50〜68%及び比表
面積が0.1〜1.0m/gの範囲のものを用いるこ
とが好ましい。一方、扁平状の導電粉は、長径の平均粒
径が5〜30μm、アスペクトが比3〜20、タップ密
度が2.5〜5.8g/cm、相対密度が27〜63
%及び比表面積が0.4〜1.3m/gの範囲のもの
を用いることが好ましい。
Further, among the conductive powders used in the present invention, the spherical or substantially spherical conductive powders have an average major particle diameter of 1 to 20.
μm, aspect ratio 1 to 1.5, tap density 4.5
~6.2g / cm 3, a relative density is 50 to 68% and the specific surface area is preferably used in the range of 0.1~1.0m 2 / g. On the other hand, the flat conductive powder has an average major axis particle diameter of 5 to 30 μm, an aspect ratio of 3 to 20, a tap density of 2.5 to 5.8 g / cm 3 , and a relative density of 27 to 63.
% And a specific surface area of 0.4 to 1.3 m 2 / g are preferably used.

【0022】なお、上記でいう平均粒径は、マスターサ
イザー・レーザー散乱型粒度分布測定装置(マルバン社
製)を用いて測定し、比表面積はガス吸着式比表面積・
細孔径分布測定装置(ユアサアイオニクス社製)を用い
て測定して求めることができる。また、上記に示すタッ
プ密度は、メスシリンダーに適量の導電粉を投入し、1
000回タッピングを行い、投入した重量と1000回
タッピング後のメスシリンダーが示す体積から換算して
求めることができる。また、相対密度は次式から求める
ことができる。
The average particle size referred to above is measured by using a master sizer / laser scattering particle size distribution measuring device (manufactured by Malvan Co.), and the specific surface area is a gas adsorption specific surface area.
It can be determined by measurement using a pore size distribution measuring device (manufactured by Yuasa Ionics Inc.). In addition, the tap density shown above is 1
The tapping can be performed 000 times, and it can be calculated by converting the weight input and the volume indicated by the graduated cylinder after 1000 tappings. The relative density can be calculated from the following equation.

【0023】[0023]

【数1】 相対密度(%)=(タップ密度/真密度)×f×100 ただしfは実測値による補正係数である。[Equation 1] Relative density (%) = (tap density / true density) × f × 100 However, f is a correction coefficient based on an actual measurement value.

【0024】本発明におけるアスペクト比とは、導電粉
の粒子の長径と短径の比率(長径/短径)をいう。本発
明においては、粘度の低い硬化性樹脂中に導電粉の粒子
をよく混合し、静置して粒子を沈降させるとともにその
まま樹脂を硬化させ、得られた硬化物を垂直方向に切断
し、その切断面に現れる粒子の形状を電子顕微鏡で拡大
して観察し、少なくとも100の粒子について一つ一つ
の粒子の長径/短径を求め、それらの平均値をもってア
スペクト比とする。
The aspect ratio in the present invention means the ratio of the major axis to the minor axis of the particles of the conductive powder (major axis / minor axis). In the present invention, particles of conductive powder are mixed well in a curable resin having a low viscosity, the resin is cured as it is while the particles are allowed to settle by allowing it to stand, and the resulting cured product is cut in the vertical direction. The shape of the particles appearing on the cut surface is magnified and observed with an electron microscope, the major axis / minor axis of each particle is obtained for at least 100 particles, and the average value thereof is used as the aspect ratio.

【0025】ここで、短径とは、前記切断面に現れる粒
子について、その粒子の外側に接する二つの平行線の組
み合わせ粒子を挟むように選択し、それらの組み合わせ
のうち最短間隔になる二つの平行線の距離である。一
方、長径とは、前記短径を決する平行線に直角方向の二
つの平行線であって、粒子の外側に接する二つの平行線
の組み合わせのうち、最長間隔になる二つの平行線の距
離である。これらの四つの線で形成される長方形は、粒
子がちょうどその中に納まる大きさとなる。なお、本発
明において行った具体的方法については後述する
Here, the minor axis is selected so that a particle appearing on the cut surface sandwiches a combination particle of two parallel lines in contact with the outside of the particle, and two particles having the shortest interval among the combinations are selected. The distance between parallel lines. On the other hand, the major axis is the distance between the two parallel lines that are the longest distance among the two parallel lines that are in contact with the outside of the particle and are the two parallel lines that are perpendicular to the parallel lines that determine the minor axis. is there. The rectangle formed by these four lines is the size that the particles will fit within. The specific method used in the present invention will be described later.

【0026】本発明における、バインダの主成分は熱硬
化性樹脂及びその硬化剤であり、このうち熱硬化性樹脂
としては、エポキシ樹脂及びフェノール樹脂を用いるこ
とが好ましい。エポキシ樹脂は、常温で液状のものが好
ましい。常温で結晶化するものは液状物と混合すること
で結晶化を回避できる。本発明における常温で液状エポ
キシ樹脂とは、例えば常温で固形のものでも常温で液状
のエポキシ樹脂と混合することで常温で安定して液状と
なるものも含む。なお、本発明において常温とは温度が
約25℃を示すものを意味する。常温で液状のエポキシ
樹脂を使用した導電ペーストは、固形のエポキシ樹脂を
使用した場合と比較し、粘度を低くすることができ、そ
のため作業性がよくなるので好ましい。
The main component of the binder in the present invention is a thermosetting resin and its curing agent, and among these, it is preferable to use an epoxy resin and a phenol resin as the thermosetting resin. The epoxy resin is preferably liquid at room temperature. Those that crystallize at room temperature can be avoided by mixing with a liquid material. The liquid epoxy resin at room temperature in the present invention includes, for example, a solid resin at normal temperature and a resin which becomes stable liquid at normal temperature when mixed with an epoxy resin liquid at normal temperature. In addition, in this invention, normal temperature means what shows a temperature of about 25 degreeC. A conductive paste using a liquid epoxy resin at room temperature is preferable because it can have a lower viscosity than that of a solid epoxy resin and therefore improves workability.

【0027】本発明に用いられるエポキシ樹脂は公知の
ものが用いられ、分子量中にエポキシ基を2個以上含有
する化合物、例えばビスフェノールA、ビスフェノール
AD、ビスフェノールF、ノボラック、クレゾールノボ
ラック類とエピクロルヒドリンとの反応により得られる
ポリグリシジルエーテル、ジヒドロキシナフタレンジグ
リシジルエーテル、ブタンジオールジグリシジルエーテ
ル、ネオペンチルグリコールジグリシジルエーテル等の
脂肪族エポキシ樹脂やジグリシジルヒダントイン等の複
素環式エポキシ、ビニルシクロヘキセンジオキサイド、
ジシクロペンタンジエンジオキサイド、アリサイクリッ
クジエポキシアジペイトのような脂環式エポキシ樹脂が
挙げられる。
As the epoxy resin used in the present invention, known epoxy resins are used, and compounds having two or more epoxy groups in the molecular weight such as bisphenol A, bisphenol AD, bisphenol F, novolac, cresol novolaks and epichlorohydrin are used. Polyglycidyl ether obtained by the reaction, dihydroxynaphthalene diglycidyl ether, butanediol diglycidyl ether, heterocyclic epoxy such as aliphatic epoxy resin such as neopentyl glycol diglycidyl ether and diglycidyl hydantoin, vinylcyclohexenedioxide,
Examples thereof include alicyclic epoxy resins such as dicyclopentanediene dioxide and alicyclic diepoxy adipate.

【0028】また、エポキシ樹脂は、エポキシ当量が1
60〜330g/eqの範囲であることが好ましく、1
60〜250g/eqの範囲であることがさらに好まし
い。160g/eq未満のエポキシ樹脂は作製が困難で
あり、330g/eqを超えるエポキシ樹脂を使用した
導電ペーストは、粘度が高くなる傾向がある。これらの
エポキシ樹脂は、単独又は2種以上を混合して用いるこ
とができる。
The epoxy resin has an epoxy equivalent of 1
It is preferably in the range of 60 to 330 g / eq, and 1
More preferably, it is in the range of 60 to 250 g / eq. Epoxy resin with less than 160 g / eq is difficult to produce, and conductive paste using epoxy resin with more than 330 g / eq tends to have high viscosity. These epoxy resins may be used alone or in combination of two or more.

【0029】本発明においては、必要に応じて可撓性付
与剤を併用することができる。可撓性付与剤は公知のも
のが用いられ、分子量中にエポキシ基を1個だけ有する
化合物、例えばn−ブチルグリシジルエーテル、バーサ
ティック酸グリシジルエステル、スチレンオキサイド、
エチルヘキシルグリシジルエーテル、フェニルグリシジ
ルエーテル、クレジルグリシジルエーテル、ブチルフェ
ニルグリシジルエーテル等のような通常のエポキシ樹脂
が挙げられる。可撓性付与剤の併用割合は、バインダに
対して重量比で60%以下(0も含む)の範囲が好まし
く、30%以下(0も含む)の範囲がさらに好ましい。
これらの可撓性付与剤は、単独又は2種以上を混合して
用いることができる。
In the present invention, a flexibility-imparting agent may be used in combination if necessary. Known flexibility-imparting agents are used, and compounds having only one epoxy group in the molecular weight, such as n-butyl glycidyl ether, versatic acid glycidyl ester, styrene oxide,
Usual epoxy resins such as ethylhexyl glycidyl ether, phenyl glycidyl ether, cresyl glycidyl ether, butyl phenyl glycidyl ether and the like can be mentioned. The proportion of the flexibility-imparting agent used in combination is preferably 60% or less (including 0) by weight, and more preferably 30% or less (including 0).
These flexibility-imparting agents can be used alone or in admixture of two or more.

【0030】本発明に用いられるフェノール樹脂は、ア
ルコキシ基含有レゾール型フェノール樹脂が好ましい。
フェノール樹脂を使用した導電ペーストはエポキシ樹脂
を使用した導電ペーストより高い導電性が得られる。一
方、エポキシ樹脂を使用した導電ペーストはフェノール
樹脂を使用した導電ペーストより高い接着強度が得られ
る。
The phenol resin used in the present invention is preferably an alkoxy group-containing resol type phenol resin.
The conductive paste using the phenol resin has higher conductivity than the conductive paste using the epoxy resin. On the other hand, the conductive paste using the epoxy resin has higher adhesive strength than the conductive paste using the phenol resin.

【0031】高導電性が要求される導電ペーストにフェ
ノール樹脂は不可欠であるが、導電ペーストの粘度が高
くなり作業性が悪くなるが、アルコキシ基含有レゾール
型フェノール樹脂を使用することによりこの問題を解決
することができる。アルコキシ基含有レゾール型フェノ
ール樹脂としては、これを使用した導電ペーストの導電
性及び作業性の点から、特に炭素数1〜6のアルコキシ
基で置換されたレゾール型フェノール樹脂が好ましい。
レゾール型フェノール樹脂のアルコキシ化率、即ち全メ
チロール基のアルコキシ化されている割合は、導電ペー
ストの導電性及び作業性の点から、5〜95%の範囲が
好ましく、10〜85%の範囲がさらに好ましい。
Phenolic resin is indispensable for the conductive paste which is required to have high conductivity, but the viscosity of the conductive paste becomes high and the workability deteriorates. However, this problem is solved by using the alkoxy group-containing resol type phenol resin. Can be resolved. As the alkoxy group-containing resol type phenol resin, a resol type phenol resin substituted with an alkoxy group having 1 to 6 carbon atoms is particularly preferable from the viewpoint of the conductivity and workability of the conductive paste using the same.
From the viewpoint of conductivity and workability of the conductive paste, the alkoxylation rate of the resol-type phenol resin, that is, the proportion of all the methylol groups that are alkoxylated is preferably in the range of 5 to 95%, and in the range of 10 to 85%. More preferable.

【0032】また、レゾール型フェノール樹脂中のアル
コキシ基は、ベンゼン環1個当たりのアルコキシ基が
0.1〜2個の範囲が好ましく、0.3〜1.5個の範
囲がより好ましく、0.5〜1.2個の範囲がさらに好
ましい。なお、アルコキシ化率及びアルコキシ基の数は
核磁気共鳴スペクトル分析に基づいて測定することがで
きる。本発明におけるアルコキシ基含有レゾール型フェ
ノール樹脂の重量平均分子量は導電ペーストの導電性、
作業性及びポットライフの点から500〜200,00
0の範囲が好ましく、700〜120,000の範囲が
さらに好ましい。なお、重量平均分子量は、ゲルパーミ
エーションクロマトグラフィー法により測定し、標準ポ
リスチレン換算することにより求めることができる。
The alkoxy group in the resol-type phenol resin preferably has a range of 0.1 to 2 alkoxy groups per benzene ring, more preferably 0.3 to 1.5, and more preferably 0. The range of 0.5 to 1.2 is more preferable. The alkoxylation rate and the number of alkoxy groups can be measured based on nuclear magnetic resonance spectrum analysis. The weight average molecular weight of the alkoxy group-containing resol type phenol resin in the present invention is the conductivity of the conductive paste,
500-200,00 from the viewpoint of workability and pot life
The range of 0 is preferable, and the range of 700 to 120,000 is more preferable. The weight average molecular weight can be determined by measuring by gel permeation chromatography and converting to standard polystyrene.

【0033】エポキシ樹脂の硬化剤としては、例えばメ
ンセンジアミン、イソフオロンジアミン、メタフェニレ
ンジアミン、ジアミノジフェニルメタン、ジアミノジフ
ェニルスルホン、メチレンジアニリン等のアミン類、無
水フタル酸、無水トリメリット酸、無水ピロメリット酸、
無水コハク酸、テトラヒドロ無水フタル酸等の酸無水
物、イミダゾール、ジシアンジアミド等の化合物系硬化
剤、ポリアミド樹脂、フェノール樹脂、尿素樹脂等の樹脂
系硬化剤が用いられるが、必要に応じて、潜在性アミン
硬化剤等の硬化剤と併用して用いてもよく、また3級ア
ミン、イミダゾール類、トリフェニルホスフィン、テト
ラフェニルホスフェニルボレート等といった一般にエポ
キシ樹脂とフェノ−ル系硬化剤との硬化促進剤として知
られている化合物を添加してもよい。
Examples of the curing agent for the epoxy resin include amines such as menthenediamine, isophoronediamine, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone and methylenedianiline, phthalic anhydride, trimellitic anhydride, and anhydrous pyromethylene. Meritic acid,
Acid anhydrides such as succinic anhydride and tetrahydrophthalic anhydride, compound-based curing agents such as imidazole and dicyandiamide, and resin-based curing agents such as polyamide resins, phenolic resins, urea resins, etc. are used. It may be used in combination with a curing agent such as an amine curing agent, and is generally a curing accelerator for an epoxy resin and a phenolic curing agent such as tertiary amine, imidazoles, triphenylphosphine, tetraphenylphosphenyl borate and the like. Compounds known as

【0034】エポキシ樹脂の硬化剤は、熱処理条件及び
ポットライフの点から、融点が40〜240℃の範囲が
好ましく、60〜220℃の範囲がさらに好ましい。そ
の代表的なものとしては、2−メチルイミダゾール、2
−ヘプタデシルイミダゾール、2−フェニル−4−メチ
ルイミダゾール等が挙げられる。
From the viewpoint of heat treatment conditions and pot life, the epoxy resin curing agent preferably has a melting point of 40 to 240 ° C, more preferably 60 to 220 ° C. Typical examples thereof include 2-methylimidazole and 2
-Heptadecyl imidazole, 2-phenyl-4-methyl imidazole and the like.

【0035】一方、フェノール樹脂の硬化剤としては、
熱処理条件及びポットライフの点から官能基がマスキン
グされており解離温度が60〜140℃の範囲が好まし
く、65〜135℃の範囲がさらに好ましい。その代表
的なものとしては、ジノニルナフタレンスルホン酸、ジ
ノニルナフタレンジスルホン酸、ドデシルベンゼンスル
ホン酸のブロックタイプ等が挙げられる。
On the other hand, as a curing agent for phenol resin,
From the viewpoint of heat treatment conditions and pot life, the functional group is masked, and the dissociation temperature is preferably in the range of 60 to 140 ° C, more preferably in the range of 65 to 135 ° C. Typical examples thereof include block types of dinonylnaphthalene sulfonic acid, dinonyl naphthalene disulfonic acid, dodecylbenzene sulfonic acid, and the like.

【0036】これらの硬化剤の含有量は、熱処理条件及
びポットライフの点で熱硬化性樹脂100重量部に対し
て0.05〜20重量部の範囲であることが好ましく、
0.1〜10重量部の範囲であることがさらに好まし
い。またこれらの硬化剤は必要に応じて2種以上組み合
わせて用いてもよい。
The content of these curing agents is preferably in the range of 0.05 to 20 parts by weight with respect to 100 parts by weight of the thermosetting resin in terms of heat treatment conditions and pot life.
It is more preferably in the range of 0.1 to 10 parts by weight. Moreover, you may use these hardening | curing agents in combination of 2 or more types as needed.

【0037】エポキシ樹脂とフェノ−ル樹脂の配合割合
は、接着強度、作業性、導電性及び抵抗値バラツキの点
で、重量比でエポキシ樹脂:フェノ−ル樹脂が10:9
0〜95:5の範囲であることが好ましく、重量比で1
5:85〜85:15の範囲であることがさらに好まし
い。
The mixing ratio of the epoxy resin and the phenol resin is 10: 9 by weight of the epoxy resin: phenol resin in terms of adhesive strength, workability, conductivity and resistance value variation.
The weight ratio is preferably in the range of 0 to 95: 5.
The range of 5:85 to 85:15 is more preferable.

【0038】溶剤を含有している導電ペーストは、溶剤
を含有していない導電ペーストより、印刷塗布したとき
と熱処理を行い硬化させた後の導電ペーストの体積減少
量が溶剤を含んでいるだけ大きい。また熱処理を行う過
程で溶剤を含有している導電ペーストの方が、導電ペー
ストの粘度が大きく低下し、導電ペーストに含まれてい
る導電粉が導電体層内で緻密になる。これらの要因のた
め、溶剤を含有している導電ペーストは溶剤を含有して
いない導電ペーストより導電性が良好になりバラツキも
少なくなると考えられる。
The conductive paste containing a solvent has a larger volume reduction amount than the conductive paste not containing a solvent, because the conductive paste has a reduced volume when printed and applied and after being cured by heat treatment. . Further, in the process of performing the heat treatment, the conductive paste containing the solvent has a much lower viscosity, and the conductive powder contained in the conductive paste becomes denser in the conductive layer. Due to these factors, it is considered that the conductive paste containing the solvent has better conductivity and less variation than the conductive paste containing no solvent.

【0039】また、溶剤は、熱処理の導電ペーストの粘
度低下が大きい溶剤ほど好ましく、逆に乾燥性が速く熱
処理時溶剤の乾燥が進み導電ペーストの粘度が大きく低
下しない溶剤は好ましくない。本発明に用いられる有機
溶剤は、含有する溶剤の蒸発速度が30以下(0を除
く)であることが好ましく、25以下(0を除く)であ
ることがさらに好ましい。蒸発速度が30を超える溶剤
を用いると、印刷塗布後の導電ペートに含まれる溶剤の
乾燥が速い。即ち印刷塗布〜熱処理工程中の溶剤のス乾
燥が速いため導電ペーストの粘度が大きく低下しない。
そのため導電粉が導電体層内で緻密にならず、熱処理後
の導電性が低下しバラツキが大きくなる傾向がある。
Further, the solvent is preferably a solvent in which the viscosity of the conductive paste in the heat treatment is large, and conversely, a solvent which has a fast drying property and in which the solvent is dried during the heat treatment so that the viscosity of the conductive paste is not largely reduced is not preferable. The organic solvent used in the present invention preferably has an evaporation rate of the solvent contained of 30 or less (excluding 0), and more preferably 25 or less (excluding 0). When a solvent having an evaporation rate of more than 30 is used, the solvent contained in the conductive paste after printing is dried quickly. That is, the viscosity of the conductive paste is not significantly reduced because the solvent is quickly dried during the printing and heat treatment steps.
Therefore, the conductive powder does not become dense in the conductor layer, and the conductivity after heat treatment tends to decrease and the variation tends to increase.

【0040】なお、本発明において蒸発速度とは、温度
が25℃及び相対湿度が55%RHのときの酢酸ブチル
の単位時間あたりの重量減少量を100とした場合の相
対速度を示す。蒸発速度は、本発明で用いる溶剤10g
を直径が90mmのガラスシャーレに滴下し、これを常
温常圧の雰囲気に1時間放置し、1時間後の溶剤乾燥重
量減少量をAとし、また酢酸ブチル10gを前記と同
様、直径90mmのガラスシャーレに滴下し、これを常
温常圧の雰囲気に1時間放置し、1時間後の溶剤乾燥重
量減少量をBとして、次式により求めることができる。
In the present invention, the evaporation rate means a relative rate when the weight loss of butyl acetate per unit time at a temperature of 25 ° C. and a relative humidity of 55% RH is 100. The evaporation rate is 10 g of the solvent used in the present invention.
Was dropped into a glass petri dish having a diameter of 90 mm, and this was allowed to stand in an atmosphere at room temperature and normal pressure for 1 hour, and the solvent dry weight reduction amount after 1 hour was defined as A, and 10 g of butyl acetate was used in the same manner as described above for a glass having a diameter of 90 mm. It can be determined by the following equation, where it is dropped on a petri dish and left in an atmosphere of normal temperature and normal pressure for 1 hour, and the amount of solvent dry weight reduction after 1 hour is B.

【0041】[0041]

【数2】蒸発速度=A×100/B[Equation 2] Evaporation rate = A × 100 / B

【0042】また、本発明に用いられる有機溶剤の沸点
は、150〜260℃の範囲であることが好ましく、1
70〜240℃の範囲であることがさらに好ましい。沸
点が150℃未満であると蒸発速度が30を超える場合
と同様の理由、即ち熱処理後の導電性が低下しバラツキ
が大きくなる傾向があり、沸点が260℃を超えると溶
剤の乾燥速度が遅いため短時間の熱処理工程に不向きで
ある。
The boiling point of the organic solvent used in the present invention is preferably in the range of 150 to 260 ° C.
More preferably, it is in the range of 70 to 240 ° C. If the boiling point is less than 150 ° C, the evaporation rate exceeds 30, for the same reason, that is, the conductivity after heat treatment tends to decrease and the dispersion tends to increase. If the boiling point exceeds 260 ° C, the drying rate of the solvent is slow. Therefore, it is not suitable for a short-time heat treatment process.

【0043】使用される溶剤としては、例えばジプロピ
レングリコールメチルエーテル、ジプロピレングリコー
ルエチルエーテル、ジプロピレングリコールブチルエー
テル、ジプロピレングリコールイソプロピルメチルエー
テル、ジプロピレングリコールイソプロピルエチルエー
テル、トリプロピレングリコールメチルエーテル、プロ
ピレングリコールターシャリーブチルエーテル、プロピ
レングリコールエチルエーテルアセテート、エチレング
リコールエチルエーテルアセテート、エチレングリコー
ルブチルエーテル、ジエチレングリコールメチルエーテ
ル、トリエチレングリコールメチルエーテル、ジエチレ
ングリコールエチルエーテル、エチレングリコールブチ
ルエーテル、ジエチレングリコールブチルエーテル、3
−メチル−3−メトキシブタノール、3−メチル−3−
メトキシブチルエーテル、乳酸エチル、乳酸ブチルなど
が挙げられる。
Examples of the solvent used include dipropylene glycol methyl ether, dipropylene glycol ethyl ether, dipropylene glycol butyl ether, dipropylene glycol isopropyl methyl ether, dipropylene glycol isopropyl ethyl ether, tripropylene glycol methyl ether, propylene glycol. Tertiary butyl ether, propylene glycol ethyl ether acetate, ethylene glycol ethyl ether acetate, ethylene glycol butyl ether, diethylene glycol methyl ether, triethylene glycol methyl ether, diethylene glycol ethyl ether, ethylene glycol butyl ether, diethylene glycol butyl ether, 3
-Methyl-3-methoxybutanol, 3-methyl-3-
Methoxybutyl ether, ethyl lactate, butyl lactate and the like can be mentioned.

【0044】含有させる溶剤は1種又は必要に応じて2
種以上の溶剤を混合した溶剤を使用し、溶剤の含有量は
導電性及び作業性から導電ペーストに対して2〜10重
量%の範囲が好ましく、2〜7.5重量%の範囲がさら
に好ましい。
The solvent to be contained is one kind or two if necessary.
A solvent in which two or more kinds of solvents are mixed is used, and the content of the solvent is preferably in the range of 2 to 10% by weight, more preferably 2 to 7.5% by weight based on the conductive paste from the viewpoint of conductivity and workability. .

【0045】本発明になる導電ペーストは、上記に示す
材料の他に必要に応じてチキソ剤、カップリング剤、消
泡剤、粉末表面処理剤、沈降防止剤等と共にらいかい
機、ニーダー、三本ロール等で均一に混合、分散して得
ることができる。必要に応じて添加されるチキソ剤、カ
ップリング剤、消泡剤、粉末表面処理剤、沈降防止剤等
は、公知のものでよく、その含有量は、導電ペーストに
対して0.01〜1重量%の範囲であることが好まし
く、0.03〜0.5重量%の範囲であることがさらに
好ましい。
The conductive paste according to the present invention may be combined with a thixotropic agent, a coupling agent, a defoaming agent, a powder surface treating agent, an anti-settling agent, etc., if necessary, in addition to the above-mentioned materials. It can be obtained by uniformly mixing and dispersing with a main roll or the like. The thixotropic agent, the coupling agent, the defoaming agent, the powder surface treatment agent, the anti-settling agent and the like which are added as necessary may be known ones, and the content thereof is 0.01 to 1 with respect to the conductive paste. It is preferably in the range of wt%, and more preferably in the range of 0.03 to 0.5 wt%.

【0046】本発明になる導電ペーストは、作業性の点
から、粘度が100〜7,000dPa・s及びチキソ
値が1.8〜7.3の範囲が好ましく、粘度が350〜
5,000dPa・s及びチキソ値が1.9〜5.0の
範囲がさらに好ましい。粘度が100dPa・s未満で
あると塗布後の導電ペーストが滲み易くなる傾向があ
り、7,000dPa・sを超えると作業性が悪くなる
傾向がある。一方、チキソ値が1.8未満であると塗布
後の導電ペーストが滲み易くなる傾向があり、7.3を
超えると滲みは発生しなくなるが作業性が悪くなる傾向
があると共に塗布した導電ペースト表面の平滑性が悪く
なる傾向がある。
From the viewpoint of workability, the conductive paste according to the present invention preferably has a viscosity of 100 to 7,000 dPa · s and a thixotropic value of 1.8 to 7.3, and a viscosity of 350 to 350.
The range of 5,000 dPa · s and thixo value is more preferably 1.9 to 5.0. If the viscosity is less than 100 dPa · s, the conductive paste after application tends to bleed, and if it exceeds 7,000 dPa · s, workability tends to deteriorate. On the other hand, when the thixo value is less than 1.8, the conductive paste after application tends to bleed, and when it exceeds 7.3, bleeding does not occur but workability tends to deteriorate and the conductive paste applied Surface smoothness tends to deteriorate.

【0047】上記に示す導電ペーストの粘度は、ブルッ
クフィールド社製の粘度計HBT型を用いて測定を行
い、10min−1の値を次式から求めることができる。
The viscosity of the above conductive paste can be measured by using a Brookfield viscometer HBT type, and a value of 10 min -1 can be obtained from the following equation.

【0048】[0048]

【数3】 粘度(dPa・s)=10min−1の値×f10 ただし、f10は10min−1の補正係数である。## EQU00003 ## Viscosity (dPa.s) = value of 10 min −1 × f 10 where f 10 is a correction coefficient of 10 min −1 .

【0049】また、チキソ値は、ブルックフィールド社
製の粘度計HBT型を用いて測定を行い、10min−1
及び100min−1の値を次式から求めることができ
る。
The thixo value was measured using a viscometer HBT type manufactured by Brookfield Co., and 10 min -1
And the value of 100 min −1 can be obtained from the following equation.

【0050】[0050]

【数4】チキソ値=10min−1の値×f10/100m
in−1の値×f100 ただし、f100は10min−1の補正係数である。
[Number 4] value of thixotropic value = 10min -1 × f 10 / 100m
value of in −1 × f 100 However, f 100 is a correction coefficient of 10 min −1 .

【0051】[0051]

【実施例】以下、本発明を実施例により説明する。 実施例1 ブトキシ基含有レゾール型フェノール樹脂(当社試作
品、ブトキシ化率65%、重量平均分子量1,200)
40重量部、エポキシ樹脂(三井化学(株)製、商品名
140C エポキシ当量195〜215g/eq)55
重量部、2−フェニル−4−メチル−イミダゾール(四
国化成(株)製、キュアゾール2P4MZ、融点174
〜184℃)4重量部及びジノニルナフタレンスルホン
酸のブロックタイプ(楠本化成(株)製、商品名X49−
110、解離温度90℃)1重量部を均一に混合してバ
インダとした。 なお、フェノール樹脂とエポキシ樹脂の割合は、重量比
でフェノール樹脂:エポキシ樹脂が42.1:57.9
であった。
EXAMPLES The present invention will be described below with reference to examples. Example 1 Butoxy group-containing resol-type phenolic resin (our prototype, butoxylation rate 65%, weight average molecular weight 1,200)
40 parts by weight, epoxy resin (Mitsui Chemicals, Inc., trade name 140C epoxy equivalent 195-215 g / eq) 55
Parts by weight, 2-phenyl-4-methyl-imidazole (manufactured by Shikoku Kasei Co., Ltd., Cureazole 2P4MZ, melting point 174)
Block type of 4 parts by weight and dinonylnaphthalene sulfonic acid (Kusumoto Kasei Co., Ltd., trade name X49-
1 part by weight (110, dissociation temperature 90 ° C.) was uniformly mixed to obtain a binder. The weight ratio of the phenol resin to the epoxy resin is 42.1: 57.9 for phenol resin: epoxy resin.
Met.

【0052】次に、アトマイズ法で作製した平均粒径が
5.1μmの球状銅粉(日本アトマイズ加工(株)製、
商品名SFR−Cu)を希塩酸及び純水で洗浄した後、
水1リットルあたりAgCN 80g及びNaCN75g
含むめっき溶液で球状銅粉に対して銀の被覆量が18重
量%になるように置換めっきを行い、水洗、乾燥して銀
めっき銅粉を得た。
Next, spherical copper powder having an average particle size of 5.1 μm produced by the atomizing method (manufactured by Nippon Atomizing Co., Ltd.,
After washing the product name SFR-Cu) with diluted hydrochloric acid and pure water,
80 g of AgCN and 75 g of NaCN per liter of water
Displacement plating was performed using a plating solution containing silver so that the amount of silver coated on the spherical copper powder was 18% by weight, washed with water, and dried to obtain silver-plated copper powder.

【0053】この後、2リットルのボールミル容器内に
上記で得た銀めっき銅粉750g及び直径が5mmのジ
ルコニアボール3kgを投入し、40分間回転させて、1
000回のタッピングによるタップ密度が5.93g/
cm、相対密度が93%、比表面積が0.26m
g、アスペクト比が平均1.3及び長径の平均粒径が
5.5μmの略球状銀被覆銅粉を得た。得られた略球状
銀被覆銅粉の粒子を5個取り出し、走査型オージェ電子
分光分析装置で定量分析して銅の露出面積について調べ
たところ、10〜50%の範囲で平均が20%であっ
た。
Thereafter, 750 g of the silver-plated copper powder obtained above and 3 kg of zirconia balls having a diameter of 5 mm were placed in a 2 liter ball mill container and rotated for 40 minutes to 1
Tap density after tapping 000 times is 5.93 g /
cm 3 , relative density 93%, specific surface area 0.26 m 2 /
A substantially spherical silver-coated copper powder having an average particle size of g, an average aspect ratio of 1.3 and an average major particle diameter of 5.5 μm was obtained. Five particles of the obtained substantially spherical silver-coated copper powder were taken out and quantitatively analyzed by a scanning Auger electron spectroscopy analyzer to examine the exposed area of copper. The average was 20% in the range of 10 to 50%. It was

【0054】一方、2リットルのボールミル容器内に上
記で得た銀めっき銅粉750g及び直径が10mmのジ
ルコニアボール3kgを投入し、8時間回転させて、10
00回のタッピングによるタップ密度が3.79g/c
、相対密度が48%、比表面積が0.77m/g
アスペクト比が平均5.2及び長径の平均粒径が7.7
μmの扁平状銀被覆銅粉を得た。得られた扁平状銀被覆
銅粉の粒子を5個取り出し、走査型オージェ電子分光分
析装置で定量分析して銅の露出面積について調べたとこ
ろ、10〜60%の範囲で平均が41%であった。
On the other hand, 750 g of the silver-plated copper powder obtained above and 3 kg of zirconia balls having a diameter of 10 mm were placed in a 2 liter ball mill container and rotated for 8 hours to give 10
Tap density of 3.79 g / c after tapping 00 times
m 3 , relative density 48%, specific surface area 0.77 m 2 / g
The average aspect ratio is 5.2 and the average diameter of major axis is 7.7.
A flat silver-coated copper powder of μm was obtained. Five particles of the obtained flat silver-coated copper powder were taken out and quantitatively analyzed by a scanning Auger electron spectroscopy analyzer to examine the exposed area of copper. The average was 41% in the range of 10 to 60%. It was

【0055】次に、上記で得たバインダ50g、略球状
銀被覆銅粉270g及び扁平状銀被覆銅粉180gに、
溶剤としてエチルカルビトール(蒸発速度1未満)11
gを加えて、撹拌らいかい機及び三本ロールで均一に混
合、分散して比重が5.2、粘度が1050dpa・
s、チキソ値が2.9及び硬化物のガラス転移点が14
2℃の導電ペーストを得た。 なお、導電粉とバインダの割合は、導電ペーストの固形
分に対して重量比で導電粉:バインダが90:10であ
り、溶剤の含有量は導電ペーストに対して2.9%であ
った。
Next, to 50 g of the binder obtained above, 270 g of substantially spherical silver-coated copper powder and 180 g of flat silver-coated copper powder,
Ethyl carbitol as solvent (evaporation rate less than 1) 11
g, and uniformly mixed and dispersed with a stirrer and a triple roll to have a specific gravity of 5.2 and a viscosity of 1050 dpa.
s, thixo value is 2.9, and glass transition point of cured product is 14
A conductive paste of 2 ° C. was obtained. The ratio of the conductive powder to the binder was 90:10 by weight ratio of the conductive powder: binder to the solid content of the conductive paste, and the content of the solvent was 2.9% with respect to the conductive paste.

【0056】次に、上記で得た導電ペーストを用いて、
厚さが1.0mmの紙フェノール銅張積層板(日立化成
工業(株)製、商品名MCL−437F)の銅箔をエッ
チングにより除去した面に図2に示すような形状に塗布
し、170℃90分間加熱処理して導電体5を得た。得
られた導電体5の比抵抗は1.7μΩ・mであった。な
お図2において、4は紙フェノール銅張積層板である。
また、引張せん断接着強さはJISK6850「引張せ
ん断接着強さ試験方法」に準じて引張せん断接着強さを
調べた。その結果、引張せん断接着強さは12.2MP
aであった。
Next, using the conductive paste obtained above,
A paper phenol copper-clad laminate having a thickness of 1.0 mm (Hitachi Kasei Kogyo KK, trade name MCL-437F) was applied on the surface of the copper foil removed by etching in a shape as shown in FIG. Heat treatment was performed at 90 ° C. for 90 minutes to obtain a conductor 5. The specific resistance of the obtained conductor 5 was 1.7 μΩ · m. In FIG. 2, 4 is a paper phenol copper clad laminate.
For the tensile shear adhesive strength, the tensile shear adhesive strength was examined according to JIS K 6850 "Tensile shear adhesive strength test method". As a result, the tensile shear adhesive strength is 12.2MP
It was a.

【0057】なお、本実施例におけるアスペクト比の具
体的測定法を以下に示す。低粘度のエポキシ樹脂(ビュ
ーラー社製)の主剤(No.10−8130)8gと硬
化剤(No.10−8132)2gを混合し、ここへ導
電粉2gを混合して良く分散させ、そのまま30℃で真
空脱泡した後、10時間30℃で静置して粒子を沈降さ
せ硬化させた。その後、得られた硬化物を垂直方向に切断
し、切断面を電子顕微鏡で1000倍に拡大して切断面
に現れた150個の粒子について長径/短径を求め、そ
れらの平均値をもって、アスペクト比とした。
A specific method for measuring the aspect ratio in this embodiment is shown below. 8 g of a main component (No. 10-8130) of a low-viscosity epoxy resin (manufactured by Buehler) and 2 g of a curing agent (No. 10-8132) are mixed, and 2 g of conductive powder is mixed therein and well dispersed. After vacuum degassing at 0 ° C, the particles were allowed to settle by standing at 30 ° C for 10 hours to cure. After that, the obtained cured product is cut in the vertical direction, the cut surface is magnified 1000 times with an electron microscope, and the major axis / minor axis of 150 particles appearing on the cut surface is determined. Ratio.

【0058】実施例2 実施例1で用いたブトキシ基含有レゾール型フェノール
樹脂20重量部、エポキシ樹脂75重量部、2−フェニ
ル−4−メチル−イミダゾール4.5重量部及びジノニ
ルナフタレンスルホン酸のブロックタイプ0.5重量部
を均一に混合してバインダとした。 なお、フェノール樹脂とエポキシ樹脂の割合は、重量比
でフェノール樹脂:エポキシ樹脂が21.1:78.9
であった。
Example 2 20 parts by weight of butoxy group-containing resol type phenol resin used in Example 1, 75 parts by weight of epoxy resin, 4.5 parts by weight of 2-phenyl-4-methyl-imidazole and dinonylnaphthalene sulfonic acid were used. 0.5 parts by weight of the block type was uniformly mixed to obtain a binder. The weight ratio of phenol resin to epoxy resin is 21.1: 78.9 for phenol resin: epoxy resin.
Met.

【0059】次に、上記で得たバインダ60g、実施例
1と同様の工程を経て得たタップ密度が5.22g/c
m3、相対密度が91%、比表面積が0.29m
g、アスペクト比が平均1.4及び長径の平均粒径が
5.6μmの略球状銀被覆銅粉350g並びにタップ密
度が3.29g/cm、相対密度が44%、比表面積
が0.74m/g、%、アスペクト比が平均6.1及
び長径の平均粒径が7.5μmの扁平状銀被覆銅粉90
gに、溶剤として実施例1で用いたエチルカルビトール
11gを加えて、撹拌らいかい機及び三本ロールで均一
に混合、分散して比重が4.7、粘度が860dpa・
s、チキソ値が3.2及び硬化物のガラス転移点が11
9℃の導電ペーストを得た。
Next, 60 g of the binder obtained above and the tap density obtained through the same steps as in Example 1 were 5.22 g / c.
m3, the relative density of 91%, a specific surface area of 0.29 m 2 /
g, 350 g of an approximately spherical silver-coated copper powder having an average aspect ratio of 1.4 and an average major particle diameter of 5.6 μm, a tap density of 3.29 g / cm 3 , a relative density of 44%, and a specific surface area of 0.74 m. 2 / g,%, flat aspect silver-covered copper powder 90 having an average aspect ratio of 6.1 and major axis average particle size of 7.5 μm
11 g of ethyl carbitol used in Example 1 as a solvent was added to g and uniformly mixed and dispersed with a stirrer and a triple roll to have a specific gravity of 4.7 and a viscosity of 860 dpa.
s, thixo value is 3.2, and glass transition point of the cured product is 11
A conductive paste having a temperature of 9 ° C. was obtained.

【0060】なお、実施例1と同様の方法で銅の露出面
積を調べたところ、略球状銀被覆銅粉は10〜50%の
範囲で平均が27%及び扁平状銀被覆銅粉は10〜62
%の範囲で平均が46%であった。 また、導電粉とバインダの割合は、導電ペーストの固形
分に対して重量比で導電粉:バインダが88:12であ
り、溶剤の含有量は、導電ペーストに対して2.2%で
あった。 さらに、実施例1と同様の方法で比抵抗及び引張せん断
接着強さを調べた結果、比抵抗は2.6μΩ・m及び引
張せん断接着強さは17.6MPaであった。
When the exposed area of copper was examined in the same manner as in Example 1, the average spherical spherical silver-coated copper powder was 27% in the range of 10 to 50% and the flat silver-coated copper powder was 10 to 50%. 62
In the range of%, the average was 46%. Further, the ratio of the conductive powder and the binder was 88:12 in the conductive powder: binder by weight ratio with respect to the solid content of the conductive paste, and the content of the solvent was 2.2% with respect to the conductive paste. . Further, as a result of examining the specific resistance and the tensile shear adhesive strength in the same manner as in Example 1, the specific resistance was 2.6 μΩ · m and the tensile shear adhesive strength was 17.6 MPa.

【0061】実施例3 実施例1で用いたブトキシ基含有レゾール型フェノール
樹脂60重量部、エポキシ樹脂35重量部、2−フェニ
ル−4−メチル−イミダゾール3.5重量部及びジノニ
ルナフタレンスルホン酸のブロックタイプ1.5重量部
を均一に混合してバインダとした。 なお、フェノール樹脂とエポキシ樹脂の割合は、重量比
でフェノール樹脂:エポキシ樹脂が63.2:36.8
であった。
Example 3 60 parts by weight of the butoxy group-containing resol type phenol resin used in Example 1, 35 parts by weight of an epoxy resin, 3.5 parts by weight of 2-phenyl-4-methyl-imidazole and dinonylnaphthalene sulfonic acid were used. A block type of 1.5 parts by weight was uniformly mixed to obtain a binder. The weight ratio of the phenol resin to the epoxy resin is 63.2: 36.8 for phenol resin: epoxy resin.
Met.

【0062】次に、上記で得たバインダ45g及び実施
例1で得た略球状銀被覆銅粉455gに、溶剤として実
施例1で用いたエチルカルビトール14gを加えて、撹
拌らいかい機及び三本ロールで均一に混合、分散して比
重が5.5、粘度が1010dpa・s、チキソ値が
3.3及び硬化物のガラス転移点が152℃の導電ペー
ストを得た。
Next, to 45 g of the binder obtained above and 455 g of the substantially spherical silver-coated copper powder obtained in Example 1, 14 g of ethyl carbitol used in Example 1 was added as a solvent, and a stirring and stirring machine and a mixer were used. By uniformly mixing and dispersing with this roll, a conductive paste having a specific gravity of 5.5, a viscosity of 1010 dpa · s, a thixo value of 3.3, and a glass transition point of the cured product of 152 ° C. was obtained.

【0063】なお、導電粉とバインダの割合は、導電ペ
ーストの固形分に対して重量比で導電粉:バインダが9
1:9であり、溶剤の含有量は、導電ペーストに対して
2.7%であった。 また、実施例1と同様の方法で比抵抗及び引張せん断接
着強さを調べた結果、比抵抗は1.3μΩ・m及び引張
せん断接着強さは10.1MPaであった。
The ratio of conductive powder to binder is 9 by weight of conductive powder: binder with respect to the solid content of the conductive paste.
It was 1: 9, and the content of the solvent was 2.7% with respect to the conductive paste. Further, as a result of examining the specific resistance and the tensile shear adhesive strength in the same manner as in Example 1, the specific resistance was 1.3 μΩ · m and the tensile shear adhesive strength was 10.1 MPa.

【0064】実施例4 実施例1で得たバインダ50g及び実施例1で得た扁平
状銀被覆銅粉450gに、溶剤として実施例1で用いた
エチルカルビトール15gを加えて、撹拌らいかい機及
び三本ロールで均一に混、分散して比重が5.1、粘度
が1870dpa・s、チキソ値が3.8及び硬化物の
ガラス転移点が142℃の導電ペーストを得た。
Example 4 To 50 g of the binder obtained in Example 1 and 450 g of the flat silver-coated copper powder obtained in Example 1, 15 g of ethyl carbitol used in Example 1 as a solvent was added, and the mixture was stirred and stirred. Then, a conductive paste having a specific gravity of 5.1, a viscosity of 1870 dpa · s, a thixo value of 3.8, and a glass transition point of 142 ° C. of the cured product was obtained by uniformly mixing and dispersing with a triple roll.

【0065】なお、導電粉とバインダの割合は、導電ペ
ーストの固形分に対して重量比で導電粉:バインダが9
0:10であり、溶剤の含有量は、導電ペーストに対し
て2.9%であった。 また、実施例1と同様の方法で比抵抗及び引張せん断接
着強さを調べた結果、比抵抗は1.1μΩ・m及び引張
せん断接着強さは14.1MPaであった。
The ratio of the conductive powder to the binder is 9% by weight of the conductive powder to the solid content of the conductive paste.
It was 0:10, and the content of the solvent was 2.9% with respect to the conductive paste. Further, as a result of examining the specific resistance and the tensile shear adhesive strength in the same manner as in Example 1, the specific resistance was 1.1 μΩ · m and the tensile shear adhesive strength was 14.1 MPa.

【0066】比較例1 実施例1で得たバインダ15g、実施例1で得た略球状
銀被覆銅粉291g及び実施例1で得た扁平状銀被覆銅
粉194gに、溶剤として実施例1で用いたエチルカル
ビトール15gを加えて、撹拌らいかい機及び三本ロー
ルで均一に混合、分散して比重が7.8、粘度が551
0dpa・s、チキソ値が5.3及び硬化物のガラス転
移点が142℃の導電ペーストを得た。
Comparative Example 1 15 g of the binder obtained in Example 1, 291 g of the substantially spherical silver-coated copper powder obtained in Example 1 and 194 g of the flat silver-coated copper powder obtained in Example 1 were used in Example 1 as a solvent. 15 g of the ethyl carbitol used was added, and the mixture was uniformly mixed and dispersed with a stirrer and a triple roll to have a specific gravity of 7.8 and a viscosity of 551.
A conductive paste having 0 dpa · s, a thixo value of 5.3, and a cured product having a glass transition point of 142 ° C. was obtained.

【0067】なお、導電粉とバインダの割合は、導電ペ
ーストの固形分に対して重量比で導電粉:バインダが9
7:3であり、溶剤の含有量は、導電ペーストに対して
2.9%であった。 また、実施例1と同様の方法で比抵抗及び引張せん断接
着強さを調べた結果、比抵抗は1.0μΩ・mと良好で
あったが、引張せん断接着強さは4.8MPaと低い値
であった。
The ratio of the conductive powder to the binder is 9% by weight of the conductive powder to the solid content of the conductive paste.
It was 7: 3, and the content of the solvent was 2.9% with respect to the conductive paste. Moreover, as a result of examining the specific resistance and the tensile shear adhesive strength in the same manner as in Example 1, the specific resistance was good at 1.0 μΩ · m, but the tensile shear adhesive strength was a low value of 4.8 MPa. Met.

【0068】比較例2 実施例1で得たバインダ100g、実施例1で得た略球
状銀被覆銅粉240g及び実施例1で得た扁平状銀被覆
銅粉160gに、溶剤として実施例1で用いたエチルカ
ルビトール15gを加えて、撹拌らいかい機及び三本ロ
ールで均一に混合、分散して比重が2.8、粘度が34
0dpa・s、チキソ値が2.8及び硬化物のガラス転
移点が145℃の導電ペーストを得た。
Comparative Example 2 100 g of the binder obtained in Example 1, 240 g of the substantially spherical silver-coated copper powder obtained in Example 1 and 160 g of the flat silver-coated copper powder obtained in Example 1 were used as a solvent in Example 1. 15 g of the ethyl carbitol used was added and uniformly mixed and dispersed with a stirrer and a triple roll to have a specific gravity of 2.8 and a viscosity of 34.
A conductive paste having 0 dpa · s, a thixo value of 2.8, and a glass transition point of the cured product of 145 ° C. was obtained.

【0069】なお、導電粉とバインダの割合は、導電ペ
ーストの固形分に対して重量比で導電粉:バインダが8
0:20であり、溶剤の含有量は、導電ペーストに対し
て2.9%であった。 また、実施例1と同様の方法で比抵抗及び引張せん断接
着強さを調べた結果、比抵抗は41.7μΩ・mと導電
性としては悪い値を示したが、引張せん断接着強さは2
3.2MPaであった。
The ratio of the conductive powder to the binder is 8 by weight of the conductive powder to the solid content of the conductive paste.
It was 0:20, and the content of the solvent was 2.9% with respect to the conductive paste. Further, as a result of examining the specific resistance and the tensile shear adhesive strength in the same manner as in Example 1, the specific resistance was 41.7 μΩ · m, which was a poor value for conductivity, but the tensile shear adhesive strength was 2
It was 3.2 MPa.

【0070】比較例3 実施例1で用いたブトキシ基含有レゾール型フェノール
樹脂92重量部、エポキシ樹脂3重量部、2−フェニル
−4−メチル−イミダゾール0.5重量部及びジノニル
ナフタレンスルホン酸のブロックタイプ4.5重量部を
均一に混合してバインダとした。 なお、フェノール樹脂とエポキシ樹脂の割合は、重量比
でフェノール樹脂:エポキシ樹脂が96.8:3.2で
あった。
Comparative Example 3 92 parts by weight of the butoxy group-containing resol type phenol resin used in Example 1, 3 parts by weight of an epoxy resin, 0.5 parts by weight of 2-phenyl-4-methyl-imidazole and dinonylnaphthalene sulfonic acid were used. A block type of 4.5 parts by weight was uniformly mixed to obtain a binder. The weight ratio of the phenol resin to the epoxy resin was 96.8: 3.2 of phenol resin: epoxy resin.

【0071】次に、上記で得たバインダ50g、実施例
1で得た略球状銀被覆銅粉270g及び実施例1で得た
扁平状銀被覆銅粉180gに、溶剤として実施例1で用
いたエチルカルビトール15gを加えて、撹拌らいかい
機及び三本ロールで均一に混合、分散して比重が5.
3、粘度が5110dpa・s、チキソ値が3.1及び
硬化物のガラス転移点が187℃の導電ペーストを得
た。
Next, 50 g of the binder obtained above, 270 g of the substantially spherical silver-coated copper powder obtained in Example 1 and 180 g of the flat silver-coated copper powder obtained in Example 1 were used as a solvent in Example 1. Add 15 g of ethyl carbitol, mix and disperse evenly with a stirrer and a triple roll to obtain a specific gravity of 5.
3, a conductive paste having a viscosity of 5110 dpa · s, a thixo value of 3.1, and a glass transition point of the cured product of 187 ° C. was obtained.

【0072】なお、導電粉とバインダの割合は、導電ペ
ーストの固形分に対して重量比で導電粉:バインダが9
0:10であり、溶剤の含有量は、導電ペーストに対し
て2.9%であった。 また、実施例1と同様の方法で比抵抗及び引張せん断接
着強さを調べた結果、比抵抗は1.3μΩ・mと良好で
あったが、引張せん断接着強さは6.1MPaと低い値
であった。
The ratio of the conductive powder to the binder is 9% by weight of the conductive powder to the solid content of the conductive paste.
It was 0:10, and the content of the solvent was 2.9% with respect to the conductive paste. Further, as a result of examining the specific resistance and the tensile shear adhesive strength in the same manner as in Example 1, the specific resistance was good at 1.3 μΩ · m, but the tensile shear adhesive strength was as low as 6.1 MPa. Met.

【0073】なお、本発明者らは、ガラス転移点が40
℃未満の導電ペーストの製造を試みたが、困難製を伴い
途中で製造を中止した。
The inventors of the present invention have a glass transition point of 40.
An attempt was made to produce a conductive paste having a temperature of less than 0 ° C, but the production was stopped halfway due to difficulty in production.

【0074】[0074]

【発明の効果】請求項1及び2記載の導電ペーストは、
導電性、接着強度、作業性に優れる。請求項3記載の導
電ペーストは、導電性の向上効果及びマイグレーション
性に優れる。請求項4及び5記載の導電ペーストは、導
電性、接着強度及び作業性のバランスに優れる。請求項
6及び7記載の導電ペーストは、導電性の向上効果及び
導電ペーストの保存安定性に優れる。請求項8及び9記
載の導電ペーストは、接着強度、作業性、導電ペースト
の保存安定性の向上効に優れる。
The conductive paste according to claims 1 and 2 is
Excellent conductivity, adhesive strength and workability. The conductive paste according to claim 3 is excellent in conductivity improving effect and migration property. The conductive paste according to claims 4 and 5 is excellent in the balance of conductivity, adhesive strength, and workability. The conductive paste according to claims 6 and 7 is excellent in the effect of improving conductivity and the storage stability of the conductive paste. The conductive paste according to claims 8 and 9 is excellent in improving the adhesive strength, workability, and storage stability of the conductive paste.

【0075】請求項10記載の導電ペーストは、導電
性、接着強度のバランスに優れる。請求項11記載の導
電ペーストは、作業性の向上効果に優れる。請求項12
記載の導電ペーストは、導電性、接着強度、作業性のバ
ランスに優れる。請求項13記載の導電ペーストは、作
業性の向上効果に優れる。請求項14記載の導電ペース
トは、導電性、作業性の向上効果及び、接合部の柔軟性
に優れる。
The conductive paste according to claim 10 is excellent in the balance between conductivity and adhesive strength. The conductive paste according to claim 11 has an excellent effect of improving workability. Claim 12
The described conductive paste has an excellent balance of conductivity, adhesive strength, and workability. The conductive paste according to claim 13 has an excellent effect of improving workability. The conductive paste according to claim 14 is excellent in conductivity, workability improving effect, and flexibility of the joint portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】導電ペーストを使用して、部品を接着する手段
を示す断面図である。
FIG. 1 is a cross-sectional view showing a means for adhering parts using a conductive paste.

【図2】紙フェノール銅張積層板上に導電体を形成した
状態を示す平面図である。
FIG. 2 is a plan view showing a state in which a conductor is formed on a paper phenol copper clad laminate.

【符号の説明】[Explanation of symbols]

1 銅箔 2 導電ペースト 3 リードフレーム 4 紙フェノール銅張積層板 5 導電体 1 copper foil 2 Conductive paste 3 lead frame 4 Paper phenol copper clad laminate 5 conductor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09J 163/00 C09J 163/00 H01B 1/00 H01B 1/00 C H H05K 3/32 H05K 3/32 B Fターム(参考) 4J037 AA04 AA06 CA03 CC22 CC23 DD01 DD05 DD07 DD09 DD10 DD13 DD30 EE03 EE43 FF11 FF13 4J040 EB031 EB032 EC001 EC002 EC021 EC022 EC061 EC062 EC261 EC262 HA06 KA16 KA23 KA32 LA02 LA04 LA09 NA19 5E319 AA03 BB11 CC61 CD26 GG15 5G301 DA03 DA06 DA55 DA57 DD01─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C09J 163/00 C09J 163/00 H01B 1/00 H01B 1/00 C H H05K 3/32 H05K 3/32 B F-term (reference) 4J037 AA04 AA06 CA03 CC22 CC23 DD01 DD05 DD07 DD09 DD10 DD13 DD30 EE03 EE43 FF11 FF13 4J040 EB031 EB032 EC001 EC002 EC021 EC022 EC061 EC062 EC261 EC262 HA06 NA19 5AB03 CC06 LA03E11 DA55 DA57 DD01

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 導電粉、バインダ及び有機溶剤を含み、
かつ導電粉が球状若しくは略球状と扁平状との混合粉又
は球状、略球状、扁平状のいずれか1種の単独粉であ
り、バインダの主成分が熱硬化性樹脂及びその硬化剤を
含み、比重が3〜7.5及び導電ペースト硬化物のガラ
ス転移点が40〜180℃である導電ペースト。
1. A conductive powder, a binder and an organic solvent are included,
And the conductive powder is a mixed powder of spherical or substantially spherical and flat shape or spherical, substantially spherical, is any one kind of flat shape, the main component of the binder contains a thermosetting resin and its curing agent, An electrically conductive paste having a specific gravity of 3 to 7.5 and a glass transition point of the electrically conductive paste cured product of 40 to 180 ° C.
【請求項2】 有機溶剤が、1種又は2種以上の混合溶
剤である請求項1記載の導電ペースト。
2. The conductive paste according to claim 1, wherein the organic solvent is one kind or a mixed solvent of two or more kinds.
【請求項3】 導電粉が、銅粉又は銅合金粉の一部を露
出して、表面が大略銀で被覆された銀被覆銅粉又は銀被
覆銅合金粉であり、かつ銀の被覆量が5〜25重量%及
び銅粉又は銅合金粉の露出面積が10〜60%である請
求項1又は2記載の導電ペースト。
3. The conductive powder is a silver-coated copper powder or a silver-coated copper alloy powder in which a part of the copper powder or the copper alloy powder is exposed and the surface is coated with silver, and the coating amount of silver is The conductive paste according to claim 1 or 2, wherein the exposed area of 5 to 25% by weight and the copper powder or the copper alloy powder is 10 to 60%.
【請求項4】 球状又は略球状の導電粉が、長径の平均
粒径が1〜20μm、アスペクト比が1〜1.5、タッ
プ密度が4.5〜6.2g/cm、相対密度が50〜
68%及び比表面積が0.1〜1.0m/gである請
求項1〜3のいずれかに記載の導電ペースト。
4. The spherical or substantially spherical conductive powder has an average major particle diameter of 1 to 20 μm, an aspect ratio of 1 to 1.5, a tap density of 4.5 to 6.2 g / cm 3 , and a relative density of 50-
68% and specific surface area are 0.1-1.0 m < 2 > / g, The electrically conductive paste in any one of Claims 1-3.
【請求項5】 扁平状の導電粉が、長径の平均粒径が5
〜30μm、アスペクト比が3〜20、タップ密度が
2.5〜5.8g/cm、相対密度が27〜63%及
び比表面積が0.4〜1.3m/gである請求項1〜
4のいずれかに記載の導電ペースト。
5. The flat conductive powder has an average major diameter of 5
3. 30 μm, aspect ratio 3 to 20, tap density 2.5 to 5.8 g / cm 3 , relative density 27 to 63%, and specific surface area 0.4 to 1.3 m 2 / g. ~
4. The conductive paste according to any one of 4 above.
【請求項6】 熱硬化性樹脂が、エポキシ樹脂及びフェ
ノール樹脂である請求項1〜5のいずれかに記載の導電
ペースト。
6. The conductive paste according to claim 1, wherein the thermosetting resin is an epoxy resin or a phenol resin.
【請求項7】 エポキシ樹脂が、常温で液状のエポキシ
樹脂及びフェノール樹脂が、アルコキシ基含有レゾール
型フェノール樹脂である請求項1〜6のいずれかに記載
の導電ペースト。
7. The conductive paste according to claim 1, wherein the epoxy resin is a liquid epoxy resin at room temperature and the phenol resin is an alkoxy group-containing resol type phenol resin.
【請求項8】 エポキシ樹脂が、エポキシ当量が160
〜330g/eq及びフェノール樹脂が、アルコキシ基
の炭素数が1〜6、アルコキシ化率が5〜95%、重量
平均分子量が500〜200,000である請求項1〜
7のいずれかに記載の導電ペースト。
8. The epoxy resin has an epoxy equivalent of 160.
~ 330 g / eq and the phenol resin has 1 to 6 carbon atoms in the alkoxy group, an alkoxylation rate of 5 to 95%, and a weight average molecular weight of 500 to 200,000.
7. The conductive paste according to any one of 7.
【請求項9】 エポキシ樹脂の硬化剤が、融点が40〜
240℃及びフェノール樹脂の硬化剤が、官能基がマス
キングされており解離温度が60〜140℃である請求
項1〜8のいずれかに記載の導電ペースト。
9. The epoxy resin curing agent has a melting point of 40 to 40.
The conductive paste according to any one of claims 1 to 8, wherein the curing agent of 240 ° C and the phenol resin has a functional group masked and a dissociation temperature of 60 to 140 ° C.
【請求項10】 エポキシ樹脂とフェノール樹脂の配合
割合が、重量比でエポキシ樹脂:フェノール樹脂が1
0:90〜95:5である請求項1〜9のいずれかに記
載の導電ペースト。
10. The compounding ratio of the epoxy resin and the phenol resin is such that the weight ratio of the epoxy resin to the phenol resin is 1.
It is 0: 90-95: 5, The electrically conductive paste in any one of Claims 1-9.
【請求項11】 有機溶剤が、蒸発速度が30以下(0
を除く)であり、沸点が150〜260℃である請求項
1〜10のいずれかに記載の導電ペースト。
11. An organic solvent having an evaporation rate of 30 or less (0
And the boiling point is 150 to 260 ° C. 11. The conductive paste according to claim 1.
【請求項12】 導電粉とバインダの配合割合が、導電
ペーストの固形分に対して重量比で導電粉:バインダが
83:17〜97:3及び体積比で導電粉:バインダが
28:72〜84:16である請求項1〜11のいずれ
かに記載の導電ペースト。
12. The blending ratio of the conductive powder and the binder is 83:17 to 97: 3 by weight of conductive powder: binder and 28:72 by weight of conductive powder: binder to the solid content of the conductive paste. It is 84:16, The electrically conductive paste in any one of Claims 1-11.
【請求項13】 有機溶剤が、導電ペーストに対して2
〜10重量%含有してなる請求項1〜12のいずれかに
記載の導電ペースト。
13. The organic solvent is used in an amount of 2 with respect to the conductive paste.
The conductive paste according to any one of claims 1 to 12, containing 10 to 10% by weight.
【請求項14】 粘度が100〜7,000dpa・s
及びチキソ値が1.8〜7.3である請求項1〜13の
いずれかに記載の導電ペースト。
14. The viscosity is 100 to 7,000 dpa · s.
And the thixo value is 1.8-7.3, The conductive paste in any one of Claims 1-13.
JP2001233714A 2001-08-01 2001-08-01 Conductive paste Pending JP2003045228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001233714A JP2003045228A (en) 2001-08-01 2001-08-01 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001233714A JP2003045228A (en) 2001-08-01 2001-08-01 Conductive paste

Publications (1)

Publication Number Publication Date
JP2003045228A true JP2003045228A (en) 2003-02-14

Family

ID=19065456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001233714A Pending JP2003045228A (en) 2001-08-01 2001-08-01 Conductive paste

Country Status (1)

Country Link
JP (1) JP2003045228A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004068506A1 (en) * 2002-05-17 2004-08-12 Hitachi Chemical Co., Ltd. Conductive paste
WO2005031760A1 (en) * 2003-09-26 2005-04-07 Hitachi Chemical Co., Ltd. Mixed conductive powder and use thereof
WO2005078034A1 (en) * 2004-02-13 2005-08-25 Harima Chemicals, Inc. Conductive adhesive
JP2006024691A (en) * 2004-07-07 2006-01-26 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2006165336A (en) * 2004-12-08 2006-06-22 Mitsubishi Materials Corp Solder paste for forming bump
JP2006202550A (en) * 2005-01-19 2006-08-03 Matsushita Electric Ind Co Ltd Conductive paste, wiring board using it, electronic component-mounted substrate, and electronic equipment using them
WO2006082772A1 (en) * 2005-02-04 2006-08-10 Sanyo Electric Co., Ltd. Electronic part and process for producing the same
JP2007157434A (en) * 2005-12-02 2007-06-21 Shoei Chem Ind Co Conductor forming method
WO2007138709A1 (en) * 2006-06-01 2007-12-06 Hitachi Plasma Display Limited Plasma display panel and process for manufacturing the same
JP2008004429A (en) * 2006-06-23 2008-01-10 Sumitomo Electric Ind Ltd Conductive paste, anisotropic conductive film, and manufacturing method of electronic equipment using these
US20080206553A1 (en) * 2005-09-08 2008-08-28 Basf Se Dispersion for Application of a Metal Layer
JP2009007453A (en) * 2007-06-27 2009-01-15 Fujikura Kasei Co Ltd Electrically conductive adhesive and electronic component using the same
JP2009102603A (en) * 2007-10-05 2009-05-14 Hitachi Chem Co Ltd Adhesive composition and semiconductor device
JP2009102602A (en) * 2007-10-03 2009-05-14 Hitachi Chem Co Ltd Adhesive composition and semiconductor device
JP2010123457A (en) * 2008-11-20 2010-06-03 Panasonic Electric Works Co Ltd Conductive paste, and conductor pattern
KR100979509B1 (en) * 2008-04-16 2010-09-24 엔바로테크 주식회사 Electrode composition for solar cell
KR101219139B1 (en) * 2009-12-24 2013-01-07 제일모직주식회사 Anisotropic conductive paste and film, circuit connecting structure body comprising the same
JP2015065098A (en) * 2013-09-26 2015-04-09 Dowaエレクトロニクス株式会社 Filamentous silver powder, silver powder mixture and production method of the same, as well as conductive paste
WO2017170390A1 (en) * 2016-03-29 2017-10-05 タツタ電線株式会社 Conductive coating material and production method for shielded package using conductive coating material
JP2017179360A (en) * 2016-03-29 2017-10-05 タツタ電線株式会社 Conductive coating and manufacturing method of shield package using the same
CN113658935A (en) * 2021-09-15 2021-11-16 苏州日月新半导体有限公司 Integrated circuit device

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004068506A1 (en) * 2002-05-17 2004-08-12 Hitachi Chemical Co., Ltd. Conductive paste
US7718090B2 (en) 2002-05-17 2010-05-18 Hitachi Chemical Co., Ltd. Conductive paste
US7790063B2 (en) 2003-09-26 2010-09-07 Hitachi Chemical Company, Ltd. Mixed conductive power and use thereof
WO2005031760A1 (en) * 2003-09-26 2005-04-07 Hitachi Chemical Co., Ltd. Mixed conductive powder and use thereof
JP4677900B2 (en) * 2003-09-26 2011-04-27 日立化成工業株式会社 Mixed conductive powder and its use
US8029701B2 (en) 2003-09-26 2011-10-04 Hitachi Chemical Co., Ltd. Mixed conductive powder and use thereof
JP2010021145A (en) * 2003-09-26 2010-01-28 Hitachi Chem Co Ltd Mixed conductive powder and use thereof
KR100719993B1 (en) * 2003-09-26 2007-05-21 히다치 가세고교 가부시끼가이샤 Mixed Conductive Powder and Use Thereof
JPWO2005031760A1 (en) * 2003-09-26 2007-11-15 日立化成工業株式会社 Mixed conductive powder and its use
WO2005078034A1 (en) * 2004-02-13 2005-08-25 Harima Chemicals, Inc. Conductive adhesive
US7524893B2 (en) 2004-02-13 2009-04-28 Harima Chemicals, Inc. Conductive adhesive
JP4624017B2 (en) * 2004-07-07 2011-02-02 三洋電機株式会社 Manufacturing method of solid electrolytic capacitor
JP2006024691A (en) * 2004-07-07 2006-01-26 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP4672352B2 (en) * 2004-12-08 2011-04-20 三菱マテリアル株式会社 Solder paste for bump formation
JP2006165336A (en) * 2004-12-08 2006-06-22 Mitsubishi Materials Corp Solder paste for forming bump
JP4622533B2 (en) * 2005-01-19 2011-02-02 パナソニック株式会社 Wiring board, wiring board manufacturing method, and electronic device
JP2006202550A (en) * 2005-01-19 2006-08-03 Matsushita Electric Ind Co Ltd Conductive paste, wiring board using it, electronic component-mounted substrate, and electronic equipment using them
WO2006082772A1 (en) * 2005-02-04 2006-08-10 Sanyo Electric Co., Ltd. Electronic part and process for producing the same
JPWO2006082772A1 (en) * 2005-02-04 2008-06-26 三洋電機株式会社 Electronic component and manufacturing method thereof
JP4969439B2 (en) * 2005-02-04 2012-07-04 三洋電機株式会社 Solid electrolytic capacitor
JP2010187016A (en) * 2005-02-04 2010-08-26 Sanyo Electric Co Ltd Solid electrolytic capacitor and manufacturing method therefor
US7808773B2 (en) 2005-02-04 2010-10-05 Sanyo Electric Co., Ltd. Electronic part and process for producing the same
US20080206553A1 (en) * 2005-09-08 2008-08-28 Basf Se Dispersion for Application of a Metal Layer
JP2007157434A (en) * 2005-12-02 2007-06-21 Shoei Chem Ind Co Conductor forming method
WO2007138709A1 (en) * 2006-06-01 2007-12-06 Hitachi Plasma Display Limited Plasma display panel and process for manufacturing the same
JP2008004429A (en) * 2006-06-23 2008-01-10 Sumitomo Electric Ind Ltd Conductive paste, anisotropic conductive film, and manufacturing method of electronic equipment using these
JP2009007453A (en) * 2007-06-27 2009-01-15 Fujikura Kasei Co Ltd Electrically conductive adhesive and electronic component using the same
JP2009102602A (en) * 2007-10-03 2009-05-14 Hitachi Chem Co Ltd Adhesive composition and semiconductor device
JP2009102603A (en) * 2007-10-05 2009-05-14 Hitachi Chem Co Ltd Adhesive composition and semiconductor device
KR100979509B1 (en) * 2008-04-16 2010-09-24 엔바로테크 주식회사 Electrode composition for solar cell
JP2010123457A (en) * 2008-11-20 2010-06-03 Panasonic Electric Works Co Ltd Conductive paste, and conductor pattern
US9035192B2 (en) 2009-12-24 2015-05-19 Cheil Industries, Inc. Anisotropic conductive adhesive composite and film, and circuit connecting structure including the same
KR101219139B1 (en) * 2009-12-24 2013-01-07 제일모직주식회사 Anisotropic conductive paste and film, circuit connecting structure body comprising the same
JP2015065098A (en) * 2013-09-26 2015-04-09 Dowaエレクトロニクス株式会社 Filamentous silver powder, silver powder mixture and production method of the same, as well as conductive paste
WO2017170390A1 (en) * 2016-03-29 2017-10-05 タツタ電線株式会社 Conductive coating material and production method for shielded package using conductive coating material
JP2017179362A (en) * 2016-03-29 2017-10-05 タツタ電線株式会社 Conductive coating and manufacturing method of shield package using the same
JP2017179360A (en) * 2016-03-29 2017-10-05 タツタ電線株式会社 Conductive coating and manufacturing method of shield package using the same
KR20180125991A (en) * 2016-03-29 2018-11-26 타츠타 전선 주식회사 Conductive paint and method of manufacturing shielded package using same
TWI704196B (en) * 2016-03-29 2020-09-11 日商拓自達電線股份有限公司 Conductive paint and manufacturing method of shielding package body using the same
KR102355386B1 (en) * 2016-03-29 2022-01-24 타츠타 전선 주식회사 Conductive paint and manufacturing method of shielding package using same
US11414554B2 (en) 2016-03-29 2022-08-16 Tatsuta Electric Wire & Cable Co., Ltd. Conductive coating material and production method for shielded package using conductive coating material
CN113658935A (en) * 2021-09-15 2021-11-16 苏州日月新半导体有限公司 Integrated circuit device

Similar Documents

Publication Publication Date Title
US6515237B2 (en) Through-hole wiring board
JP2003045228A (en) Conductive paste
JP4389148B2 (en) Conductive paste
JP4235887B2 (en) Conductive paste
JP4235888B2 (en) Conductive paste
US20160329122A1 (en) Conductive paste and conductive film
JP4224771B2 (en) Conductive paste
JP4273399B2 (en) Conductive paste and method for producing the same
JP4235885B2 (en) Conductive paste
JP2002164632A (en) Through hole wiring board
JP2002008444A (en) Conductive paste
JP4224774B2 (en) Conductive paste
JP2001302884A (en) Electrodonductive paste
JP2002260443A (en) Conductive paste
JP4224772B2 (en) Conductive paste
JP2001236827A (en) Conductive paste
JP2002245852A (en) Conductive paste
JP2002212492A (en) Electroconductive coating
JP2002245850A (en) Conductive paste
TWI224129B (en) Through-hole wiring board
JPH11209662A (en) Conductive paste
JP2002222612A (en) Electroconductive paste
JP2002231050A (en) Conductive paste
JP2002270034A (en) Conductive paste
JP2001266644A (en) Conductive paste

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425