[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003041346A - Duplex stainless steel for radioactive material storage container and method for manufacturing radioactive material storage container - Google Patents

Duplex stainless steel for radioactive material storage container and method for manufacturing radioactive material storage container

Info

Publication number
JP2003041346A
JP2003041346A JP2001229344A JP2001229344A JP2003041346A JP 2003041346 A JP2003041346 A JP 2003041346A JP 2001229344 A JP2001229344 A JP 2001229344A JP 2001229344 A JP2001229344 A JP 2001229344A JP 2003041346 A JP2003041346 A JP 2003041346A
Authority
JP
Japan
Prior art keywords
storage container
stainless steel
duplex stainless
welding
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001229344A
Other languages
Japanese (ja)
Other versions
JP3809494B2 (en
Inventor
Hitomi Ito
眸 伊東
Takashi Shige
重  隆司
Iwaji Abe
岩司 阿部
Haruhiko Kajimura
治彦 梶村
Shinji Tsuge
信二 柘植
Takaaki Matsuda
隆明 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001229344A priority Critical patent/JP3809494B2/en
Publication of JP2003041346A publication Critical patent/JP2003041346A/en
Application granted granted Critical
Publication of JP3809494B2 publication Critical patent/JP3809494B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

(57)【要約】 【課題】耐食性、靱性、電子ビーム溶接性に優れ放射性
物質貯蔵容器の材料として使用できる2相ステンレス
鋼、およびその2相ステンレス鋼を用いた放射性物質保
管容器製造方法の提供。 【解決手段】質量%で、C:0.005〜0.030%、Si:0.05
〜0.75%、Mn:0.20〜1.00%、Ni:5.5〜7.5%、Cr:2
4.0〜26.0%、Mo:2.5〜3.5%、Cu:0.2〜0.8%、W:
0.1〜0.5%、N:0.20〜0.30%、Al:0.010〜0.050%、
Ca:0〜0.0050%、B:0〜0.0030%、残部Feおよび不
純物からなり、不純物中のPは0.035%以下、Sは0.005
%以下、Tiは0.05%以下、Nbは0.1%以下、Vは0.5%以
下である放射性物質保管容器用2相ステンレス鋼、およ
びこの2相ステンレス鋼を溶接エネルギーが7.7〜18.0k
J/cmの電子ビーム溶接によって組み立てることを特徴
とする放射性物質保管容器の製造方法。
(57) [Summary] [Problem] To provide a duplex stainless steel excellent in corrosion resistance, toughness, electron beam weldability and usable as a material of a radioactive material storage container, and a method of manufacturing a radioactive material storage container using the duplex stainless steel. . SOLUTION: In mass%, C: 0.005 to 0.030%, Si: 0.05
~ 0.75%, Mn: 0.20 ~ 1.00%, Ni: 5.5 ~ 7.5%, Cr: 2
4.0-26.0%, Mo: 2.5-3.5%, Cu: 0.2-0.8%, W:
0.1 to 0.5%, N: 0.20 to 0.30%, Al: 0.010 to 0.050%,
Ca: 0 to 0.0050%, B: 0 to 0.0030%, balance Fe and impurities, P in impurities is 0.035% or less, S is 0.005%
% Or less, Ti is 0.05% or less, Nb is 0.1% or less, V is 0.5% or less. Duplex stainless steel for a radioactive material storage container, and welding energy of this duplex stainless steel is 7.7 to 18.0k.
A method for producing a radioactive substance storage container, comprising assembling by J / cm 2 electron beam welding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、放射性物質保管容
器用の2相ステンレス鋼、およびその2相ステンレス鋼
を電子ビーム溶接によって組み立てる放射性物質保管容
器の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a duplex stainless steel for a radioactive substance storage container and a method for manufacturing a radioactive substance storage container by assembling the duplex stainless steel by electron beam welding.

【0002】[0002]

【従来の技術】使用済み核燃料は、従来、水中で保管さ
れており、再処理を行うことを前提としていたため、原
子力発電所内および再処理施設で数年間ほどの短い保管
期間が想定されていた。しかし、近年、その保管量が増
加するとともに、再処理により処理量の限界も予測され
ていることから、使用済み核燃料を長期間保管すること
が検討されている。さらに廃棄されるべき高放射能レベ
ル廃棄物の量も増加しており、同様の長期間保管が検討
されている。その場合、使用済み核燃料および高放射能
レベル廃棄物(以下、両者を合わせて、単に放射性物質
という)では、従来の水中での保管に代えて、コスト面
および管理面で優れた乾式貯蔵が望まれている。
2. Description of the Related Art Spent nuclear fuel has conventionally been stored in water and is supposed to be reprocessed. Therefore, a short storage period of several years was assumed in nuclear power plants and reprocessing facilities. . However, in recent years, as the storage amount has increased, and the limit of the processing amount has been predicted by reprocessing, storage of spent nuclear fuel for a long period of time has been considered. In addition, the amount of high-activity waste that should be discarded is increasing, and similar long-term storage is being considered. In that case, for spent nuclear fuel and waste with high radioactivity levels (hereinafter, both are simply referred to as radioactive substances), dry storage, which is superior in terms of cost and management, is desired instead of conventional storage in water. It is rare.

【0003】密閉貯蔵容器を用いる放射性物質の貯蔵
は、一般に工場で蓋の部分を残して密閉貯蔵容器の主要
部分を形成し、その後、放射能を遮蔽する十分な措置が
取られた環境下で放射性物質を装入し、密閉構造となる
ように蓋の部分を溶接して放射性物質を密閉することに
より行われる。
The storage of radioactive materials using closed storage containers is generally done in an environment where the factory leaves the lid and forms the main part of the closed storage container, after which sufficient measures are taken to shield the radioactivity. It is carried out by charging a radioactive substance and then sealing the radioactive substance by welding the lid portion so as to form a closed structure.

【0004】密閉貯蔵容器は直径約2m、高さ約5mの円筒
状をしており、その中に内部構造物を内蔵して、放射性
物質を装入する。通常、放射性物質の装入は遠隔操作で
行われ、例えば、燃料棒に傷をつけないようにするた
め、密閉貯蔵容器には構造物として極めて寸法精度の高
いことが要求される。
The closed storage container is in the shape of a cylinder having a diameter of about 2 m and a height of about 5 m, and an internal structure is built in the container and charged with a radioactive substance. Usually, radioactive material is charged by remote control. For example, in order to prevent damage to fuel rods, a closed storage container is required to have extremely high dimensional accuracy as a structure.

【0005】従来、工場における密閉貯蔵容器の製造に
はTIG溶接が採用されてきた。しかし、TIG溶接によって
精度の高い密閉貯蔵容器を形成するには、溶接速度を落
す必要があり、生産性の面で不利である。また、高い寸
法精度を得るのにも限界があった。そこで、このような
問題を解決するため、密閉貯蔵容器の形成に高い寸法精
度を確保できる電子ビーム溶接(Electric Beam Weldin
g)を適用することが求められてきた。
Traditionally, TIG welding has been employed in the manufacture of closed storage vessels in factories. However, in order to form a highly accurate closed storage container by TIG welding, it is necessary to reduce the welding speed, which is disadvantageous in terms of productivity. Moreover, there is a limit in obtaining high dimensional accuracy. Therefore, in order to solve such a problem, electron beam welding (Electric Beam Weldin
g) has been required to apply.

【0006】一方、密閉貯蔵容器は、海岸付近におかれ
ることも多く、飛来する海塩粒子により発生する孔食な
どを防止するため、使用される材料の耐食性も考慮しな
ければならない。即ち、放射性物質の貯蔵容器用の材料
としては、強度、靱性等の機械的性質だけでなく耐食性
に優れることも要求される。特に耐食性に関しては、水
中での一時的保管と異なり数十年単位での使用でも腐食
問題が起きないことが要求される。
On the other hand, the closed storage container is often placed near the coast, and in order to prevent pitting corrosion and the like caused by flying sea salt particles, it is necessary to consider the corrosion resistance of the material used. That is, as a material for a radioactive substance storage container, not only mechanical properties such as strength and toughness but also excellent corrosion resistance are required. In particular, with respect to corrosion resistance, unlike temporary storage in water, it is required that corrosion problems do not occur even when used for several decades.

【0007】特開2001−141878号公報には、
原子炉の遮蔽材や核燃料を輸送・貯蔵する容器の隙間腐
食や応力腐食割れを防止する腐食防止法が開示されてい
る。この発明では、特に熱中性子を吸収する効果がある
Bを添加したオーステナイト系ステンレス鋼を用いて作
製した容器の耐食性を確保するため、使用環境のClイオ
ン濃度と温度を規定している。しかし、貯蔵容器を常に
このような使用環境下に置いておくことは困難であり、
現実的ではない。むしろ、使用環境を調整するのではな
く、予想される使用環境に合わせて、貯蔵容器の材料組
成を調整する方が現実的である。
Japanese Patent Laid-Open No. 2001-141878 discloses that
A corrosion prevention method for preventing crevice corrosion and stress corrosion cracking of a reactor shielding material and a container for transporting and storing nuclear fuel is disclosed. In this invention, in order to secure the corrosion resistance of the container made of B-added austenitic stainless steel which has the effect of absorbing thermal neutrons, the Cl ion concentration and temperature of the operating environment are specified. However, it is difficult to always keep the storage container in such a usage environment,
Not realistic. Rather, it is more realistic to adjust the material composition of the storage container according to the expected usage environment rather than adjusting the usage environment.

【0008】耐食性に優れた材料としては、例えば、特
開平11−80901号公報に記載されているような2
相ステンレス鋼が挙げられる。しかし、この公報に記載
されている耐食性は、鋼自体、すなわち母材の耐食性で
あって、溶接を行った際に形成される溶接金属部やHAZ
(溶接熱影響部)における耐食性については不明であ
る。よって、特開平11−80901号公報に開示され
るような2相ステンレス鋼が、放射性物質の密閉貯蔵容
器の材料として好適であるとは限らない。
As a material excellent in corrosion resistance, for example, 2 as described in JP-A No. 11-80901 is used.
Examples include duplex stainless steel. However, the corrosion resistance described in this publication is the corrosion resistance of the steel itself, that is, the base metal, and the weld metal portion and HAZ formed when welding is performed.
The corrosion resistance in (welding heat affected zone) is unknown. Therefore, duplex stainless steel as disclosed in JP-A No. 11-80901 is not always suitable as a material for a closed storage container for radioactive substances.

【0009】特に、放射性物質の密閉貯蔵容器を作製す
る際に電子ビーム溶接を使用する場合、真空で溶接する
ことが必須となるため、溶融部において鋼中に含まれる
Nが放出され、溶接欠陥が生成し耐食性が低下するとい
う問題がある。また、これに加え、電子ビーム溶接を行
うとTIG溶接とは異なり溶接部の靱性が低くなるなど、
貯蔵容器の材料の機械的特性についても解決しなければ
ならない問題がある。
In particular, when electron beam welding is used when producing a closed container for radioactive materials, it is essential to weld in a vacuum, so that N contained in the steel is released in the melted portion, resulting in welding defects. However, there is a problem that the corrosion resistance is deteriorated. In addition to this, unlike electron beam welding, electron beam welding reduces the toughness of the welded part.
There is also a problem to be solved regarding the mechanical properties of the material of the storage container.

【0010】[0010]

【発明が解決しようとする課題】本発明の課題は、放射
性物質貯蔵容器の材料として使用でき、耐食性や、靱性
などの機械的特性の良好な電子ビーム溶接性に優れた2
相ステンレス鋼を提供することにある。また、その2相
ステンレス鋼を素材として電子ビーム溶接によって放射
性物質貯蔵容器を製造する方法を提供することにある。
The object of the present invention is that it can be used as a material for a radioactive substance storage container and has excellent electron beam weldability with good mechanical properties such as corrosion resistance and toughness.
Providing duplex stainless steel. Another object of the present invention is to provide a method of manufacturing a radioactive substance storage container by electron beam welding using the duplex stainless steel as a raw material.

【0011】[0011]

【課題を解決するための手段】本発明者らは、放射性物
質保管容器の製造に電子ビーム溶接を適用することを前
提として、放射性物質保管容器が基本的に有していなけ
ればならない耐食性、機械的強度といった特性に加え、
電子ビーム溶接を適用することができる鋼材を得るため
に、材料組成に着目した。
DISCLOSURE OF THE INVENTION The inventors of the present invention basically assume that a radioactive substance storage container must have electron beam welding, and therefore the radioactive substance storage container must basically have corrosion resistance and mechanical properties. In addition to characteristics such as dynamic strength,
In order to obtain a steel material to which electron beam welding can be applied, attention was paid to the material composition.

【0012】電子ビーム溶接では、通常のTIG溶接など
と異なりフィラーを用いず母材を直接溶融して接合する
ため、母材の組成が溶接性に直接影響する。特に、電子
ビーム溶接では真空中にNが放出されるため、溶接後に
も材料中のNを確保する材料設計を行うことが必要にな
る。そこで、優れた耐食性および機械的強度を持つ2相
ステンレス鋼をベースに材料組成の検討を行った。
In the electron beam welding, unlike the ordinary TIG welding or the like, the base material is directly melted and joined without using a filler, so that the composition of the base material directly affects the weldability. In particular, in electron beam welding, N is released into a vacuum, so it is necessary to design the material so as to secure N in the material even after welding. Therefore, the material composition was examined based on duplex stainless steel having excellent corrosion resistance and mechanical strength.

【0013】溶接後にも材料中のNを確保するには、放
出されるN量を考慮して、予め多めのNを2相ステンレ
ス鋼に含有させておけばよい。しかし、そのような高N
の鋼を電子ビーム溶接すると、溶接金属の靱性が低下す
る。この靱性低下の原因について調査したところ、高N
化による介在物の発生が原因であることが判明し、特
に、不純物として混入するTiがNとTiNを作ることによ
り、靱性が低下していることが判明した。
In order to secure N in the material even after welding, considering the amount of released N, a large amount of N may be contained in the duplex stainless steel in advance. But such high N
Electron beam welding of the above steel reduces the toughness of the weld metal. When the cause of this decrease in toughness was investigated, high N
It was found that the cause is the generation of inclusions due to oxidization, and in particular, it has been found that the toughness is reduced by the fact that Ti mixed as an impurity forms N and TiN.

【0014】また、溶接欠陥の発生を防止するには、そ
の材料組成にふさわしい溶接条件が必要になるので、併
せて溶接条件についても検討を行った。
Further, in order to prevent the occurrence of welding defects, welding conditions suitable for the material composition are required. Therefore, the welding conditions were also examined.

【0015】本発明は、以上のような検討結果に基づい
て完成に至ったものであり、その要旨は、下記(1)の2
相ステンレス鋼、および(2)の使用済み放射性物質保管
容器の製造方法にある。
The present invention has been completed based on the above-described examination results, and the gist thereof is as follows in (1) 2
It is in the manufacturing method of duplex stainless steel and the used radioactive material storage container of (2).

【0016】(1) 質量%で、C:0.005〜0.030%、S
i:0.05〜0.75%、Mn:0.20〜1.00%、Ni:5.5〜7.5
%、Cr:24.0〜26.0%、Mo:2.5〜3.5%、Cu:0.2〜0.8
%、W:0.1〜0.5%、N:0.20〜0.30%、Al:0.010〜
0.050%、Ca:0〜0.0050%、B:0〜0.0030%、残部F
eおよび不純物からなり、不純物中のPは0.035%以下、
Sは0.005%以下、Tiは0.05%以下、Nbは0.1%以下、V
は0.5%以下であることを特徴とする電子ビーム溶接性
に優れた使用済み放射性物質保管容器用2相ステンレス
鋼。
(1) C: 0.005 to 0.030% by mass%, S
i: 0.05 to 0.75%, Mn: 0.20 to 1.00%, Ni: 5.5 to 7.5
%, Cr: 24.0 to 26.0%, Mo: 2.5 to 3.5%, Cu: 0.2 to 0.8
%, W: 0.1 to 0.5%, N: 0.20 to 0.30%, Al: 0.010 to
0.050%, Ca: 0 to 0.0050%, B: 0 to 0.0030%, balance F
consisting of e and impurities, P in the impurities is 0.035% or less,
S is 0.005% or less, Ti is 0.05% or less, Nb is 0.1% or less, V
Is less than 0.5% and is a duplex stainless steel for used radioactive material storage containers with excellent electron beam weldability.

【0017】(2)上記(1)の2相ステンレス鋼を、単位面
積あたりの溶接エネルギーが7.7〜18.0kJ/cmの電子ビ
ーム溶接によって組み立てることを特徴とする使用済み
放射性物質保管容器の製造方法。
(2) Manufacturing of a used radioactive substance storage container characterized by assembling the duplex stainless steel of (1) above by electron beam welding with a welding energy per unit area of 7.7 to 18.0 kJ / cm 2. Method.

【0018】[0018]

【発明の実施の形態】前記(1)の2相ステンレス鋼に係
る発明(以下、第1発明という)は、電子ビーム溶接性
に優れた2相ステンレス鋼の発明である。ここで、「電
子ビーム溶接性に優れた」とは、電子ビーム溶接により
溶接を行っても、その溶接部に溶接欠陥が発生せず、溶
接した構造物を高い寸法精度で形成できることをいう。
第1発明の2相ステンレス鋼は、その材料組成が以下に
示す範囲にあることが必要である。なお、以下に述べる
材料組成の含有量はいずれも質量%で示す。
BEST MODE FOR CARRYING OUT THE INVENTION The invention (1) of the duplex stainless steel (hereinafter referred to as the first invention) is an invention of the duplex stainless steel excellent in electron beam weldability. Here, "excellent in electron beam weldability" means that even if welding is performed by electron beam welding, no weld defect occurs in the welded portion and the welded structure can be formed with high dimensional accuracy.
The duplex stainless steel of the first invention is required to have a material composition within the range shown below. In addition, the content of each of the material compositions described below is represented by mass%.

【0019】C:0.005〜0.030% Cは、オーステナイト安定化元素であり、また強度向上
にも寄与する。これらの効果を得るために0.005%以上
の含有が必要である。しかし、その含有量が0.030%を
超えると、HAZでの炭化物生成が多くなり耐食性の劣化
を招く。したがって、C含有量は0.030%以下に抑える
必要がある。
C: 0.005 to 0.030% C is an austenite stabilizing element and also contributes to the improvement of strength. In order to obtain these effects, the content of 0.005% or more is required. However, if the content exceeds 0.030%, the amount of carbides generated in the HAZ increases, leading to deterioration of corrosion resistance. Therefore, the C content needs to be suppressed to 0.030% or less.

【0020】Si:0.05〜0.75% Siは鋼の脱酸剤として使用され、0.05%以上の含有が必
要である。しかし、Si含有量が0.75%を超えると、σ相
の生成が促進され、耐食性や靱性が劣化する。したがっ
て、Siの適正な含有量は0.05〜0.75%である。
Si: 0.05 to 0.75% Si is used as a deoxidizer for steel, and it is necessary to contain Si in an amount of 0.05% or more. However, if the Si content exceeds 0.75%, the formation of the σ phase is promoted, and the corrosion resistance and toughness deteriorate. Therefore, the proper content of Si is 0.05 to 0.75%.

【0021】Mn:0.20〜1.00% Mnは脱酸剤として機能するほか、オーステナイト形成元
素としても機能するため、0.20%以上含有させる。ま
た、MnにはSを固定し、熱間加工性を改善する効果もあ
るが、Mn含有量が1.00%を超えると、形成されたMnSが
孔食発生の基点となる。従って、Mn含有量は0.20〜1.00
%、好ましいのは0.20〜0.80%である。
Mn: 0.20 to 1.00% Mn functions not only as a deoxidizer but also as an austenite forming element, so 0.20% or more is contained. Further, Mn has the effect of fixing S to improve hot workability, but when the Mn content exceeds 1.00%, the formed MnS becomes the starting point of pitting corrosion. Therefore, the Mn content is 0.20-1.00
%, Preferably 0.20 to 0.80%.

【0022】Ni:5.5〜7.5% Niは2相ステンレス鋼の必須成分であり、オーステナイ
ト相を安定化させる効果を有する。その効果を発揮させ
るために、Ni含有量は5.5〜7.5%とする。5.5%未満で
はフェライト相が増えて2相ステンレス鋼としての特性
が劣る。また、7.5%を超えるとオーステナイト相が増
えすぎ、σ相の生成が促進される。
Ni: 5.5-7.5% Ni is an essential component of duplex stainless steel and has the effect of stabilizing the austenite phase. In order to exert its effect, the Ni content is 5.5 to 7.5%. If it is less than 5.5%, the ferritic phase increases and the properties as a duplex stainless steel deteriorate. On the other hand, if it exceeds 7.5%, the austenite phase increases too much, and the generation of the σ phase is promoted.

【0023】Cr:24.0〜26.0% Crは2相ステンレス鋼の耐食性の向上に寄与する元素で
あるため、24.0%以上含有させる。一層すぐれた耐食性
を確保するには25.0%以上含有させることが好ましい。
しかし、Cr含有量が26.0%を超えると、σ相の生成が促
進され熱間加工性が劣化する。したがって、Cr含有量は
24.0〜26.0%とする。好ましいのは25.0〜26.0%であ
る。
Cr: 24.0 to 26.0% Since Cr is an element that contributes to the improvement of the corrosion resistance of duplex stainless steel, it is contained at 24.0% or more. In order to secure even better corrosion resistance, it is preferable to contain 25.0% or more.
However, when the Cr content exceeds 26.0%, the generation of the σ phase is promoted and the hot workability deteriorates. Therefore, the Cr content is
24.0 to 26.0%. 25.0-26.0% is preferable.

【0024】Mo:2.5〜3.5% MoもCr同様、耐食性の向上に寄与する元素である。その
ため、2.5%以上含有させる。優れた耐食性を確保する
には3.1%以上含有させることが好ましい。しかし、Mo
含有量が3.5%を超えると、σ相の生成が促進され熱間
加工性が劣化する。したがって、Mo含有量は2.5〜3.5
%、好ましいのは3.1〜3.5%である。
Mo: 2.5 to 3.5% Like Cr, Mo is an element that contributes to the improvement of corrosion resistance. Therefore, 2.5% or more is contained. In order to secure excellent corrosion resistance, it is preferable to contain 3.1% or more. But Mo
If the content exceeds 3.5%, the generation of the σ phase is promoted and the hot workability deteriorates. Therefore, the Mo content is 2.5 to 3.5.
%, Preferably 3.1 to 3.5%.

【0025】Cu:0.2〜0.8% CuもCr、Moと同様、耐食性の向上に寄与する元素であ
る。そのため、0.2%以上含有させる。しかし、Cu含有
量が0.8%を超えると熱間加工性が劣化する。したがっ
て、Cuの適正含有量は0.2〜0.8%である。
Cu: 0.2 to 0.8% Cu, like Cr and Mo, is an element that contributes to the improvement of corrosion resistance. Therefore, 0.2% or more is contained. However, if the Cu content exceeds 0.8%, the hot workability deteriorates. Therefore, the appropriate Cu content is 0.2 to 0.8%.

【0026】W:0.1〜0.5% WもCr、Mo、Cuと同様、耐食性の向上に寄与する元素で
ある。そのため、0.1%以上含有させる。しかし、W含
有量が0.5%を超えると、σ相の生成が促進され熱間加
工性が劣化する。したがって、W含有量は0.1〜0.5%と
する。
W: 0.1 to 0.5% W, like Cr, Mo and Cu, is an element contributing to the improvement of corrosion resistance. Therefore, 0.1% or more is contained. However, when the W content exceeds 0.5%, the generation of the σ phase is promoted and the hot workability deteriorates. Therefore, the W content is 0.1 to 0.5%.

【0027】N:0.20〜0.30% Nは、耐食性の向上に寄与する元素である。しかし、前
述したように、真空中で電子ビーム溶接を行うと鋼中の
Nが放出される。そのため、Nが放出されても、十分な
Nが溶接部に残留するように、0.20%以上含有させる。
しかし、N含有量が0.30%を超えると、溶接欠陥(ブロ
ーホール)が発生する。したがって、適正なN含有量は
0.20〜0.30%である。
N: 0.20 to 0.30% N is an element that contributes to the improvement of corrosion resistance. However, as described above, when electron beam welding is performed in vacuum, N in steel is released. Therefore, even if N is released, 0.20% or more is contained so that sufficient N remains in the welded portion.
However, if the N content exceeds 0.30%, welding defects (blowholes) occur. Therefore, the proper N content is
It is 0.20 to 0.30%.

【0028】Al:0.010〜0.050% Alは、後述の理由により脱酸剤としてのTiを含有させる
ことができないので、Tiの代わりに脱酸剤として0.010
%以上含有させる。しかし、Al含有量が0.050%を超え
るとAlNが形成され、靱性が低下する。したがって、Al
含有量は0.010〜0.050%とする。
Al: 0.010 to 0.050% Al cannot contain Ti as a deoxidizing agent for the reason described below. Therefore, instead of Ti, 0.010% as a deoxidizing agent is used.
% Or more. However, if the Al content exceeds 0.050%, AlN is formed and the toughness is reduced. Therefore, Al
The content is 0.010 to 0.050%.

【0029】Ca:0〜0.0050%、B:0〜0.0030% 高N化による熱間加工性の低下を補うため、必要に応じ
てCaまたは/およびBを含有させてもよい。しかし、Ca
の含有量が0.0050%を超えるとCaSの生成量が増えて耐
食性劣化を招く。また、Bの含有量が0.0030%を超える
とCr23(C、B)の粒界析出が促進されて耐食性が
損なわれる。
Ca: 0 to 0.0050%, B: 0 to 0.0030% In order to compensate for the decrease in hot workability due to the high N content, Ca and / or B may be added if necessary. But Ca
If the content of Ca exceeds 0.0050%, the amount of CaS produced increases and corrosion resistance deteriorates. Further, if the content of B exceeds 0.0030%, the grain boundary precipitation of Cr 23 (C, B) 6 is promoted and the corrosion resistance is impaired.

【0030】本発明の2相ステンレス鋼は、上記の成分
と残部Feおよび不純物からなる。不純物中のP、S、T
i、NbおよびVは下記のように規制する。
The duplex stainless steel of the present invention comprises the above components, the balance Fe and impurities. P, S, T in impurities
i, Nb and V are regulated as follows.

【0031】P:0.035%以下 Pは鋼の溶接高温割れ感受性を高める不純物であるの
で、0.035%以下で、できるだけ低いほど好ましい。
P: 0.035% or less P is an impurity that increases the susceptibility to high temperature welding cracking of steel.

【0032】S:0.005%以下 Sは、熱間加工性を劣化させ、また耐食性を低下させる
不純物である。従って、0.005%以下で、低いほど好ま
しい。より好ましいのは0.002%以下である。
S: 0.005% or less S is an impurity which deteriorates hot workability and corrosion resistance. Therefore, it is 0.005% or less, and the lower the better. 0.002% or less is more preferable.

【0033】Ti:0.05%以下 Tiは本来、脱酸剤としての機能を有するが、前記のよう
にNとTiNを形成し、溶接部の靱性を低下させるので、
その含有量は0.05%以下とする。TiNの形成をより確実
に抑制するためには、Ti含有量は0.01%以下であること
が好ましい。
Ti: 0.05% or less Ti originally has a function as a deoxidizing agent, but forms N and TiN as described above and reduces the toughness of the welded portion.
Its content is 0.05% or less. In order to more reliably suppress the formation of TiN, the Ti content is preferably 0.01% or less.

【0034】Nb:0.1%以下 Nbも窒化物を形成して溶接部の靱性を低下させるので、
その含有量は0.1%以下とする。より望ましいのは0.05
%以下である。
Nb: 0.1% or less Nb also forms a nitride and reduces the toughness of the welded portion.
Its content is 0.1% or less. 0.05 is more desirable
% Or less.

【0035】V:0.5%以下 Vの含有量が0.5%を超えるとσ相の生成が促され鋼の
熱間加工性が劣化する。従って、Vは0.5%以下に抑え
るべきである。なお、Vには耐食性改善の効果があるの
で、0.5%以下の範囲であれば、その効果を得るべく含
有させてもよい。
V: 0.5% or less If the content of V exceeds 0.5%, the formation of σ phase is promoted and the hot workability of steel deteriorates. Therefore, V should be suppressed to 0.5% or less. Since V has an effect of improving corrosion resistance, V may be contained in order to obtain the effect in the range of 0.5% or less.

【0036】2相ステンレス鋼は、常温ではフェライト
量がおよそ50%で残りがオーステナイトである。しか
し、高温ではフェライト単相組織となっているため、電
子ビーム溶接を行うと、溶接部は一旦フェライト単相と
なった後、凝固後はオーステナイトがわずかに析出した
フェライト量が多い組織となる。特に電子ビーム溶接
は、入熱量が小さいので母材による冷却効果が大きく、
溶接部の凝固速度が速い。そのため、溶接部は高温での
組織が保持された急冷凝固組織となり、フェライトが多
くなる。フェライトが過剰な溶接部は、靱性が低下する
だけでなく、耐食性も低下する。特にフェライトが増え
ることにより水素に起因する遅れ破壊の発生の危険性が
増す。このような組織変化に伴う特性の低下を防止する
ためには、溶接部に占めるフェライト量が溶接部の80%
以下であればよい。
Duplex stainless steel has a ferrite content of about 50% at room temperature and the rest is austenite. However, since it has a ferrite single phase structure at high temperature, when electron beam welding is performed, the welded part once becomes a ferrite single phase, and after solidification, a structure in which austenite is slightly precipitated and a large amount of ferrite is formed. Especially in electron beam welding, the heat input is small, so the cooling effect of the base metal is large,
The solidification rate of the weld is fast. Therefore, the welded part has a rapidly solidified structure in which the structure at high temperature is retained, and the amount of ferrite increases. A welded portion containing excessive ferrite not only has a low toughness but also a low corrosion resistance. In particular, the increase in ferrite increases the risk of delayed fracture due to hydrogen. In order to prevent the deterioration of properties due to such microstructural changes, the amount of ferrite in the weld is 80% of the weld.
The following is acceptable.

【0037】本発明の2相ステンレス鋼は、電子ビーム
溶接した際、溶接部に占めるフェライト量が溶接部の80
%以下となる。従って、この2相ステンレス鋼を電子ビ
ーム溶接して製造した放射性物質保管容器は、溶接部の
靱性および耐食性に優れたものとなる。
In the duplex stainless steel of the present invention, when electron beam welding is performed, the amount of ferrite in the weld is 80% of that of the weld.
% Or less. Therefore, the radioactive substance storage container manufactured by electron beam welding of this duplex stainless steel has excellent toughness and corrosion resistance at the welded portion.

【0038】第2発明は、本発明の2相ステンレス鋼を
用いて放射性物質保管容器を製造する方法に関する。
The second invention relates to a method of manufacturing a radioactive substance storage container using the duplex stainless steel of the present invention.

【0039】電子ビーム溶接では、その入熱管理が重要
である。特に、本発明の2相ステンレス鋼ではN含有量
を高くしているので、溶接時にNが放出される。その溶
接部外へ放出がうまくいかず、溶接部に閉じこめられた
場合、ブローホールなどの欠陥となって残りやすい。
In electron beam welding, heat input management is important. In particular, since the duplex stainless steel of the present invention has a high N content, N is released during welding. If it is not released to the outside of the welded part and is trapped in the welded part, defects such as blow holes tend to remain.

【0040】上記の欠陥発生を防止するため電子ビーム
溶接する際の単位面積あたりの溶接エネルギーを7.7〜1
8.0kJ/cmとすることが必要である。溶接エネルギー
が7.7kJ/cm未満であると、入熱不足のために溶接部
の外面に表面欠陥が生じる。一方、18.0kJ/cmを超え
ると、入熱が大きすぎて溶接部(溶融池)への窒素の拡
散量が多くなり、多量の気泡ができて内部欠陥が生じ
る。
In order to prevent the above defects from occurring, the welding energy per unit area at the time of electron beam welding is set to 7.7 to 1
It is necessary to set it to 8.0 kJ / cm 2 . If the welding energy is less than 7.7 kJ / cm 2 , surface defects occur on the outer surface of the weld due to insufficient heat input. On the other hand, if it exceeds 18.0 kJ / cm 2 , the heat input is too large and the amount of nitrogen diffused into the welded portion (molten pool) increases, and a large amount of bubbles are formed, causing internal defects.

【0041】本発明の2相ステンレス鋼を電子ビーム溶
接により溶接すると、極めて寸法精度の高い放射性物質
保管容器を得ることができる。その構造物の溶接部には
溶接欠陥がなく、優れた耐食性を有する。また、水素に
起因する遅れ破壊の発生もなく、衝撃値も高い。これら
の特性は、放射性物質保管容器に必須の特性である。
When the duplex stainless steel of the present invention is welded by electron beam welding, a radioactive substance storage container having extremely high dimensional accuracy can be obtained. The weld of the structure has no welding defects and has excellent corrosion resistance. In addition, there is no delayed fracture due to hydrogen, and the impact value is high. These properties are essential properties for radioactive material storage containers.

【0042】[0042]

【実施例】表1に示すように組成を調節した50kgの2相
ステンレス鋼を高周波電気炉で溶解し、鍛造、熱間圧延
した後、1080℃で30分加熱保持し、水冷して厚さ20mmの
鋼板を製造した。この鋼板を母材として、1.33×10−2
Pa(1×10−4Torr)まで真空度を高めた容器中で電子
ビーム溶接を実施した。溶接を行うにあたっては、溶接
電流、加速電圧、溶接速度などを変えることにより投入
する溶接エネルギーを変化させ適正な溶接条件を決定し
た。
[Examples] 50 kg of duplex stainless steel whose composition was adjusted as shown in Table 1 was melted in a high frequency electric furnace, forged and hot rolled, then heated and held at 1080 ° C for 30 minutes, water cooled to a thickness. 20 mm steel plate was manufactured. Using this steel sheet as the base material, 1.33 × 10 -2
Electron beam welding was performed in a container whose vacuum degree was increased to Pa (1 × 10 −4 Torr). When performing welding, the welding energy input was changed by changing the welding current, accelerating voltage, welding speed, etc. to determine the proper welding conditions.

【0043】溶接後の供試材については、欠陥観察、シ
ャルピー衝撃試験、遅れ破壊脆性試験および孔食発生電
位測定を行うとともに、溶接金属のフェライト率を算出
した。
For the test material after welding, defect observation, Charpy impact test, delayed fracture embrittlement test and pitting corrosion potential were measured, and the ferrite ratio of the weld metal was calculated.

【0044】欠陥観察では、肉眼で外観上の溶接欠陥を
観察するとともに、X線透過法により溶接部の内部を観
察した。また、溶接部の断面を光学顕微鏡で観察するこ
とによりボイド等の内部欠陥の有無を調査した。
In the defect observation, the appearance of the welding defect was visually observed and the inside of the welded portion was observed by the X-ray transmission method. Moreover, the presence or absence of internal defects such as voids was investigated by observing the cross section of the welded portion with an optical microscope.

【0045】シャルピー衝撃試験では、供試材の溶接部
のみがノッチ部になるように、JISZ 2202で規定される
Vノッチ衝撃試験片を作製し、JIS Z 2242に従って−50
℃における衝撃値(1cmあたりの吸収エネルギー)を
測定した。
In the Charpy impact test, a V-notch impact test piece defined by JIS Z 2202 was prepared so that only the welded portion of the test material became the notch portion, and in accordance with JIS Z 2242, it was −50.
The impact value (absorbed energy per 1 cm 2 ) at ℃ was measured.

【0046】遅れ破壊脆性試験では、溶接部を含み、平
行部3φ×20mm、全長70mmの試験片を作製し、この試験
片を5%硫酸にチオ尿素を1リットルあたり1.4g溶解させ
た溶液中で、600MPaの応力をかけて、陰極電解により水
素を発生させた。このとき、溶液の温度は35℃、電流密
度は0.1mA/cmとし、300時間後、破断しているか否か
を調査した。
In the delayed fracture embrittlement test, a test piece including a welded part and having a parallel portion of 3φ × 20 mm and a total length of 70 mm was prepared, and this test piece was dissolved in 5% sulfuric acid in a solution of 1.4 g of thiourea per liter. Then, a stress of 600 MPa was applied to generate hydrogen by cathodic electrolysis. At this time, the temperature of the solution was 35 ° C. and the current density was 0.1 mA / cm 2, and after 300 hours, it was examined whether or not the material was broken.

【0047】孔食発生電位測定では、溶接部、HAZおよ
び溶接金属が含まれる試験片を供試材より採取し、この
試験片とSCE(標準電極)を電極として、温度85℃の
人工海水(市販の金属腐食試験用の人工海水薬剤を用い
て調整)中で孔食電位の測定を行った。
In measuring the pitting corrosion potential, a test piece containing the weld, HAZ and weld metal was sampled from the test material, and the test piece and SCE (standard electrode) were used as electrodes to prepare artificial seawater (85 ° C). The pitting potential was measured in a commercially available artificial seawater chemical for metal corrosion test).

【0048】また、溶接金属のフェライト率は、溶接金
属の断面をシュウ酸電解とKOH電解によりエッチング
し、500倍の顕微鏡写真を用い画像解析することにより
算出した。
The ferrite ratio of the weld metal was calculated by etching the cross section of the weld metal with oxalic acid electrolysis and KOH electrolysis and performing image analysis using a 500 times micrograph.

【0049】表1に供試材の化学組成および電子ビーム
溶接したときの溶接エネルギーを示す。
Table 1 shows the chemical composition of the test material and the welding energy when electron beam welding is performed.

【0050】[0050]

【表1】 [Table 1]

【0051】表2は、前記の試験の結果をまとめて示し
た表である。同表における溶接欠陥の評価は、欠陥がな
い場合を○、欠陥が発生した場合を×で表記した。ま
た、耐遅れ破壊の評価は、破断がない場合を○、破断が
あった場合を×で表記した。
Table 2 is a table summarizing the results of the above tests. In the evaluation of welding defects in the table, the case where there is no defect is indicated by ◯, and the case where a defect occurs is indicated by x. In addition, the evaluation of delayed fracture is indicated by ◯ when there is no fracture and by X when there is fracture.

【0052】[0052]

【表2】 [Table 2]

【0053】表1および2からわかるように、本発明の
2相ステンレス鋼を本発明で規定する条件で電子ビーム
溶接した供試材(No.1〜5)は、いずれも溶接金属にお
けるフェライト率が80%以下となり、溶接欠陥がなく、
衝撃値も大きく、さらに遅れ破壊脆性も見られない。し
かも、これらは、孔食発生電位も高く、耐食性にも優れ
ている。
As can be seen from Tables 1 and 2, the sample materials (No. 1 to 5) obtained by electron beam welding the duplex stainless steel of the present invention under the conditions specified in the present invention are all ferrite ratios in the weld metal. Is 80% or less, there are no welding defects,
The impact value is also large, and delayed fracture brittleness is not observed. Moreover, these have a high pitting corrosion generation potential and are also excellent in corrosion resistance.

【0054】一方、S含有量が高い供試材(No.6)は、
孔食発生電位が低くなり、耐食性に劣る。これは、溶接
金属中にできた硫化物により孔食の発生が促進されたた
めであると考えられる。また、Cr含有量が低い供試材
(No.7)も同様に耐食性が劣る。
On the other hand, the test material with a high S content (No. 6)
The pitting corrosion potential is low and the corrosion resistance is poor. It is considered that this is because the sulfide formed in the weld metal promoted the occurrence of pitting corrosion. Similarly, the test material with a low Cr content (No. 7) also has poor corrosion resistance.

【0055】Ti含有量が高い供試材(No.8)は、耐食性
が悪いだけでなく、衝撃値も低い。これは、Tiにより耐
食性に効果のあるNが固定化されることに加え、TiN形
成により靱性が劣化し、介在物近傍の溶解による孔食の
発生が促進されたためであると考えられる。
The test material (No. 8) having a high Ti content has not only poor corrosion resistance but also low impact value. It is considered that this is because Ti has the effect of fixing N, which has an effect on corrosion resistance, and the formation of TiN has deteriorated toughness and promoted the occurrence of pitting corrosion due to dissolution in the vicinity of inclusions.

【0056】Al含有量が低い供試材(No.9)は、孔食発
生電位が低く、耐食性が悪い。これに加えて、溶接金属
におけるフェライト率が80%を超すため、耐遅れ破壊脆
性も悪化した。また、Al含有量が高い供試材(No.10)
では衝撃値が低い。これは、AlがNと化合してAlNを形
成したためであると考えられる。
The test material (No. 9) having a low Al content has a low pitting corrosion generation potential and poor corrosion resistance. In addition to this, since the ferrite ratio in the weld metal exceeds 80%, the delayed fracture embrittlement resistance also deteriorated. Also, a test material with a high Al content (No. 10)
The shock value is low. It is considered that this is because Al combined with N to form AlN.

【0057】N含有量が低い供試材(No.11)は、衝撃
値の低下や孔食発生電位の低下が見られ、機械的特性、
耐食性ともに十分でない。さらに、溶接金属におけるフ
ェライト率が80%を超し、耐遅れ破壊脆性も悪化した。
また、N含有量が高すぎる供試材(No.12)では、溶接
欠陥が発生した。
The test material (No. 11) having a low N content showed a decrease in impact value and a decrease in pitting corrosion generation potential, mechanical properties,
Not enough corrosion resistance. Furthermore, the ferrite ratio in the weld metal exceeded 80%, and the delayed fracture embrittlement resistance also deteriorated.
Further, in the test material (No. 12) having an excessively high N content, welding defects occurred.

【0058】本発明の2相ステンレス鋼を母材としたN
o.13および14は、電子ビーム溶接の入熱が不適当な例で
ある。これらでは溶接欠陥が発生した。
N based on the duplex stainless steel of the present invention
o.13 and 14 are examples of improper heat input for electron beam welding. Weld defects occurred in these.

【0059】[0059]

【発明の効果】本発明の2相ステンレス鋼は電子ビーム
溶接性に優れ、溶接を施しても溶接部の耐食性、機械的
特性が良好である。このような2相ステンレス鋼に適正
な溶接エネルギーを加えて電子ビーム溶接すれば、欠陥
ができることもない。従って、本発明の2相ステンレス
鋼は、電子ビーム溶接によって組み立てられる放射性物
質保管容器の材料としてきわめて好適である。
The duplex stainless steel of the present invention is excellent in electron beam weldability and has good corrosion resistance and mechanical properties in the welded portion even after welding. Defects will not occur if electron beam welding is performed by applying appropriate welding energy to such duplex stainless steel. Therefore, the duplex stainless steel of the present invention is extremely suitable as a material for a radioactive substance storage container assembled by electron beam welding.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G21F 5/00 B23K 103:04 // B23K 101:12 G21F 5/00 K 103:04 G21C 19/06 S (72)発明者 重 隆司 兵庫県高砂市荒井町新浜2丁目1−1 三 菱重工業株式会社高砂研究所内 (72)発明者 阿部 岩司 兵庫県神戸市兵庫区和田崎町1丁目1−1 三菱重工業株式会社神戸造船所内 (72)発明者 梶村 治彦 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 柘植 信二 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 松田 隆明 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 Fターム(参考) 4E066 CB02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G21F 5/00 B23K 103: 04 // B23K 101: 12 G21F 5/00 K 103: 04 G21C 19/06 S (72) Inventor Takashige Shige 2-1-1, Niihama, Arai-cho, Takasago-shi, Hyogo San Takahashi Industry Co., Ltd. Takasago Research Institute (72) Inventor Iwaji Abe 1-1-1, Wadasaki-cho, Hyogo-ku, Kobe-shi, Hyogo Mitsubishi Heavy Industries Ltd. Company Kobe Shipyard (72) Inventor Haruhiko Kajimura 4-533 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd. (72) Inventor Shinji Tsuge 4-53, Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd. (72) Inventor Takaaki Matsuda 4-53-3 Kitahama, Chuo-ku, Osaka-shi, Osaka Sumitomo Metal Industries, Ltd. F-term (reference) 4E066 CB0 2

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】質量%で、C:0.005〜0.030%、Si:0.05
〜0.75%、Mn:0.20〜1.00%、Ni:5.5〜7.5%、Cr:2
4.0〜26.0%、Mo:2.5〜3.5%、Cu:0.2〜0.8%、W:
0.1〜0.5%、N:0.20〜0.30%、Al:0.010〜0.050%、
Ca:0〜0.0050%、B:0〜0.0030%、残部Feおよび不
純物からなり、不純物中のPは0.035%以下、Sは0.005
%以下、Tiは0.05%以下、Nbは0.1%以下、Vは0.5%以
下であることを特徴とする電子ビーム溶接性に優れた放
射性物質保管容器用2相ステンレス鋼。
1. C: 0.005 to 0.030% by mass%, Si: 0.05
~ 0.75%, Mn: 0.20-1.00%, Ni: 5.5-7.5%, Cr: 2
4.0 to 26.0%, Mo: 2.5 to 3.5%, Cu: 0.2 to 0.8%, W:
0.1 to 0.5%, N: 0.20 to 0.30%, Al: 0.010 to 0.050%,
Ca: 0 to 0.0050%, B: 0 to 0.0030%, balance Fe and impurities, P in impurities is 0.035% or less, S is 0.005
%, Ti is 0.05% or less, Nb is 0.1% or less, and V is 0.5% or less. A duplex stainless steel for a radioactive substance storage container having excellent electron beam weldability.
【請求項2】請求項1に記載の2相ステンレス鋼を、単
位面積あたりの溶接エネルギーが7.7〜18.0kJ/cmの電
子ビーム溶接によって組み立てることを特徴とする放射
性物質保管容器の製造方法。
2. A method of manufacturing a radioactive substance storage container, characterized in that the duplex stainless steel according to claim 1 is assembled by electron beam welding having a welding energy per unit area of 7.7 to 18.0 kJ / cm 2 .
JP2001229344A 2001-07-30 2001-07-30 Duplex stainless steel and its electron beam welding method Expired - Lifetime JP3809494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001229344A JP3809494B2 (en) 2001-07-30 2001-07-30 Duplex stainless steel and its electron beam welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001229344A JP3809494B2 (en) 2001-07-30 2001-07-30 Duplex stainless steel and its electron beam welding method

Publications (2)

Publication Number Publication Date
JP2003041346A true JP2003041346A (en) 2003-02-13
JP3809494B2 JP3809494B2 (en) 2006-08-16

Family

ID=19061703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001229344A Expired - Lifetime JP3809494B2 (en) 2001-07-30 2001-07-30 Duplex stainless steel and its electron beam welding method

Country Status (1)

Country Link
JP (1) JP3809494B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087034A (en) * 2006-10-02 2008-04-17 Nippon Steel Corp Electron beam welded joint with excellent brittle fracture resistance
JP2010071868A (en) * 2008-09-19 2010-04-02 Hitachi-Ge Nuclear Energy Ltd Method of manufacturing spent nuclear fuel storage rack, filler material used for this method and the spent nuclear fuel storage rack manufactured by the method
KR101177488B1 (en) 2009-12-29 2012-08-27 주식회사 포스코 Ultra High strength and high corrosion resistant stainless steel alloy and method for manufacturing the same
KR20190121809A (en) * 2017-03-30 2019-10-28 닛테츠 스테인레스 가부시키가이샤 2-phase stainless steel and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087034A (en) * 2006-10-02 2008-04-17 Nippon Steel Corp Electron beam welded joint with excellent brittle fracture resistance
JP2010071868A (en) * 2008-09-19 2010-04-02 Hitachi-Ge Nuclear Energy Ltd Method of manufacturing spent nuclear fuel storage rack, filler material used for this method and the spent nuclear fuel storage rack manufactured by the method
KR101177488B1 (en) 2009-12-29 2012-08-27 주식회사 포스코 Ultra High strength and high corrosion resistant stainless steel alloy and method for manufacturing the same
KR20190121809A (en) * 2017-03-30 2019-10-28 닛테츠 스테인레스 가부시키가이샤 2-phase stainless steel and its manufacturing method
EP3604593A4 (en) * 2017-03-30 2020-09-02 NIPPON STEEL Stainless Steel Corporation Two-phase stainless steel and manufacturing method therefor
KR102349888B1 (en) * 2017-03-30 2022-01-10 닛테츠 스테인레스 가부시키가이샤 Two-phase stainless steel and its manufacturing method
US11512374B2 (en) 2017-03-30 2022-11-29 Nippon Steel Stainless Steel Corporation Duplex stainless steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP3809494B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
KR100922095B1 (en) Flux-cored wire for gas-shielded arc welding
KR100510979B1 (en) Ferritic heat-resistant steel
CN108138280A (en) The manufacturing method of austenite stainless steel and austenite stainless steel
EP3693484A1 (en) Austenitic stainless steel weld metal and welded structure
US6042782A (en) Welding material for stainless steels
JP2017095794A (en) Duplex stainless steel material and duplex stainless steel tube
KR20180089310A (en) Covered electrode
EP2925485B1 (en) Welding material for weld cladding
KR20190037286A (en) Flux cored wire and weld metal for gas shield arc welding
Vinoth Jebaraj et al. Investigation of structure property relationship of the dissimilar weld between austenitic stainless steel 316L and duplex stainless steel 2205
Lee et al. The microstructure and fracture behavior of the dissimilar alloy 690-SUS 304L joint with various Nb addition
US5272305A (en) Girth-welding process for a pipe and a high cellulose type coated electrode
US20250083263A1 (en) Shielded metal arc welding rod and method of manufacturing welded joint
JP2003041346A (en) Duplex stainless steel for radioactive material storage container and method for manufacturing radioactive material storage container
EP0142015A1 (en) Austenitic steel
Kuo et al. Evaluation of effects of niobium and manganese addition on nickel base weldments
WO1997006286A1 (en) Stainless steels excellent in thermal neutron absorption
US5474737A (en) Alloys for cryogenic service
EP0844312B1 (en) Stainless steels excellent in thermal neutron absorption
JP3195232B2 (en) Low activation high Mn non-magnetic steel with excellent corrosion resistance and weldability
JP2892295B2 (en) Welding method for stainless steel with excellent nitric acid corrosion resistance
Mizia et al. Microstructure and Corrosion Performance of a Neutron Absorbing Ni-Cr-Mo-Gd Alloy
JP3237486B2 (en) Stainless steel with excellent thermal neutron absorption capacity
JP7011987B2 (en) Ni-based weld metal and welded structure
WO2017086169A1 (en) Duplex stainless steel material and duplex stainless steel tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050131

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3809494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140602

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term