[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002526755A - Raw inspection technology - Google Patents

Raw inspection technology

Info

Publication number
JP2002526755A
JP2002526755A JP2000573846A JP2000573846A JP2002526755A JP 2002526755 A JP2002526755 A JP 2002526755A JP 2000573846 A JP2000573846 A JP 2000573846A JP 2000573846 A JP2000573846 A JP 2000573846A JP 2002526755 A JP2002526755 A JP 2002526755A
Authority
JP
Japan
Prior art keywords
support
reader
metal
binding
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000573846A
Other languages
Japanese (ja)
Other versions
JP4377069B2 (en
JP2002526755A5 (en
Inventor
デイムス,アンドリュー
イングランド,ジェイムズ
コルビー,エドワード
Original Assignee
スマートビード テクノロジーズ リミティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スマートビード テクノロジーズ リミティド filed Critical スマートビード テクノロジーズ リミティド
Publication of JP2002526755A publication Critical patent/JP2002526755A/en
Publication of JP2002526755A5 publication Critical patent/JP2002526755A5/ja
Application granted granted Critical
Publication of JP4377069B2 publication Critical patent/JP4377069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06018Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking one-dimensional coding
    • G06K19/06028Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking one-dimensional coding using bar codes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10712Fixed beam scanning
    • G06K7/10762Relative movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/005Beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00502Particles of irregular geometry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/0054Means for coding or tagging the apparatus or the reagents
    • B01J2219/00547Bar codes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/0054Means for coding or tagging the apparatus or the reagents
    • B01J2219/00554Physical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/0054Means for coding or tagging the apparatus or the reagents
    • B01J2219/00554Physical means
    • B01J2219/00556Perforations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B70/00Tags or labels specially adapted for combinatorial chemistry or libraries, e.g. fluorescent tags or bar codes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K2019/06215Aspects not covered by other subgroups
    • G06K2019/06234Aspects not covered by other subgroups miniature-code

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medicinal Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Electrochemistry (AREA)
  • Microbiology (AREA)
  • Artificial Intelligence (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Micromachines (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

(57)【要約】 本発明は、並行生検査を実行するための系に関する。各生化学試験を行うために微小製作された標識体を作成し、多種類の標識体を分析試料と混合する。各標識体を読み取る装置により、各試験の結果を分離する。本微小標識体は、陽極酸化された金属の表面層を有するものであり、陽極酸化、リソグラフィーによるパターン付け、そしてエッチング過程により製造される。アルミニウムが好ましい金属である。 (57) Summary The present invention relates to a system for performing a parallel live test. For each biochemical test, a microfabricated label is prepared, and various kinds of labels are mixed with an analysis sample. The results of each test are separated by a device that reads each label. The micromarker has a surface layer of anodized metal and is manufactured by anodizing, patterning by lithography, and etching. Aluminum is the preferred metal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】発明の分野 本発明は、特に、しかし限定ではなく、並行に行われる生検査技術として用い
るために、微小機械製作された又は微小製作された符号化基板の分野に関する。
FIELD OF THE INVENTION The present invention relates in particular, but not exclusively, to the field of micromachined or microfabricated coded substrates for use as a parallel biopsy technique.

【0002】背景 大量且つ並行に行われる生検査は、遺伝学、スクリーニング及び薬物探索にお
ける最近の大部分の進展に貢献する機能的な技術である。従来1つずつ行われて
いた無数の検査が、現在では、無数の結果を生じる単一実験に集約され得る。こ
の方法の重要な点は、多数の異なる検査の結果を相互に分離する技術の開発であ
る。
[0002] a large amount and raw inspection to be carried out in parallel is a functional technologies that contribute to the development of the most modern in genetics, screening and drug discovery. The myriad tests previously performed one by one can now be reduced to a single experiment that produces myriad results. An important aspect of this method is the development of a technique that separates the results of many different tests from each other.

【0003】 現存するいくつかの技術を以下に記す。当技術は、実験終了後に読み取ること
ができる様に、構成実験の各々を標識することから成る。現在使用されている標
識体は、試験チップ表面上の実験位置と、実験に結びつく粒子の蛍光スペクトル
とを含んでいる。
[0003] Some existing technologies are described below. The art consists of labeling each of the constituent experiments so that they can be read after the end of the experiment. Labels currently in use include the location of the experiment on the surface of the test chip and the fluorescence spectra of the particles that are relevant to the experiment.

【0004】 AffymetrixのGeneChipのプローブアレイは、DNA配列を検査するチップであり
、その大きな二次元アレイ上の既定の点に、非常に多数の異なるDNAプローブが
配置されている。これの製作方法が、例えばUS 5,744,305又はUS 5,143,854に記
載されている。前記チップ上のチャンバー内で標準的なDNAハイブリダイゼーシ
ョン技術が用いられ、そしてその検査結果が、アレイ上の蛍光点の位置により光
学的に読み取られる(例えばUS 5,578,832参照)。検査の組合せは、当チップの製
造中に予め決定される。
The probe array of the GeneChip of Affymetrix is a chip for inspecting a DNA sequence, and a very large number of different DNA probes are arranged at predetermined points on a large two-dimensional array. Methods for making this are described, for example, in US 5,744,305 or US 5,143,854. Standard DNA hybridization techniques are used in a chamber on the chip, and the test results are read optically by the location of the fluorescent spots on the array (see, eg, US Pat. No. 5,578,832). The test combination is predetermined during manufacture of the chip.

【0005】 Luminex CorporationのFlowMetrix系は、直径6.5μmの符号化された微小球を
使用する。各ビーズは、符号を形成するために赤色及びオレンジ色の蛍光団を組
み込んでいる。8種類の強度が可能であり、従って64種類のビーズ型が可能にな
る。プローブのために、緑色蛍光マーカーが用いられる。この系はUS 5,736,330
に記載されている。この系は、比較的に少数の符号を有し、そしてその符号及び
検査体の蛍光を読み取るために、フローサイトメーター上で複雑な多波長光学素
子を必要とする。
[0005] Luminex Corporation's FlowMetrix system uses encoded microspheres with a diameter of 6.5 μm. Each bead incorporates red and orange fluorophores to form a code. Eight different strengths are possible, thus allowing 64 bead types. For the probe, a green fluorescent marker is used. This system is US 5,736,330
It is described in. This system has a relatively small number of codes and requires complex multi-wavelength optics on the flow cytometer to read the codes and the fluorescence of the specimen.

【0006】 NanoGenには、半導体ベースのマイクロチップアレイAPEXがあり、これは特にD
NA結合及び配列決定実験を対象にする。DNAプローブの種々のアレイを有するNan
oGenチップは、最終使用者によりプログラムされ得る(例えばUS 5,605,662及びU
S 5,929,208参照)。
[0006] NanoGen has a semiconductor-based microchip array, APEX, which is
Intended for NA binding and sequencing experiments. Nan with various arrays of DNA probes
oGen chips can be programmed by end users (e.g., US 5,605,662 and U.S.A.).
S 5,929,208).

【0007】 一般的なコンビナトリアル化学において、その他の粒子又は基板ベースの多数
の検査技術が存在する。例えばWO 96/24061には、無線周波数による同定用タグ
を用いた試験体ライブラリーが記載されている。WO 97/32892には、コンビナト
リアル化学用の基板に使用される複合支持体が記載されている。GB 2306484には
、コンビナトリアル化学用の二部性支持体粒子が記載されている。
[0007] In general combinatorial chemistry, there are a number of other particle or substrate based inspection techniques. For example, WO 96/24061 describes a test object library using a radio frequency identification tag. WO 97/32892 describes a composite support for use in substrates for combinatorial chemistry. GB 2306484 describes bipartite support particles for combinatorial chemistry.

【0008】発明の要旨 本発明は、大量且つ並行に行われる多数生検査試験を、低コスト、迅速且つ簡
便に行うための系に関する。本系は、異なる非常に多数の型の微小製作された符
号化された標識体(微小標識体)を含有する縣濁液(検査液)を作成することに
関係する。各符号化標識体は、異なる生化学試薬又はプローブを保持している。
SUMMARY OF THE INVENTION [0008] The present invention relates to a system for performing low-cost, rapid and simple multiple biopsy tests performed in large numbers and in parallel. The system involves creating a suspension (test solution) containing a very large number of different types of microfabricated encoded labels (microlabels). Each encoded label carries a different biochemical reagent or probe.

【0009】 検査液は、活性な微小標識体の選択された組の縣濁液を互いに混合することに
よって作成される。検査液は、微小標識体の元々の製作とは関係なく、特定の利
用に合わせて作られる。
Test solutions are made by mixing together a selected set of suspensions of active microlabels with each other. The test solution is made for a particular use, independent of the original fabrication of the microlabel.

【0010】 試験する試料を蛍光標識体によって印付けして、それを検査液とインキュベー
ションする。蛍光試料分子と結合するプローブを有する微小標識体のみが蛍光を
発する。
The sample to be tested is marked with a fluorescent label and it is incubated with a test solution. Only the microlabel with a probe that binds to the fluorescent sample molecule emits fluorescence.

【0011】 微小標識体は、陽極酸化され得る物質、例えばアルミニウムから製作される。
先ずそれを可溶性剥離層を有する平基板上に沈着する。パターン付けする前に、
その金属表面を陽極酸化する。これにより、高度に選択的なプローブとして用い
られる広範な生化学的活性作用剤の接着が可能となる。
The micro-labels are made from a material that can be anodized, for example, aluminum.
First, it is deposited on a flat substrate with a soluble release layer. Before patterning,
The metal surface is anodized. This allows for the attachment of a wide range of biochemically active agents used as highly selective probes.

【0012】 標準的な光学的リソグラフィー及び乾式エッチングを用いて前記アルミニウム
にパターン付けすることによって、個別の微小標識体を得る。バーコードの方法
に類似する符号化方法により、符号を一連の穴(a series of holes)として微小
標識体上に保存する。生化学的プローブを、リソグラフィー過程の前又は後のい
ずれかで当表面に接着させ得る。次にこの微小標識体を、水性縣濁液内に剥離さ
せる。100000種類までの型の微小標識体が実証されている。
[0012] Individual micro-labels are obtained by patterning the aluminum using standard optical lithography and dry etching. The code is stored on the micro-marker as a series of holes by an encoding method similar to the bar code method. Biochemical probes can be attached to the surface either before or after the lithographic process. Next, the micro-labeled substance is peeled into the aqueous suspension. Up to 100,000 types of microlabels have been demonstrated.

【0013】 フローサイトメーターに類似するフローベースの読み取り系は、1秒間あたり
何千もの微小標識体を通過させて、そのバーコード及び試験結果の両方を読み取
る。試験結果は、蛍光強度(degree of fluorescence)によって測定される。もう
1つの平板読み取り系は、試験結果を読み取るために、蛍光顕微鏡及び画像処理
を用いる。この系では、微小標識体が平坦な基板上に配置されている。 図面を参照して、実施例により本発明の態様を説明する。
A flow-based reading system, similar to a flow cytometer, passes through thousands of microlabels per second and reads both its barcode and test results. The test results are measured by the degree of fluorescence. Another plate reading system uses fluorescence microscopy and image processing to read test results. In this system, a small marker is placed on a flat substrate. Embodiments of the present invention will be described with reference to the drawings.

【0014】詳細な説明 微小標識体 図1は、アルミニウムから作られた、微小製作された小型光学バーコードの形
の微小標識体1を示す。このバーコードは、アルミニウム中の一連の穴2によっ
て形成される。
DETAILED DESCRIPTION fine labels Figure 1 shows made from aluminum, in the form of small optical barcode microfabricated micro labels 1. This barcode is formed by a series of holes 2 in aluminum.

【0015】 このタイプの各微小標識体は、ほぼ長さ100μm(3)、幅10μm(4)、厚さ
1μm(5)であり、100000種類までの符号を貯えることができる。単一の直径1
5.24cm(6 inch)の基板上で、約一千万個の前記微小標識体を製作することができ
る。十進法で2〜5桁数のデータを有する40〜100μmの異なる長さの微小標識体
が製作される。異なる各符号毎に、唯一の生化学的プローブが連結される。その
符号を読み取る際に強力なエラー検定を行うために、EAN及びUPCバーコードに用
いられる方法などの符号化方法が用いられる。
Each of the micro-labels of this type has a length of about 100 μm (3), a width of 10 μm (4) and a thickness of 1 μm (5), and can store up to 100,000 kinds of codes. Single diameter 1
Approximately 10 million micromarkers can be produced on a 5.24 cm (6 inch) substrate. Microlabels of different lengths of 40-100 μm with 2-5 decimal digits of data are produced. For each different code, only one biochemical probe is linked. To perform a strong error test when reading that code, coding methods such as those used for EAN and UPC barcodes are used.

【0016】プローブ及び検査液 図2を参照して、微小標識体の検査液6を、活性な微小標識体の選択された組
の縣濁液を一緒に混合することによって、作成する。異なる各符号は、それに連
結される唯一の生化学的プローブを有し、それが特定の種類の分子と結合する。
結合反応は、抗体−抗原、酵素−基質、酵素−受容体、毒素−受容体、タンパク
質−タンパク質、及びアビジン−ビオチンから成る群から選択される。
Probe and Test Solution Referring to FIG. 2, a test solution 6 of microlabels is made by mixing together a selected set of suspensions of active microlabels. Each different code has a unique biochemical probe attached to it, which binds to a particular type of molecule.
The binding reaction is selected from the group consisting of an antibody-antigen, an enzyme-substrate, an enzyme-receptor, a toxin-receptor, a protein-protein, and avidin-biotin.

【0017】 試験試料8を蛍光標識体によって印付けして、それを前記検査液とインキュベ
ーションする。この蛍光試料分子と結合するプローブを有する微小標識体7のみ
が蛍光を発する10。異なる型の微小標識体の蛍光強度の測定により、試験結果
を得る。
The test sample 8 is marked with a fluorescent label and it is incubated with the test solution. Only the microlabeled body 7 having a probe that binds to the fluorescent sample molecule emits fluorescence 10. The test results are obtained by measuring the fluorescence intensity of different types of microlabels.

【0018】 本発明の利用の一例は、特定の抗体を選択するために、並行生検査により血清
をスクリーニングすることである。その抗体に対する抗原をプローブとして、そ
の抗原を同定する印を付けた微小標識体に結合させる。この微小標識体を試料と
インキュベーションし、次に抗体特異的な蛍光標識体とインキュベーションする
。次にその微小標識体を、その標識体の蛍光強度を測定し且つその標識体の同定
を行う読み取り機に通す。その微小標識体の同定とその蛍光強度の相関から、試
料中の抗体と表面結合抗原との結合が表示される。
One example of the use of the present invention is to screen sera by parallel biopsy to select specific antibodies. The antigen for the antibody is used as a probe to bind to the marked microlabel for identifying the antigen. This microlabel is incubated with the sample and then with the antibody-specific fluorescent label. Next, the microlabel is passed through a reader that measures the fluorescence intensity of the label and identifies the label. The correlation between the antibody in the sample and the surface-bound antigen is displayed from the correlation between the identification of the microlabel and the fluorescence intensity.

【0019】微小標識体の製作 微小標識体の製作方法を、図3を参照して説明する。 基板物質11、例えばシリコンウエハー、を先ず可溶性剥離層12によってコ
ーティングする。好ましい態様では、これは、溶剤を除くために150℃で焼かれ
たスピンコーティングされたポリメチルメタクリレートレジストの層である。
Fabrication of a micro-marker A method of manufacturing a micro-marker will be described with reference to FIG. A substrate material 11, for example a silicon wafer, is first coated with a soluble release layer 12. In a preferred embodiment, this is a layer of spin-coated polymethyl methacrylate resist baked at 150 ° C. to remove solvents.

【0020】 厚さ1μmのアルミニウム層13を前記基板に沈着させる。これは、一般に半
導体装置の製作に用いられる標準的な真空スパッターコーティング法により行わ
れる。
A 1 μm thick aluminum layer 13 is deposited on the substrate. This is performed by a standard vacuum sputter coating method generally used for manufacturing semiconductor devices.

【0021】 このアルミニウム層13を、4%リン酸浴中30Vの電圧で30秒間、10mA/cm2の電
流密度で、純粋アルミニウム陰極を用いて陽極酸化14する。これによって、サ
イズ約40nmの孔(pore)を有する100nmの陽極酸化された層15が形成される。
The aluminum layer 13 is anodized 14 in a 4% phosphoric acid bath at a voltage of 30 V for 30 seconds at a current density of 10 mA / cm 2 using a pure aluminum cathode. This forms a 100 nm anodized layer 15 having pores of about 40 nm in size.

【0022】 この段階で(利用法に応じて)、このアルミニウム表面をプローブ分子16に
よって、その分子の水性溶液/縣濁液中にその表面を浸けることを介してコーテ
ィングしてもよい。
At this stage (depending on the application), the aluminum surface may be coated with probe molecules 16 via dipping the surface in an aqueous solution / suspension of the molecule.

【0023】 この基板に、通常の光学的レジスト17、Shipley S1813をスピンコーティン
グする。標識パターン18を、ハード−コンタクト光学的マスクを用いて露光し
、そして水性アルカリ現像液(MF319)によって現像する。SiCl4による反応性イオ
ンエッチング法により、そのパターンをアルミニウム層に転写する。
This substrate is spin-coated with normal optical resist 17, Shipley S1813. The marker pattern 18 is exposed using a hard-contact optical mask and developed with an aqueous alkaline developer (MF319). The pattern is transferred to the aluminum layer by a reactive ion etching method using SiCl 4 .

【0024】 リソグラフィー過程の後にプローブ接着を行う場合、この段階で、光学的レジ
スト17を溶剤、例えばイソプロピルアルコールによって除去してよい。これに
より、前記剥離層13と、その上のパターン付けされた前記アルミニウム層20
とが共に完全なまま残る。次にプローブ分子16を前記通りに接着させることが
でき、一方当微小標識体は依然として基板に接着している。
If probe bonding is performed after the lithography process, the optical resist 17 may be removed at this stage with a solvent, for example, isopropyl alcohol. This results in the release layer 13 and the patterned aluminum layer 20 thereon.
Both remain complete. The probe molecules 16 can then be attached as before, while the microlabel is still attached to the substrate.

【0025】 プローブが接着された微小標識体を、溶剤、例えばアセトンにより基板から剥
離する。希釈及び濾過により、微小標識体22を、検査液に直ぐに混合される水
性縣濁液の形にする。
The micro-labeled body to which the probe has been adhered is separated from the substrate with a solvent such as acetone. By dilution and filtration, the microlabels 22 are made into an aqueous suspension that is immediately mixed with the test solution.

【0026】 この製作方法は、穴を有する多種類の形の微小標識体に適し、例えば図1の実
質的に線形のもの、並びに正方形、長方形及び円形の微小標識体にも適している
This fabrication method is suitable for many types of microlabels with holes, for example, the substantially linear ones of FIG. 1 as well as square, rectangular and circular microlabels.

【0027】陽極酸化及び表面化学 水性溶液中でインキュベーションする場合、タンパク質は、未処理のアルミニ
ウム表面に弱くしか結合しない。その表面を修飾することによって、この結合が
起きる時期を調節することができ、そしてこの結合を選択的に強化し得る。この
ことは重要である。なぜならこのことにより、製造時には、当表面にプローブ分
子が強く結合されるが、試験中には、蛍光標的分子の非特異的結合が弱く維持さ
れるからである。この様にして、試験体の識別を最大限にする。
Anodizing and surface chemistry When incubated in aqueous solutions, proteins bind only weakly to untreated aluminum surfaces. By modifying the surface, the time at which this binding occurs can be controlled and the binding can be selectively enhanced. This is important. This is because during manufacture, the probe molecules are strongly bound to the surface, but the non-specific binding of the fluorescent target molecule is maintained weak during the test. In this way, the identification of the specimen is maximized.

【0028】 電気化学的な方法によるアルミニウム成分の表面保護に関して、今世紀の初め
の半分において得られた非常に広範な情報が存在する。多孔性表面を成長させる
方法が周知であり、前記表面を封止するための方法も同様に周知である。本発明
者はこの情報を用いて、十分に制御された多孔性及び深さを有する吸着性表面を
成長させる比較的簡単な方法を開発した。この表面は、処理後間もなくは、選択
されたタンパク質を十分に結合するが、時間と共に回復して更なる結合を抑制す
る。
There is very extensive information available in the first half of this century on the surface protection of aluminum components by electrochemical methods. Methods for growing porous surfaces are well known, as are methods for sealing said surfaces. We have used this information to develop a relatively simple method of growing adsorbent surfaces with well-controlled porosity and depth. The surface binds the selected protein well shortly after treatment, but recovers over time to prevent further binding.

【0029】 適当な陽極酸化された表面形態を形成するために、プローブとして用いられる
生分子の典型的な構造を理解する必要がある。極低温原子間力顕微鏡により、そ
の様な生分子を直接画像化することができる。例えば、免疫グロブリンG(IgG)
はY形構造を有する。IgG分子のサイズは約40nmにわたり、これは典型的なサイ
ズと考え得る。
In order to form a suitable anodized surface morphology, it is necessary to understand the typical structure of a biomolecule used as a probe. Such biomolecules can be directly imaged by cryogenic atomic force microscopy. For example, immunoglobulin G (IgG)
Has a Y-shaped structure. The size of an IgG molecule spans about 40 nm, which can be considered a typical size.

【0030】 図4に示す通り、陽極酸化中に、アルミニウム酸化物層23が、前記アルミニ
ウム表面上に成長する。この酸化物層は、二次元六角形セルの構造24で成長す
る。各セルのサイズは、電気化学的形成電圧に依存する。各セルの中央に、各セ
ルの幅よりも小さい口径を有する孔(pore)25が形成される。陽極酸化行程が進
行するに連れて、この酸化物層の厚さ27及び孔の深さ28は増加するが、セル
の幅26及び孔の口径28は一定のままである。
As shown in FIG. 4, during anodic oxidation, an aluminum oxide layer 23 grows on the aluminum surface. This oxide layer is grown in a two-dimensional hexagonal cell structure 24. The size of each cell depends on the electrochemical formation voltage. At the center of each cell, a pore 25 having a diameter smaller than the width of each cell is formed. As the anodization process proceeds, the thickness 27 of this oxide layer and the depth 28 of the hole increase, but the cell width 26 and the hole diameter 28 remain constant.

【0031】読み取り系 二系統の読み取り系が開発されている。これらはフローサイトメトリーに基づ
くもの、及び平板化した微小標識体の平面画像化に基づくものである。
Reading System Two reading systems have been developed. These are based on flow cytometry and on planar imaging of flattened microlabels.

【0032】 フローサイトメトリー式の読み取り機は、図5で図解する通り、微小標識体1
が、管29の中央で下方向に、定められた読み取りゾーン30まで流される様に
設計されている。通常、流動中の細長い粒子は転げ回る傾向にある。しかし加速
中の外装流体31を用いて、微小標識体をその流れの中央32に注入することに
よって、流体力学的な集束効果が得られ、その結果微小標識体が整列し、そして
注入点32の下流に存在する明確に定められた焦点30を通過する。
As shown in FIG. 5, a flow cytometry-type reader is a micro-labeled substance 1
Is designed to flow down the center of the tube 29 and down to a defined reading zone 30. Normally, elongated particles in flow tend to roll around. However, by injecting the micro-label into the center 32 of its flow using the accelerating sheath fluid 31, a hydrodynamic focusing effect is obtained, so that the micro-label is aligned and the injection point 32 It passes through a well-defined focal point 30 that exists downstream.

【0033】 流体力学的な焦点30において、488nmのアルゴンイオンレーザーからの2つ
の直交する集束されたレーザー光ビーム33、34が微小標識体に照射される。
このことを図6に詳しく示す。2つの直交する照射ビームの使用により、流動管
の参照フレームに対する回転に関係なく、微小標識体への照射が可能になる。図
6では、微小標識1は、両方の入射ビームに対して45度の角度を示す。これは、
可能な最悪の事例である。それでも図1に示した微小標識体の外形から、依然と
して前記の光が当標識体の穴(holes)2を透過することが分かる。当標識体が通
過する際に、この穴により透過強度が変調され、その結果一連の連続情報が発生
し、これが検出器35において通常のバーコードの場合と同じ様に分析される。
同時に、外側(epi-)蛍光検出器36によって蛍光強度が測定される。これを当標
識体上の符号と相関させる。望ましい解像度を達成するために、口径数の高い光
学素子(顕微鏡対物レンズ)を用いる。最適のフローサイトメトリー式設計体は
平坦な壁を有するので、特注の円筒状画像化要素を使用しなくて済む。
At the hydrodynamic focus 30, two orthogonal focused laser light beams 33, 34 from a 488 nm argon ion laser are illuminated on the micro-label.
This is shown in detail in FIG. The use of two orthogonal irradiation beams allows irradiation of the micro-label, regardless of the rotation of the flow tube relative to the reference frame. In FIG. 6, micromarker 1 shows a 45 degree angle for both incident beams. this is,
This is the worst case possible. Nevertheless, it can be seen from the outline of the micromarker shown in FIG. 1 that the light still passes through the holes 2 of the marker. As the marker passes through, the hole modulates the transmitted intensity, resulting in a series of continuous information that is analyzed at the detector 35 in the same manner as a normal bar code.
At the same time, the fluorescence intensity is measured by the outer (epi-) fluorescence detector 36. This is correlated with the code on the label. To achieve the desired resolution, a high aperture optical element (microscope objective) is used. The optimal flow cytometric design has flat walls, eliminating the need for custom cylindrical imaging elements.

【0034】 十分な数の微小標識体を読み取った後、その読み取り機は全ての試験結果を計
算する。統計分析を行うために必要な数は、典型的には、各型の微小標識体あた
り10〜100コピーである。試験結果は、各型のプローブ毎に蛍光の平均値及び標
準偏差を示す。
After reading a sufficient number of microlabels, the reader calculates all test results. The number required to perform statistical analysis is typically 10-100 copies per type of microlabel. The test results show the average value and standard deviation of fluorescence for each type of probe.

【0035】 平板読み取り系では、微小標識体を平坦な基板上に配置する。この基板はフィ
ルター基板又は透過性基板のいずれかである。この配置基板を系統的に分析する
ために、通常の蛍光顕微鏡を用いる。画像処理系によって基板上の各視野像が捕
捉される。透過光は、蛍光とは別に分析される。各微小標識体がその透過光プロ
ファイルにより同定され、一方その標識体の表面上で統合された蛍光シグナルが
記録される。良好な統計分析を行うために、もう一度10〜100コピーの各型の微
小標識体が必要になる。
In the flat-plate reading system, the minute marker is arranged on a flat substrate. This substrate is either a filter substrate or a permeable substrate. An ordinary fluorescence microscope is used to systematically analyze the arrangement substrate. Each field image on the substrate is captured by the image processing system. The transmitted light is analyzed separately from the fluorescence. Each microlabel is identified by its transmitted light profile, while the integrated fluorescent signal is recorded on the surface of the label. Again, 10-100 copies of each type of microlabel are required for good statistical analysis.

【0036】利用 典型的な利用では、多数の異なる抗体(例えば肝炎、HIV)のためのプローブ
の縣濁液を用いる。読み取り系において、患者から一滴の血液を採取し、それを
蛍光マーカーで標識し、そしてそれを前記プローブ縣濁液と数分間インキュベー
ションする。この縣濁液を、微小液体検出器系に供給する。
[0036] In use typical use, using a number of different antibodies (e.g. hepatitis, HIV) suspension of probes for. In a reading system, a drop of blood is taken from the patient, labeled with a fluorescent marker, and incubated with the probe suspension for a few minutes. This suspension is supplied to a microfluidic detector system.

【0037】その他の態様 平板読み取り系のための微小標識体の設計は、主に流動通過式読み取り系に用
いられる前記の線形設計に限定されない。平板系は、線形よりもむしろ正方形又
は長方形により近い標識体上に製作された二次元パターンを用いることができる
。通常の二次元バーコードに類似する符号化方法が用いられる。当標識体の外形
により、特に方向に関する情報も与えられる。
Other Embodiments The design of the microlabel for the flat plate reading system is not limited to the linear design described above, which is mainly used for a flow-through type reading system. Plate systems can use two-dimensional patterns fabricated on a sign that is closer to a square or rectangle than to a line. An encoding method similar to a normal two-dimensional barcode is used. The outer shape of the marker also provides information, especially regarding the direction.

【0038】 磁気物質を組み込んだ標識体では、磁気的な分離方法を行い得る。これは、検
査される試料に、当標識体に近いサイズの固体物質が含まれる場合、それが結果
を混乱させることがあるので、有用である。
[0038] A magnetic substance-incorporated label can be subjected to a magnetic separation method. This is useful if the sample to be tested contains a solid substance of a size close to the label, as this can confuse the results.

【0039】 陽極酸化され得る金属、例えばアルミニウムによってコーティングすることが
できる任意の基板を用いて、微小標識体を製作することができる。微小標識体を
製作するために、例えばアルミニウムをコーティングしたプラスティックを型押
するなどの大量製造方法を用いる場合、このことは特に魅力的である。
The microlabels can be made using any substrate that can be coated with a metal that can be anodized, eg, aluminum. This is particularly attractive when using high-volume manufacturing methods, such as, for example, embossing aluminum-coated plastics to make microlabels.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、透過式光学的バーコードを組み込んでいる単一の微小標識体を示す。FIG. 1 shows a single microlabel incorporating a transmissive optical barcode.

【図2】 図2は、2つの結合実験過程を含んで成る並行生検査を示す。FIG. 2 shows a parallel live test comprising two binding experiments.

【図3】 図3は、ウエハー規模での微小標識体の製作方法を示す。FIG. 3 shows a method for producing a micro-label on a wafer scale.

【図4】 図4は、アルミニウム表面の陽極酸化により形成された多孔性構造を示す。FIG. 4 shows a porous structure formed by anodizing an aluminum surface.

【図5】 図5は、微小標識体の読み取り機内の流れを示す。FIG. 5 shows the flow of a micro-label in a reader.

【図6】 図6は、回転に関わらずに標識体を読み取るために、直交する照射ビームを用
いることを示す。
FIG. 6 illustrates the use of orthogonal illumination beams to read a marker regardless of rotation.

【手続補正書】[Procedure amendment]

【提出日】平成13年3月29日(2001.3.29)[Submission date] March 29, 2001 (2001.3.29)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C25D 11/04 303 C25D 11/04 303 311 311 G01N 1/28 G01N 33/566 33/566 G06K 7/00 U G06K 7/00 G01N 37/00 102 // G01N 37/00 102 103 103 ZCC ZCC 1/28 N (72)発明者 イングランド,ジェイムズ イギリス国,ケンブリッジシャー シービ ー4 6ディージー,ケンブリッジ,ミル トン,バット レーン 44エー (72)発明者 コルビー,エドワード イギリス国,ケンブリッジシャー シービ ー1 3エルアール,ケンブリッジ,アー ジル ロード 45 Fターム(参考) 2G052 AA28 AD26 DA01 DA21 EC14 EC16 FD00 FD06 FD09 HB03 JA05 4G075 AA24 BC02 BC06 BD14 CA36 FB02 FC20 5B072 BB00 CC01 CC24 DD03 MM11──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C25D 11/04 303 C25D 11/04 303 311 311 G01N 1/28 G01N 33/566 33/566 G06K 7/00 U G06K 7/00 G01N 37/00 102 // G01N 37/00 102 103 103 ZCC ZCC 1/28 N (72) Inventor, England, James United Kingdom, Cambridgeshire CB4 46 DG, Cambridge, Milton, Bat Lane 44A (72) Inventor Colby, Edward UK, Cambridgeshire, CB13 33 RL, Cambridge, Ireland Road 45 F-term (reference) 2G052 AA28 AD26 DA01 DA21 EC14 EC16 FD00 FD06 FD09 HB03 JA05 4G075 AA2 4 BC02 BC06 BD14 CA36 FB02 FC20 5B072 BB00 CC01 CC24 DD03 MM11

Claims (25)

【特許請求の範囲】[Claims] 【請求項1】 陽極酸化された金属表面層を有する、生化学(結合実験)検
査のための固体支持体。
1. A solid support for biochemical (binding experiments) testing, having an anodized metal surface layer.
【請求項2】 前記金属表面層がアルミニウムである、請求項1に記載の支
持体。
2. The support according to claim 1, wherein said metal surface layer is aluminum.
【請求項3】 前記結合実験の試薬の親和性を強化するために修飾された、
請求項1に記載の支持体。
3. Modified to enhance the affinity of the reagents of the binding experiment.
The support according to claim 1.
【請求項4】 請求項1に記載の支持体を製作する方法であって、前記支持
体を構成する前記金属による平坦表面のスパッターコーティング、その金属のリ
ソグラフィー法によるパターン付け、及び各支持体を残すためのその金属のエッ
チング、を含んで成る前記方法。
4. The method of manufacturing a support according to claim 1, wherein the flat surface is sputter-coated with the metal constituting the support, the metal is patterned by lithography, and each support is formed. Etching the metal to leave.
【請求項5】 前記表面が、硬い支持体上の可溶性物質の層から成り、従っ
て前記支持体が、その可溶性物質の溶媒和作用により剥離される、請求項4に記
載の方法。
5. The method of claim 4, wherein said surface comprises a layer of a soluble material on a rigid support, such that said support is exfoliated by solvation of said soluble material.
【請求項6】 前記可溶性物質がレジストである、請求項5に記載の方法。6. The method according to claim 5, wherein said soluble material is a resist. 【請求項7】 前記修飾により多孔性表面が形成される、請求項2に記載の
支持体。
7. The support of claim 2, wherein the modification forms a porous surface.
【請求項8】 前記の孔のサイズが、結合される生化学的活性分子のサイズ
にほぼ等しい、請求項7に記載の支持体。
8. The support according to claim 7, wherein the size of the pores is approximately equal to the size of the biochemically active molecule to be bound.
【請求項9】 前記修飾が電気化学的方法による、請求項3に記載の支持体
を製作する方法。
9. The method of making a support according to claim 3, wherein the modification is by an electrochemical method.
【請求項10】 前記修飾が、前記支持体表面の陽極酸化による、請求項9
に記載の方法。
10. The method according to claim 9, wherein the modification is performed by anodizing the surface of the support.
The method described in.
【請求項11】 前記陽極酸化が150 Vまでの電圧で行われる、請求項10
に記載の方法。
11. The method according to claim 10, wherein said anodizing is performed at a voltage of up to 150 V.
The method described in.
【請求項12】 前記陽極酸化が4V〜30Vの電圧で行われる、請求項11に
記載の方法。
12. The method of claim 11, wherein said anodizing is performed at a voltage of 4V to 30V.
【請求項13】 前記支持体が、好ましくは長さ100μm、幅100μm及び厚さ
100μmよりも小さい、請求項1に記載の支持体。
13. The support preferably has a length of 100 μm, a width of 100 μm and a thickness.
The support according to claim 1, which is smaller than 100 µm.
【請求項14】 同定のために、空間的に変化するパターンを組み込んでい
る、請求項1に記載の支持体。
14. The support of claim 1, wherein the support incorporates a spatially varying pattern for identification.
【請求項15】 前記パターンを読み取り、そして請求項14に記載の支持
体を同定するための光学的読み取り機。
15. An optical reader for reading the pattern and identifying a support according to claim 14.
【請求項16】 前記パターンがバーコードである、請求項14に記載の支
持体。
16. The support according to claim 14, wherein the pattern is a barcode.
【請求項17】 前記バーコードが線状バーコードである、請求項16に記
載の支持体。
17. The support according to claim 16, wherein the barcode is a linear barcode.
【請求項18】 透過式光学素子により作動する、請求項15に記載の読み
取り機。
18. The reader according to claim 15, wherein the reader is operated by a transmission optical element.
【請求項19】 前記支持体を、流動系により光学的読み取り機内に輸送す
る、請求項18に記載の読み取り機。
19. The reader of claim 18, wherein the support is transported by a flow system into an optical reader.
【請求項20】 請求項15に記載の読み取り機によって測定される通りに
、結合対の一方の成員が接着されている請求項14に記載の基板の同定に従って
、多数の結合実験の結果を相互に分離する方法。
20. The result of a number of binding experiments, according to the identification of the substrate according to claim 14, wherein one of the members of the binding pair is adhered as measured by the reader according to claim 15. How to separate.
【請求項21】 前記結合対が、抗体−抗原、酵素−基質、酵素−受容体、
毒素−受容体、タンパク質−タンパク質、及びアビジン−ビオチンから成る群か
ら選択される、請求項20に記載の方法。
21. The binding pair may be an antibody-antigen, an enzyme-substrate, an enzyme-receptor,
21. The method of claim 20, wherein the method is selected from the group consisting of a toxin-receptor, a protein-protein, and avidin-biotin.
【請求項22】 前記結合対の接着される成員が蛍光標識される、請求項2
0に記載の方法。
22. The attached member of the binding pair is fluorescently labeled.
The method according to 0.
【請求項23】 前記パターンが、前記支持体中の一連の穴を含んで成る、
請求項14に記載の支持体。
23. The pattern comprising a series of holes in the support.
The support according to claim 14.
【請求項24】 2つの実質的に直交する光透過経路を有する、請求項18
に記載の読み取り機。
24. The device of claim 18, having two substantially orthogonal light transmission paths.
Reader.
【請求項25】 1又は複数の蛍光検出器を組み込んでいる、請求項24に
記載の読み取り機。
25. The reader according to claim 24, wherein the reader incorporates one or more fluorescence detectors.
JP2000573846A 1998-09-17 1999-09-17 Raw inspection technology Expired - Fee Related JP4377069B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB9820163.5A GB9820163D0 (en) 1998-09-17 1998-09-17 Micro-fabricated coded labels, reading systems and their applications
GB9820163.5 1998-09-17
PCT/GB1999/003109 WO2000016893A2 (en) 1998-09-17 1999-09-17 Bio-assay technique

Publications (3)

Publication Number Publication Date
JP2002526755A true JP2002526755A (en) 2002-08-20
JP2002526755A5 JP2002526755A5 (en) 2006-11-24
JP4377069B2 JP4377069B2 (en) 2009-12-02

Family

ID=10838952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000573846A Expired - Fee Related JP4377069B2 (en) 1998-09-17 1999-09-17 Raw inspection technology

Country Status (7)

Country Link
EP (1) EP1133352B1 (en)
JP (1) JP4377069B2 (en)
AU (1) AU6101399A (en)
DE (1) DE69904754T2 (en)
DK (1) DK1133352T3 (en)
GB (1) GB9820163D0 (en)
WO (1) WO2000016893A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049342A (en) * 2003-07-11 2005-02-24 Sigma Koki Kk Carrier and micro inspection element, their manufacturing method, and laser beam machine
WO2006126568A1 (en) * 2005-05-24 2006-11-30 Hipep Laboratories Substrate for biochip and biochip
JP2009270946A (en) * 2008-05-08 2009-11-19 Sony Corp Micro-bead automatic identifying method, and micro-beads
JP2010526652A (en) * 2007-04-27 2010-08-05 ボード オブ リージェンツ, ザ ユニバーシティ オブ テキサス システム Porous particles and method for producing the same
WO2020059728A1 (en) * 2018-09-19 2020-03-26 日本軽金属株式会社 Aluminum member and manufacturing method for same

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2366093A1 (en) * 1999-04-15 2000-10-26 Ilya Ravkin Combinatorial chemical library supports having indicia at coding positions and methods of use
ATE298888T1 (en) 1999-04-16 2005-07-15 Tibotec Bvba CODING OF MICRO CARRIER
WO2001059454A1 (en) * 2000-02-07 2001-08-16 Kyowa Medex Co., Ltd. Method for detecting substance
CN1231758C (en) 2000-10-19 2005-12-14 泰博特克公司 Method and device for manipulation of microcarriers for identification purpose
US7811768B2 (en) 2001-01-26 2010-10-12 Aviva Biosciences Corporation Microdevice containing photorecognizable coding patterns and methods of using and producing the same
US7015047B2 (en) 2001-01-26 2006-03-21 Aviva Biosciences Corporation Microdevices having a preferential axis of magnetization and uses thereof
GB2391230A (en) * 2002-07-26 2004-02-04 Smartbead Technologies Ltd Multiparameter assays using coded supports
US7105347B2 (en) 2002-07-30 2006-09-12 Corning Incorporated Method and device for protein delivery into cells
GB2391867A (en) * 2002-08-13 2004-02-18 Smartbead Technologies Ltd Analysis system using coded supports
US7399643B2 (en) * 2002-09-12 2008-07-15 Cyvera Corporation Method and apparatus for aligning microbeads in order to interrogate the same
US7164533B2 (en) 2003-01-22 2007-01-16 Cyvera Corporation Hybrid random bead/chip based microarray
US7901630B2 (en) 2002-08-20 2011-03-08 Illumina, Inc. Diffraction grating-based encoded microparticle assay stick
US7923260B2 (en) 2002-08-20 2011-04-12 Illumina, Inc. Method of reading encoded particles
US7872804B2 (en) 2002-08-20 2011-01-18 Illumina, Inc. Encoded particle having a grating with variations in the refractive index
US7092160B2 (en) 2002-09-12 2006-08-15 Illumina, Inc. Method of manufacturing of diffraction grating-based optical identification element
GB2393785B (en) 2002-10-03 2005-08-31 Toshiba Res Europ Ltd Method of making a free standing structure
GB2395594A (en) * 2002-11-21 2004-05-26 Smartbead Technologies Ltd Bioassay reading system using a computer to locate and identify microlabels by identifying spatially sequential groups or identification codes
US7691580B2 (en) * 2003-01-29 2010-04-06 Corning Incorporated Reverse protein delivery into cells on coded microparticles
GB0318808D0 (en) * 2003-08-11 2003-09-10 Toshiba Res Europ Ltd An encoded carrier
WO2006055736A1 (en) 2004-11-16 2006-05-26 Illumina, Inc. And methods and apparatus for reading coded microbeads
WO2007081410A2 (en) 2005-09-13 2007-07-19 True Materials Incorporated Encoded microparticles
US8178278B2 (en) 2005-09-13 2012-05-15 Affymetrix, Inc. Miniaturized microparticles
US7830575B2 (en) 2006-04-10 2010-11-09 Illumina, Inc. Optical scanner with improved scan time
EP2173509A4 (en) * 2007-06-25 2013-11-06 Affymetrix Inc Patterned microcodes
DE102007056398A1 (en) * 2007-11-23 2009-05-28 Febit Holding Gmbh Flexible extraction method for the preparation of sequence-specific molecule libraries
EP3058363A4 (en) * 2013-10-18 2017-10-04 9163-0384 Québec Inc. Traceable metallic products and metallic support for nanostorage

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2416652A1 (en) * 1974-04-05 1975-10-16 Dierk Dr Flasdieck Data card or carrier - is made from base material with indicators added using electrolytic or galvanic processes
CA1337173C (en) * 1989-04-28 1995-10-03 Westaim Biomedical Corp. Thin film diagnostic device
US5129974A (en) * 1990-08-23 1992-07-14 Colorcode Unlimited Corporation Microlabelling system and method of making thin labels
US6087186A (en) * 1993-07-16 2000-07-11 Irori Methods and apparatus for synthesizing labeled combinatorial chemistry libraries
JPH08102544A (en) * 1994-09-29 1996-04-16 Yoichi Sato Micromachine with metallic anodized film
US5961923A (en) * 1995-04-25 1999-10-05 Irori Matrices with memories and uses thereof
GB9521943D0 (en) * 1995-10-26 1996-01-03 Univ Hertfordshire Coded particles for process sequence tracking in combinatorial compound library preparation
WO1999002266A1 (en) * 1997-07-11 1999-01-21 Akzo Nobel N.V. A device for performing an assay, a method for manufacturing said device, and use of a membrane in the manufacture of said device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049342A (en) * 2003-07-11 2005-02-24 Sigma Koki Kk Carrier and micro inspection element, their manufacturing method, and laser beam machine
WO2006126568A1 (en) * 2005-05-24 2006-11-30 Hipep Laboratories Substrate for biochip and biochip
JP2006329686A (en) * 2005-05-24 2006-12-07 Hipep Laboratories Substrate for biochip, and the biochip
JP4694889B2 (en) * 2005-05-24 2011-06-08 株式会社ハイペップ研究所 Biochip substrate and biochip
US8455400B2 (en) 2005-05-24 2013-06-04 Hipep Laboratories Substrate for biochip and biochip
JP2010526652A (en) * 2007-04-27 2010-08-05 ボード オブ リージェンツ, ザ ユニバーシティ オブ テキサス システム Porous particles and method for producing the same
JP2009270946A (en) * 2008-05-08 2009-11-19 Sony Corp Micro-bead automatic identifying method, and micro-beads
JP4561869B2 (en) * 2008-05-08 2010-10-13 ソニー株式会社 Microbead automatic identification method and microbead
WO2020059728A1 (en) * 2018-09-19 2020-03-26 日本軽金属株式会社 Aluminum member and manufacturing method for same
JPWO2020059728A1 (en) * 2018-09-19 2021-09-24 日本軽金属株式会社 Aluminum member and its manufacturing method
JP7306405B2 (en) 2018-09-19 2023-07-11 日本軽金属株式会社 Aluminum member and its manufacturing method

Also Published As

Publication number Publication date
EP1133352B1 (en) 2003-01-02
DK1133352T3 (en) 2003-04-22
EP1133352A2 (en) 2001-09-19
WO2000016893A2 (en) 2000-03-30
WO2000016893A3 (en) 2000-08-24
DE69904754D1 (en) 2003-02-06
JP4377069B2 (en) 2009-12-02
AU6101399A (en) 2000-04-10
DE69904754T2 (en) 2003-07-17
GB9820163D0 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
JP4377069B2 (en) Raw inspection technology
US7745092B2 (en) Multiple step printing methods for microbarcodes
US8883691B2 (en) Encoded microparticles
US10859910B2 (en) Image differentiated multiplex assays
US7871770B2 (en) Light transmitted assay beads
JP5560039B2 (en) Multi-functional coded particles for high-throughput analysis
US20030129654A1 (en) Coded particles for multiplexed analysis of biological samples
US11796535B2 (en) Methods and systems for multiplex assays
KR20080084844A (en) Microchip for immunoassay, kit for immunoassay and immunoassay method
WO2001078889A2 (en) A method of fabricating coded particles
JP2010536029A (en) Apparatus and method for digital magnetic bead analysis
US8697334B2 (en) Miniaturized microparticles
US20100297448A1 (en) Miniaturized microparticles
US20040005243A1 (en) Patterned supports for testing, evaluating and calibrating detection devices
US20030153092A1 (en) Method of fabricating coded particles
WO2021224631A1 (en) Carrier system and method
WO2004034012A2 (en) Coded particles for multiplexed analysis of biological samples
EP4425180A1 (en) Immunoassay using magnetic microspheres
JP2024526026A (en) Magnetic microcarriers for image differentiation multiplex assays
Xu Assembly of ordered microsphere arrays: Platforms for microarrays

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees