JP2002319685A - Semiconductor device and manufacturing method therefor - Google Patents
Semiconductor device and manufacturing method thereforInfo
- Publication number
- JP2002319685A JP2002319685A JP2001122977A JP2001122977A JP2002319685A JP 2002319685 A JP2002319685 A JP 2002319685A JP 2001122977 A JP2001122977 A JP 2001122977A JP 2001122977 A JP2001122977 A JP 2001122977A JP 2002319685 A JP2002319685 A JP 2002319685A
- Authority
- JP
- Japan
- Prior art keywords
- region
- electrode
- layer
- semiconductor substrate
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 204
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 56
- 239000010410 layer Substances 0.000 claims abstract description 237
- 239000000758 substrate Substances 0.000 claims abstract description 108
- 239000002344 surface layer Substances 0.000 claims abstract description 59
- 239000011229 interlayer Substances 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims description 22
- 239000012535 impurity Substances 0.000 claims description 20
- 150000004767 nitrides Chemical class 0.000 claims description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 15
- 229910052710 silicon Inorganic materials 0.000 claims description 15
- 239000010703 silicon Substances 0.000 claims description 15
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 14
- 238000000137 annealing Methods 0.000 claims description 14
- 238000005468 ion implantation Methods 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 230000015556 catabolic process Effects 0.000 abstract description 8
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 abstract description 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 230000002040 relaxant effect Effects 0.000 abstract 1
- 238000011084 recovery Methods 0.000 description 8
- 230000007547 defect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000002048 anodisation reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/0619—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/872—Schottky diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04042—Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0555—Shape
- H01L2224/05556—Shape in side view
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48455—Details of wedge bonds
- H01L2224/48456—Shape
- H01L2224/48458—Shape of the interface with the bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/4847—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1203—Rectifying Diode
- H01L2924/12032—Schottky diode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、電力変換装置な
どに用いられるダイオードなどの半導体装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device such as a diode used for a power converter.
【0002】[0002]
【従来の技術】電力用半導体装置は、インバータをはじ
め様々な用途に利用されており、その適用範囲を広げて
いる。近年、IGBT(絶縁ゲート型バイポーラトラン
ジスタ)など高耐圧・大電流容量、かつ、高周波で動作
可能なスイッチング素子が開発されており、それに伴
い、電力用ダイオードでも、高周波動作が可能で発生損
失の少ない高速逆回復特性が求められている。高速逆回
復特性を達成するダイオードとして、例えば、図8に示
されているMPS(Merg PiN Schottk
y)ダイオードや、図9に示されているSFD(Sof
t and Fast Recovery Diod
e)などのダイオードは、逆回復特性の改善が進められ
ている。以下、SFDのことをSFDダイオードとい
う。2. Description of the Related Art Power semiconductor devices are used in various applications such as inverters, and their applications are expanding. In recent years, switching elements such as IGBTs (insulated gate bipolar transistors), which have a high withstand voltage, a large current capacity, and can operate at a high frequency, have been developed. As a result, even power diodes can operate at a high frequency and generate little loss. High-speed reverse recovery characteristics are required. As a diode that achieves a fast reverse recovery characteristic, for example, an MPS (Merg PiN Schottk) shown in FIG.
y) The diode and the SFD (Sof
t and Fast Recovery Diode
Diodes such as e) have been improved in reverse recovery characteristics. Hereinafter, the SFD is referred to as an SFD diode.
【0003】図18、図19は、MPSダイオードおよ
びSFDダイオードの活性領域の概略的な断面構造でワ
イヤをボンディングした図をそれぞれ示す。広く用いら
れている図示しないPiNダイオードに対して、図18
のMPSダイオードは、p+ アノード層52を半導体基
板200の一方の主面上に選択的に形成している点が特
徴である。p+ アノード層52が形成されていない領域
とアノード電極55の接触部分はショットキー接合領域
54となり、順バイアス時に正孔の注入が起きないた
め、逆回復ピーク電流(Irp)小さく抑える事がで
き、高速逆回復特性を達成できる。FIGS. 18 and 19 are views showing bonding of wires in a schematic sectional structure of an active region of an MPS diode and an SFD diode, respectively. For a widely used PiN diode (not shown), FIG.
Is characterized in that the p + anode layer 52 is selectively formed on one main surface of the semiconductor substrate 200. The contact portion between the region where the p + anode layer 52 is not formed and the anode electrode 55 becomes the Schottky junction region 54, and since the injection of holes does not occur at the time of forward bias, the reverse recovery peak current (Irp) can be suppressed small. And high speed reverse recovery characteristics can be achieved.
【0004】一方、図19のSFDダイオードは、前記
のMPSダイオードのp+ アノード層52が形成される
側の半導体基板200表面にp+ アノード層52よりも
不純物濃度が低く、拡散深さの浅いp- 層61が形成さ
れる。順バイアス時に、p-層61からの正孔の注入が
抑制されるため、逆回復ピーク電流(Irp)小さく抑
える事ができ、高速逆回復特性を達成できる。また、p
- 層61があるため、MPSダイオードと比べると漏れ
電流は小さくできる。On the other hand, the SFD diode of FIG. 19 has a lower impurity concentration and a shallower diffusion depth than the p + anode layer 52 on the surface of the semiconductor substrate 200 on the side where the p + anode layer 52 of the MPS diode is formed. A p - layer 61 is formed. At the time of forward bias, injection of holes from the p − layer 61 is suppressed, so that the reverse recovery peak current (Irp) can be suppressed small, and high-speed reverse recovery characteristics can be achieved. Also, p
Since the layer 61 is provided, the leakage current can be reduced as compared with the MPS diode.
【0005】[0005]
【発明が解決しようとする課題】上述のMPSダイオー
ドやSFDダイオードは、アノード電極55上に電気的
接触を得るためのワイヤ64をボンディングする。この
ワイヤ64をボンディングする際の衝撃で、MPSダイ
オードのショットキー接合領域54であるA部、もしく
は、SFDダイオードの浅い拡散のp- 層61であるB
部で、欠陥が発生し、耐圧劣化などの不具合が起こりや
すい。In the above-described MPS diode and SFD diode, a wire 64 for obtaining electrical contact is bonded on the anode electrode 55. Due to the impact at the time of bonding the wire 64, the portion A, which is the Schottky junction region 54 of the MPS diode, or the portion B, which is the shallow diffusion p − layer 61 of the SFD diode.
A defect is likely to occur in the portion, and a defect such as deterioration in withstand voltage is likely to occur.
【0006】その原因は、電極にワイヤをボンディング
するとき、電極とワイヤの間に圧力が加えられ、この圧
力によって、電極とn- 層との界面に欠陥が生じる。こ
の欠陥が再結合中心を構成し、伝導帯の電子が欠陥に流
れ込み漏れ電流が増加する。特に、逆バイアス状態にな
り、電極とn- 層との界面に加わる電界が強くなると、
ショットキー障壁の幅が薄くなる。そのために、電子
が、このショットキー障壁を突き抜けて、再結合中心へ
遷移する確率が高くなる。この確率が高くなると、再結
合中心に介して流れるドンネル電流が増大する。このト
ンネル電流が漏れ電流の一部となるために、漏れ電流が
増加し、結果として耐圧が低下するものと考えられる。The cause is that when bonding a wire to an electrode, pressure is applied between the electrode and the wire, and this pressure causes a defect at the interface between the electrode and the n − layer. The defect forms a recombination center, and electrons in the conduction band flow into the defect to increase leakage current. In particular, when a reverse bias state occurs and the electric field applied to the interface between the electrode and the n − layer increases,
The width of the Schottky barrier is reduced. Therefore, the probability of electrons passing through the Schottky barrier and transiting to the recombination center increases. As this probability increases, the donnel current flowing through the recombination center increases. It is considered that since the tunnel current becomes a part of the leakage current, the leakage current increases, and as a result, the breakdown voltage decreases.
【0007】また、SFDダイオードの場合にも、圧力
によってp- 層部分の界面に欠陥が生じると、MPSダ
イオードの場合と類似の現象が生じて、漏れ電流が増大
し、耐圧低下することが考えられる。この発明の目的
は、前記の課題を解決して、ワイヤボンディング時の衝
撃を緩和し、耐圧安定性に優れた半導体装置およびその
製造方法を提供することにある。Also, in the case of the SFD diode, if a defect occurs at the interface of the p − layer due to pressure, a phenomenon similar to that in the case of the MPS diode occurs, and the leakage current increases and the breakdown voltage decreases. Can be SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor device which solves the above-mentioned problems, alleviates an impact at the time of wire bonding, and has excellent withstand voltage stability, and a method of manufacturing the same.
【0008】[0008]
【課題を解決するための手段】前記の目的を達成するた
めに、第1導電型の半導体基板の一方の表面より形成さ
れた電極層と、前記半導体基板の一方の表面層に選択的
に形成された第2導電型第1領域と、該第1領域に挟ま
れた前記半導体基板の表面層に形成された前記電極層と
ショットキー接合とを形成する第2領域と、を具備する
半導体装置であって、前記第1領域上の電極層の表面高
さが、前記第2領域上の電極層の表面高さより高い構成
とする。In order to achieve the above object, an electrode layer formed from one surface of a semiconductor substrate of the first conductivity type and a surface layer selectively formed on one surface layer of the semiconductor substrate. Semiconductor device, comprising: a first region of the second conductivity type, formed in the first region, and a second region forming a Schottky junction with the electrode layer formed on the surface layer of the semiconductor substrate sandwiched between the first regions. Wherein the surface height of the electrode layer on the first region is higher than the surface height of the electrode layer on the second region.
【0009】また、前記第1領域と前記電極層との間
に、層間膜を形成することで、前記第1領域上の電極層
の表面高さを、前記第2領域上の表面高さより高くす
る。また、前記層間膜の硬度が、前記電極層の硬度より
大きくする。また、前記第1領域の表面高さが、前記第
2領域の表面高さより高くする。また、前記第1領域と
前記第2領域の表面高さが同一で、前記第1領域上の電
極層の表面高さが、前記第2領域上の電極層の表面高さ
より高くする。Further, by forming an interlayer film between the first region and the electrode layer, the surface height of the electrode layer on the first region can be made higher than the surface height on the second region. I do. In addition, the hardness of the interlayer film is greater than the hardness of the electrode layer. Further, the surface height of the first region is higher than the surface height of the second region. Further, the first region and the second region have the same surface height, and the surface height of the electrode layer on the first region is higher than the surface height of the electrode layer on the second region.
【0010】また、第1導電型の半導体基板の一方の表
面より形成された電極層と、前記半導体基板の一方の表
面層に選択的に形成された第2導電型第1領域と、該第
1領域に挟まれた前記半導体基板の表面層に形成された
前記電極層とショットキー接合とを形成する第2領域
と、を具備する半導体装置であって、前記電極層が前記
第1領域上に形成された第1電極層と前記第2領域上に
形成された第2電極層とからなり、前記第1電極層を形
成する部材の硬度が、前記第2電極層を形成する部材の
硬度より、大きく、前記第1電極層と前記第2電極層の
表面高さが同一である構成とする。An electrode layer formed on one surface of a semiconductor substrate of the first conductivity type; a first region of a second conductivity type selectively formed on one surface layer of the semiconductor substrate; A second region forming a Schottky junction with the electrode layer formed on a surface layer of the semiconductor substrate sandwiched between one region, wherein the electrode layer is formed on the first region. The first electrode layer formed on the second region and the second electrode layer formed on the second region, the hardness of the member forming the first electrode layer is the hardness of the member forming the second electrode layer. The first electrode layer and the second electrode layer have the same surface height.
【0011】また、第1導電型の半導体基板の一方の表
面層に選択的に形成した第2導電型第1領域と、該第1
領域に挟まれた前記半導体基板の表面層に形成された第
1領域の厚さより薄く、第1領域の不純物濃度より小さ
な第2導電型第3領域と、前記第1領域上と第3領域上
に形成された電極層とを具備する半導体装置であって、
前記第1領域上の電極層の表面高さが、前記第2領域上
の電極層の表面高さより高くする。A first region of a second conductivity type selectively formed on one surface layer of the semiconductor substrate of the first conductivity type;
A third region of a second conductivity type that is thinner than a first region formed in a surface layer of the semiconductor substrate and that is smaller than an impurity concentration of the first region, between the first region and the third region; A semiconductor device comprising an electrode layer formed on
The surface height of the electrode layer on the first region is higher than the surface height of the electrode layer on the second region.
【0012】また、前記第1領域と前記電極層との間
に、層間膜を形成することで、前記第1領域上の電極層
の表面高さを、前記第2領域上の電極層の表面高さより
高くする。また、前記層間膜の硬度が、前記電極層の硬
度より大きくする。また、前記第1領域の表面高さが、
前記第3領域の表面高さより高くする。[0012] Further, an interlayer film is formed between the first region and the electrode layer, so that the surface height of the electrode layer on the first region is reduced to the surface of the electrode layer on the second region. Higher than the height. In addition, the hardness of the interlayer film is greater than the hardness of the electrode layer. Also, the surface height of the first region is:
The height is higher than the surface height of the third region.
【0013】また、前記第1領域と前記第3領域の表面
高さが同一で、前記第1領域上の電極層の表面高さが、
前記第3領域上の電極層の表面高さより高くする。ま
た、第1導電型の半導体基板の一方の表面層に形成した
第2導電型半導体領域である第1領域と、該第1領域に
挟まれた前記半導体基板の表面層に第1領域の厚さより
薄く、第1領域の不純物濃度より小さな第2導電型半導
体領域である第3領域と、前記第1領域上に形成する第
1主電極と、第3領域上に形成する第2主電極とを具備
する半導体装置であって、前記第1主電極を形成する部
材の硬度が、前記第2主電極を形成する部材の硬度より
大きく、前記第1主電極と前記第2主電極の表面高さを
同一にする。The first region and the third region have the same surface height, and the electrode layer on the first region has a surface height of:
The height is higher than the surface height of the electrode layer on the third region. A first region which is a second conductivity type semiconductor region formed on one surface layer of the first conductivity type semiconductor substrate; and a first region having a thickness of the first region formed on the surface layer of the semiconductor substrate sandwiched between the first regions. A third region, which is a second conductive semiconductor region that is thinner and smaller than the impurity concentration of the first region, a first main electrode formed on the first region, and a second main electrode formed on the third region. Wherein the hardness of the member forming the first main electrode is greater than the hardness of the member forming the second main electrode, and the surface height of the first main electrode and the second main electrode is higher. Make the same.
【0014】また、複数個離れた前記第1領域毎に、該
第1領域上に形成される電極層の表面高さを高くする。
また、第1導電型の半導体基板の一方の表面より形成さ
れた電極層と、前記半導体基板の一方の表面層に選択的
に形成された第2導電型第1領域と、該第1領域に挟ま
れた前記半導体基板の表面層に形成された前記電極層と
ショットキー接合とを形成する第2領域と、を具備する
半導体装置の製造方法であって、第1領域上に層間膜を
形成する工程と、全面に電極層を形成することで、前記
第1領域上の電極層の表面高さを、前記第2領域上の主
電極の表面高さより高くする工程とを含む製造方法とす
る。Further, for each of the plurality of first regions separated from each other, the surface height of the electrode layer formed on the first region is increased.
An electrode layer formed from one surface of the first conductivity type semiconductor substrate; a second conductivity type first region selectively formed on one surface layer of the semiconductor substrate; A method of manufacturing a semiconductor device, comprising: a second region for forming a Schottky junction with the electrode layer formed on a surface layer of the semiconductor substrate sandwiched therebetween, wherein an interlayer film is formed on the first region And forming the electrode layer on the entire surface, so that the surface height of the electrode layer on the first region is higher than the surface height of the main electrode on the second region. .
【0015】また、第1導電型の半導体基板の一方の表
面より形成された電極層と、前記半導体基板の一方の表
面層に選択的に形成された第2導電型第1領域と、該第
1領域に挟まれた前記半導体基板の表面層に形成された
前記電極層とショットキー接合とを形成する第2領域
と、を具備する半導体装置の製造方法であって、半導体
基板上に窒化膜を選択的に形成する工程と、該窒化膜を
マスクに選択酸化する工程と、前記窒化膜を除去し、イ
オン注入により第1領域を形成する工程と、前記選択酸
化膜を除去することで、選択酸化膜が形成された箇所の
半導体基板を凹型に形成する工程と、全面に電極層を形
成することで、前記第1領域上の電極層の表面高さを、
前記第2領域上の電極層の表面高さより高くする工程と
を含む製造方法とする。An electrode layer formed on one surface of the semiconductor substrate of the first conductivity type; a first region of the second conductivity type selectively formed on one surface layer of the semiconductor substrate; A method of manufacturing a semiconductor device, comprising: a second region for forming a Schottky junction with the electrode layer formed on a surface layer of the semiconductor substrate sandwiched between one region; Selectively forming, a step of selectively oxidizing using the nitride film as a mask, a step of removing the nitride film and forming a first region by ion implantation, and removing the selective oxide film. Forming the concave portion of the semiconductor substrate at the position where the selective oxide film is formed, and forming an electrode layer on the entire surface, thereby reducing the surface height of the electrode layer on the first region;
Making the electrode layer higher than the surface height of the electrode layer on the second region.
【0016】また、第1導電型の半導体基板の一方の表
面より形成された電極層と、前記半導体基板の一方の表
面層に選択的に形成された第2導電型第1領域と、該第
1領域に挟まれた前記半導体基板の表面層に形成された
前記電極層とショットキー接合とを形成する第2領域
と、を具備する半導体装置の製造方法であって、第1領
域上と第2領域上に、同一厚みの主電極となる電極膜を
形成する工程と、前記第2領域上の前記電極膜の表面層
を除去することで、前記第1領域上の電極層の表面高さ
を、前記第2領域上の電極層の表面高さより高くする工
程とを含む製造方法とする。An electrode layer formed on one surface of a semiconductor substrate of the first conductivity type; a first region of a second conductivity type selectively formed on one surface layer of the semiconductor substrate; A second region for forming a Schottky junction with the electrode layer formed on a surface layer of the semiconductor substrate sandwiched between the first region and a second region for forming a Schottky junction; Forming a main electrode film having the same thickness on the two regions, and removing a surface layer of the electrode film on the second region, thereby forming a surface height of the electrode layer on the first region. Making the height higher than the surface height of the electrode layer on the second region.
【0017】また、第1導電型の半導体基板の一方の表
面より形成された電極層と、前記半導体基板の一方の表
面層に選択的に形成された第2導電型第1領域と、該第
1領域に挟まれた前記半導体基板の表面層に形成された
前記電極層とショットキー接合とを形成する第2領域
と、を具備する半導体装置の製造方法であって、第1領
域上に部材の硬度が大きい第1電極層となる第1層間膜
を形成する工程と、全面に第2電極層となる電極膜を形
成する工程と、該電極膜を第2電極層が露出するまで除
去し、第1電極層と第2電極層の表面高さを同一とする
工程とを含む製造方法とする。An electrode layer formed on one surface of the semiconductor substrate of the first conductivity type; a first region of the second conductivity type selectively formed on one surface layer of the semiconductor substrate; A method of manufacturing a semiconductor device, comprising: a second region forming a Schottky junction with the electrode layer formed on a surface layer of the semiconductor substrate sandwiched between one region; Forming a first interlayer film to be a first electrode layer having a high hardness, forming an electrode film to be a second electrode layer over the entire surface, and removing the electrode film until the second electrode layer is exposed. And making the surface heights of the first electrode layer and the second electrode layer the same.
【0018】また、第1導電型の半導体基板の一方の表
面層に選択的に形成された第2導電型第1領域と、該第
1領域に挟まれた前記半導体基板の表面層に第1領域の
厚さより薄く、第1領域の不純物濃度より小さな第2導
電型第3領域と、前記第1領域上と第3領域上に形成さ
れた主電極とを具備する半導体装置の製造方法であっ
て、第1領域上に層間膜を形成する工程と、全面に主電
極を形成することで、前記第1領域上の主電極の表面高
さを、前記第3領域上の主電極の表面高さより高くする
工程とを含む製造方法とする。A first region of the second conductivity type selectively formed on one surface layer of the semiconductor substrate of the first conductivity type, and a first region of the semiconductor substrate sandwiched between the first regions. A method of manufacturing a semiconductor device, comprising: a third region of a second conductivity type, which is thinner than a thickness of a region and smaller than an impurity concentration of a first region; and a main electrode formed on the first region and the third region. Forming an interlayer film on the first region and forming a main electrode on the entire surface, thereby reducing the surface height of the main electrode on the first region to the surface height of the main electrode on the third region. And a step of increasing the height.
【0019】また、第1導電型の半導体基板の一方の表
面層に選択的に形成された第2導電型第1領域と、該第
1領域に挟まれた前記半導体基板の表面層に第1領域の
厚さより薄く、第1領域の不純物濃度より小さな第2導
電型第3領域と、前記第1領域上と第3領域上に形成さ
れた主電極とを具備する半導体装置の製造方法であっ
て、半導体基板上に窒化膜を選択的に形成する工程と、
該窒化膜をマスクに選択酸化する工程と、前記窒化膜を
除去し、イオン注入により第1領域を形成する工程と、
前記選択酸化膜を除去することで、選択酸化膜が形成さ
れた箇所の半導体基板を凹型に形成する工程と、全面に
主電極を形成することで、前記第1領域上の主電極の表
面高さを、前記第2領域上の主電極の表面高さより高く
する工程とを含む製造方法とする。A first region of the second conductivity type selectively formed on one surface layer of the semiconductor substrate of the first conductivity type, and a first region of the semiconductor substrate sandwiched between the first regions. A method of manufacturing a semiconductor device, comprising: a third region of a second conductivity type, which is thinner than a thickness of a region and smaller than an impurity concentration of a first region; and a main electrode formed on the first region and the third region. And selectively forming a nitride film on the semiconductor substrate,
Selectively oxidizing the nitride film as a mask, removing the nitride film, and forming a first region by ion implantation;
Removing the selective oxide film to form a concave portion of the semiconductor substrate where the selective oxide film is formed; and forming a main electrode over the entire surface, thereby increasing the surface height of the main electrode on the first region. Making the height higher than the surface height of the main electrode on the second region.
【0020】また、第1導電型の半導体基板の一方の表
面層に選択的に形成された第2導電型第1領域と、該第
1領域に挟まれた前記半導体基板の表面層に第1領域の
厚さより薄く、第1領域の不純物濃度より小さな第2導
電型第3領域と、前記第1領域上と第3領域上に形成さ
れた主電極とを具備する半導体装置の製造方法であっ
て、第1領域上と第2領域上に、同一厚みの主電極とな
る電極膜を形成する工程と、前記第2領域上の前記電極
膜の表面層を除去することで、前記第1領域上の主電極
の表面高さを、前記第2領域上の主電極の表面高さより
高くする工程とを含む製造方法とする。A second region of the second conductivity type selectively formed on one surface layer of the semiconductor substrate of the first conductivity type, and a first region of the semiconductor substrate sandwiched between the first regions is formed on the first layer. A method of manufacturing a semiconductor device, comprising: a third region of a second conductivity type, which is thinner than a thickness of a region and smaller than an impurity concentration of a first region; and a main electrode formed on the first region and the third region. Forming an electrode film serving as a main electrode having the same thickness on the first region and the second region; and removing a surface layer of the electrode film on the second region, thereby forming the first region. Making the surface height of the upper main electrode higher than the surface height of the main electrode on the second region.
【0021】また、第1導電型の半導体基板の一方の表
面層に選択的に形成された第2導電型第1領域と、該第
1領域に挟まれた前記半導体基板の表面層に第1領域の
厚さより薄く、第1領域の不純物濃度より小さな第2導
電型第3領域と、前記第1領域上と第3領域上に形成さ
れた主電極とを具備する半導体装置の製造方法であっ
て、第1領域上に部材の硬度が大きい第1主電極となる
第1層間膜を形成する工程と、全面に第2主電極となる
電極膜を形成する工程と、該電極膜を第2主電極が露出
するまで除去し、第1主電極と第2主電極の表面高さを
同一とする工程とを含む製造方法とする。A first region of the second conductivity type selectively formed on one surface layer of the semiconductor substrate of the first conductivity type, and a first region of the semiconductor substrate sandwiched between the first regions. A method of manufacturing a semiconductor device, comprising: a third region of a second conductivity type, which is thinner than a thickness of a region and smaller than an impurity concentration of a first region; and a main electrode formed on the first region and the third region. Forming a first interlayer film serving as a first main electrode having a high hardness of the member on the first region; forming an electrode film serving as a second main electrode on the entire surface; Removing the main electrode until it is exposed, and making the surface heights of the first main electrode and the second main electrode the same.
【0022】また、前記主電極もしくは前記第1主電
極、第2主電極が、アルミ・シリコン膜を被覆し、低温
でアニールして形成するとよい。前記のように、第1領
域(後述のp+ アノード層2)上の主電極(後述のアノ
ード電極5)の表面高さを、第2領域、第3領域(後述
のショットキー接合部4やp- 層11)上の主電極の表
面高さより高くすることで、ワイヤボンディング時の衝
撃がショットキー接合部やp- 層に伝わりにくくなり、
耐圧劣化の割合を減少させることが出来る。The main electrode or the first main electrode and the second main electrode may be formed by coating an aluminum / silicon film and annealing at a low temperature. As described above, the surface height of the main electrode (the anode electrode 5 described later) on the first region (the p + anode layer 2 described later) is changed to the second region and the third region (the Schottky junction portion 4 described later). By making the surface height of the main electrode on the p − layer 11) higher, the impact at the time of wire bonding is less likely to be transmitted to the Schottky junction and the p − layer,
The rate of withstand voltage deterioration can be reduced.
【0023】また、第1領域上の第1主電極を、第2領
域、第3領域上の第2主電極より硬くすることで、第1
主電極と第2主電極の表面高さを同一としても、ワイヤ
ボンディング時の衝撃がショットキー接合部やp- 層に
伝わりにくくなり、耐圧劣化の割合を減少させることが
出来る。The first main electrode on the first region is made harder than the second main electrode on the second and third regions, so that the first
Even if the surface heights of the main electrode and the second main electrode are the same, the impact during wire bonding is less likely to be transmitted to the Schottky junction and the p − layer, and the rate of breakdown voltage degradation can be reduced.
【0024】[0024]
【発明の実施の形態】図1は、この本発明の第1実施例
の半導体装置の要部断面図である。この半導体装置はM
PSダイオードの場合である。n半導体基板100の一
方の主面の表面層にp+ アノード層2を選択的に複数個
形成し、p+ アノード層2上に層間膜7を形成し、層間
膜7上とn半導体基板100上に、アルミ・シリコン膜
でアノード電極5を形成する。p+ アノード層2に挟ま
れたn半導体基板100の表面と、アノード電極5との
界面にショットキー接合部4を形成する。n半導体基板
100の他方の主面の表面層にn+ カソード層3を形成
し、n+ カソード層3上にカソード電極6形成する。
尚、p+ アノード層2とn+ カソード層3に挟まれたn
半導体基板がn- ドリフト層1である。FIG. 1 is a sectional view of a main part of a semiconductor device according to a first embodiment of the present invention. This semiconductor device is M
This is the case of the PS diode. A plurality of p + anode layers 2 are selectively formed on a surface layer of one main surface of n semiconductor substrate 100, an interlayer film 7 is formed on p + anode layer 2, and an upper surface of interlayer film 7 and n semiconductor substrate 100 are formed. The anode electrode 5 is formed thereon with an aluminum / silicon film. A Schottky junction 4 is formed at the interface between the surface of n semiconductor substrate 100 sandwiched between p + anode layers 2 and anode electrode 5. An n + cathode layer 3 is formed on the surface layer on the other main surface of n semiconductor substrate 100, and a cathode electrode 6 is formed on n + cathode layer 3.
Note that n sandwiched between the p + anode layer 2 and the n + cathode layer 3
The semiconductor substrate is the n − drift layer 1.
【0025】前記の層間膜7の形成により、p+ アノー
ド層2上のアノード電極5の表面高さ21は、ショット
キー接合部4上のアノード電極5の表面高さ22より高
くできる。その結果、図17で示すように、ワイヤ14
をボンディングした時、ショットキー接合部4上のアノ
ード電極5の凹部24を、ワイヤ14で加圧する力が、
ワイヤ14と凹部24が接触した場合でも緩和され、シ
ョットキー接合部4での漏れ電流の増加は抑制されて、
耐圧低下を防止できる。By forming the interlayer film 7, the surface height 21 of the anode electrode 5 on the p + anode layer 2 can be made higher than the surface height 22 of the anode electrode 5 on the Schottky junction 4. As a result, as shown in FIG.
When bonding is performed, the force for pressing the recess 24 of the anode electrode 5 on the Schottky junction 4 with the wire 14 is
Even when the wire 14 and the recess 24 come into contact with each other, the stress is relaxed, and the increase in the leakage current at the Schottky junction 4 is suppressed.
A decrease in withstand voltage can be prevented.
【0026】この層間膜7の底部の幅27は、ボンディ
ング時にショットキー接合部4が受ける加圧力(衝撃)
を緩和するために、p+ アノード層2の表面部の幅26
より狭くする。また、層間膜7はPSG(Phosph
orous Silicated Glass)膜など
の絶縁膜や金属膜とする。The width 27 at the bottom of the interlayer film 7 depends on the pressing force (shock) applied to the Schottky junction 4 during bonding.
In order to alleviate this, the width 26 of the surface of the p + anode layer 2 is
Make it narrower. The interlayer film 7 is made of PSG (Phosph).
An insulating film or a metal film such as an or solicited glass film.
【0027】この層間膜7は、アノード電極5の材質と
同一としても構わないが、アノード電極5の材質より硬
い材質にすると、アノード電極5の凸部23が、ボンデ
ィング時の圧力(衝撃)で変形する割合が、材質が同一
の場合より小さくなるために、一層効果的となる。ま
た、図では、すべてのp+ アノード層2上に層間膜7を
それぞれ設けた場合を示したが、複数個おきに層間膜7
を設けても構わない。この層間膜7の間隔は1μmから
100μm程度の範囲に形成するとよい。これは、1μ
m未満のピッチになると、層間膜7の幅27が狭く成り
過ぎて、ボンディング時にp+ アノード層2上のアノー
ド電極5が潰れ易くなり、ショットキー接合部4上のア
ノード電極5の凹部24を、図示しないワイヤで加圧す
るようになる。一方、100μmを超えると、層間膜7
の間隔が広くなり、ボンディング時に層間膜7に挟まれ
たショットキー接合部4上のアノード電極5の凹部24
をワイヤで加圧するようになるためである。また、この
範囲を10μmから30μmとすると上記の問題が起こ
りにくく好ましい。This interlayer film 7 may be made of the same material as that of the anode electrode 5. However, if it is made of a material harder than the material of the anode electrode 5, the projections 23 of the anode electrode 5 may be subjected to pressure (impact) during bonding. Since the rate of deformation is smaller than in the case of the same material, it is more effective. Also, in the figure, the case where the interlayer films 7 are provided on all the p + anode layers 2 is shown.
May be provided. The interval between the interlayer films 7 is preferably formed in a range of about 1 μm to 100 μm. This is 1μ
When the pitch is less than m, the width 27 of the interlayer film 7 becomes too narrow, so that the anode electrode 5 on the p + anode layer 2 is easily crushed at the time of bonding, and the concave portion 24 of the anode electrode 5 on the Schottky junction 4 is removed. , And pressurized by a wire (not shown). On the other hand, if it exceeds 100 μm, the interlayer film 7
Of the anode electrode 5 on the Schottky junction 4 sandwiched between the interlayer films 7 during bonding.
Is to be pressed with a wire. In addition, it is preferable that this range is from 10 μm to 30 μm, since the above-mentioned problem hardly occurs.
【0028】また、p+ アノード層2上のアノード電極
5の表面高さ21と、ショットキー接合部4上のアノー
ド電極5の表面高さ22の差(層間膜7の厚さ27)
は、p + アノード層2のピッチが数μmと狭い場合は1
μm程度でよく、ピッチが数十μm以上と広い場合は5
μm程度以下とするとよい。尚、前記のn+ カソード層
6とp+ アノード層2の間のn半導体基板100内にn
+ カソード層3に接して、n+ カソード層3の濃度より
低く、n半導体基板100の濃度より高いnバッファ層
を設けたMPSダイオードとしても勿論よい。Also, p+Anode electrode on anode layer 2
5 and an anodization on the Schottky junction 4
Difference in surface height 22 of gate electrode 5 (thickness 27 of interlayer film 7)
Is p +1 when the pitch of the anode layer 2 is as narrow as several μm.
μm, and 5 if the pitch is as wide as several tens μm or more.
It is good to be about μm or less. Note that the above n+Cathode layer
6 and p+N within the n semiconductor substrate 100 between the anode layers 2
+In contact with the cathode layer 3, n+From the concentration of the cathode layer 3
An n buffer layer that is low and higher than the concentration of the n semiconductor substrate 100
It is of course also possible to use an MPS diode provided with.
【0029】また、MPSダイオードを構成するp+ ア
ノード層2のピッチは1μmから30μmの範囲とし、
その拡散深さは3μmから4μm程度である。また、シ
ョットキー比率〔(ショットキー接合部の総表面積)÷
(ショットキー接合部とp+アノード層とを合わせた総
表面積)〕は20%から70%程度とする。尚、図示し
ないが、前記の層間膜7を、アノード電極7より硬く、
導電性部材で形成し、この層間膜7を露出させてアノー
ド電極の一部として利用し、前記のアノード電極5の厚
さを、この層間膜7の厚さより薄くなるようにアノード
電極7をエッチングして、段差を設けた場合も、前記と
同様の効果が得られる。The pitch of the p + anode layer 2 constituting the MPS diode is in the range of 1 μm to 30 μm.
The diffusion depth is about 3 μm to 4 μm. Also, the Schottky ratio [(total surface area of the Schottky junction)] ÷
(Total surface area including the Schottky junction and the p + anode layer) is about 20% to 70%. Although not shown, the interlayer film 7 is harder than the anode electrode 7,
It is formed of a conductive member, and this interlayer film 7 is exposed and used as a part of the anode electrode, and the anode electrode 7 is etched so that the thickness of the anode electrode 5 becomes smaller than the thickness of the interlayer film 7. Thus, even when a step is provided, the same effect as described above can be obtained.
【0030】図2は、この発明の第2実施例の半導体装
置の製造方法であり、同図(a)から同図(c)は、工
程順に示した要部工程断面図である。この製造方法は図
1の半導体装置の製造方法である。n半導体基板100
の裏面側にn+ カソード層3を形成する。n半導体基板
100の表面側にボロンやBF2 などのp型不純物を選
択的にイオン注入し、熱処理して、複数個のp+ アノー
ド層2を形成する。p+ アノード層2が形成されないn
半導体基板100がn- ドリフト層1となる(同図
(a))。FIGS. 2A to 2C show a method of manufacturing a semiconductor device according to a second embodiment of the present invention. FIGS. 2A to 2C are cross-sectional views of main steps in the order of steps. This manufacturing method is a method for manufacturing the semiconductor device of FIG. n semiconductor substrate 100
The n + cathode layer 3 is formed on the back side of the substrate. A plurality of p + anode layers 2 are formed by selectively ion-implanting p-type impurities such as boron and BF 2 into the surface side of the n-semiconductor substrate 100 and performing heat treatment. n where p + anode layer 2 is not formed
The semiconductor substrate 100 becomes the n − drift layer 1 (FIG. 3A).
【0031】つぎに、p+ アノード層2上に金属膜であ
る層間膜7を形成する。この層間膜7はPSG膜などの
絶縁膜であっても構わない(同図(b))。つぎに、p
+ アノード層2上とn- ドリフト層1上にアノード電極
5を形成する。アノード電極5は、アルミ・シリコン
(1重量%から3重量%程度のシリコン入りアルミニウ
ム)膜をスパッタまたは蒸着で形成し、350℃から5
00℃程度の低温アニールする。アニール時間は30分
から2時間程度である。この低温アニールにより、n-
ドリフト層1とアノード電極5の界面にはショトキー接
合部4が形成される。前記のアニール温度が500を超
えるとショットキー接合部4は形成されずに、n- ドリ
フト層1の表面層にp- 層が形成される。また、350
℃未満では、アルミ・シリコン膜とn半導体基板100
と接触性が良くない。つぎにn+ カソード層3上にカソ
ード電極6を形成する(同図(c))。Next, an interlayer film 7 which is a metal film is formed on the p + anode layer 2. This interlayer film 7 may be an insulating film such as a PSG film (FIG. 4B). Next, p
An anode electrode 5 is formed on the + anode layer 2 and the n - drift layer 1. The anode electrode 5 is formed by sputtering or vapor-depositing an aluminum silicon (aluminum containing silicon of about 1 to 3 wt%) film by sputtering or vapor deposition.
Anneal at a low temperature of about 00 ° C. The annealing time is about 30 minutes to 2 hours. By this low temperature annealing, n −
A Schottky junction 4 is formed at the interface between the drift layer 1 and the anode electrode 5. If the annealing temperature exceeds 500, the Schottky junction 4 is not formed, and a p − layer is formed on the surface layer of the n − drift layer 1. Also, 350
If the temperature is lower than 100 ° C., the aluminum / silicon film and the n semiconductor substrate 100
Is not good. Next, a cathode electrode 6 is formed on the n + cathode layer 3 (FIG. 3C).
【0032】図1で説明したように、この層間膜7を、
アノード電極5を形成するアルミ・シリコン膜より硬い
金属(例えば、モリブデン、タングステンなど)にする
と、アノード電極5の凸部23が潰れにくくなる。図3
は、この本発明の第3実施例の半導体装置の要部断面図
である。この半導体装置はMPSダイオードの場合であ
る。As described with reference to FIG. 1, this interlayer film 7 is
If a metal (for example, molybdenum, tungsten, or the like) harder than the aluminum / silicon film forming the anode electrode 5, the protrusions 23 of the anode electrode 5 are less likely to be crushed. FIG.
FIG. 9 is a sectional view of a main part of a semiconductor device according to a third embodiment of the present invention. This semiconductor device is an MPS diode.
【0033】n半導体基板100の一方の主面の複数の
凹部24を形成し、凹部24が形成されな複数の凸部2
3の箇所のそれぞれの表面層に、p+ アノード層2を形
成し、p+ アノード層2上および凹部24上にアノード
電極5を形成する。p+ アノード層2に挟まれた凹部2
4のn半導体基板100の表面と、アノード電極5との
界面にショットキー接合部4を形成する。n半導体基板
100の他方の主面の表面層にn+ カソード層3を形成
し、n+ カソード層3上にカソード電極6を形成する。A plurality of recesses 24 are formed on one main surface of n semiconductor substrate 100, and a plurality of protrusions 2 on which no recess 24 is formed are formed.
The p + anode layer 2 is formed on each of the three surface layers, and the anode electrode 5 is formed on the p + anode layer 2 and the recess 24. Concave portion 2 sandwiched between p + anode layer 2
The Schottky junction 4 is formed at the interface between the surface of the n-type semiconductor substrate 100 and the anode electrode 5. An n + cathode layer 3 is formed on the surface layer on the other main surface of n semiconductor substrate 100, and a cathode electrode 6 is formed on n + cathode layer 3.
【0034】前記の凹部24の形成により、凸部23に
形成されたp+ アノード層2上のアノード電極5の表面
高さ21は、凹部24に形成されたショットキー接合部
4上のアノード電極5の表面高さ22より高くできる。
ここで表面高さの基準は、凹部が形成されないn半導体
基板100の表面とした。その結果、前記したように、
ワイヤボンディングした時、ショットキー接合部4上の
アノード電極5の凹部24を、図示しないワイヤで加圧
する力が緩和され、ショットキー接合部4での漏れ電流
の増加は抑制され、耐圧低下を防止できる。Due to the formation of the recess 24, the surface height 21 of the anode electrode 5 on the p + anode layer 2 formed on the projection 23 is reduced by the anode electrode on the Schottky junction 4 formed on the recess 24. 5 can be higher than the surface height 22.
Here, the reference of the surface height was the surface of the n-semiconductor substrate 100 where no concave portion was formed. As a result, as described above,
When wire bonding is performed, the force of pressing the concave portion 24 of the anode electrode 5 on the Schottky junction 4 with a wire (not shown) is reduced, and an increase in leakage current at the Schottky junction 4 is suppressed, thereby preventing a reduction in withstand voltage. it can.
【0035】また、前記の凸部23のピッチは、p+ ア
ノード層2のピッチと同一となる。また、凹部24の深
さ(つまり、凸部23と凹部24の段差)は0.8μm
から5μmとする。これは、図4で説明するように、選
択酸化膜の厚みに依存する。図4は、この発明の第4実
施例の半導体装置の製造方法であり、同図(a)から同
図(c)は、工程順に示した要部工程断面図である。こ
の製造方法は図3の半導体装置の製造方法である。The pitch of the projections 23 is the same as the pitch of the p + anode layer 2. The depth of the concave portion 24 (that is, the step between the convex portion 23 and the concave portion 24) is 0.8 μm.
To 5 μm. This depends on the thickness of the selective oxide film as described with reference to FIG. 4A to 4C show a method of manufacturing a semiconductor device according to a fourth embodiment of the present invention. FIGS. 4A to 4C are cross-sectional views of main steps in the order of steps. This manufacturing method is a method for manufacturing the semiconductor device of FIG.
【0036】n半導体基板100の裏面側にn+ カソー
ド層3を形成する。n半導体基板の表面側に窒化膜8を
パターニングし、酸化して、窒化膜8が形成されていな
い部分に、厚い選択酸化膜9(LOCOS:Local
Oxidation ofSilicon)を形成す
る(同図(a))。つぎに、窒化膜8を除去した後、選
択酸化膜9をマスクとして、ボロンやBF 2 などのp型
不純物をイオン注入し、イオン活性化熱処理を行いp+
アノード層2を形成する。このイオン活性化熱処理は、
次工程の選択酸化膜の除去後でも構わない(同図
(b))。On the back side of the semiconductor substrate 100, n+Casor
A layer 3 is formed. a nitride film 8 on the surface side of the n semiconductor substrate
After patterning and oxidation, the nitride film 8 is not formed.
The thick selective oxide film 9 (LOCOS: Local)
Oxidation of Silicon
(FIG. 7A). Next, after the nitride film 8 is removed,
Boron or BF using the selective oxide film 9 as a mask TwoSuch as p-type
Impurity is ion-implanted and ion activation heat treatment is performed.+
The anode layer 2 is formed. This ion activation heat treatment
It does not matter even after the removal of the selective oxide film in the next step.
(B)).
【0037】つぎに、選択酸化膜9を除去し、n半導体
基板100のアノード側の表面に凹部26を形成し、そ
の後、n半導体基板100の両面にアノード電極5とカ
ソード電極6をそれぞれ形成する。このアノード電極5
は、前記のアルミ・シリコン膜をスパッタまたは蒸着
し、低温アニールすることで形成される。この低温アニ
ールで、前記したように、n- ドリフト層1とアノード
電極2の界面にはショトキー接合部4が形成される(同
図(c))。Next, the selective oxide film 9 is removed, a concave portion 26 is formed on the surface of the n semiconductor substrate 100 on the anode side, and then the anode electrode 5 and the cathode electrode 6 are formed on both surfaces of the n semiconductor substrate 100, respectively. . This anode electrode 5
Is formed by sputtering or evaporating the above-mentioned aluminum / silicon film and annealing it at a low temperature. As described above, the Schottky junction 4 is formed at the interface between the n − drift layer 1 and the anode electrode 2 by the low-temperature annealing (FIG. 3C).
【0038】このように、選択酸化膜9の除去により、
ショットキー接合部4表面は凹部26となり、p+ アノ
ード層2表面は凸部25となる。この凹凸の表面に、ア
ノード電極5を形成するために、p+ アノード層2上の
アノード電極5の表面が凸部23となり、ショットキー
接合部4上のアノード電極5の表面が凹部24となる。As described above, by removing the selective oxide film 9,
The surface of the Schottky junction 4 becomes a concave portion 26, and the surface of the p + anode layer 2 becomes a convex portion 25. In order to form the anode electrode 5 on the surface of the unevenness, the surface of the anode electrode 5 on the p + anode layer 2 becomes a projection 23 and the surface of the anode electrode 5 on the Schottky junction 4 becomes a depression 24. .
【0039】その結果、p+ アノード層2上のアノード
電極5の表面高さ21は、ショットキー接合部4上のア
ノード電極5の表面高さ22より高くできる。図5は、
この発明の第5実施例の半導体装置の要部断面図であ
る。この半導体装置はMPSダイオードの場合である。
n半導体基板100の一方の主面の表面層にp+ アノー
ド層2を選択的に複数個形成し、p+ アノード層2上と
n半導体基板100上に、アルミ・シリコン膜でアノー
ド電極5を形成する。p+ アノード層2に挟まれたn半
導体基板100の表面と、アノード電極5との界面にシ
ョットキー接合部4を形成する。ショットキー接合部4
上のアノード電極5に凹部24を形成する。n半導体基
板100の他方の主面の表面層にn+ カソード層3を形
成し、n+ カソード層3上にカソード電極6形成する。
尚、p+ アノード層2とn+ カソード層3に挟まれたn
半導体基板がn- ドリフト層1である。As a result, the surface height 21 of the anode electrode 5 on the p + anode layer 2 can be made higher than the surface height 22 of the anode electrode 5 on the Schottky junction 4. FIG.
FIG. 14 is a sectional view of a main part of a semiconductor device according to a fifth embodiment of the present invention. This semiconductor device is an MPS diode.
A plurality of p + anode layers 2 are selectively formed on the surface layer of one main surface of n semiconductor substrate 100, and anode electrode 5 is formed of an aluminum / silicon film on p + anode layer 2 and n semiconductor substrate 100. Form. A Schottky junction 4 is formed at the interface between the surface of n semiconductor substrate 100 sandwiched between p + anode layers 2 and anode electrode 5. Schottky joint 4
A recess 24 is formed in the upper anode electrode 5. An n + cathode layer 3 is formed on the surface layer on the other main surface of n semiconductor substrate 100, and a cathode electrode 6 is formed on n + cathode layer 3.
Note that n sandwiched between the p + anode layer 2 and the n + cathode layer 3
The semiconductor substrate is the n − drift layer 1.
【0040】前記の凹部24の形成により、p+ アノー
ド層2上のアノード電極5の表面高さ21は、ショット
キー接合部4上のアノード電極5の表面高さ22より高
くできる。この凹部24を、ショットキー接合部4より
広く、p+ アノード層2にかかる様に形成すると、凸部
23がp+ アノード層2内に形成されて好ましい。By the formation of the recess 24, the surface height 21 of the anode electrode 5 on the p + anode layer 2 can be made higher than the surface height 22 of the anode electrode 5 on the Schottky junction 4. It is preferable that the concave portion 24 be formed wider than the Schottky junction 4 so as to cover the p + anode layer 2 because the convex portion 23 is formed in the p + anode layer 2.
【0041】凸部23の寸法の諸元は、図1の場合と同
様にすると図1と同様の効果が得られる。図6は、この
発明の第6実施例の半導体装置の製造方法であり、同図
(a)から同図(c)は、工程順に示した要部工程断面
図である。この製造方法は図5の半導体装置の製造方法
である。If the dimensions of the projections 23 are the same as those in FIG. 1, the same effects as in FIG. 1 can be obtained. 6A to 6C show a method of manufacturing a semiconductor device according to a sixth embodiment of the present invention. FIGS. 6A to 6C are cross-sectional views showing main steps in the order of steps. This manufacturing method is a method for manufacturing the semiconductor device of FIG.
【0042】n半導体基板100の裏面側にn+ カソー
ド層3を形成する。n半導体基板100の表面側にボロ
ンやBF2 などのp型不純物を選択的にイオン注入し、
熱処理して、複数個のp+ アノード層2を形成する。p
+ アノード層2とn+ カソード層3似挟まれたn半導体
基板100がn- ドリフト層1となる(同図(a))。The n + cathode layer 3 is formed on the back surface of the n semiconductor substrate 100. p-type impurities such as boron and BF 2 are selectively ion-implanted into the surface side of the n-semiconductor substrate 100;
Heat treatment is performed to form a plurality of p + anode layers 2. p
The n-semiconductor substrate 100 sandwiched between the + anode layer 2 and the n + cathode layer 3 becomes the n − drift layer 1 (FIG. 3A).
【0043】つぎに、p+ アノード層2上とn- ドリフ
ト層1上にアノード電極5を形成する。アノード電極2
は、前記のアルミ・シリコン膜をスパッタまたは蒸着で
形成し、前記の低温アニールをすることで形成される。
この低温アニールで、前記したように、n- ドリフト層
1とアノード電極2の界面にはショトキー接合部4が形
成される。つぎに、p+ アノード層2上のアノード電極
5にレジスト10を形成する(同図(b))。Next, an anode electrode 5 is formed on the p + anode layer 2 and the n − drift layer 1. Anode electrode 2
Is formed by forming the above-described aluminum / silicon film by sputtering or vapor deposition and performing the above-described low-temperature annealing.
As described above, the Schottky junction 4 is formed at the interface between the n − drift layer 1 and the anode electrode 2 by the low-temperature annealing. Next, a resist 10 is formed on the anode electrode 5 on the p + anode layer 2 (FIG. 2B).
【0044】つぎに、レジスト10をマスクに、n- ド
リフト層1に達しないように、アノード電極5をエッチ
ングで除去し、ショットキー接合部4上のアノード電極
5に凹部24を形成する。レジスト10を除去し、n+
カソード層3上にカソード電極6を形成する。(同図
(c))。尚、前記の低温アニールはレジスト10を除
去した後でもよい。Next, using the resist 10 as a mask, the anode electrode 5 is removed by etching so as not to reach the n − drift layer 1, and a recess 24 is formed in the anode electrode 5 on the Schottky junction 4. The resist 10 is removed, and n +
The cathode electrode 6 is formed on the cathode layer 3. (Figure (c)). The low-temperature annealing may be performed after the resist 10 is removed.
【0045】ショットキー接合部4上のアノード電極5
に凹部24を形成することで、p+アノード層2上のア
ノード電極5の表面高さ21は、ショットキー接合部4
上のアノード電極5の表面高さ22より高くできる。図
7は、この発明の第7実施例の半導体装置の要部断面図
である。この半導体装置はMPSダイオードの場合であ
る。Anode electrode 5 on Schottky junction 4
By forming the concave portion 24 in the anode, the surface height 21 of the anode electrode 5 on the p + anode layer 2 is
It can be higher than the surface height 22 of the upper anode electrode 5. FIG. 7 is a sectional view showing a main part of a semiconductor device according to a seventh embodiment of the present invention. This semiconductor device is an MPS diode.
【0046】n半導体基板100の一方の主面の表面層
にp+ アノード層2を選択的に複数個形成し、p+ アノ
ード層2上に第1アノード電極5a、p+ アノード層2
に挟まれたn半導体基板100(n- ドリフト層1)上
に第2アノード電極5bをそれぞれ表面が平坦になるよ
うに形成する。p+ アノード層2に挟まれたn- ドリフ
ト層1の表面と、第2アノード電極5bとの界面にショ
ットキー接合部4を形成する。n半導体基板100の他
方の主面の表面層にn+ カソード層3を形成し、n+ カ
ソード層3上にカソード電極6を形成する。[0046] The p + anode layer 2 selectively plurality formed in the surface layer of the one main surface of n semiconductor substrate 100, the first anode electrode 5a on the p + anode layer 2, p + anode layer 2
A second anode electrode 5b is formed on n semiconductor substrate 100 (n − drift layer 1) sandwiched between them so as to have a flat surface. A Schottky junction 4 is formed at the interface between the surface of n − drift layer 1 sandwiched between p + anode layers 2 and second anode electrode 5b. An n + cathode layer 3 is formed on the surface layer on the other main surface of n semiconductor substrate 100, and a cathode electrode 6 is formed on n + cathode layer 3.
【0047】p+ アノード層2上に形成された第1アノ
ード電極5aを、ショットキー接合部4上に形成された
の第2アノード電極5bより部材の硬度を大きく(部材
を硬く)することで、図示しないワイヤをボンディング
したとき、ワイヤの加圧力が硬い第1アノード電極5a
に多くかかり、ショットキー接合部4の加圧力を減らす
ことができる。第1アノード電極5aの部材をモリブデ
ンやタングステンなどとして、第2アノード電極5bの
部材をアルミ・シリコンなどにするとよい。The first anode electrode 5a formed on the p + anode layer 2 has a higher hardness (harder member) than the second anode electrode 5b formed on the Schottky junction 4. When a wire (not shown) is bonded, the first anode electrode 5a having a hard pressure applied to the wire.
And the pressing force of the Schottky joint 4 can be reduced. The member of the first anode electrode 5a is preferably made of molybdenum or tungsten, and the member of the second anode electrode 5b is preferably made of aluminum or silicon.
【0048】図8は、この発明の第8実施例の半導体装
置の製造方法であり、同図(a)から同図(c)は工程
順に示した要部工程断面図である。この製造方法は図7
−図6の半導体装置の製造方法である。n半導体基板1
00の裏面側にn+ カソード層3を形成する。n半導体
基板100の表面側にボロンやBF2 などのp型不純物
を選択的にイオン注入し、熱処理して、複数個のp+ ア
ノード層2を形成する。p+ アノード層2とn+ カソー
ド層3に挟まれたn半導体基板がn- ドリフト層1とな
る(同図(a))。FIGS. 8A to 8C show a method of manufacturing a semiconductor device according to an eighth embodiment of the present invention. FIGS. 8A to 8C are cross-sectional views showing main steps in the order of steps. This manufacturing method is shown in FIG.
-It is a manufacturing method of the semiconductor device of FIG. n semiconductor substrate 1
The n + cathode layer 3 is formed on the back side of the layer No. 00. A plurality of p + anode layers 2 are formed by selectively ion-implanting p-type impurities such as boron and BF 2 into the surface side of the n-semiconductor substrate 100 and performing heat treatment. The n semiconductor substrate sandwiched between the p + anode layer 2 and the n + cathode layer 3 becomes the n − drift layer 1 (FIG. 3A).
【0049】つぎに、p+ アノード層2上に、アルミ・
シリコンより硬いモリブデンやタングステンなどで硬い
第2アノード電極5aを形成する。つぎに、p+ アノー
ド層2上とn- ドリフト層1上に柔らかい第2アノード
電極5bを形成する。第2アノード電極5bは、前記の
アルミ・シリコン膜を蒸着で形成し、前記の低温アニー
ルすることで形成される。このアニール条件では、n-
ドリフト層1と第2アノード電極5bの界面には、ショ
トキー接合部4が形成される(同図(b))。Next, on the p + anode layer 2, aluminum
A second anode electrode 5a harder than molybdenum or tungsten harder than silicon is formed. Next, a soft second anode electrode 5 b is formed on the p + anode layer 2 and the n − drift layer 1. The second anode electrode 5b is formed by depositing the above-mentioned aluminum / silicon film by vapor deposition and annealing it at a low temperature. Under these annealing conditions, n −
A Schottky junction 4 is formed at the interface between the drift layer 1 and the second anode electrode 5b (FIG. 2B).
【0050】つぎに、第2アノード電極5bを、前記の
第1アノード電極5aが露出するまで平坦化する。n+
カソード層3上にカソード電極6を形成する(同図
(c))。前記のように、硬い第1アノード電極5aと
柔らかい第2アノード電極5bの表面高さを同一として
も、硬い第1アノード電極5aの方にボンディング時の
加圧力が強く伝達されて、柔らかい第2アノード電極5
bからショットキー接合部4へ伝達される加圧力を弱め
ることができる。Next, the second anode electrode 5b is flattened until the first anode electrode 5a is exposed. n +
A cathode electrode 6 is formed on the cathode layer 3 (FIG. 3C). As described above, even if the surface heights of the hard first anode electrode 5a and the soft second anode electrode 5b are the same, the pressing force at the time of bonding is strongly transmitted to the hard first anode electrode 5a, and the soft second anode electrode 5a is soft. Anode electrode 5
The pressing force transmitted from b to the Schottky joint 4 can be reduced.
【0051】図9は、この発明の第9実施例の半導体装
置の要部断面図である。この半導体装置はSFDダイオ
ードの場合である。図1との違いは、ショットキー接合
部4に相当する箇所に薄いp- 層11を形成した点であ
る。図1と同様の層間膜7を形成することで、図1と同
様の効果が得られる。このp- 層11の不純物濃度は、
p+ アノード層2の不純物濃度より低く、n半導体基板
100(n- ドリフト層1)の濃度より高くする。また
p-層11の深さをp+ アノード層2より浅くする。FIG. 9 is a sectional view showing a main part of a semiconductor device according to a ninth embodiment of the present invention. This semiconductor device is an SFD diode. The difference from FIG. 1 is that a thin p − layer 11 is formed at a position corresponding to the Schottky junction 4. By forming the same interlayer film 7 as in FIG. 1, the same effect as in FIG. 1 can be obtained. The impurity concentration of this p - layer 11 is
It is lower than the impurity concentration of the p + anode layer 2 and higher than the concentration of the n semiconductor substrate 100 (n − drift layer 1). Further, the depth of p − layer 11 is made shallower than that of p + anode layer 2.
【0052】図10は、この発明の第10実施例の半導
体装置の製造方法であり、同図(a)から同図(c)は
工程順に示した要部工程断面図である。この製造方法は
図9の半導体装置の製造方法である。図2との違いは、
図2(a)のアノード側の表面層に、p+ アノード層2
より浅いp- 層11を全面に形成する点である。その他
の工程は第2実施例と同じである。この場合、p- 層1
1があるために、アルミ・シリコン膜を低温アニールし
てもショットキー接合部は形成されない。FIGS. 10A to 10C show a method of manufacturing a semiconductor device according to a tenth embodiment of the present invention. FIGS. 10A to 10C are cross-sectional views of main steps in the order of steps. This manufacturing method is a method for manufacturing the semiconductor device of FIG. The difference from FIG.
The p + anode layer 2 is formed on the surface layer on the anode side in FIG.
The point is that a shallower p − layer 11 is formed on the entire surface. Other steps are the same as in the second embodiment. In this case, p - layer 1
1 does not form a Schottky junction even when the aluminum / silicon film is annealed at a low temperature.
【0053】このp- 層11の形成は、BF2 などのp
型不純物を全面にイオン注入し、熱処理して行われる。
また、アノード電極5の形成を、アルミ・シリコン膜を
蒸着し、低温アニールではなく、500℃を超える高温
アニールする場合には、p-層が形成されるために、前
記のp型不純物のイオン注入は行わなくても構わない。The formation of the p − layer 11 is performed by forming a p - layer 11 such as BF 2.
This is performed by ion-implanting a mold impurity into the entire surface and performing a heat treatment.
When the anode electrode 5 is formed by depositing an aluminum / silicon film and performing high-temperature annealing exceeding 500 ° C. instead of low-temperature annealing, a p − layer is formed. The injection does not have to be performed.
【0054】図11は、この発明の第11実施例の半導
体装置の要部断面図である。この半導体装置はSFDダ
イオードの場合である。図3との違いは、ショットキー
接合部4に相当する箇所に薄いp- 層11を形成した点
である。図3と同様の層間膜を形成することで、図3と
同様の効果が得られる。FIG. 11 is a sectional view showing a main part of a semiconductor device according to an eleventh embodiment of the present invention. This semiconductor device is an SFD diode. The difference from FIG. 3 is that a thin p − layer 11 is formed at a position corresponding to the Schottky junction 4. By forming the same interlayer film as in FIG. 3, the same effect as in FIG. 3 can be obtained.
【0055】図12は、この発明の第12実施例の半導
体装置の製造方法であり、同図(a)から同図(c)は
工程順に示した要部工程断面図である。この製造方法は
図11の半導体装置の製造方法である。図4との違い
は、図4(c)のアノード側の表面層に、p+ アノード
層2より浅いp- 層11を全面に形成する点である。そ
の他の工程は第4実施例と同じである。このp- 層11
の形成は、図10の場合と同じである。FIGS. 12A to 12C show a method of manufacturing a semiconductor device according to a twelfth embodiment of the present invention. FIGS. 12A to 12C are cross-sectional views showing main steps in the order of steps. This manufacturing method is a method for manufacturing the semiconductor device of FIG. The difference from FIG. 4 is that a p − layer 11 shallower than the p + anode layer 2 is formed on the entire surface of the anode-side surface layer in FIG. 4C. Other steps are the same as in the fourth embodiment. This p - layer 11
Is the same as in the case of FIG.
【0056】図13は、この発明の第13実施例の半導
体装置の要部断面図である。この半導体装置はSFDダ
イオードの場合である。図5との違いは、ショットキー
接合部4に相当する箇所に薄いp- 層11を形成した点
である。図5と同様の層間膜を形成することで、図5と
同様の効果が得られる。FIG. 13 is a sectional view showing a main part of a semiconductor device according to a thirteenth embodiment of the present invention. This semiconductor device is an SFD diode. The difference from FIG. 5 is that a thin p − layer 11 is formed at a position corresponding to the Schottky junction 4. By forming the same interlayer film as in FIG. 5, the same effect as in FIG. 5 can be obtained.
【0057】図14は、この発明の第14実施例の半導
体装置の製造方法であり、同図(a)から同図(c)は
工程順に示した要部工程断面図である。この製造方法は
図13の半導体装置の製造方法である。図6との違い
は、図6(a)のアノード側の表面層に、p+ アノード
層2より浅いp- 層11を全面に形成する点である。そ
の他の工程は第6実施例と同じである。このp- 層11
の形成は、図10の場合と同じである。FIGS. 14A to 14C show a method of manufacturing a semiconductor device according to a fourteenth embodiment of the present invention. FIGS. 14A to 14C are sectional views showing main steps in the order of steps. This manufacturing method is a method for manufacturing the semiconductor device of FIG. The difference from FIG. 6 is that ap − layer 11 shallower than the p + anode layer 2 is formed on the entire surface of the surface layer on the anode side in FIG. Other steps are the same as in the sixth embodiment. This p - layer 11
Is the same as in the case of FIG.
【0058】図15この発明の第15実施例の半導体装
置の要部断面図である。この半導体装置はSFDダイオ
ードの場合である。図7との違いは、ショットキー接合
部4に相当する箇所に薄いp- 層11を形成した点であ
る。図7と同様の層間膜を形成することで、図7と同様
の効果が得られる。FIG. 15 is a sectional view showing a main part of a semiconductor device according to a fifteenth embodiment of the present invention. This semiconductor device is an SFD diode. The difference from FIG. 7 is that a thin p − layer 11 is formed at a position corresponding to the Schottky junction 4. By forming the same interlayer film as in FIG. 7, the same effect as in FIG. 7 can be obtained.
【0059】図16は、この発明の第16実施例の半導
体装置の製造方法であり、同図(a)から同図(c)は
工程順に示した要部工程断面図である。この製造方法は
図15の半導体装置の製造方法である。図8との違い
は、図8(a)のアノード側の表面層に、p+ アノード
層2より浅いp- 層11を全面に形成する点である。そ
の他の工程は第8実施例と同じである。このp- 層11
の形成は、図10の場合と同じである。FIGS. 16A to 16C show a method of manufacturing a semiconductor device according to a sixteenth embodiment of the present invention. FIGS. 16A to 16C are cross-sectional views showing main steps in the order of steps. This manufacturing method is a method for manufacturing the semiconductor device of FIG. The difference from FIG. 8 is that ap − layer 11 shallower than the p + anode layer 2 is formed on the entire surface of the surface layer on the anode side in FIG. Other steps are the same as in the eighth embodiment. This p - layer 11
Is the same as in the case of FIG.
【0060】[0060]
【発明の効果】この発明によれば、p+ アノード層上に
形成されたアノード電極の表面高さを、その他の領域に
形成されたアノード電極の表面高さより高くすること
で、ボンディング時にワイヤからショットキー接合部や
p- 層に加わる加圧力が低減されて、漏れ電流の増加を
抑えることができて、耐圧低下を防止できる。According to the present invention, the surface height of the anode electrode formed on the p + anode layer is made higher than the surface height of the anode electrode formed in the other region, so that the wire is removed from the wire during bonding. The pressure applied to the Schottky junction and the p − layer is reduced, so that an increase in leakage current can be suppressed and a decrease in breakdown voltage can be prevented.
【0061】また、p+ アノード層上に形成されたアノ
ード電極をその他の領域に形成されたアノード電極より
硬い材質とすることで、アノード電極が全面に亘って平
坦な場合においても、ボンディング時にワイヤからショ
ットキー接合部やp- 層に加わる加圧力が低減されて、
漏れ電流の増加を抑えることができて、耐圧低下を防止
できる。Further, by making the anode electrode formed on the p + anode layer a material harder than the anode electrodes formed in other regions, even when the anode electrode is flat over the entire surface, it is possible to form a wire during bonding. The pressure applied to the Schottky junction and the p - layer is reduced,
An increase in leakage current can be suppressed, and a decrease in breakdown voltage can be prevented.
【図1】この本発明の第1実施例の半導体装置の要部断
面図FIG. 1 is a sectional view of a main part of a semiconductor device according to a first embodiment of the present invention;
【図2】この発明の第2実施例の半導体装置の製造方法
であり、(a)から(c)は、工程順に示した要部工程
断面図FIGS. 2A to 2C are cross-sectional views of a main step in the order of steps, showing a method of manufacturing a semiconductor device according to a second embodiment of the present invention; FIGS.
【図3】この本発明の第3実施例の半導体装置の要部断
面図FIG. 3 is a sectional view of a main part of a semiconductor device according to a third embodiment of the present invention;
【図4】この発明の第4実施例の半導体装置の製造方法
であり、(a)から(c)は、工程順に示した要部工程
断面図FIGS. 4A to 4C are cross-sectional views of a main part process in the order of steps, showing a method of manufacturing a semiconductor device according to a fourth embodiment of the present invention; FIGS.
【図5】この本発明の第5実施例の半導体装置の要部断
面図FIG. 5 is a sectional view of a main part of a semiconductor device according to a fifth embodiment of the present invention;
【図6】この発明の第6実施例の半導体装置の製造方法
であり、(a)から(c)は、工程順に示した要部工程
断面図6 (a) to 6 (c) are cross-sectional views of a main part process shown in the order of steps, showing a method of manufacturing a semiconductor device according to a sixth embodiment of the present invention.
【図7】この本発明の第7実施例の半導体装置の要部断
面図FIG. 7 is a sectional view of a main part of a semiconductor device according to a seventh embodiment of the present invention;
【図8】この発明の第8実施例の半導体装置の製造方法
であり、(a)から(c)は、工程順に示した要部工程
断面図FIGS. 8A to 8C are cross-sectional views of a main part process in the order of steps, showing a method of manufacturing a semiconductor device according to an eighth embodiment of the present invention; FIGS.
【図9】この本発明の第9実施例の半導体装置の要部断
面図FIG. 9 is a sectional view of a main part of a semiconductor device according to a ninth embodiment of the present invention;
【図10】この発明の第10実施例の半導体装置の製造
方法であり、(a)から(c)は、工程順に示した要部
工程断面図FIGS. 10A to 10C are cross-sectional views of a main part process in the order of steps, showing a method of manufacturing a semiconductor device according to a tenth embodiment of the present invention; FIGS.
【図11】この本発明の第11実施例の半導体装置の要
部断面図FIG. 11 is a sectional view showing a main part of a semiconductor device according to an eleventh embodiment of the present invention;
【図12】この発明の第12実施例の半導体装置の製造
方法であり、(a)から(c)は、工程順に示した要部
工程断面図FIGS. 12A to 12C are cross-sectional views of a main part process in the order of steps, showing a method of manufacturing a semiconductor device according to a twelfth embodiment of the present invention; FIGS.
【図13】この本発明の第13実施例の半導体装置の要
部断面図FIG. 13 is a sectional view of a main part of a semiconductor device according to a thirteenth embodiment of the present invention;
【図14】この発明の第14実施例の半導体装置の製造
方法であり、(a)から(c)は、工程順に示した要部
工程断面図14A to 14C are cross-sectional views of a main part process shown in the order of steps, showing a method of manufacturing a semiconductor device according to a fourteenth embodiment of the present invention;
【図15】この本発明の第15実施例の半導体装置の要
部断面図FIG. 15 is a sectional view showing a main part of a semiconductor device according to a fifteenth embodiment of the present invention;
【図16】この発明の第14実施例の半導体装置の製造
方法であり、(a)から(c)は、工程順に示した要部
工程断面図16 (a) to 16 (c) are cross-sectional views of main steps in the order of steps, illustrating a method of manufacturing a semiconductor device according to a fourteenth embodiment of the present invention;
【図17】アノード電極にボンディングした図FIG. 17 is a view of bonding to an anode electrode.
【図18】ボンディングした従来のMPSダイオードの
要部断面図FIG. 18 is a sectional view of a main part of a conventional MPS diode bonded.
【図19】ボンディングした従来のSFDダイオードの
要部断面図FIG. 19 is a sectional view of a main part of a conventional SFD diode bonded.
1 n- ドリフト層 2 p+ アノード層 3 n+ カソード層 4 ショットキー接合部 5 アノード電極 5a 第1アノード電極(硬い) 5b 第2アノード電極(柔らかい) 6 カソード電極 7 層間膜 8 窒化膜 9 選択酸化膜 10 レジスト 11 p- 層 14 ワイヤ 21、22 表面高さ 23、25 凸部 24、26 凹部 27 厚さ 100 n半導体基板Reference Signs List 1 n − drift layer 2 p + anode layer 3 n + cathode layer 4 Schottky junction 5 anode electrode 5 a first anode electrode (hard) 5 b second anode electrode (soft) 6 cathode electrode 7 interlayer film 8 nitride film 9 selection Oxide film 10 Resist 11 P - layer 14 Wire 21, 22 Surface height 23, 25 Convex part 24, 26 Concave part 27 Thickness 100 n Semiconductor substrate
Claims (22)
形成された電極層と、前記半導体基板の一方の表面層に
選択的に形成された第2導電型第1領域と、該第1領域
に挟まれた前記半導体基板の表面層に形成された前記電
極層とショットキー接合とを形成する第2領域と、を具
備する半導体装置であって、 前記第1領域上の電極層の表面高さが、前記第2領域上
の電極層の表面高さより高いことを特徴とする半導体装
置。An electrode layer formed on one surface of a semiconductor substrate of a first conductivity type; a first region of a second conductivity type selectively formed on one surface layer of the semiconductor substrate; A second region forming a Schottky junction with the electrode layer formed on a surface layer of the semiconductor substrate sandwiched between the first region; and a second region forming an Schottky junction. A semiconductor device, wherein a surface height is higher than a surface height of the electrode layer on the second region.
膜を形成することで、前記第1領域上の電極層の表面高
さを、前記第2領域上の表面高さより高くすることを特
徴とする請求項1に記載の半導体装置。2. An interlayer film is formed between the first region and the electrode layer, so that the surface height of the electrode layer on the first region is higher than the surface height on the second region. The semiconductor device according to claim 1, wherein:
り大きいことを特徴とする請求項2に記載の半導体装
置。3. The semiconductor device according to claim 2, wherein the hardness of said interlayer film is greater than the hardness of said electrode layer.
の表面高さより高いことを特徴とする請求項1に記載の
半導体装置。4. The semiconductor device according to claim 1, wherein a surface height of said first region is higher than a surface height of said second region.
同一で、前記第1領域上の電極層の表面高さが、前記第
2領域上の電極層の表面高さより高いことを特徴とする
請求項1に記載の半導体装置。5. The surface height of the first region and the second region is the same, and the surface height of the electrode layer on the first region is higher than the surface height of the electrode layer on the second region. The semiconductor device according to claim 1, wherein:
形成された電極層と、前記半導体基板の一方の表面層に
選択的に形成された第2導電型第1領域と、該第1領域
に挟まれた前記半導体基板の表面層に形成された前記電
極層とショットキー接合とを形成する第2領域と、を具
備する半導体装置であって、 前記電極層が前記第1領域上に形成された第1電極層と
前記第2領域上に形成された第2電極層とからなり、前
記第1電極層を形成する部材の硬度が、前記第2電極層
を形成する部材の硬度より、大きく、前記第1電極層と
前記第2電極層の表面高さが同一であることを特徴とす
る半導体装置。6. An electrode layer formed from one surface of a semiconductor substrate of a first conductivity type, a first region of a second conductivity type selectively formed on one surface layer of the semiconductor substrate, A semiconductor device comprising: an electrode layer formed on a surface layer of the semiconductor substrate sandwiched by one region; and a second region forming a Schottky junction, wherein the electrode layer is formed on the first region. The first electrode layer formed on the second region and the second electrode layer formed on the second region, the hardness of the member forming the first electrode layer is the hardness of the member forming the second electrode layer. A semiconductor device, wherein the first electrode layer and the second electrode layer have the same surface height.
選択的に形成した第2導電型第1領域と、該第1領域に
挟まれた前記半導体基板の表面層に形成された第1領域
の厚さより薄く、第1領域の不純物濃度より小さな第2
導電型第3領域と、前記第1領域上と第3領域上に形成
された電極層とを具備する半導体装置であって、 前記第1領域上の電極層の表面高さが、前記第2領域上
の電極層の表面高さより高いことを特徴とする半導体装
置。7. A second conductivity type first region selectively formed on one surface layer of a first conductivity type semiconductor substrate, and a second conductivity type first region formed on the surface layer of the semiconductor substrate sandwiched between the first regions. The second region, which is thinner than the thickness of the first region and smaller than the impurity concentration of the first region.
A semiconductor device comprising: a conductivity type third region; and an electrode layer formed on the first region and the third region, wherein a surface height of the electrode layer on the first region is the second height. A semiconductor device having a height higher than a surface height of an electrode layer on a region.
膜を形成することで、前記第1領域上の電極層の表面高
さを、前記第2領域上の電極層の表面高さより高くする
ことを特徴とする請求項7に記載の半導体装置。8. An electrode film is formed between the first region and the electrode layer, so that the surface height of the electrode layer on the first region is reduced to the surface of the electrode layer on the second region. The semiconductor device according to claim 7, wherein the height is higher than the height.
り大きいことを特徴とする請求項8に記載の半導体装
置。9. The semiconductor device according to claim 8, wherein the hardness of the interlayer film is higher than the hardness of the electrode layer.
域の表面高さより高いことを特徴とする請求項7に記載
の半導体装置。10. The semiconductor device according to claim 7, wherein a surface height of said first region is higher than a surface height of said third region.
が同一で、前記第1領域上の電極層の表面高さが、前記
第3領域上の電極層の表面高さより高いことを特徴とす
る請求項7に記載の半導体装置。11. The surface height of the first region and the third region is the same, and the surface height of the electrode layer on the first region is higher than the surface height of the electrode layer on the third region. The semiconductor device according to claim 7, wherein:
に形成した第2導電型半導体領域である第1領域と、該
第1領域に挟まれた前記半導体基板の表面層に第1領域
の厚さより薄く、第1領域の不純物濃度より小さな第2
導電型半導体領域である第3領域と、前記第1領域上に
形成する第1主電極と、第3領域上に形成する第2主電
極とを具備する半導体装置であって、 前記第1主電極を形成する部材の硬度が、前記第2主電
極を形成する部材の硬度より大きく、前記第1主電極と
前記第2主電極の表面高さが同一であることを特徴とす
る半導体装置。12. A first region, which is a second conductivity type semiconductor region formed on one surface layer of a first conductivity type semiconductor substrate, and a first region formed on the surface layer of the semiconductor substrate sandwiched between the first regions. A second region which is thinner than the thickness of the region and smaller than the impurity concentration of the first region;
A semiconductor device comprising: a third region that is a conductive semiconductor region; a first main electrode formed on the first region; and a second main electrode formed on a third region. A semiconductor device, wherein the hardness of a member forming an electrode is greater than the hardness of a member forming the second main electrode, and the surface heights of the first main electrode and the second main electrode are the same.
領域上に形成される電極層の表面高さが高いことを特徴
とする請求項1、2、3、5、7、8、9および11の
いずれかに記載の半導体装置。13. The method according to claim 1, further comprising:
12. The semiconductor device according to claim 1, wherein a surface height of an electrode layer formed on the region is high.
り形成された電極層と、前記半導体基板の一方の表面層
に選択的に形成された第2導電型第1領域と、該第1領
域に挟まれた前記半導体基板の表面層に形成された前記
電極層とショットキー接合とを形成する第2領域と、を
具備する半導体装置の製造方法であって、 第1領域上に層間膜を形成する工程と、全面に電極層を
形成することで、前記第1領域上の電極層の表面高さ
を、前記第2領域上の主電極の表面高さより高くする工
程とを含むことを特徴とする半導体装置の製造方法。14. An electrode layer formed from one surface of a semiconductor substrate of a first conductivity type, a first region of a second conductivity type selectively formed on one surface layer of the semiconductor substrate, A second region forming a Schottky junction with the electrode layer formed on a surface layer of the semiconductor substrate sandwiched between the first region and a second region forming a Schottky junction; Forming a film, and forming an electrode layer on the entire surface to make the surface height of the electrode layer on the first region higher than the surface height of the main electrode on the second region. A method for manufacturing a semiconductor device, comprising:
り形成された電極層と、前記半導体基板の一方の表面層
に選択的に形成された第2導電型第1領域と、該第1領
域に挟まれた前記半導体基板の表面層に形成された前記
電極層とショットキー接合とを形成する第2領域と、を
具備する半導体装置の製造方法であって、 半導体基板上に窒化膜を選択的に形成する工程と、該窒
化膜をマスクに選択酸化する工程と、前記窒化膜を除去
し、イオン注入により第1領域を形成する工程と、前記
選択酸化膜を除去することで、選択酸化膜が形成された
箇所の半導体基板を凹型に形成する工程と、全面に電極
層を形成することで、前記第1領域上の電極層の表面高
さを、前記第2領域上の電極層の表面高さより高くする
工程とを含むことを特徴とする半導体装置の製造方法。15. An electrode layer formed from one surface of a semiconductor substrate of a first conductivity type, a first region of a second conductivity type selectively formed on one surface layer of the semiconductor substrate; A method for manufacturing a semiconductor device, comprising: a second region forming a Schottky junction with the electrode layer formed on a surface layer of the semiconductor substrate sandwiched between one region; and a nitride film formed on the semiconductor substrate. Selectively forming, a step of selectively oxidizing using the nitride film as a mask, a step of removing the nitride film and forming a first region by ion implantation, and removing the selective oxide film. A step of forming the semiconductor substrate at a position where the selective oxide film is formed in a concave shape, and forming an electrode layer on the entire surface, thereby lowering the surface height of the electrode layer on the first region to the electrode on the second region. Making the surface higher than the surface height of the layer. A method for manufacturing a semiconductor device.
り形成された電極層と、前記半導体基板の一方の表面層
に選択的に形成された第2導電型第1領域と、該第1領
域に挟まれた前記半導体基板の表面層に形成された前記
電極層とショットキー接合とを形成する第2領域と、を
具備する半導体装置の製造方法であって、 第1領域上と第2領域上に、同一厚みの主電極となる電
極膜を形成する工程と、前記第2領域上の前記電極膜の
表面層を除去することで、前記第1領域上の電極層の表
面高さを、前記第2領域上の電極層の表面高さより高く
する工程とを含むことを特徴とする半導体装置の製造方
法。16. An electrode layer formed on one surface of a semiconductor substrate of a first conductivity type, a first region of a second conductivity type selectively formed on one surface layer of the semiconductor substrate, and A method for manufacturing a semiconductor device, comprising: a second region forming a Schottky junction with the electrode layer formed on a surface layer of the semiconductor substrate sandwiched between one region; Forming a main electrode film having the same thickness on the two regions, and removing a surface layer of the electrode film on the second region, thereby forming a surface height of the electrode layer on the first region. The height of the electrode layer above the surface of the electrode layer on the second region.
り形成された電極層と、前記半導体基板の一方の表面層
に選択的に形成された第2導電型第1領域と、該第1領
域に挟まれた前記半導体基板の表面層に形成された前記
電極層とショットキー接合とを形成する第2領域と、を
具備する半導体装置の製造方法であって、 第1領域上に部材の硬度が大きい第1電極層となる第1
層間膜を形成する工程と、全面に第2電極層となる電極
膜を形成する工程と、該電極膜を第2電極層が露出する
まで除去し、第1電極層と第2電極層の表面高さを同一
とする工程とを含むことを特徴とする半導体装置の製造
方法。17. An electrode layer formed on one surface of a semiconductor substrate of a first conductivity type, a first region of a second conductivity type selectively formed on one surface layer of the semiconductor substrate, and A method for manufacturing a semiconductor device, comprising: a second region for forming a Schottky junction with the electrode layer formed on a surface layer of the semiconductor substrate sandwiched between one region; The first electrode layer having a high hardness of the first electrode layer
Forming an interlayer film, forming an electrode film to be a second electrode layer on the entire surface, removing the electrode film until the second electrode layer is exposed, and removing the surfaces of the first and second electrode layers. A method of manufacturing a semiconductor device, comprising:
に選択的に形成された第2導電型第1領域と、該第1領
域に挟まれた前記半導体基板の表面層に第1領域の厚さ
より薄く、第1領域の不純物濃度より小さな第2導電型
第3領域と、前記第1領域上と第3領域上に形成された
主電極とを具備する半導体装置の製造方法であって、 第1領域上に層間膜を形成する工程と、全面に主電極を
形成することで、前記第1領域上の主電極の表面高さ
を、前記第3領域上の主電極の表面高さより高くする工
程とを含むことを特徴とする半導体装置の製造方法。18. A first region of a second conductivity type selectively formed on one surface layer of a semiconductor substrate of a first conductivity type and a first region of the semiconductor substrate sandwiched between the first regions. A method of manufacturing a semiconductor device, comprising: a third region of a second conductivity type, which is thinner than a thickness of a region and lower than an impurity concentration of a first region; and a main electrode formed on the first region and the third region. Forming an interlayer film on the first region and forming a main electrode on the entire surface, thereby reducing the surface height of the main electrode on the first region to the surface height of the main electrode on the third region. A method of manufacturing the semiconductor device.
に選択的に形成された第2導電型第1領域と、該第1領
域に挟まれた前記半導体基板の表面層に第1領域の厚さ
より薄く、第1領域の不純物濃度より小さな第2導電型
第3領域と、前記第1領域上と第3領域上に形成された
主電極とを具備する半導体装置の製造方法であって、 半導体基板上に窒化膜を選択的に形成する工程と、該窒
化膜をマスクに選択酸化する工程と、前記窒化膜を除去
し、イオン注入により第1領域を形成する工程と、前記
選択酸化膜を除去することで、選択酸化膜が形成された
箇所の半導体基板を凹型に形成する工程と、全面に主電
極を形成することで、前記第1領域上の主電極の表面高
さを、前記第2領域上の主電極の表面高さより高くする
工程とを含むことを特徴とする半導体装置の製造方法。19. A first region of a second conductivity type selectively formed on one surface layer of a semiconductor substrate of a first conductivity type, and a first region of the semiconductor substrate sandwiched between the first regions. A method of manufacturing a semiconductor device, comprising: a third region of a second conductivity type, which is thinner than a thickness of a region and lower than an impurity concentration of a first region; and a main electrode formed on the first region and the third region. Selectively forming a nitride film on a semiconductor substrate; selectively oxidizing the nitride film using the nitride film as a mask; removing the nitride film and forming a first region by ion implantation; Removing the oxide film to form a concave portion of the semiconductor substrate where the selective oxide film is formed, and forming a main electrode over the entire surface to reduce the surface height of the main electrode on the first region. Making the height higher than the surface height of the main electrode on the second region. A method for manufacturing a semiconductor device.
に選択的に形成された第2導電型第1領域と、該第1領
域に挟まれた前記半導体基板の表面層に第1領域の厚さ
より薄く、第1領域の不純物濃度より小さな第2導電型
第3領域と、前記第1領域上と第3領域上に形成された
主電極とを具備する半導体装置の製造方法であって、 第1領域上と第2領域上に、同一厚みの主電極となる電
極膜を形成する工程と、前記第2領域上の前記電極膜の
表面層を除去することで、前記第1領域上の主電極の表
面高さを、前記第2領域上の主電極の表面高さより高く
する工程とを含むことを特徴とする半導体装置の製造方
法。20. A first region of a second conductivity type selectively formed on one surface layer of a semiconductor substrate of a first conductivity type, and a first region of the semiconductor substrate sandwiched between the first regions. A method of manufacturing a semiconductor device, comprising: a third region of a second conductivity type, which is thinner than a thickness of a region and lower than an impurity concentration of a first region; and a main electrode formed on the first region and the third region. Forming an electrode film serving as a main electrode having the same thickness on the first region and the second region, and removing the surface layer of the electrode film on the second region to form the first region. Making the surface height of the upper main electrode higher than the surface height of the main electrode on the second region.
に選択的に形成された第2導電型第1領域と、該第1領
域に挟まれた前記半導体基板の表面層に第1領域の厚さ
より薄く、第1領域の不純物濃度より小さな第2導電型
第3領域と、前記第1領域上と第3領域上に形成された
主電極とを具備する半導体装置の製造方法であって、 第1領域上に部材の硬度が大きい第1主電極となる第1
層間膜を形成する工程と、全面に第2主電極となる電極
膜を形成する工程と、該電極膜を第2主電極が露出する
まで除去し、第1主電極と第2主電極の表面高さを同一
とする工程とを含むことを特徴とする半導体装置の製造
方法。21. A first region of a second conductivity type selectively formed on one surface layer of a semiconductor substrate of a first conductivity type, and a first region of the semiconductor substrate sandwiched between the first regions. A method of manufacturing a semiconductor device, comprising: a third region of a second conductivity type, which is thinner than a thickness of a region and lower than an impurity concentration of a first region; and a main electrode formed on the first region and the third region. The first main electrode having a high hardness of the member on the first region;
Forming an interlayer film, forming an electrode film to be a second main electrode on the entire surface, removing the electrode film until the second main electrode is exposed, and removing the surface of the first main electrode and the second main electrode. A method of manufacturing a semiconductor device, comprising:
2主電極が、アルミ・シリコン膜を被覆し、低温でアニ
ールして形成されることを特徴とする請求項1ないし6
および13ないし17のいずれかに記載の半導体装置の
製造方法。22. The method according to claim 1, wherein the main electrode or the first main electrode and the second main electrode are formed by coating an aluminum / silicon film and annealing at a low temperature.
And a method for manufacturing a semiconductor device according to any one of 13 to 17.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001122977A JP4857484B2 (en) | 2001-04-20 | 2001-04-20 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001122977A JP4857484B2 (en) | 2001-04-20 | 2001-04-20 | Semiconductor device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002319685A true JP2002319685A (en) | 2002-10-31 |
JP4857484B2 JP4857484B2 (en) | 2012-01-18 |
Family
ID=18972604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001122977A Expired - Fee Related JP4857484B2 (en) | 2001-04-20 | 2001-04-20 | Semiconductor device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4857484B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003124479A (en) * | 2001-10-18 | 2003-04-25 | Mitsubishi Electric Corp | Semiconductor device and its manufacturing method |
JP2008251922A (en) * | 2007-03-30 | 2008-10-16 | Sanyo Electric Co Ltd | Diode |
WO2012120749A1 (en) * | 2011-03-09 | 2012-09-13 | 昭和電工株式会社 | Silicon carbide semiconductor device and manufacturing method for same |
CN102754213A (en) * | 2010-02-23 | 2012-10-24 | 菅原良孝 | Semiconductor device |
WO2018037705A1 (en) * | 2016-08-26 | 2018-03-01 | 学校法人法政大学 | Semiconductor device and method for manufacturing same |
CN113471277A (en) * | 2020-03-30 | 2021-10-01 | 三菱电机株式会社 | Semiconductor device with a plurality of semiconductor chips |
EP3846221A4 (en) * | 2018-08-28 | 2022-08-24 | Global Energy Interconnection Research Institute Co., Ltd | Semiconductor device and preparation method therefor, and fast recovery diode and preparation method therefor |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5860577A (en) * | 1981-10-07 | 1983-04-11 | Hitachi Ltd | Semiconductor device |
JPS60158677A (en) * | 1983-12-20 | 1985-08-20 | エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン | Semiconductor device |
JPS61269333A (en) * | 1985-05-24 | 1986-11-28 | Hitachi Ltd | Semiconductor device |
JPH04236463A (en) * | 1991-01-18 | 1992-08-25 | Shindengen Electric Mfg Co Ltd | Schottky barrier semiconductor device |
JPH0548082A (en) * | 1991-08-20 | 1993-02-26 | Shindengen Electric Mfg Co Ltd | Semiconductor layer |
JPH09121062A (en) * | 1996-08-02 | 1997-05-06 | Hitachi Ltd | Semiconductor device |
JP2000294802A (en) * | 1999-04-09 | 2000-10-20 | Fuji Electric Co Ltd | Semiconductor device |
JP2001085704A (en) * | 1999-09-14 | 2001-03-30 | Hitachi Ltd | SiC SCHOTTKY DIODE |
JP2002100784A (en) * | 2000-09-21 | 2002-04-05 | Mitsubishi Electric Corp | Schottky barrier diode and semiconductor module |
-
2001
- 2001-04-20 JP JP2001122977A patent/JP4857484B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5860577A (en) * | 1981-10-07 | 1983-04-11 | Hitachi Ltd | Semiconductor device |
JPS60158677A (en) * | 1983-12-20 | 1985-08-20 | エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン | Semiconductor device |
JPS61269333A (en) * | 1985-05-24 | 1986-11-28 | Hitachi Ltd | Semiconductor device |
JPH04236463A (en) * | 1991-01-18 | 1992-08-25 | Shindengen Electric Mfg Co Ltd | Schottky barrier semiconductor device |
JPH0548082A (en) * | 1991-08-20 | 1993-02-26 | Shindengen Electric Mfg Co Ltd | Semiconductor layer |
JPH09121062A (en) * | 1996-08-02 | 1997-05-06 | Hitachi Ltd | Semiconductor device |
JP2000294802A (en) * | 1999-04-09 | 2000-10-20 | Fuji Electric Co Ltd | Semiconductor device |
JP2001085704A (en) * | 1999-09-14 | 2001-03-30 | Hitachi Ltd | SiC SCHOTTKY DIODE |
JP2002100784A (en) * | 2000-09-21 | 2002-04-05 | Mitsubishi Electric Corp | Schottky barrier diode and semiconductor module |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003124479A (en) * | 2001-10-18 | 2003-04-25 | Mitsubishi Electric Corp | Semiconductor device and its manufacturing method |
JP2008251922A (en) * | 2007-03-30 | 2008-10-16 | Sanyo Electric Co Ltd | Diode |
CN102754213A (en) * | 2010-02-23 | 2012-10-24 | 菅原良孝 | Semiconductor device |
EP2541609A1 (en) * | 2010-02-23 | 2013-01-02 | Yoshitaka Sugawara | Semiconductor device |
EP2541609A4 (en) * | 2010-02-23 | 2014-04-16 | Yoshitaka Sugawara | Semiconductor device |
US8896084B2 (en) | 2010-02-23 | 2014-11-25 | Yoshitaka Sugawara | Semiconductor device |
WO2012120749A1 (en) * | 2011-03-09 | 2012-09-13 | 昭和電工株式会社 | Silicon carbide semiconductor device and manufacturing method for same |
JP2012190909A (en) * | 2011-03-09 | 2012-10-04 | Showa Denko Kk | Silicon carbide semiconductor device and manufacturing method for the same |
WO2018037705A1 (en) * | 2016-08-26 | 2018-03-01 | 学校法人法政大学 | Semiconductor device and method for manufacturing same |
JP2018032828A (en) * | 2016-08-26 | 2018-03-01 | 学校法人法政大学 | Semiconductor device and method of manufacturing the same |
US10797181B2 (en) | 2016-08-26 | 2020-10-06 | Hosei University | Semiconductor device and method for manufacturing the same |
EP3846221A4 (en) * | 2018-08-28 | 2022-08-24 | Global Energy Interconnection Research Institute Co., Ltd | Semiconductor device and preparation method therefor, and fast recovery diode and preparation method therefor |
CN113471277A (en) * | 2020-03-30 | 2021-10-01 | 三菱电机株式会社 | Semiconductor device with a plurality of semiconductor chips |
JP2021158296A (en) * | 2020-03-30 | 2021-10-07 | 三菱電機株式会社 | Semiconductor device |
US11824014B2 (en) | 2020-03-30 | 2023-11-21 | Mitsubishi Electric Corporation | Semiconductor device |
JP7412246B2 (en) | 2020-03-30 | 2024-01-12 | 三菱電機株式会社 | semiconductor equipment |
CN113471277B (en) * | 2020-03-30 | 2024-09-17 | 三菱电机株式会社 | Semiconductor device with a semiconductor device having a plurality of semiconductor chips |
Also Published As
Publication number | Publication date |
---|---|
JP4857484B2 (en) | 2012-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8143655B2 (en) | Trench schottky barrier diode with differential oxide thickness | |
JPWO2002061845A1 (en) | Semiconductor device and manufacturing method thereof | |
KR20110094066A (en) | Bipolar punch-through semiconductor device and method for manufacturing such a semiconductor device | |
JP2002009082A (en) | Semiconductor device and its fabricating method | |
TW201421676A (en) | Schottky barrier diode and fabricating method thereof | |
JP4123913B2 (en) | Manufacturing method of semiconductor device | |
JP2007036211A (en) | Method of manufacturing semiconductor device | |
TW202038473A (en) | Diode structure and manufacturing method thereof | |
JP4857484B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3673334B2 (en) | Semiconductor diode | |
US6884684B2 (en) | High density trench power MOSFET structure and fabrication method thereof | |
JP2023011834A (en) | Semiconductor device and power conversion device | |
JP2004303927A (en) | Semiconductor device | |
JPH08236762A (en) | Reverse check type semiconductor device and its manufacture | |
JPH11145155A (en) | Method for manufacturing power semiconductor device using semi-insulating polysilicon (sipos) film | |
CN113437132A (en) | Silicon carbide power diode and preparation method thereof | |
KR101667669B1 (en) | Schottky barrier diode and method for manufacturing the diode | |
CN108701694B (en) | High-voltage silicon carbide Schottky diode flip chip array | |
JPH10117003A (en) | Fixed voltage diode and its manufacture | |
CN115863168B (en) | Manufacturing method and structure of high-voltage bidirectional thyristor | |
US20220037538A1 (en) | Semiconductor diode and method of manufacturing such a diode | |
US7242036B1 (en) | Semiconductor element | |
CN108054198B (en) | Fast recovery diode and manufacturing method thereof | |
WO2020043094A1 (en) | Semiconductor device and preparation method therefor, and fast recovery diode and preparation method therefor | |
US10615292B2 (en) | High voltage silicon carbide Schottky diode flip chip array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060703 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060704 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080215 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20081216 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20090219 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20091112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100727 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20110422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110725 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111004 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111017 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141111 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |