JP2002318015A - Freezer - Google Patents
FreezerInfo
- Publication number
- JP2002318015A JP2002318015A JP2001117560A JP2001117560A JP2002318015A JP 2002318015 A JP2002318015 A JP 2002318015A JP 2001117560 A JP2001117560 A JP 2001117560A JP 2001117560 A JP2001117560 A JP 2001117560A JP 2002318015 A JP2002318015 A JP 2002318015A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- pipe
- compressor
- discharged
- peripheral surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
- F28D7/106—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B40/00—Subcoolers, desuperheaters or superheaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/08—Tubular elements crimped or corrugated in longitudinal section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2210/00—Heat exchange conduits
- F28F2210/06—Heat exchange conduits having walls comprising obliquely extending corrugations, e.g. in the form of threads
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、圧縮空気除湿装置
や保冷装置などに用いられる冷凍装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus used for a compressed air dehumidifier, a cooler, and the like.
【0002】[0002]
【従来の技術】この種の冷凍装置を備えた装置として、
図8に示す除湿装置51が従来から知られている。この
除湿装置51は、図外のエアーコンプレッサによって圧
送される圧縮空気に含まれている水分を結露させて除湿
する熱交換器2と、圧縮空気を冷却するための冷凍装置
としての冷凍機構53とを備えている。この場合、熱交
換器2は、導入口2aから導入した圧縮空気を、一次冷
却部11、二次冷却部12および再熱部13からなる気
体流路を経て排出口2bから排出可能に構成されてい
る。一方、冷凍機構53は、熱交換器2の二次冷却部1
2内に配設されて冷媒の気化熱によって圧縮空気を冷却
する蒸発器21と、気化した冷媒を圧送する圧縮機22
と、圧縮された気化冷媒を凝縮して液化させる凝縮器2
3と、液化冷媒を一次的に貯蔵する受液器24と、液化
冷媒を降圧させる膨張弁25と、蒸発器21および圧縮
機22の間に配設されたアキュムレータ57と、圧縮機
22によって排出される高圧の気化冷媒の一部を蒸発器
21およびアキュムレータ57を連結する連結管61a
に圧縮機22の吸入圧力に応じて排出する制御弁28と
を備えている。2. Description of the Related Art As an apparatus provided with this type of refrigeration apparatus,
A dehumidifier 51 shown in FIG. 8 is conventionally known. The dehumidifying device 51 includes a heat exchanger 2 for dehumidifying by condensing moisture contained in compressed air that is pressure-fed by an air compressor (not shown), and a refrigeration mechanism 53 as a refrigeration device for cooling the compressed air. It has. In this case, the heat exchanger 2 is configured so that the compressed air introduced from the inlet 2a can be discharged from the outlet 2b through a gas flow path including the primary cooling unit 11, the secondary cooling unit 12, and the reheating unit 13. ing. On the other hand, the refrigeration mechanism 53 includes the secondary cooling unit 1 of the heat exchanger 2.
2, an evaporator 21 for cooling the compressed air by the heat of vaporization of the refrigerant, and a compressor 22 for pumping the vaporized refrigerant.
And a condenser 2 for condensing and liquefying the compressed vaporized refrigerant.
3, a liquid receiver 24 for temporarily storing the liquefied refrigerant, an expansion valve 25 for lowering the liquefied refrigerant, an accumulator 57 disposed between the evaporator 21 and the compressor 22, and a discharge by the compressor 22. Pipe 61a connecting the evaporator 21 and the accumulator 57 to a part of the high-pressure vaporized refrigerant to be used.
And a control valve 28 that discharges according to the suction pressure of the compressor 22.
【0003】この除湿装置51では、まず、圧縮機22
を駆動して冷凍機構53内で冷媒を循環させる。この際
に、受液器24内の液化冷媒が膨張弁25を通過して蒸
発器21内に吐出され、蒸発器21内で液化冷媒が気化
することにより、熱交換器2の二次冷却部12が冷却さ
れる。この状態で図外のエアーコンプレッサを駆動する
ことにより、導入口2aから水分を含んだ圧縮空気が導
入される。この場合、熱交換器2内に導入された圧縮空
気は、一次冷却部11を通過する際に予備冷却され、次
いで、二次冷却部12を通過する際に、蒸発器21によ
って所定の露点温度以下に冷却される。この際に、圧縮
空気中の水分が、蒸発器21に取り付けられたフィンの
表面に結露水として結露し、この結露水は、熱交換器2
の底部に向けて流れ落ちてドレン排出口から外部に排出
される。一方、二次冷却部12内で除湿された圧縮空気
は、再熱部13を通過する際に、導入口2aから導入さ
れる圧縮空気によって再熱されて排出口2bから排出さ
れる。また、蒸発器21内で気化した気化冷媒は、圧縮
機22によって吸引されることにより、矢印A11で示
すように、連結管61a、アキュムレータ57および連
結管61bを介して圧縮機22に達し、圧縮機22によ
って圧縮される。さらに、圧縮された気化冷媒は、矢印
A12で示すように、凝縮器23に向けて連結管62内
を圧送される。In the dehumidifier 51, first, the compressor 22
Is driven to circulate the refrigerant in the refrigeration mechanism 53. At this time, the liquefied refrigerant in the liquid receiver 24 passes through the expansion valve 25 and is discharged into the evaporator 21, and the liquefied refrigerant is vaporized in the evaporator 21. 12 is cooled. By driving an air compressor (not shown) in this state, compressed air containing moisture is introduced from the inlet 2a. In this case, the compressed air introduced into the heat exchanger 2 is pre-cooled when passing through the primary cooling unit 11, and then, when passing through the secondary cooling unit 12, has a predetermined dew point temperature by the evaporator 21. It is cooled below. At this time, moisture in the compressed air is condensed on the surfaces of the fins attached to the evaporator 21 as dew water.
It flows down toward the bottom of the tank and is discharged outside through the drain outlet. On the other hand, when the compressed air dehumidified in the secondary cooling unit 12 passes through the reheating unit 13, it is reheated by the compressed air introduced from the inlet 2a and is discharged from the outlet 2b. Further, the vaporized refrigerant vaporized in the evaporator 21 is sucked by the compressor 22, and reaches the compressor 22 via the connecting pipe 61a, the accumulator 57, and the connecting pipe 61b as indicated by an arrow A11, and is compressed. Compressed by the press 22. Further, the compressed vaporized refrigerant is pressure-fed inside the connecting pipe 62 toward the condenser 23 as indicated by an arrow A12.
【0004】一方、例えば低負荷時などでは、熱交換器
2内に導入される圧縮空気の流量が少ないため、蒸発器
21内での冷媒の気化量が減少する結果、気化されなか
った液化冷媒と気化冷媒とが混ざった状態で蒸発器21
から排出される。この場合、液化冷媒が圧縮機22内に
吸引されたときには、圧縮機22の駆動軸などに付着し
ている作動油が液化冷媒によって洗い流されたり、いわ
ゆるウォータハンマ現象によって圧縮機22が急停止さ
せられたりすることに起因して、圧縮機22が破損され
る。したがって、この冷凍機構53では、蒸発器21お
よび圧縮機22間にアキュムレータ57を配設し、この
アキュムレータ57内で気化冷媒と液化冷媒とを分離し
ている。したがって、液化冷媒はアキュムレータ57内
に貯留され、気化冷媒のみが圧縮機22に吸引される。
また、蒸発器21内での冷媒の気化量が減少した状態で
は、気化冷媒の吸入圧力が冷凍機構53において予め規
定されている設定圧力範囲を外れて低圧となる。この際
には、吸入圧力の低下に応じて制御弁28を開放するこ
とにより、圧縮機22から排出される高温高圧の気化冷
媒の一部が、矢印A13で示すように、連結管35を介
して連結管61aに排出される。これにより、冷媒の吸
入圧力が所定の圧力に調整される。同時に、圧縮機22
から排出された高温高圧の気化冷媒がアキュムレータ5
7に導入されることで、アキュムレータ57内に貯留さ
れている液化冷媒が徐々に蒸発して圧縮機22に吸引さ
れる。On the other hand, for example, when the load is low, the flow rate of the compressed air introduced into the heat exchanger 2 is small, so that the amount of the refrigerant vaporized in the evaporator 21 is reduced. And evaporator 21 in a state where
Is discharged from. In this case, when the liquefied refrigerant is sucked into the compressor 22, the hydraulic oil attached to the drive shaft of the compressor 22 or the like is washed away by the liquefied refrigerant, or the compressor 22 is suddenly stopped by a so-called water hammer phenomenon. The compressor 22 is damaged due to the damage. Therefore, in the refrigerating mechanism 53, the accumulator 57 is provided between the evaporator 21 and the compressor 22, and the vaporized refrigerant and the liquefied refrigerant are separated in the accumulator 57. Therefore, the liquefied refrigerant is stored in the accumulator 57, and only the vaporized refrigerant is sucked into the compressor 22.
Further, in a state where the amount of refrigerant vaporized in the evaporator 21 is reduced, the suction pressure of the vaporized refrigerant falls outside the set pressure range predetermined in the refrigeration mechanism 53 and becomes low. At this time, by opening the control valve 28 in response to the decrease in the suction pressure, a part of the high-temperature and high-pressure vaporized refrigerant discharged from the compressor 22 is passed through the connecting pipe 35 as indicated by an arrow A13. And is discharged to the connecting pipe 61a. Thereby, the suction pressure of the refrigerant is adjusted to a predetermined pressure. At the same time, the compressor 22
High-temperature and high-pressure vaporized refrigerant discharged from the accumulator 5
7, the liquefied refrigerant stored in the accumulator 57 is gradually evaporated and sucked into the compressor 22.
【0005】[0005]
【発明が解決しようとする課題】ところが、従来の冷凍
機構53には、以下の問題点がある。すなわち、従来の
冷凍機構53では、液化冷媒が圧縮機22に吸引される
ことに起因する圧縮機22の破損を防止するために、蒸
発器21から排出される気化冷媒と液化冷媒とをアキュ
ムレータ57によって分離している。この場合、蒸発器
21から大量の液化冷媒が排出されたとしても、そのす
べてをアキュムレータ57内に貯留しなければならない
ため、大量の液化冷媒を貯留し得る大形のアキュムレー
タ57を配設する必要がある。このため、大形のアキュ
ムレータ57の部品コストに起因して、冷凍機構53の
製造コストが高騰しているという問題点がある。また、
従来の冷凍機構53では、圧縮機22から排出される高
温高圧の気化冷媒の一部を連結管61aに排出すること
でアキュムレータ57内に貯留されている液化冷媒を徐
々に蒸発させている。このため、蒸発器21から大量の
液化冷媒が排出されたときには、アキュムレータ57に
貯留される大量の液化冷媒を十分に蒸発させるために、
制御弁28を常に開放して高温高圧の気化冷媒を大量に
排出させる必要がある。したがって、低負荷時などにお
いても、圧縮機22を定常負荷時と同様にして駆動しな
ければならないため、本来的には、冷媒の循環が少なく
てよいにも拘わらず、定常負荷時と同量の冷媒を循環さ
せているため、電力消費が大きいという問題点もある。However, the conventional refrigeration mechanism 53 has the following problems. That is, in the conventional refrigeration mechanism 53, the vaporized refrigerant and the liquefied refrigerant discharged from the evaporator 21 are accumulated in the accumulator 57 in order to prevent the compressor 22 from being damaged due to the liquefied refrigerant being sucked into the compressor 22. Are separated by In this case, even if a large amount of the liquefied refrigerant is discharged from the evaporator 21, all of the liquefied refrigerant must be stored in the accumulator 57. There is. For this reason, there is a problem that the manufacturing cost of the refrigeration mechanism 53 is rising due to the component cost of the large accumulator 57. Also,
In the conventional refrigeration mechanism 53, the liquefied refrigerant stored in the accumulator 57 is gradually evaporated by discharging part of the high-temperature and high-pressure vaporized refrigerant discharged from the compressor 22 to the connection pipe 61a. For this reason, when a large amount of liquefied refrigerant is discharged from the evaporator 21, in order to sufficiently evaporate the large amount of liquefied refrigerant stored in the accumulator 57,
It is necessary to always open the control valve 28 to discharge a large amount of high-temperature and high-pressure vaporized refrigerant. Therefore, even when the load is low, the compressor 22 must be driven in the same manner as at the time of the steady load. Because of the circulation of the refrigerant, there is also a problem that power consumption is large.
【0006】本発明は、かかる問題点に鑑みてなされた
ものであり、製造コストおよび消費電力の低減を図り得
る冷凍装置を提供することを主目的とする。[0006] The present invention has been made in view of the above problems, and has as its main object to provide a refrigeration apparatus capable of reducing manufacturing costs and power consumption.
【0007】[0007]
【課題を解決するための手段】上記目的を達成すべく請
求項1記載の冷凍装置は、蒸発器によって排出される低
温冷媒と、圧縮機によって圧縮され凝縮器に向けて圧送
される高温冷媒との間で熱交換する冷媒再熱手段を備え
た冷凍装置であって、前記冷媒再熱手段は、前記両冷媒
のいずれか一方が通過する内管と、当該内管が挿通され
ると共に当該内管との間を前記両冷媒のいずれか他方が
通過する外管とで二重管構造に構成され、かつ前記内管
の外周面または前記外管の内周面に螺旋状の溝部が形成
されて構成されていることを特徴とする。According to a first aspect of the present invention, there is provided a refrigeration apparatus comprising: a low-temperature refrigerant discharged by an evaporator; and a high-temperature refrigerant compressed by a compressor and pumped toward a condenser. A refrigeration apparatus including a refrigerant reheating unit that exchanges heat between the refrigerant, wherein the refrigerant reheating unit includes an inner pipe through which one of the two refrigerants passes, and an inner pipe that is inserted through the inner pipe. An outer pipe through which either of the two refrigerants passes between the pipe and the outer pipe is formed in a double pipe structure, and a spiral groove is formed on the outer peripheral surface of the inner pipe or the inner peripheral face of the outer pipe. It is characterized by comprising.
【0008】請求項2記載の冷凍装置は、請求項1記載
の冷凍装置において、前記冷媒再熱手段には、前記内管
の外周面における最外周部と前記外管の内周面における
最内周部とが接触して連結されることにより前記溝部で
螺旋状流路が形成されていることを特徴とする。According to a second aspect of the present invention, in the refrigeration apparatus according to the first aspect, the refrigerant reheating means includes an outermost portion on an outer peripheral surface of the inner tube and an innermost portion on an inner peripheral surface of the outer tube. A helical flow path is formed by the groove by being brought into contact with and connected to the peripheral portion.
【0009】請求項3記載の冷凍装置は、請求項1また
は2記載の冷凍装置において、前記冷媒再熱手段は、前
記内管がねじり管で構成され、前記外管が直管で構成さ
れていることを特徴とする。According to a third aspect of the present invention, in the refrigerating apparatus according to the first or second aspect, the refrigerant reheating means is configured such that the inner pipe is formed of a torsion pipe and the outer pipe is formed of a straight pipe. It is characterized by being.
【0010】[0010]
【発明の実施の形態】以下、添付図面を参照して、本発
明に係る冷凍装置を備えた圧縮空気除湿装置の好適な発
明の実施の形態について説明する。なお、従来の除湿装
置51と同一の構成要素については、同一の符号を付し
て重複した説明を省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a compressed air dehumidifier equipped with a refrigeration apparatus according to the present invention will be described below with reference to the accompanying drawings. Note that the same components as those of the conventional dehumidifier 51 are denoted by the same reference numerals, and redundant description will be omitted.
【0011】最初に、除湿装置1の構成について、図1
を参照して説明する。First, the structure of the dehumidifying apparatus 1 will be described with reference to FIG.
This will be described with reference to FIG.
【0012】同図に示すように、除湿装置1は、熱交換
器2、本発明における冷凍装置に相当する冷凍機構3、
制御部4および冷却ファンFNを備えている。熱交換器
2は、全体として円筒状に形成され、圧縮空気を導入す
る導入口2aと、除湿した圧縮空気を排出する排出口2
bとを備えている。また、熱交換器2の内部には、一次
冷却部11、二次冷却部12および再熱部13からなる
気体流路が形成され、導入口2aから導入された圧縮空
気は、この気体流路内で冷却および除湿された後に再熱
され、その後に排出口2bから排出される。As shown in FIG. 1, a dehumidifier 1 includes a heat exchanger 2, a refrigerating mechanism 3 corresponding to a refrigerating device in the present invention,
A control unit 4 and a cooling fan FN are provided. The heat exchanger 2 is formed into a cylindrical shape as a whole, and has an inlet 2a for introducing compressed air, and an outlet 2 for discharging dehumidified compressed air.
b. Further, a gas flow path including a primary cooling unit 11, a secondary cooling unit 12, and a reheating unit 13 is formed inside the heat exchanger 2, and the compressed air introduced from the inlet 2a is supplied to the gas flow path. After being cooled and dehumidified inside, it is reheated and thereafter discharged from the discharge port 2b.
【0013】一方、冷凍機構3は、蒸発器21、圧縮機
22、凝縮器23、受液器24、膨張弁25、冷媒再熱
管26、アキュムレータ27および制御弁28を備えて
いる。また、冷凍機構3は、圧縮機22によって圧縮さ
れた気化冷媒の圧力を検出するためのセンサPSを備え
ている。このセンサPSは、検出した圧力に応じたセン
サ信号を制御部4に出力する。これに応じて、後述する
ように、制御部4が、冷却ファンFNを回転させる。On the other hand, the refrigeration mechanism 3 includes an evaporator 21, a compressor 22, a condenser 23, a liquid receiver 24, an expansion valve 25, a refrigerant reheat pipe 26, an accumulator 27, and a control valve 28. Further, the refrigeration mechanism 3 includes a sensor PS for detecting the pressure of the vaporized refrigerant compressed by the compressor 22. The sensor PS outputs a sensor signal corresponding to the detected pressure to the control unit 4. In response to this, as described later, the control unit 4 rotates the cooling fan FN.
【0014】冷媒再熱管26は、本発明における冷媒再
熱手段に相当し、図2に示すように、蒸発器21から排
出される低温低圧の冷媒(本発明における低温冷媒)を
通過させるための直管41と、直管41内に配設され圧
縮機22から排出される高温高圧の冷媒(本発明におけ
る高温冷媒)を通過させるためのねじり管42とで二重
管構造に形成されている。直管41は、本発明における
外管に相当し、全体として円筒状に形成されている。こ
の直管41には、図3(a)に示すように、蒸発器21
に連結された連結管31(図2参照)と、アキュムレー
タ27に連結された連結管32a(図2参照)とをそれ
ぞれ接続するための導入口41aと排出口41bとがバ
ーリング加工によって形成されている。The refrigerant reheat pipe 26 corresponds to a refrigerant reheat means in the present invention, and as shown in FIG. 2, passes a low-temperature low-pressure refrigerant discharged from the evaporator 21 (low-temperature refrigerant in the present invention). A straight pipe 41 and a torsion pipe 42 disposed in the straight pipe 41 and passing a high-temperature and high-pressure refrigerant (high-temperature refrigerant in the present invention) discharged from the compressor 22 are formed in a double pipe structure. . The straight pipe 41 corresponds to the outer pipe in the present invention, and is formed in a cylindrical shape as a whole. As shown in FIG. 3A, the straight pipe 41 has an evaporator 21.
An inlet 41a and an outlet 41b for connecting the connecting pipe 31 (see FIG. 2) connected to the connecting pipe 32a (see FIG. 2) connected to the accumulator 27 are formed by burring. I have.
【0015】一方、ねじり管42は、本発明における内
管に相当し、直管41よりも若干細径のタイプが採用さ
れている。このねじり管42には、図3(b)に示すよ
うに、その周面にねじり加工(ねじり加工部42c)が
施されている。このねじり管42は、圧縮機22に連結
された連結管33(図2参照)と、凝縮器23に連結さ
れた連結管34(図2参照)とを両端部の導入口42a
と排出口42bとに接続可能に構成されている。また、
このねじり管42の外周面における最外周部(ねじり加
工部42cの凸部を含めた最大径部、導入口42aの外
周面、および排出口42bの外周面)は、直管41の内
径と等しい径に規定されている。したがって、図4に示
すように、直管41内にねじり管42を挿通させた状態
では、ねじり管42の外表面における最外周部が直管4
1の内面に接触して連結される。この場合、ねじり加工
部42cが螺旋状に形成されているため、ねじり管42
の外表面には、螺旋状の溝部S1が形成されている。し
たがって、直管41の内周面とねじり管42の外周面と
の間には、螺旋状の溝部S1によって、蒸発器21から
排出される低温低圧の冷媒を通過させる螺旋状流路が形
成される。なお、冷媒再熱管26は、導入口41a側の
端部が排出口41bよりも上方に位置するように配設さ
れる。したがって、冷媒に含まれる作動油は、導入口4
1aから冷媒と共にねじり管42の外周を伝わって落下
し、排出口41bからスムーズに排出される。On the other hand, the torsion tube 42 corresponds to the inner tube in the present invention, and has a slightly smaller diameter than the straight tube 41. As shown in FIG. 3B, the torsion tube 42 is subjected to a torsion process (a torsion portion 42c) on its peripheral surface. The torsion tube 42 includes a connection pipe 33 (see FIG. 2) connected to the compressor 22 and a connection pipe 34 (see FIG. 2) connected to the condenser 23.
And the discharge port 42b. Also,
The outermost peripheral portion of the outer peripheral surface of the torsion tube 42 (the maximum diameter portion including the convex portion of the torsion portion 42c, the outer peripheral surface of the inlet 42a, and the outer peripheral surface of the outlet 42b) are equal to the inner diameter of the straight pipe 41. The diameter is specified. Therefore, as shown in FIG. 4, when the torsion tube 42 is inserted into the straight tube 41, the outermost peripheral portion of the outer surface of the torsion tube 42 is
1 and is connected to the inner surface thereof. In this case, since the torsion portion 42c is formed in a spiral shape, the torsion tube 42c is formed.
Is formed with a spiral groove S1 on the outer surface thereof. Therefore, between the inner peripheral surface of the straight pipe 41 and the outer peripheral surface of the torsion pipe 42, a spiral flow path through which the low-temperature and low-pressure refrigerant discharged from the evaporator 21 passes is formed by the spiral groove S <b> 1. You. The refrigerant reheat pipe 26 is disposed such that the end on the inlet 41a side is located above the outlet 41b. Therefore, the hydraulic oil contained in the refrigerant is supplied to the inlet 4
The refrigerant flows down the outer periphery of the torsion tube 42 together with the refrigerant from 1a, and is smoothly discharged from the discharge port 41b.
【0016】次に、除湿装置1の動作原理について、図
面を参照しつつ具体的に説明する。Next, the operating principle of the dehumidifier 1 will be specifically described with reference to the drawings.
【0017】この除湿装置1では、圧縮機22が、蒸発
器21内の気化冷媒を図1の矢印A1で示す経路で吸引
し、吸収した気化冷媒を圧縮して、矢印A2で示す経路
で凝縮器23に順次圧送する。この際に、圧縮機22か
ら排出された高温高圧の気化冷媒は、連結管33を介し
て冷媒再熱管26に圧送され、図4の矢印B1の向きで
導入口42aを介してねじり管42内に導入され、ねじ
り管42内を通過して矢印B2の向きで排出口42bを
介して連結管34に排出される。この場合、ねじり管4
2の周面にねじり加工が施されているため、ねじり管4
2内を通過する冷媒は、ねじり加工によってねじり管4
2の内周面に形成された溝部S2(ねじり管42におけ
る内周面の凹部)に沿って、図5の矢印Bで示すよう
に、緩やかな螺旋状の軌跡を描くように通過する。した
がって、冷媒が直管内を直線的に通過する場合と比較し
て、導入口42aから排出口42bに達するまでの冷媒
の通過時間が長くなる。In the dehumidifier 1, the compressor 22 sucks the vaporized refrigerant in the evaporator 21 through a path indicated by an arrow A1 in FIG. 1, compresses the absorbed vaporized refrigerant, and condenses the refrigerant through a path indicated by an arrow A2. To the vessel 23 sequentially. At this time, the high-temperature and high-pressure vaporized refrigerant discharged from the compressor 22 is pressure-fed to the refrigerant reheat pipe 26 via the connection pipe 33, and is fed into the torsion pipe 42 through the introduction port 42a in the direction of arrow B1 in FIG. And passes through the torsion pipe 42 and is discharged to the connecting pipe 34 through the discharge port 42b in the direction of arrow B2. In this case, the torsion tube 4
2 is twisted on the peripheral surface of the torsion tube 4
The refrigerant passing through the pipe 2 is twisted by the twisting process.
5 along a groove S2 (recess on the inner peripheral surface of the torsion tube 42) formed on the inner peripheral surface of the torsion tube 42 so as to draw a gentle spiral trajectory as indicated by an arrow B in FIG. Therefore, the passage time of the refrigerant from the inlet 42a to the outlet 42b is longer than when the refrigerant passes straight through the straight pipe.
【0018】一方、連結管34に排出された気化冷媒
は、凝縮器23によって液化されて受液器24内に貯蔵
される。次いで、受液器24内の液化冷媒は、膨張弁2
5を介して蒸発器21内に吐出され、蒸発器21内で膨
張して気化することにより、二次冷却部12を冷却す
る。次いで、図外のエアーコンプレッサが駆動された際
には、高湿度の圧縮空気が導入口2aを介して熱交換器
2内に導入され、除湿装置51と同様にして、除湿され
て再熱された後に、排出口2bを介して熱交換器2の外
部に排出される。On the other hand, the vaporized refrigerant discharged to the connecting pipe 34 is liquefied by the condenser 23 and stored in the receiver 24. Next, the liquefied refrigerant in the receiver 24 is supplied to the expansion valve 2.
The secondary cooling unit 12 is discharged into the evaporator 21 through the outlet 5 and expands and vaporizes in the evaporator 21 to cool the secondary cooling unit 12. Next, when an air compressor (not shown) is driven, high-humidity compressed air is introduced into the heat exchanger 2 through the inlet 2a, and is dehumidified and reheated in the same manner as the dehumidifier 51. After that, it is discharged to the outside of the heat exchanger 2 through the discharge port 2b.
【0019】また、蒸発器21内で気化した気化冷媒
は、図1の矢印A1で示すように、連結管31、冷媒再
熱管26、連結管32a、アキュムレータ27および連
結管32bを圧縮機22に向けて移動する。この際に、
図4に示すように、連結管31を介して冷媒再熱管26
に圧送された冷媒は、矢印C1の向きで導入口41aを
介して直管41内に導入され、直管41とねじり管42
との間の溝部S1を通過し、矢印C2の向きで排出口4
1bを介して連結管32bに排出される。この場合、こ
の冷媒再熱管26では、螺旋状の溝部S1を通過する冷
媒は、図5の矢印Cで示すように螺旋状の軌跡を描くよ
うに通過する。したがって、冷媒が直線的に通過する場
合と比較して、導入口41aから排出口41bに達する
までの冷媒の通過時間が長くなる。つまり、直管41内
での冷媒の滞留時間が長くなる。また、ねじり管42内
での冷媒の滞留時間も長いため、圧縮機22から排出さ
れてねじり管42内を通過する高温高圧の気化冷媒と、
蒸発器21から排出されて直管41およびねじり管42
の間の溝部S1を通過する低温の冷媒とが、ねじり管4
2の壁面を介して十分に熱交換される。また、二次冷却
部12によって排出された戻り冷媒に液化冷媒が多く含
まれるときには、蒸発潜熱によって熱交換量が増大し、
かつ気化冷媒が多いときには、熱交換量が低減するとい
う自己調節作用により、蒸発圧力および加熱度が適正に
保たれる。The vaporized refrigerant vaporized in the evaporator 21 is transferred to the compressor 22 by connecting the connecting pipe 31, the refrigerant reheating pipe 26, the connecting pipe 32a, the accumulator 27 and the connecting pipe 32b as shown by an arrow A1 in FIG. Move toward. At this time,
As shown in FIG. 4, the refrigerant reheat pipe 26
Is introduced into the straight pipe 41 through the inlet 41a in the direction of the arrow C1.
Through the groove S1 between the discharge ports 4 in the direction of the arrow C2.
It is discharged to the connecting pipe 32b via 1b. In this case, in the refrigerant reheat pipe 26, the refrigerant passing through the spiral groove S1 passes in a spiral path as shown by an arrow C in FIG. Therefore, the passage time of the refrigerant from the inlet 41a to the outlet 41b is longer than when the refrigerant passes linearly. That is, the residence time of the refrigerant in the straight pipe 41 becomes longer. In addition, since the residence time of the refrigerant in the torsion tube 42 is long, a high-temperature and high-pressure vaporized refrigerant discharged from the compressor 22 and passing through the torsion tube 42 is provided.
Straight pipe 41 and torsion pipe 42 discharged from evaporator 21
The low-temperature refrigerant passing through the groove S1 between the torsion tube 4
Heat is sufficiently exchanged through the second wall. Further, when the return refrigerant discharged by the secondary cooling unit 12 contains a large amount of liquefied refrigerant, the amount of heat exchange increases due to latent heat of vaporization,
In addition, when the amount of the vaporized refrigerant is large, the evaporation pressure and the heating degree are properly maintained by the self-regulating action of reducing the heat exchange amount.
【0020】一方、例えば低負荷時など、熱交換器2内
に導入される圧縮空気の流量が少ない状態では、蒸発器
21内での冷媒の気化量が減少することにより、気化冷
媒と液化冷媒とが混ざった状態で蒸発器21から排出さ
れる。この際には、この除湿装置1では、液化冷媒が冷
媒再熱管26を通過する際にねじり管42内の高温の気
化冷媒と熱交換されて蒸発する。この結果、液化冷媒が
排出されることなく、冷媒再熱管26内で蒸発した気化
冷媒のみが冷媒再熱管26から排出される。また、極く
微量の液化冷媒が冷媒再熱管26から排出されたときに
は、アキュムレータ27によって気化冷媒と液化冷媒と
が分離される。したがって、この冷凍機構3では、極く
微量な液化冷媒を貯留できればよいため、アキュムレー
タ27が小型化されている。On the other hand, when the flow rate of the compressed air introduced into the heat exchanger 2 is small, for example, when the load is low, the amount of the refrigerant vaporized in the evaporator 21 is reduced, so that the vaporized refrigerant and the liquefied refrigerant are reduced. Are discharged from the evaporator 21 in a state in which is mixed. At this time, in the dehumidifier 1, when the liquefied refrigerant passes through the refrigerant reheat pipe 26, the liquefied refrigerant exchanges heat with the high-temperature vaporized refrigerant in the torsion pipe 42 and evaporates. As a result, only the vaporized refrigerant evaporated in the refrigerant reheat pipe 26 is discharged from the refrigerant reheat pipe 26 without discharging the liquefied refrigerant. When a very small amount of the liquefied refrigerant is discharged from the refrigerant reheat pipe 26, the vaporized refrigerant and the liquefied refrigerant are separated by the accumulator 27. Therefore, in the refrigerating mechanism 3, the accumulator 27 is miniaturized because it is sufficient to store a very small amount of the liquefied refrigerant.
【0021】また、冷凍機構3において予め規定されて
いる設定圧力範囲を外れて低圧となった際には、制御弁
28が開放されるため、圧縮機22から排出される高温
高圧の気化冷媒の一部が矢印A3で示すように連結管3
5を介して連結管31に排出される。したがって、冷媒
の吸入圧力が予め規定された吸入圧力に調整される。こ
の場合、この冷凍機構3では、蒸発器21から排出され
た液化冷媒が冷媒再熱管26内で蒸発するため、吸入圧
力が上昇する。このため、従来の冷凍機構53と比較し
て、より短い時間だけ制御弁28を開放するだけで吸入
圧力が規定の圧力に調整される。したがって、低負荷時
には、除湿効率を向上させることができると共に、圧縮
機22の運転量を低下させて冷媒の循環量を少なくする
ことができる結果、圧縮機22の消費電力を低減するこ
とができる。When the pressure becomes lower than the predetermined pressure range in the refrigeration mechanism 3, the control valve 28 is opened, so that the high-temperature and high-pressure vaporized refrigerant discharged from the compressor 22 is discharged. A part of the connecting pipe 3 is indicated by an arrow A3.
5 to the connecting pipe 31. Therefore, the suction pressure of the refrigerant is adjusted to a predetermined suction pressure. In this case, in the refrigeration mechanism 3, the liquefied refrigerant discharged from the evaporator 21 evaporates in the refrigerant reheat pipe 26, so that the suction pressure increases. Therefore, as compared with the conventional refrigeration mechanism 53, the suction pressure is adjusted to the specified pressure only by opening the control valve 28 for a shorter time. Therefore, when the load is low, the dehumidifying efficiency can be improved, and the operation amount of the compressor 22 can be reduced to reduce the circulation amount of the refrigerant. As a result, the power consumption of the compressor 22 can be reduced. .
【0022】一方、圧縮機22から排出される気化冷媒
の圧力が規定圧力を超えたときには、制御部4は、セン
サPSのセンサ信号に応じて冷却ファンFNを回転させ
る。したがって、凝縮器23内での気化冷媒の液化が促
進される結果、圧縮機22から排出された気化冷媒の圧
力が規定圧力まで低下する。On the other hand, when the pressure of the vaporized refrigerant discharged from the compressor 22 exceeds the specified pressure, the control unit 4 rotates the cooling fan FN according to the sensor signal of the sensor PS. Therefore, the liquefaction of the vaporized refrigerant in the condenser 23 is promoted, and as a result, the pressure of the vaporized refrigerant discharged from the compressor 22 decreases to the specified pressure.
【0023】このように、この除湿装置1(冷凍機構
3)では、蒸発器21から排出された低温の冷媒(液化
冷媒)と、圧縮機22から排出された高温の冷媒(気化
冷媒)とを冷媒再熱管26内で熱交換させることによ
り、液化冷媒がアキュムレータ27に達する前に温度上
昇して冷媒再熱管26内で蒸発するため、アキュムレー
タ27に貯留される液化冷媒を大幅に低減することがで
きる。したがって、比較的低価格な小型のアキュムレー
タ27を配設するだけで圧縮機22の破損を十分に防止
できる結果、冷凍機構3の製造コスト、ひいては除湿装
置1の製造コストを低減することができる。また、直管
41とねじり管42との二重管構造で冷媒再熱管26を
構成し、かつ、ねじり管42にねじり加工を施して直管
41およびねじり管42の間の溝部S1に冷媒を通過さ
せることにより、直管41内を通過する冷媒とねじり管
42内を通過する冷媒との間で十分に熱交換させること
ができる。さらに、ねじり管42を直管41の中に収納
して冷媒再熱管26を構成したことにより、ねじり管4
2の中に直管41を収納する構成と比較して、冷媒再熱
管の外周面への埃の固着を回避することができる。ま
た、例えば低負荷時などにおいては、冷媒の循環量を少
なくすることができる結果、圧縮機22の消費電力を低
減することができる。As described above, in the dehumidifier 1 (refrigeration mechanism 3), the low-temperature refrigerant (liquefied refrigerant) discharged from the evaporator 21 and the high-temperature refrigerant (vaporized refrigerant) discharged from the compressor 22 are combined. Since the liquefied refrigerant rises in temperature and evaporates in the refrigerant reheat pipe 26 before reaching the accumulator 27 by performing heat exchange in the refrigerant reheat pipe 26, the liquefied refrigerant stored in the accumulator 27 can be significantly reduced. it can. Therefore, the damage of the compressor 22 can be sufficiently prevented only by providing the relatively low-priced small accumulator 27, so that the manufacturing cost of the refrigeration mechanism 3 and the manufacturing cost of the dehumidifier 1 can be reduced. Further, the refrigerant reheat pipe 26 is configured by a double pipe structure of the straight pipe 41 and the torsion pipe 42, and the torsion processing is performed on the torsion pipe 42 to supply the refrigerant to the groove S1 between the straight pipe 41 and the torsion pipe 42. By allowing the refrigerant to pass through, it is possible to cause sufficient heat exchange between the refrigerant passing through the straight pipe 41 and the refrigerant passing through the torsion pipe 42. Further, since the torsion tube 42 is housed in the straight tube 41 to constitute the refrigerant reheating tube 26, the torsion tube 4
As compared with the configuration in which the straight pipe 41 is accommodated in the pipe 2, it is possible to prevent dust from sticking to the outer peripheral surface of the refrigerant reheating pipe. Further, for example, when the load is low, the amount of the circulating refrigerant can be reduced, so that the power consumption of the compressor 22 can be reduced.
【0024】なお、本発明は、上記本発明の実施の形態
に示した構成に限定されない。例えば、本発明の実施の
形態では、ねじり管42の最外周部を直管41の内周面
に連結して冷媒再熱管26を構成した例について説明し
たが、本発明における冷媒再熱手段の構成は、これに限
定されない。例えば、図6に示す冷媒再熱管26Aのよ
うに、直管41の内周面とねじり管42の最外周部とを
離間させてもよい。この構成であっても、導入口41a
から導入された冷媒がねじり管42の外周面に形成され
た溝部S1に案内されて螺旋状の軌跡を描くようにして
冷媒再熱管26内を通過するため、冷媒同士を十分に熱
交換させることができる。また、図7に示す冷媒再熱管
26Bのように、ねじり管42の中に直管41を収納し
て二重管構造とすることもできる。さらに、ねじり管4
2に代えて直管を直管41の中に収納し、直管の外周面
と直管41の内周面との間に螺旋状の線状部材を挿入す
ることで、その線状部材間に溝部を形成してもよい。The present invention is not limited to the configuration shown in the above embodiment of the present invention. For example, in the embodiment of the present invention, the example in which the outermost peripheral portion of the torsion pipe 42 is connected to the inner peripheral surface of the straight pipe 41 to form the refrigerant reheat pipe 26 has been described. The configuration is not limited to this. For example, as in a refrigerant reheating tube 26A shown in FIG. 6, the inner peripheral surface of the straight tube 41 and the outermost peripheral portion of the torsion tube 42 may be separated. Even with this configuration, the inlet 41a
Is introduced into the groove S1 formed on the outer peripheral surface of the torsion tube 42 and passes through the refrigerant reheating tube 26 in a spiral trajectory, so that the refrigerants can sufficiently exchange heat with each other. Can be. Further, as in a refrigerant reheat pipe 26B shown in FIG. 7, a straight pipe 41 may be housed in a torsion pipe 42 to form a double pipe structure. Further, the twisted pipe 4
The straight pipe is housed in the straight pipe 41 in place of 2 and a spiral linear member is inserted between the outer peripheral surface of the straight pipe and the inner peripheral surface of the straight pipe 41, so that the distance between the linear members is reduced. A groove may be formed in the groove.
【0025】[0025]
【発明の効果】以上のように、請求項1記載の冷凍装置
によれば、内管および外管で冷媒再熱手段を二重管構造
に構成し、かつ内管の外周面または外管の内周面に螺旋
状の溝部を形成したことにより、内管および外管の間を
通過する冷媒が螺旋状の軌跡を描くように通過するた
め、両冷媒の間で十分に熱交換することができる。した
がって、液化冷媒を確実に蒸発させることができるた
め、圧縮機への液化冷媒の流入を回避するためのアキュ
ムレータを小型化することができる。この結果、冷凍装
置の製造コストおよび消費電力を低減しつつ、圧縮機の
破損を確実に防止することができる。As described above, according to the refrigerating apparatus of the first aspect, the refrigerant reheating means is constituted by the inner pipe and the outer pipe in a double pipe structure, and the outer peripheral surface of the inner pipe or the outer pipe is formed. By forming the spiral groove on the inner peripheral surface, the refrigerant passing between the inner pipe and the outer pipe passes in a spiral trajectory, so that sufficient heat exchange between the two refrigerants is possible. it can. Therefore, since the liquefied refrigerant can be reliably evaporated, the accumulator for avoiding the inflow of the liquefied refrigerant into the compressor can be downsized. As a result, the compressor can be reliably prevented from being damaged while reducing the manufacturing cost and power consumption of the refrigeration apparatus.
【0026】また、請求項2記載の冷凍装置によれば、
内管の外周面における最外周部と外管の内周面における
最内周部とを接触して連結させて螺旋状流路を冷媒再熱
手段に形成したことにより、内管および外管の間を通過
する冷媒を確実に螺旋状に軌跡を描くように通過させる
ことができるため、冷媒が螺旋状流路を通過する通過時
間を長くすることができる結果、液化冷媒を一層確実に
蒸発させることができる。According to the refrigeration apparatus of the second aspect,
By contacting and connecting the outermost portion on the outer peripheral surface of the inner tube and the innermost portion on the inner peripheral surface of the outer tube to form a spiral flow path in the refrigerant reheating means, the inner tube and the outer tube Since it is possible to reliably pass the refrigerant passing between them so as to draw a spiral trajectory, it is possible to lengthen the passage time of the refrigerant passing through the spiral flow path, thereby evaporating the liquefied refrigerant more reliably. be able to.
【0027】さらに、請求項3記載の冷凍装置によれ
ば、内管をねじり管で構成し外管を直管で構成したこと
により、ねじり管の中に直管を挿通させる構成と比較し
て、冷媒再熱管手段の外表面への埃の固着を回避するこ
とができる。Further, according to the refrigeration apparatus of the third aspect, the inner pipe is formed of a torsion pipe and the outer pipe is formed of a straight pipe, compared with a configuration in which a straight pipe is inserted into a torsion pipe. Further, it is possible to prevent dust from sticking to the outer surface of the refrigerant reheating tube means.
【図1】本発明の実施の形態に係る除湿装置1の構成を
示す構成図である。FIG. 1 is a configuration diagram showing a configuration of a dehumidifying device 1 according to an embodiment of the present invention.
【図2】本発明の実施の形態に係る冷媒再熱管26の外
観図である。FIG. 2 is an external view of a refrigerant reheat pipe 26 according to the embodiment of the present invention.
【図3】(a)は冷媒再熱管26における直管41の断
面図、(b)はねじり管42の断面図である。3A is a cross-sectional view of a straight pipe 41 in a refrigerant reheating pipe 26, and FIG. 3B is a cross-sectional view of a torsion pipe 42.
【図4】冷媒再熱管26の断面図である。FIG. 4 is a cross-sectional view of the refrigerant reheat pipe 26.
【図5】冷媒再熱管26内を通過する冷媒の流れを示す
模式図である。FIG. 5 is a schematic diagram showing a flow of a refrigerant passing through a refrigerant reheat pipe 26.
【図6】本発明の他の実施の形態に係る冷媒再熱管26
Aの断面図である。FIG. 6 shows a refrigerant reheat pipe 26 according to another embodiment of the present invention.
It is sectional drawing of A.
【図7】本発明のさらに他の実施の形態に係る冷媒再熱
管26Bの外観図である。FIG. 7 is an external view of a refrigerant reheat pipe 26B according to still another embodiment of the present invention.
【図8】従来の除湿装置51の構成を示す構成図であ
る。FIG. 8 is a configuration diagram showing a configuration of a conventional dehumidifier 51.
1 除湿装置 2 熱交換器 3 冷凍機構 21 蒸発器 22 圧縮機 26,26A,26B 冷媒再熱管 27 アキュムレータ 28 制御弁 41 直管 42 ねじり管 42c ねじり加工部 S1,S2 溝部 DESCRIPTION OF SYMBOLS 1 Dehumidifier 2 Heat exchanger 3 Refrigeration mechanism 21 Evaporator 22 Compressor 26, 26A, 26B Refrigerant pipe 27 Accumulator 28 Control valve 41 Straight pipe 42 Twist pipe 42c Twist processing part S1, S2 Groove part
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3L103 AA05 AA35 AA39 BB33 CC01 CC18 CC21 CC30 DD03 DD10 DD38 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3L103 AA05 AA35 AA39 BB33 CC01 CC18 CC21 CC30 DD03 DD10 DD38
Claims (3)
圧縮機によって圧縮され凝縮器に向けて圧送される高温
冷媒との間で熱交換する冷媒再熱手段を備えた冷凍装置
であって、 前記冷媒再熱手段は、前記両冷媒のいずれか一方が通過
する内管と、当該内管が挿通されると共に当該内管との
間を前記両冷媒のいずれか他方が通過する外管とで二重
管構造に構成され、かつ前記内管の外周面または前記外
管の内周面に螺旋状の溝部が形成されて構成されている
ことを特徴とする冷凍装置。1. a low-temperature refrigerant discharged by an evaporator;
A refrigeration apparatus including a refrigerant reheating unit that exchanges heat with a high-temperature refrigerant that is compressed by a compressor and pumped toward a condenser, wherein the refrigerant reheating unit is configured such that one of the two refrigerants is used. An inner pipe that passes therethrough, and an outer pipe through which either of the two refrigerants passes while the inner pipe is inserted and the inner pipe is formed in a double pipe structure, and an outer peripheral surface of the inner pipe Alternatively, a refrigeration apparatus characterized in that a spiral groove is formed on the inner peripheral surface of the outer tube.
面における最外周部と前記外管の内周面における最内周
部とが接触して連結されることにより前記溝部で螺旋状
流路が形成されていることを特徴とする請求項1記載の
冷凍装置。2. The coolant reheating means is configured such that the outermost peripheral portion of the outer peripheral surface of the inner tube and the innermost peripheral portion of the inner peripheral surface of the outer tube are brought into contact with each other and connected to each other, thereby forming a spiral in the groove. The refrigeration apparatus according to claim 1, wherein a flow path is formed.
管で構成され、前記外管が直管で構成されていることを
特徴とする請求項1または2記載の冷凍装置。3. The refrigeration apparatus according to claim 1, wherein the refrigerant reheating means has the inner pipe formed of a torsion pipe and the outer pipe formed of a straight pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001117560A JP2002318015A (en) | 2001-04-17 | 2001-04-17 | Freezer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001117560A JP2002318015A (en) | 2001-04-17 | 2001-04-17 | Freezer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002318015A true JP2002318015A (en) | 2002-10-31 |
Family
ID=18968084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001117560A Pending JP2002318015A (en) | 2001-04-17 | 2001-04-17 | Freezer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002318015A (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005265253A (en) * | 2004-03-17 | 2005-09-29 | T Rad Co Ltd | Double tube type heat exchanger and its manufacturing method |
JP2006046846A (en) * | 2004-08-06 | 2006-02-16 | Matsumoto Jukogyo Kk | Double pipe heat exchanger |
JP2006132905A (en) * | 2004-11-09 | 2006-05-25 | Denso Corp | Refrigerating cycle |
JP2006162238A (en) * | 2004-11-09 | 2006-06-22 | Denso Corp | Double wall tube |
JP2006162241A (en) * | 2004-11-09 | 2006-06-22 | Denso Corp | Double wall tube, its manufacturing method and refrigerating cycle device having this double wall tube |
JP2006312196A (en) * | 2005-05-09 | 2006-11-16 | Denso Corp | Grooved pipe manufacturing method and its apparatus, and grooved pipe |
KR100726123B1 (en) | 2007-01-16 | 2007-06-12 | 주식회사 창신 | A cold room system |
JP2007218486A (en) * | 2006-02-15 | 2007-08-30 | Hitachi Cable Ltd | Heat transfer tube for heat exchanger, and heat exchanger using the same |
JP2007298196A (en) * | 2006-04-28 | 2007-11-15 | Denso Corp | Piping with internal heat exchanger and refrigerating cycle device comprising the same |
JP2008292107A (en) * | 2007-05-28 | 2008-12-04 | Furukawa Electric Co Ltd:The | Heat exchanger, heat exchange system, and construction method of heat exchange system |
CN100460794C (en) * | 2004-11-09 | 2009-02-11 | 株式会社电装 | Double-wall pipe, method of manufacturing the same and refrigerant cycle device provided with the same |
US7780926B2 (en) | 2004-05-29 | 2010-08-24 | Haldor Topsøe A/S | Heat exchange process and reactor |
US7866378B2 (en) | 2004-11-09 | 2011-01-11 | Denso Corporation | Double-wall pipe, method of manufacturing the same and refrigerant cycle device provided with the same |
US7887099B2 (en) | 2005-12-06 | 2011-02-15 | Denso Corporation | Compound tube and method of producing the same |
CN101975520A (en) * | 2010-07-29 | 2011-02-16 | 山东万海双涵化工设备有限公司 | Elliptical continuous twisted tube coaxial heat exchanger |
WO2010124871A3 (en) * | 2009-04-30 | 2011-02-17 | Eaton Fluid Power Gmbh | Heat exchanger |
WO2011162170A1 (en) * | 2010-06-23 | 2011-12-29 | 住友軽金属工業株式会社 | Double tube for heat exchanger |
WO2012017777A1 (en) * | 2010-08-02 | 2012-02-09 | 住友軽金属工業株式会社 | Double pipe for heat exchanger |
KR20120017315A (en) * | 2010-08-18 | 2012-02-28 | 한라공조주식회사 | Double pipe heat exchanger and manufacturing method the same |
KR200463407Y1 (en) * | 2010-01-25 | 2012-11-05 | 주식회사 에스앤아이 | heat exchanger of water purifier using spiral tube |
JP2014009831A (en) * | 2012-06-28 | 2014-01-20 | Calsonic Kansei Corp | Double pipe and manufacturing method thereof |
JP2015017762A (en) * | 2013-07-11 | 2015-01-29 | 株式会社ケーヒン・サーマル・テクノロジー | Double-tube type heat exchanger |
CN104697248A (en) * | 2015-03-26 | 2015-06-10 | 广东美的暖通设备有限公司 | Heat pump water heater and heat exchanger for same |
GB2523107A (en) * | 2014-02-12 | 2015-08-19 | Eaton Ind Ip Gmbh & Co Kg | Heat exchanger |
EP2933592A4 (en) * | 2012-12-05 | 2016-11-02 | Noa Co Ltd | Scraper type heat exchanger |
KR20190050120A (en) * | 2017-11-02 | 2019-05-10 | 한화파워시스템 주식회사 | Cooling device |
WO2021079877A1 (en) | 2019-10-23 | 2021-04-29 | 株式会社Uacj | Heat transfer double tube, inner tube for heat transfer double tube and method for manufacturing same |
WO2023008182A1 (en) | 2021-07-29 | 2023-02-02 | 住友理工株式会社 | Double-tube heat exchanger and manufacturing method therefor |
JP7551462B2 (en) | 2020-11-11 | 2024-09-17 | 株式会社Uacj | Manufacturing method of spiral tube |
US12111117B2 (en) | 2019-12-13 | 2024-10-08 | Uacj Corporation | Double pipe for heat exchanger |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51142660U (en) * | 1975-05-12 | 1976-11-17 | ||
JPS57156755U (en) * | 1981-03-30 | 1982-10-01 | ||
JPH1038479A (en) * | 1996-07-23 | 1998-02-13 | Toyo Radiator Co Ltd | Double tube type heat exchanger |
JPH10166086A (en) * | 1996-12-11 | 1998-06-23 | Hitachi Cable Ltd | Method and device for manufacturing tube with internal spiral groove |
JP2002013882A (en) * | 2000-06-30 | 2002-01-18 | Matsushita Refrig Co Ltd | Double pipe heat exchanger and refrigerating cycle device using it |
-
2001
- 2001-04-17 JP JP2001117560A patent/JP2002318015A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51142660U (en) * | 1975-05-12 | 1976-11-17 | ||
JPS57156755U (en) * | 1981-03-30 | 1982-10-01 | ||
JPH1038479A (en) * | 1996-07-23 | 1998-02-13 | Toyo Radiator Co Ltd | Double tube type heat exchanger |
JPH10166086A (en) * | 1996-12-11 | 1998-06-23 | Hitachi Cable Ltd | Method and device for manufacturing tube with internal spiral groove |
JP2002013882A (en) * | 2000-06-30 | 2002-01-18 | Matsushita Refrig Co Ltd | Double pipe heat exchanger and refrigerating cycle device using it |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005265253A (en) * | 2004-03-17 | 2005-09-29 | T Rad Co Ltd | Double tube type heat exchanger and its manufacturing method |
JP4494049B2 (en) * | 2004-03-17 | 2010-06-30 | 株式会社ティラド | Method for manufacturing double tube heat exchanger and double tube heat exchanger by the method |
US7780926B2 (en) | 2004-05-29 | 2010-08-24 | Haldor Topsøe A/S | Heat exchange process and reactor |
JP2006046846A (en) * | 2004-08-06 | 2006-02-16 | Matsumoto Jukogyo Kk | Double pipe heat exchanger |
CN100460794C (en) * | 2004-11-09 | 2009-02-11 | 株式会社电装 | Double-wall pipe, method of manufacturing the same and refrigerant cycle device provided with the same |
JP2006132905A (en) * | 2004-11-09 | 2006-05-25 | Denso Corp | Refrigerating cycle |
JP2006162238A (en) * | 2004-11-09 | 2006-06-22 | Denso Corp | Double wall tube |
JP2006162241A (en) * | 2004-11-09 | 2006-06-22 | Denso Corp | Double wall tube, its manufacturing method and refrigerating cycle device having this double wall tube |
US9669499B2 (en) | 2004-11-09 | 2017-06-06 | Denso Corporation | Double-wall pipe, method of manufacturing the same and refrigerant cycle device provided with the same |
US7866378B2 (en) | 2004-11-09 | 2011-01-11 | Denso Corporation | Double-wall pipe, method of manufacturing the same and refrigerant cycle device provided with the same |
JP2006312196A (en) * | 2005-05-09 | 2006-11-16 | Denso Corp | Grooved pipe manufacturing method and its apparatus, and grooved pipe |
JP4628858B2 (en) * | 2005-05-09 | 2011-02-09 | 株式会社デンソー | Double tube manufacturing method and apparatus |
US7887099B2 (en) | 2005-12-06 | 2011-02-15 | Denso Corporation | Compound tube and method of producing the same |
DE102006057312B4 (en) * | 2005-12-06 | 2019-12-24 | Denso Corporation | Composite pipe and process for its manufacture |
JP2007218486A (en) * | 2006-02-15 | 2007-08-30 | Hitachi Cable Ltd | Heat transfer tube for heat exchanger, and heat exchanger using the same |
JP2007298196A (en) * | 2006-04-28 | 2007-11-15 | Denso Corp | Piping with internal heat exchanger and refrigerating cycle device comprising the same |
KR100726123B1 (en) | 2007-01-16 | 2007-06-12 | 주식회사 창신 | A cold room system |
JP2008292107A (en) * | 2007-05-28 | 2008-12-04 | Furukawa Electric Co Ltd:The | Heat exchanger, heat exchange system, and construction method of heat exchange system |
WO2010124871A3 (en) * | 2009-04-30 | 2011-02-17 | Eaton Fluid Power Gmbh | Heat exchanger |
CN102460054A (en) * | 2009-04-30 | 2012-05-16 | 伊顿流体动力有限公司 | Heat exchanger |
KR200463407Y1 (en) * | 2010-01-25 | 2012-11-05 | 주식회사 에스앤아이 | heat exchanger of water purifier using spiral tube |
WO2011162170A1 (en) * | 2010-06-23 | 2011-12-29 | 住友軽金属工業株式会社 | Double tube for heat exchanger |
JP2012007767A (en) * | 2010-06-23 | 2012-01-12 | Sumitomo Light Metal Ind Ltd | Double tube for heat exchanger |
CN101975520A (en) * | 2010-07-29 | 2011-02-16 | 山东万海双涵化工设备有限公司 | Elliptical continuous twisted tube coaxial heat exchanger |
WO2012017777A1 (en) * | 2010-08-02 | 2012-02-09 | 住友軽金属工業株式会社 | Double pipe for heat exchanger |
JP2012052784A (en) * | 2010-08-02 | 2012-03-15 | Sumitomo Light Metal Ind Ltd | Double pipe for heat exchanger |
KR20120017315A (en) * | 2010-08-18 | 2012-02-28 | 한라공조주식회사 | Double pipe heat exchanger and manufacturing method the same |
KR101600296B1 (en) * | 2010-08-18 | 2016-03-07 | 한온시스템 주식회사 | Double pipe heat exchanger and manufacturing method the same |
JP2014009831A (en) * | 2012-06-28 | 2014-01-20 | Calsonic Kansei Corp | Double pipe and manufacturing method thereof |
EP2933592A4 (en) * | 2012-12-05 | 2016-11-02 | Noa Co Ltd | Scraper type heat exchanger |
JP2015017762A (en) * | 2013-07-11 | 2015-01-29 | 株式会社ケーヒン・サーマル・テクノロジー | Double-tube type heat exchanger |
GB2523107A (en) * | 2014-02-12 | 2015-08-19 | Eaton Ind Ip Gmbh & Co Kg | Heat exchanger |
CN104697248A (en) * | 2015-03-26 | 2015-06-10 | 广东美的暖通设备有限公司 | Heat pump water heater and heat exchanger for same |
KR20190050120A (en) * | 2017-11-02 | 2019-05-10 | 한화파워시스템 주식회사 | Cooling device |
KR102440684B1 (en) * | 2017-11-02 | 2022-09-05 | 한화파워시스템 주식회사 | Cooling device |
WO2021079877A1 (en) | 2019-10-23 | 2021-04-29 | 株式会社Uacj | Heat transfer double tube, inner tube for heat transfer double tube and method for manufacturing same |
US12111117B2 (en) | 2019-12-13 | 2024-10-08 | Uacj Corporation | Double pipe for heat exchanger |
JP7551462B2 (en) | 2020-11-11 | 2024-09-17 | 株式会社Uacj | Manufacturing method of spiral tube |
WO2023008182A1 (en) | 2021-07-29 | 2023-02-02 | 住友理工株式会社 | Double-tube heat exchanger and manufacturing method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002318015A (en) | Freezer | |
JPH10132400A (en) | Parallel type freezer | |
US20030192338A1 (en) | Method for increasing efficiency of a vapor compression system by compressor cooling | |
US20070180853A1 (en) | Refrigerator | |
JP2001255023A (en) | Effective increasing method for vapor compression freezing cycle and high efficiency freezing system | |
US6698221B1 (en) | Refrigerating system | |
JP4118254B2 (en) | Refrigeration equipment | |
KR101341565B1 (en) | Freezing cycle for vehicle | |
JP2009186033A (en) | Two-stage compression type refrigerating device | |
JP5237157B2 (en) | Air heat source turbo heat pump | |
JP6176470B2 (en) | refrigerator | |
JP2006003023A (en) | Refrigerating unit | |
JP4352327B2 (en) | Ejector cycle | |
KR100859354B1 (en) | Vapor compression refrigeration apparatus using vortex tube | |
KR100675900B1 (en) | Refrigeration and air conditioning system | |
JP2006138612A (en) | Heat pump system | |
JP2003194427A (en) | Cooling device | |
JP2002357367A (en) | Refrigerating device | |
WO2003006890A1 (en) | Dehumidifying air-conditioning apparatus | |
EP3798534A1 (en) | A heat pump | |
WO2014030237A1 (en) | Refrigerating device | |
JP2008107882A (en) | Vending machine | |
CN104697228B (en) | Turborefrigerator | |
KR200300275Y1 (en) | refrigeration system | |
JP3084918B2 (en) | Heat pump water heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100407 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100518 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101005 |