JP2002317234A - Titanium sheet having excellent ductility and production method therefor - Google Patents
Titanium sheet having excellent ductility and production method thereforInfo
- Publication number
- JP2002317234A JP2002317234A JP2001247958A JP2001247958A JP2002317234A JP 2002317234 A JP2002317234 A JP 2002317234A JP 2001247958 A JP2001247958 A JP 2001247958A JP 2001247958 A JP2001247958 A JP 2001247958A JP 2002317234 A JP2002317234 A JP 2002317234A
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- ppm
- titanium plate
- ductility
- melting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、延性に優れたチタ
ン板およびその製造方法に関する技術分野に属するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of a titanium plate having excellent ductility and a method for producing the same.
【0002】[0002]
【従来の技術】JIS H 4600に規定されるチタ
ン(Ti)は、耐食性に優れるものであり、かつ軽量で
もあることから、熱交換器等の化学工業設備や、カメラ
ボディー、時計、眼鏡、レジャー用品等の民生品にも用
途が広がってきている。これらの製品は板から塑性加工
して製造されるため、チタン板は強度・延性、成形性等
の機械的性質に優れていることが要求される。2. Description of the Related Art Titanium (Ti) specified in JIS H 4600 has excellent corrosion resistance and is light in weight. Therefore, chemical industrial equipment such as heat exchangers, camera bodies, watches, glasses, leisure equipment, etc. Applications are expanding to consumer goods such as supplies. Since these products are manufactured by plastic working from a plate, the titanium plate is required to have excellent mechanical properties such as strength, ductility, and formability.
【0003】チタン板の延性を向上させる試みは、これ
まで種々なされ、検討されており、例えばFe量、O量
を或る量以下に抑制したり、結晶粒径を粗大化させたり
することにより延性の改善がなされてきている(例え
ば、特開平10−30160号公報参照)。一方、チタ
ン板の要求特性として強度レベルもあり、Fe、Oは強
度を増大させる目的で添加されているが、添加しすぎる
と延性が劣化し、所望の特性を満たし得なくなる。つま
り、添加元素増大による強度向上と延性向上とが両立す
ることは、現状の技術レベルでは難しかった。[0003] Various attempts to improve the ductility of a titanium plate have been made and studied so far, for example, by suppressing the amount of Fe and O to a certain amount or less, or by increasing the crystal grain size. The ductility has been improved (see, for example, JP-A-10-30160). On the other hand, there is a strength level as a required characteristic of the titanium plate, and Fe and O are added for the purpose of increasing the strength. However, if added too much, ductility is deteriorated, and desired characteristics cannot be satisfied. That is, it was difficult at the current technical level to achieve both improvement in strength and improvement in ductility by increasing the amount of added elements.
【0004】また、成形性という観点では、上記強度・
延性の特性の面内異方性も影響因子であり、従来のチタ
ン板では圧延方向の特性と圧延垂直方向(圧延方向と垂
直な方向、即ち、板幅方向)の特性との異方性が強く、
例えば耐力は圧延方向の方が低いため、圧延方向の耐力
レベルが要求特性を満たさない場合、予ひずみを加える
ことで耐力レベルを上げることがなされているが、その
場合、予ひずみによって延性が劣化することによって成
形性が劣化する問題があり、成形性の向上にも限界があ
った。さらに、成形部品によっては深絞り性も要求さ
れ、そのための深絞り性指標であるr値の向上に関して
も従来の技術では不充分であった。[0004] From the viewpoint of moldability, the strength and
The in-plane anisotropy of the ductility characteristics is also an influencing factor, and in the conventional titanium plate, the anisotropy between the characteristics in the rolling direction and the characteristics in the rolling vertical direction (direction perpendicular to the rolling direction, that is, the sheet width direction) is not sufficient. strongly,
For example, since the proof stress is lower in the rolling direction, when the proof stress level in the rolling direction does not satisfy the required characteristics, the proof stress is increased by adding a pre-strain, but in this case, the ductility is deteriorated by the pre-strain However, there is a problem that the moldability is deteriorated due to this, and there is a limit in improving the moldability. Further, depending on the molded part, deep drawability is also required, and improvement of the r value, which is an index of the deep drawability, is insufficient with the conventional technology.
【0005】このような中で、延性向上の要求はますま
す厳しくなってきており、強度と延性とを高次のレベル
(高水準)で両立させることが要求されるようになって
きている。[0005] Under such circumstances, the demand for improvement in ductility has become more and more strict, and it has been required to achieve both high strength and ductility at a high level (high level).
【0006】[0006]
【発明が解決しようとする課題】本発明は、このような
事情に着目してなされたものであって、その目的は、チ
タン板の強度を低下させることなく延性を向上させ、強
度と延性とを高次のレベルで兼ね備えたチタン板および
その製造方法を提供しようとするものである。SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object of the present invention is to improve the ductility without lowering the strength of a titanium plate, and to improve the strength and ductility. And a method for manufacturing the same.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係るチタン板およびその製造方法は、請
求項1〜3記載のチタン板、請求項4〜6記載のチタン
板の製造方法としており、それは次のような構成とした
ものである。In order to achieve the above object, a titanium plate according to the present invention and a method for producing the same are provided by a titanium plate according to claims 1 to 3 and a titanium plate according to claims 4 to 6. The manufacturing method is as follows.
【0008】即ち、請求項1記載のチタン板は、H,
O,N,Fe量がJIS H 4600の1種または2
種に規定される量であり、C:50〜800ppmを含
有し、残部がチタン及び不可避的不純物からなる組成を
有することを特徴とする延性に優れたチタン板である
(第1発明)。That is, the titanium plate according to the first aspect is characterized in that:
O, N, Fe content is one or more of JIS H 4600
This is a titanium plate excellent in ductility, characterized in that it is an amount specified by the species and contains 50 to 800 ppm of C and the balance has a composition consisting of titanium and unavoidable impurities (first invention).
【0009】請求項2記載のチタン板は、更にAl:1
00〜5000ppmを含有することを特徴とする請求
項1記載の延性に優れたチタン板である(第2発明)。[0009] The titanium plate according to claim 2 further comprises Al: 1
The titanium plate having excellent ductility according to claim 1, wherein the titanium plate contains from 0.00 to 5000 ppm (second invention).
【0010】請求項3記載のチタン板は、溶解法として
コールドクルーシブル誘導溶解法が用いられて製造され
た請求項1または2記載の延性に優れたチタン板である
(第3発明)。The titanium plate according to claim 3 is a titanium plate excellent in ductility according to claim 1 or 2, which is manufactured by using a cold crucible induction melting method as a melting method (third invention).
【0011】一方、請求項4記載のチタン板の製造方法
は、コールドクルーシブル誘導溶解法による溶解をした
後、鋳造をすることにより、H,O,N,Fe量がJI
SH 4600の1種または2種に規定される量であ
り、C:50〜800ppmを含有し、残部がチタン及
び不可避的不純物からなる組成を有するチタン材を得、
次に、このチタン材を熱間加工および/または冷間加工
を施して板形状に加工し、この後、最終焼鈍することを
特徴とする延性に優れたチタン板の製造方法である(第
4発明)。On the other hand, in the method of manufacturing a titanium plate according to the present invention, the amount of H, O, N and Fe is reduced by JI by melting after cold melting induction melting and then casting.
SH 4600 is an amount defined as one or two kinds, and obtains a titanium material containing C: 50 to 800 ppm and a balance of titanium and unavoidable impurities,
Next, this titanium material is subjected to hot working and / or cold working, processed into a plate shape, and then subjected to final annealing. invention).
【0012】請求項5記載のチタン板の製造方法は、V
AR法あるいはコールドクルーシブル誘導溶解法による
溶解、鋳造をすることにより、H,O,N,Fe量がJ
ISH 4600の1種または2種に規定される量であ
り、C:50〜800ppm、Al:100〜5000
ppmを含有し、残部がチタン及び不可避的不純物から
なる組成を有するチタン材を得、次に、このチタン材を
熱間加工および/または冷間加工を施して板形状に加工
し、この後、最終焼鈍することを特徴とする延性に優れ
たチタン板の製造方法である(第5発明)。The method for manufacturing a titanium plate according to claim 5 is characterized in that
By melting and casting by the AR method or the cold crucible induction melting method, the amounts of H, O, N and Fe are reduced to J.
It is an amount specified for one or two types of ISH 4600, C: 50 to 800 ppm, Al: 100 to 5000
ppm, the balance being titanium and having a composition consisting of titanium and unavoidable impurities, and then subjecting the titanium material to hot working and / or cold working to form a plate, This is a method for producing a titanium sheet having excellent ductility, which is characterized by performing final annealing (fifth invention).
【0013】請求項6記載のチタン板の製造方法は、前
記溶解をするに際し、Al炭化物を溶湯中に添加する請
求項5記載の延性に優れたチタン板の製造方法である
(第6発明)。The method of manufacturing a titanium plate according to claim 6 is the method of manufacturing a titanium plate having excellent ductility according to claim 5, wherein Al carbide is added to the molten metal during the melting. .
【0014】ここで、ppmは、質量ppm(質量比で
のppm)、即ち、質量百万分率である(以降、同
様)。Here, ppm means mass ppm (ppm in mass ratio), that is, parts per million (hereinafter the same).
【0015】[0015]
【発明の実施の形態】本発明は、例えば次のような形態
で実施する。コールドクルーシブル誘導溶解法による溶
解をし、この後、鋳造をすることにより、H,O,N,
Fe量がJIS H 4600の1種または2種に規定
される量であり、C:50〜800ppmを含有し、残
部がチタン及び不可避的不純物からなる組成を有するチ
タン材(鋳塊)を得る。次に、このチタン材を熱間加工
および/または冷間加工を施して板形状に加工し、この
後、最終焼鈍する。そうすると、本発明に係る延性に優
れたチタン板が得られる。このとき、更にAl:100
〜5000ppmを含有するようにすると、深絞り性指
標であるr値にも優れたチタン板が得られる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is embodied in the following manner, for example. Dissolution by the cold crucible induction melting method, and then casting to obtain H, O, N,
The amount of Fe is an amount specified in one or two types of JIS H 4600, and a titanium material (ingot) containing 50 to 800 ppm of C and having a balance of titanium and unavoidable impurities is obtained. Next, the titanium material is subjected to hot working and / or cold working to be processed into a plate shape, and then subjected to final annealing. Then, a titanium plate excellent in ductility according to the present invention is obtained. At this time, further Al: 100
When the content of 55000 ppm is contained, a titanium plate excellent in the r value which is an index of deep drawability can be obtained.
【0016】かかる形態で本発明に係るチタン板の製造
方法が実施され、そして本発明に係る延性に優れたチタ
ン板が得られる。In such a form, the method for producing a titanium plate according to the present invention is carried out, and the titanium plate excellent in ductility according to the present invention is obtained.
【0017】本発明は、前記目的を達成するために鋭意
研究を重ねた結果、得られた新規な知見に基づき完成さ
れたものである。この詳細を以下説明する。The present invention has been accomplished based on new findings obtained as a result of intensive studies to achieve the above object. The details will be described below.
【0018】本発明者らは、前記目的を達成するために
研究を重ねた結果、JIS H 4600の1種または
2種に相当するチタン板においてCを50〜800pp
m添加することにより、特にチタン板の圧延垂直方向の
延性を低下させることなく、圧延方向の強度・延性のレ
ベルを向上させ、強度と延性とを高次のレベル(高水
準)で両立させることができることを見出した。このメ
カニズムは明らかではないが、Cの効果についてこれま
で調査された例はなく、ましてや上記の如き知見は従来
得られておらず、新規な知見である。As a result of repeated studies to achieve the above object, the present inventors have found that C in a titanium plate corresponding to one or two of JIS H 4600 is 50 to 800 pp.
By adding m, the level of strength and ductility in the rolling direction is improved without lowering the ductility of the titanium sheet in the vertical direction of rolling, and both strength and ductility are balanced at a higher level (high level). I found that I can do it. Although the mechanism is not clear, there has been no investigation on the effect of C so far, and much less the above-mentioned knowledge has been obtained so far, which is a new knowledge.
【0019】Cの効果についてこれまで検討されてこな
かった理由は、以下の通りである。従来、Ti(チタ
ン)の溶解は消耗電極式アーク溶解法といわれる方法に
より行われている(例えば、日刊工業新聞社、「金属チ
タンとその応用」、草道英武編集、p.16 〜参照)。こ
の消耗電極式アーク溶解法は、Ti溶解原料そのものを
押し固めて断面の大きい大型の電極(消耗電極)を作
り、水冷銅ルツボにつり下げ、先端で銅ルツボ中の溶湯
との間に直流アークを発生させ、電極それ自体が溶け落
ちて溶湯プールを作り、溶滴が集まった溶湯プールは下
側から冷却されて凝固し、一方向凝固に近い方式で鋳塊
を製造する方法である。この方法では、スポンジチタン
を合金原料と共にプレス成形してブリケットとし、これ
を溶接して消耗電極とする。従って、消耗電極の場所毎
に合金成分の量(濃度)が異なってくるため、その均質
化が必要となるが、この方法では前述したように消耗電
極全体を一度に溶融するのではなく、部分的に溶融した
部分だけで再凝固するために合金成分の均質化は不充分
になる。そこで、通常は初回溶解で得た鋳塊を消耗電極
として再度溶解する二重溶解が行われている。しかし、
数百ppmレベル以下のCの均一分散化は、上記の如き
溶解方法でも非常に困難であったため、C添加の発想自
体がこれまでなく、C添加の効果については検討されて
こなかった。The reason why the effect of C has not been studied so far is as follows. Conventionally, Ti (titanium) has been melted by a method called a consumable electrode arc melting method (for example, see Nikkan Kogyo Shimbun, "Metal titanium and its application", edited by Hidetake Kusamichi, p.16-). . In this consumable electrode type arc melting method, the Ti melting raw material itself is compacted to form a large electrode (consumable electrode) having a large cross section, suspended in a water-cooled copper crucible, and a DC arc is applied between the tip and the molten metal in the copper crucible. This is a method in which the electrode itself melts down to form a molten metal pool, and the molten metal pool in which the droplets are collected is cooled from below and solidifies to produce an ingot in a manner close to unidirectional solidification. In this method, titanium sponge is press-formed together with an alloy raw material to form a briquette, which is welded to form a consumable electrode. Therefore, since the amount (concentration) of the alloy component differs depending on the location of the consumable electrode, it is necessary to homogenize the alloy component. However, in this method, the entire consumable electrode is not melted at once as described above, but is partially melted. Homogenization of the alloy components becomes insufficient because re-solidification occurs only in the partially melted portion. Therefore, double melting is usually performed in which the ingot obtained in the first melting is melted again as a consumable electrode. But,
Since it is very difficult to uniformly disperse C at a level of several hundred ppm or less even by the dissolution method as described above, the idea of C addition has never been considered, and the effect of C addition has not been studied.
【0020】これに対して新しい溶解方法としてコール
ドクルーシブル誘導溶解法という方法が実用化されつつ
ある(例えば、草道龍彦他、神戸製鋼技報、Vol.49、N
o.3、1999年、p.13 〜14参照)。これは、真空誘導溶
解法での耐火ルツボを、水冷銅製の多数のセグメントで
構成されるルツボに置き換えた溶解方法である。この溶
解方法では、消耗電極式アーク溶解法と異なり、溶解原
料全てを一括溶融する方式であるため、消耗電極式アー
ク溶解法の場合のような不均質化が起こり難く、また、
溶湯成分の調整が容易となるため、微量添加元素の調整
が可能となり、その均一分散化が可能となる。On the other hand, a method called a cold crucible induction melting method is being put to practical use as a new melting method (for example, Tatsuhiko Kusamichi et al., Kobe Steel Engineering Reports, Vol. 49, N.
o.3, 1999, pp.13-14). This is a melting method in which a refractory crucible in the vacuum induction melting method is replaced with a crucible composed of a large number of segments made of water-cooled copper. In this melting method, unlike the consumable electrode arc melting method, since the melting material is a method in which all of the melting raw materials are melted at once, it is hard to cause inhomogeneity as in the case of the consumable electrode type arc melting method,
Since the adjustment of the molten metal component is facilitated, the addition of trace elements can be adjusted, and the elements can be uniformly dispersed.
【0021】そこで、コールドクルーシブル誘導溶解法
によりCを添加した組成のチタン材を製造し、これを用
いてチタン板を製造した。その結果、Cの添加量が数百
〜数十ppmレベルの如く微量であっても、数ppmの
如く極微量であっても、Cの均一分散化が可能であるこ
とが確認されると共に、C:50〜800ppmの添加
により、特にチタン板の圧延垂直方向の延性を低下させ
ることなく、圧延方向の強度・延性のレベルを向上さ
せ、強度と延性とを高次のレベルで両立させることがで
きることがわかった。Therefore, a titanium material having a composition to which C was added was produced by a cold crucible induction melting method, and a titanium plate was produced using the titanium material. As a result, even if the addition amount of C is as small as several hundreds to several tens of ppm, or even as small as several ppm, it is confirmed that C can be uniformly dispersed, C: By adding 50 to 800 ppm, it is possible to improve the strength and ductility level in the rolling direction and reduce both the strength and ductility at a higher level without lowering the ductility of the titanium sheet in the vertical direction. I knew I could do it.
【0022】さらに、従来はJIS H 4600の1
種または2種に相当するチタン板においてAlを添加す
ることは延性を劣化させるものであり好ましくないとの
考え方が一般的であったのであるが、本発明者らの更な
る研究および検討により、CとAlを微量に複合添加す
ることによって深絞り性指標のr値が向上することが明
らかになった。このメカニズムは現在のところ明らかで
はないが、CとAlの複合添加の効果についてはこれま
で調査された例はなく、ましてや上記の如き知見は従来
得られておらず、新規な知見である。また、このような
AlとCの複合添加に際し、これをAl4C3 等のAl炭化
物の形で添加することで、添加量を増大しても、溶解時
の不均質化を低減させることができることも見出した。
従って、Al炭化物の形でAlとCを複合添加添加すれ
ば、通常の量産方法であるVAR法でも添加が容易とな
ることがわかった。Furthermore, conventionally, JIS H 4600-1
It was generally thought that the addition of Al in a titanium plate corresponding to one or two species deteriorates ductility and is not preferred. However, according to further studies and studies by the present inventors, It became clear that the r value of the deep drawability index was improved by adding a small amount of C and Al in combination. Although this mechanism is not clear at present, the effect of the composite addition of C and Al has not been investigated so far, and the above-mentioned findings have not been obtained so far, and are new findings. In addition, in the case of such a composite addition of Al and C, by adding this in the form of an Al carbide such as Al 4 C 3, it is possible to reduce the inhomogeneity at the time of dissolution even if the addition amount is increased. I found out what I can do.
Therefore, it has been found that if Al and C are added in the form of Al carbide in a composite manner, the addition can be easily performed by the VAR method which is a usual mass production method.
【0023】本発明は、かかる知見に基づき完成された
ものであり、本発明に係るチタン板は、前述のように、
H,O,N,Fe量がJIS H 4600の1種また
は2種に規定される量であり、C:50〜800ppm
を含有し、残部がチタン及び不可避的不純物からなる組
成を有することを特徴とすることとしている(第1発
明)。従って、本発明に係るチタン板は、強度と延性と
を高次のレベルで兼ね備えたチタン板であることとな
る。The present invention has been completed based on such findings, and the titanium plate according to the present invention has the following features.
The amounts of H, O, N, and Fe are those specified in one or two of JIS H 4600, and C is 50 to 800 ppm.
And a balance of which is composed of titanium and inevitable impurities (first invention). Therefore, the titanium plate according to the present invention is a titanium plate having both strength and ductility at a higher level.
【0024】また、本発明に係るチタン板は、前述の如
く、更にAl:100〜5000ppmを含有すること
を特徴とするものとしている(第2発明)。即ち、この
チタン板は、H,O,N,Fe量がJIS H 460
0の1種または2種に規定される量であり、C:50〜
800ppm、Al:100〜5000ppmを含有
し、残部がチタン及び不可避的不純物からなる組成を有
することを特徴とするものである。従って、このチタン
板は、強度と延性とを高次のレベルで兼ね備えると共
に、深絞り性指標のr値が向上して優れたチタン板であ
ることとなる。Further, as described above, the titanium plate according to the present invention is characterized by further containing 100 to 5000 ppm of Al (second invention). That is, this titanium plate has H, O, N, and Fe contents according to JIS H460.
0 is one or two types, and C: 50 to
It is characterized in that it contains 800 ppm, Al: 100 to 5000 ppm, and the balance has titanium and inevitable impurities. Therefore, this titanium plate combines strength and ductility at a higher level, and has an improved r value of a deep drawability index, and is an excellent titanium plate.
【0025】ここで、C:50〜800ppm(質量p
pm:質量百万分率)としているのは、C:50ppm
未満の場合にはチタン板の圧延方向の延性向上の効果が
小さくて不充分であり、C:800ppm超の場合には
チタン板の強度が上昇しすぎて延性が劣化して不充分と
なるからである。尚、従来のチタン板の場合、一般的に
は30ppm以下のCが不可避的に含まれているが、こ
の程度のC量では延性を改善し得ない。Here, C: 50 to 800 ppm (mass p
pm: parts per million by mass): C: 50 ppm
If it is less than 10%, the effect of improving the ductility in the rolling direction of the titanium plate is small and insufficient, and if C is more than 800 ppm, the strength of the titanium plate is excessively increased and the ductility is deteriorated and becomes insufficient. It is. In the case of a conventional titanium plate, generally, C of 30 ppm or less is inevitably contained, but ductility cannot be improved with such an amount of C.
【0026】Alも含有する場合(第2発明の場合)、
Al:100〜5000ppmとしているのは、Al:
100ppm未満の場合にはr値の向上効果が小さくて
不充分であり、Al:5000ppm超の場合にはチタ
ン板の強度が上昇しすぎて延性が劣化し、成形性が劣化
するからである。尚、通常JIS H 4600の1種
または2種に規定されるチタン板においては、Alは積
極的に添加される元素ではなく、何らかの形で混入した
としても大抵は検出限界以下の程度であった。When Al is also contained (in the case of the second invention),
Al: 100 to 5000 ppm is defined as:
When the content is less than 100 ppm, the effect of improving the r value is small and insufficient, and when the content is more than 5000 ppm, the strength of the titanium plate is excessively increased, the ductility is deteriorated, and the formability is deteriorated. In addition, in a titanium plate normally defined as one or two types of JIS H 4600, Al is not an element to be positively added, and even if it is mixed in some form, Al is usually below the detection limit. .
【0027】H,O,N,Fe量がJIS H 460
0の1種に規定される量であることとは、H:0.01
3質量%以下,O:0.15質量%以下,N:0.05
質量%以下,Fe:0.20質量%以下であることであ
る(但し、いずれの場合も0質量%を含む)。H,O,
N,Fe量がJIS H 4600の2種に規定される
量であることとは、H:0.013質量%以下,O:
0.20質量%以下,N:0.05質量%以下,Fe:
0.25質量%以下であることである(但し、いずれの
場合も0質量%を含む)。The amount of H, O, N, Fe is JIS H460
0 means that the amount is H: 0.01.
3% by mass or less, O: 0.15% by mass or less, N: 0.05
% By mass and Fe: 0.20% by mass or less (however, in each case, 0% by mass is included). H, O,
The amounts of N and Fe are defined by two types of JIS H 4600, which means that H: 0.013% by mass or less, O:
0.20% by mass or less, N: 0.05% by mass or less, Fe:
It is 0.25% by mass or less (however, 0% by mass is included in each case).
【0028】上記元素(H,O,N,Fe)の中、Oも
Feも強度を向上させる働きがあるが、これらはいずれ
も添加しすぎると強度が上昇しすぎて延性が劣化する。
かかる点から、O,Fe量はJIS H 4600の1
種または2種に規定される量としており、このO,Fe
量の範囲において前記C添加(C:50〜800pp
m)の効果は同等である。H及びNは不可避的不純物に
属する元素であり、チタン板の機械的性質等の特性を劣
化させる働きがあるので、少ない方がよいが、JIS
H 4600の1種または2種に規定される量であれば
前記特性の劣化といった支障はないことから、かかる
H,N量としている。Of the above elements (H, O, N, Fe), both O and Fe have a function of improving the strength. However, if any of these elements is added too much, the strength is too high and the ductility is deteriorated.
From this point, the amounts of O and Fe are 1 of JIS H 4600.
O, Fe
In the range of the amount, the C addition (C: 50 to 800 pp)
The effect of m) is equivalent. H and N are elements belonging to unavoidable impurities and have a function of deteriorating properties such as mechanical properties of the titanium plate.
If the amount is one or two types of H4600, there is no problem such as deterioration of the characteristics, and thus the amounts of H and N are set as such.
【0029】本発明に係るチタン板においてCは極めて
重要な添加元素であり、前記の如くC:50〜800p
pmとしているが、C:120〜600ppmとするこ
とが望ましく、そうすると強度と延性とをより高次のレ
ベルで兼ね備えることができる。更に、C:250〜5
00ppmとすることは一層望ましく、強度と延性とを
さらに高次のレベルで兼ね備えることができる。In the titanium plate according to the present invention, C is an extremely important additive element, and as described above, C: 50 to 800 p
Although it is set to pm, it is desirable to set C: 120 to 600 ppm, so that strength and ductility can be combined at a higher level. Further, C: 250 to 5
The content is more preferably set to 00 ppm, and strength and ductility can be combined at a higher level.
【0030】本発明に係るチタン板は、歩留まり等の問
題を考慮しなければ、従来の通常の製造プロセス(消耗
電極式アーク溶解法による溶解、再溶解、鋳造、熱間鍛
造、熱間圧延、冷間圧延、最終焼鈍)によっても製造す
ることができる。即ち、従来の通常の製造プロセスにお
いて、溶解時に適当量のCを含有させて製造すれば、C
は均一には分散しないものの、得られるチタン板の部位
を細かく分析すれば、チタン板はあたかも様々なC量を
持ったチタン片の集合のようなものであり、場合によっ
ては必要なC量範囲を有する箇所も存在しうる。このよ
うなC量範囲を有する領域のものが使用可能な用途であ
れば、歩留まりはともかく、この領域からチタン板を切
り出し、使用することが可能である。従って、このよう
な場合も考えれば、本発明に係るチタン板を製造する際
の条件や方法は特には定める必要はない。The titanium plate according to the present invention can be produced by a conventional production process (melting, remelting, casting, hot forging, hot rolling, hot rolling, or the like by a consumable electrode type arc melting method) without considering the yield and other problems. Cold rolling, final annealing). That is, in a conventional ordinary production process, if an appropriate amount of C is contained at the time of dissolution, the C
Is not uniformly dispersed, but when the site of the obtained titanium plate is analyzed in detail, the titanium plate is like a set of titanium pieces having various C contents. May also exist. If the use in the region having the C content range is possible, the titanium plate can be cut out from this region and used, regardless of the yield. Therefore, in consideration of such a case, it is not necessary to particularly define conditions and methods for producing the titanium plate according to the present invention.
【0031】しかしながら、Cの均一分散化を効率よく
達成すると共に歩留まりを向上するためには、チタン板
の製造の際の溶解法としてコールドクルーシブル誘導溶
解法を採用することが推奨される。コールドクルーシブ
ル誘導溶解法によれば、前述の如くCの添加量が微量で
あってもCの均一分散化が可能であるからである。However, in order to efficiently achieve uniform dispersion of C and to improve the yield, it is recommended to employ a cold crucible induction melting method as a melting method in the production of a titanium plate. This is because according to the cold crucible induction dissolution method, C can be uniformly dispersed even if the amount of C added is very small as described above.
【0032】このような点から、本発明に係るチタン板
は溶解法としてコールドクルーシブル誘導溶解法が用い
られて製造されたものであることが望ましい(第3発
明)。このチタン板はCの均一分散化がなされ、機械的
特性の均一性に優れている。From such a point, it is preferable that the titanium plate according to the present invention is manufactured by using a cold crucible induction melting method as a melting method (third invention). In this titanium plate, C is uniformly dispersed, and the mechanical properties are excellent in uniformity.
【0033】一方、本発明に係るチタン板の製造方法と
しては、溶解をコールドクルーシブル誘導溶解法により
行う方式のものを採用することが望ましい。このような
製造方法として、より具体的には次のような製造方法を
挙げることができる。即ち、その製造方法は、コールド
クルーシブル誘導溶解法による溶解をした後、鋳造をす
ることにより、H,O,N,Fe量がJIS H 46
00の1種または2種に規定される量であり、C:50
〜800ppmを含有し、残部がチタン及び不可避的不
純物からなる組成を有するチタン材を得、次に、このチ
タン材を熱間加工および/または冷間加工を施して板形
状に加工し、この後、最終焼鈍することを特徴とするも
のである(第4発明)。この製造方法によれば、Cの均
一分散化がなされ、高度の歩留まりで、本発明に係るチ
タン板を得ることができる。On the other hand, as a method for manufacturing a titanium plate according to the present invention, it is desirable to employ a method in which melting is performed by a cold crucible induction melting method. More specifically, the following manufacturing method can be given as such a manufacturing method. That is, the production method is such that the H, O, N, and Fe contents are JIS H 46 by melting after being melted by the cold crucible induction melting method and then casting.
00: one or two of the following: C: 50
To 800 ppm, the balance being a titanium material having a composition consisting of titanium and unavoidable impurities, and then subjecting the titanium material to hot working and / or cold working to form a plate shape. And final annealing (fourth invention). According to this manufacturing method, C is uniformly dispersed, and the titanium plate according to the present invention can be obtained with a high yield.
【0034】Alも含有するチタン板(第2発明に係る
チタン板)の製造方法としては、VAR法により行う方
式のものも採用することができる。このような製造方法
として、より具体的には次のような製造方法を挙げるこ
とができる。即ち、その製造方法は、VAR法あるいは
コールドクルーシブル誘導溶解法による溶解、鋳造をす
ることにより、H,O,N,Fe量がJIS H 46
00の1種または2種に規定される量であり、C:50
〜800ppm、Al:100〜5000ppmを含有
し、残部がチタン及び不可避的不純物からなる組成を有
するチタン材を得、次に、このチタン材を熱間加工およ
び/または冷間加工を施して板形状に加工し、この後、
最終焼鈍することを特徴とするものである(第5発
明)。As a method for producing a titanium plate also containing Al (titanium plate according to the second invention), a method performed by a VAR method can be adopted. More specifically, the following manufacturing method can be given as such a manufacturing method. That is, the production method is such that the amounts of H, O, N and Fe are JIS H 46 by melting and casting by the VAR method or the cold crucible induction melting method.
00: one or two of the following: C: 50
To 800 ppm, Al: 100 to 5000 ppm, the balance being a titanium material having a composition consisting of titanium and unavoidable impurities, and then subjecting the titanium material to hot working and / or cold working to obtain a plate shape And after this,
It is characterized by final annealing (fifth invention).
【0035】Alも含有するチタン板(第2発明に係る
チタン板)の製造に際しては、AlとCを複合添加す
る。この複合添加に際し、Al炭化物の形でAlとCを
複合添加添加すれば、通常の量産方法であるVAR法に
おいても添加が容易となる。In producing a titanium plate also containing Al (titanium plate according to the second invention), a combination of Al and C is added. At the time of this composite addition, if Al and C are added in the form of Al carbide, the addition becomes easy even in the VAR method which is a usual mass production method.
【0036】このようなAl炭化物の添加は、溶解の際
にAl炭化物を溶湯中に添加する方法により行うことが
できる(第6発明)。また、VAR法により溶解をする
場合には、その原料の電極中に予め混在させ、これをV
AR溶解することによっても行うことが可能である。[0036] Such addition of Al carbide can be performed by a method of adding Al carbide to the molten metal at the time of melting (sixth invention). When dissolving by the VAR method, the raw material is mixed in advance in the electrode, and
It can also be carried out by dissolving AR.
【0037】[0037]
【実施例】本発明の実施例及び比較例を以下説明する。
尚、本発明はこの実施例に限定されるものではない。EXAMPLES Examples and comparative examples of the present invention will be described below.
Note that the present invention is not limited to this embodiment.
【0038】〔C含有チタン材に関する実施例及び比較
例〕原料をコールドクルーシブル誘導溶解法により溶解
をし、溶湯温度を1700℃程度に保持してからC粉末
(カーボン粉末)を添加し、30分間保持した後に鋳造
してチタン材(チタン鋳塊)を得た。次に、このチタン
材を950℃に加熱して40.0mmの厚さになるまで
熱間鍛造をした後、850℃の温度にて厚さ4.0mm
になるように熱間圧延した。次に、熱間圧延後のものを
スケールを除去してから、圧下率86%の冷間圧延を
し、この後、最終焼鈍して厚み:0.5mmのチタン板
を作製した。[Examples and Comparative Examples Related to C-Containing Titanium Material] The raw materials were melted by a cold crucible induction melting method, and after maintaining the molten metal temperature at about 1700 ° C., C powder (carbon powder) was added, followed by 30 minutes. After holding, casting was performed to obtain a titanium material (titanium ingot). Next, this titanium material was heated to 950 ° C. and hot forged until the thickness became 40.0 mm, and then the thickness was 4.0 mm at a temperature of 850 ° C.
Hot-rolled so that Next, the scale after hot rolling was removed, and then cold rolling was performed at a rolling reduction of 86%, followed by final annealing to produce a titanium plate having a thickness of 0.5 mm.
【0039】このチタン板は、Fe,O,C量が表1に
示す量であり、H量が0.013質量%以下,N量が
0.05質量%以下であり、残部がチタン及び不可避的
不純物からなる組成を有するものである。また、最終焼
鈍後のものにおいて平均結晶粒径は80μm であった。In this titanium plate, the amounts of Fe, O and C are as shown in Table 1, the amount of H is 0.013% by mass or less, the amount of N is 0.05% by mass or less, and the balance is titanium and unavoidable. It has a composition consisting of a target impurity. The average grain size after the final annealing was 80 μm.
【0040】このようにして得られたチタン板につい
て、JIS13号B型試験片による引張り試験を行い、
圧延方向及び圧延垂直方向の耐力及び全伸びを測定し
た。尚、一部(試験No.9)のものについては、予ひずみ
を付与した後、引張り試験を行った。The titanium plate thus obtained was subjected to a tensile test using a JIS No. 13 B-type test piece.
The proof stress and total elongation in the rolling direction and the vertical direction of the rolling were measured. A part (test No. 9) was subjected to a tensile test after a pre-strain was applied.
【0041】上記引張り試験の結果を表2に示す。本発
明(第1発明、第3発明あるいは第4発明)の実施例に
係るチタン板(本発明材)は、同レベルの耐力を有する
比較例に係るチタン板(比較材)に比べて伸びに優れて
いることがわかる。即ち、本発明材と比較材とを同レベ
ルの耐力を有するもの同士で比較すると、本発明材は比
較材に比べて伸びが大きく、延性に優れていることがわ
かる。従って、本発明材は、比較材に比べて伸び/耐力
の値が大きく、強度と延性とを高次のレベルで兼ね備え
たチタン板であることがわかる。Table 2 shows the results of the tensile test. The titanium plate (material of the present invention) according to the example of the present invention (first invention, third invention or fourth invention) has a higher elongation than the titanium plate (comparative material) of the comparative example having the same level of yield strength. It turns out that it is excellent. That is, when the inventive material and the comparative material are compared with each other having the same level of proof stress, it can be seen that the inventive material has a larger elongation than the comparative material and is excellent in ductility. Therefore, it can be seen that the material of the present invention is a titanium plate having a higher elongation / proof strength than the comparative material, and having both strength and ductility at a higher level.
【0042】〔C及びAl含有チタン材に関する実施例
及び比較例〕Al4C3 というAl炭化物の形でAl及びC
を混合した原料をVAR法により溶解し、鋳造してチタ
ン材(チタン鋳塊)を得た。次に、このチタン材を95
0℃に加熱して40.0mmの厚さになるまで熱間鍛造
をした後、850℃の温度にて厚さ4.0mmになるよ
うに熱間圧延した。次に、熱間圧延後のものをスケール
を除去してから、圧下率86%の冷間圧延をし、この
後、最終焼鈍して厚み:0.5mmのチタン板を作製し
た。[Examples and Comparative Examples Related to C and Al-Containing Titanium Materials] Al and C in the form of Al 4 C 3 Al carbide were used.
Was mixed by VAR method and cast to obtain a titanium material (titanium ingot). Next, this titanium material is
After heating to 0 ° C. to perform hot forging to a thickness of 40.0 mm, hot rolling was performed at a temperature of 850 ° C. to a thickness of 4.0 mm. Next, the scale after hot rolling was removed, and then cold rolling was performed at a rolling reduction of 86%, followed by final annealing to produce a titanium plate having a thickness of 0.5 mm.
【0043】このチタン板は、Fe,O,C量、及び、
Al量が表3に示す量であり、H量が0.013質量%
以下,N量が0.05質量%以下であり、残部がチタン
及び不可避的不純物からなる組成を有するものである。
また、最終焼鈍後のものにおいて平均結晶粒径は70μ
m であった。This titanium plate has Fe, O, C contents, and
The amount of Al is the amount shown in Table 3, and the amount of H is 0.013% by mass.
Hereinafter, the N content is 0.05% by mass or less, and the balance has a composition comprising titanium and inevitable impurities.
The average crystal grain size after final annealing is 70 μm.
m.
【0044】このようにして得られたチタン板につい
て、JIS13号B型試験片による引張り試験を行い、
圧延方向及び圧延垂直方向の耐力および全伸びを測定し
た。また、圧延方向のr値の測定も行った。このr値の
測定は、ひずみ10%で測定した。The titanium plate thus obtained was subjected to a tensile test using a JIS No. 13 B-type test piece.
The proof stress and total elongation in the rolling direction and the vertical direction of the rolling were measured. The measurement of the r value in the rolling direction was also performed. The r value was measured at a strain of 10%.
【0045】上記引張り試験の結果およびr値の測定結
果を表4に示す。本発明(第2発明あるいは第5発明、
第6発明)の実施例に係るチタン板(本発明材)は、同
レベルの耐力を有する比較例に係るチタン板(比較材)
に比べてr値に優れていることがわかる。即ち、本発明
材と比較材とを同レベルの耐力を有するもの同士で比較
すると、本発明材は比較材に比べてr値が大きいことが
わかる。尚、ここでの比較材の中、試験No.18 のものは
第1発明例に属するものである。Table 4 shows the results of the tensile test and the measurement results of the r value. The present invention (second invention or fifth invention,
The titanium plate (material of the present invention) according to the example of the sixth invention) is a titanium plate (comparative material) of the comparative example having the same level of proof stress.
It can be seen that the r value is superior to that of. That is, when the inventive material and the comparative material are compared with each other having the same level of yield strength, it is understood that the inventive material has a larger r value than the comparative material. Incidentally, among the comparative materials, those of test No. 18 belong to the first invention example.
【0046】[0046]
【表1】 [Table 1]
【0047】[0047]
【表2】 [Table 2]
【0048】[0048]
【表3】 [Table 3]
【0049】[0049]
【表4】 [Table 4]
【0050】[0050]
【発明の効果】本発明に係るチタン板は、伸び/耐力の
値が大きく、強度と延性とを高次のレベルで兼ね備えて
おり、このため、強度と延性とを高次のレベルで両立さ
せることができ、ひいては、成形性の向上がはかれ、ま
た、これが使用される機器、部品等の品質・特性の向上
がはかれ、更にはチタン板の新規用途開発に寄与し得る
ようにもなるという顕著な作用効果を奏する。The titanium plate according to the present invention has a large value of elongation / proof stress, and has both high strength and ductility at a high level. Therefore, both strength and ductility are compatible at a high level. It is possible to improve the moldability, and further, to improve the quality and characteristics of the equipment and parts used in this, and to contribute to the development of new applications for titanium plates. It has a remarkable effect.
【0051】本発明に係るチタン板の製造方法は、上記
の如き顕著な作用効果を奏するチタン板を、Cの均一分
散化がなされ、高度の歩留まりで得ることができるよう
になるという顕著な作用効果を奏する。The method of manufacturing a titanium plate according to the present invention has a remarkable effect that a titanium plate having the above-mentioned remarkable functions and effects can be obtained with a uniform dispersion of C and a high yield. It works.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉崎 康昭 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yasuaki Sugizaki 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel, Ltd. Kobe Research Institute
Claims (6)
00の1種または2種に規定される量であり、C:50
〜800ppmを含有し、残部がチタン及び不可避的不
純物からなる組成を有することを特徴とする延性に優れ
たチタン板。1. The amount of H, O, N, Fe is JIS H46.
00: one or two of the following: C: 50
A titanium plate having excellent ductility, characterized in that the titanium plate has a composition of about 800 ppm and a balance of titanium and unavoidable impurities.
有することを特徴とする請求項1記載の延性に優れたチ
タン板。2. The ductile titanium plate according to claim 1, further comprising 100 to 5000 ppm of Al.
溶解法が用いられて製造された請求項1または2記載の
延性に優れたチタン板。3. The titanium sheet having excellent ductility according to claim 1 or 2, which is produced by using a cold crucible induction melting method as a melting method.
溶解をした後、鋳造をすることにより、H,O,N,F
e量がJIS H 4600の1種または2種に規定さ
れる量であり、C:50〜800ppmを含有し、残部
がチタン及び不可避的不純物からなる組成を有するチタ
ン材を得、次に、このチタン材を熱間加工および/また
は冷間加工を施して板形状に加工し、この後、最終焼鈍
することを特徴とする延性に優れたチタン板の製造方
法。4. After melting by a cold crucible induction melting method, H, O, N, F
The amount of e is an amount specified in one or two types of JIS H 4600, and obtains a titanium material containing C: 50 to 800 ppm and a balance of titanium and unavoidable impurities. A method for producing a titanium plate having excellent ductility, comprising subjecting a titanium material to hot working and / or cold working to form a plate shape, followed by final annealing.
誘導溶解法による溶解、鋳造をすることにより、H,
O,N,Fe量がJIS H 4600の1種または2
種に規定される量であり、C:50〜800ppm、A
l:100〜5000ppmを含有し、残部がチタン及
び不可避的不純物からなる組成を有するチタン材を得、
次に、このチタン材を熱間加工および/または冷間加工
を施して板形状に加工し、この後、最終焼鈍することを
特徴とする延性に優れたチタン板の製造方法。5. A method of melting and casting by VAR method or cold crucible induction melting method.
O, N, Fe content is one or more of JIS H 4600
It is the amount specified for the species, C: 50 to 800 ppm, A
l: a titanium material containing 100 to 5000 ppm, the balance being titanium and having a composition consisting of titanium and inevitable impurities,
Next, the titanium material is subjected to hot working and / or cold working to be processed into a plate shape, and then subjected to final annealing, thereby producing a titanium sheet having excellent ductility.
湯中に添加する請求項5記載の延性に優れたチタン板の
製造方法。6. The method for producing a titanium plate having excellent ductility according to claim 5, wherein an Al carbide is added to the molten metal during the melting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001247958A JP5021873B2 (en) | 2001-02-16 | 2001-08-17 | Titanium plate excellent in ductility and manufacturing method thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001040159 | 2001-02-16 | ||
JP2001040159 | 2001-02-16 | ||
JP2001-40159 | 2001-02-16 | ||
JP2001247958A JP5021873B2 (en) | 2001-02-16 | 2001-08-17 | Titanium plate excellent in ductility and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002317234A true JP2002317234A (en) | 2002-10-31 |
JP5021873B2 JP5021873B2 (en) | 2012-09-12 |
Family
ID=26609541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001247958A Expired - Fee Related JP5021873B2 (en) | 2001-02-16 | 2001-08-17 | Titanium plate excellent in ductility and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5021873B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012072444A (en) * | 2010-09-29 | 2012-04-12 | Kobe Steel Ltd | Titanium sheet having high strength and excellent formability, and method for producing titanium sheet |
JP2012082457A (en) * | 2010-10-08 | 2012-04-26 | Kobe Steel Ltd | Titanium-sheet excellent in formability, and method for manufacturing the titanium-sheet |
EP2481824A1 (en) | 2011-01-28 | 2012-08-01 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Pure titanium sheet excellent in balance between stamping formability and strenght |
WO2012165470A1 (en) | 2011-05-30 | 2012-12-06 | 株式会社神戸製鋼所 | Pure titanium sheet having excellent balance between press formability and strength and excellent corrosion resistance, and process for manufacturing same |
JP2013007063A (en) * | 2011-06-22 | 2013-01-10 | Nippon Steel & Sumitomo Metal Corp | TITANIUM ALLOY THICK PLATE FOR DRUM FOR MANUFACTURING ELECTROLYTIC Cu FOIL, AND METHOD OF MANUFACTURING THE SAME |
JP2017048420A (en) * | 2015-09-01 | 2017-03-09 | 新日鐵住金株式会社 | Titanium material and cell component for solid high molecular weight form fuel cell therein |
JP2017061731A (en) * | 2015-09-25 | 2017-03-30 | 新日鐵住金株式会社 | Titanium made substrate, titanium material and cell member for solid polymer type fuel cell |
CN115961228A (en) * | 2023-01-05 | 2023-04-14 | 浙江申吉钛业股份有限公司 | Preparation method of titanium plate for deep drawing |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63270449A (en) * | 1987-04-28 | 1988-11-08 | Nippon Steel Corp | Production of good ductility titanium plate having less anisotropy |
JPH05287420A (en) * | 1992-04-13 | 1993-11-02 | Nippon Steel Corp | Titanium material for conduit of superconducting coiled conductor |
JPH07316683A (en) * | 1994-05-25 | 1995-12-05 | Kobe Steel Ltd | Blank for rolling titanium-aluminum alloy and its production |
JPH08104961A (en) * | 1994-10-05 | 1996-04-23 | Nkk Corp | Production of hot rolled sheet of pure titanium for industry |
JPH10317118A (en) * | 1997-05-21 | 1998-12-02 | Nippon Steel Corp | Pure titanium suited to grain size control by batch type annealing |
JP2002003968A (en) * | 2000-06-21 | 2002-01-09 | Sumitomo Metal Ind Ltd | Titanium sheet excellent in processability and its production method |
-
2001
- 2001-08-17 JP JP2001247958A patent/JP5021873B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63270449A (en) * | 1987-04-28 | 1988-11-08 | Nippon Steel Corp | Production of good ductility titanium plate having less anisotropy |
JPH05287420A (en) * | 1992-04-13 | 1993-11-02 | Nippon Steel Corp | Titanium material for conduit of superconducting coiled conductor |
JPH07316683A (en) * | 1994-05-25 | 1995-12-05 | Kobe Steel Ltd | Blank for rolling titanium-aluminum alloy and its production |
JPH08104961A (en) * | 1994-10-05 | 1996-04-23 | Nkk Corp | Production of hot rolled sheet of pure titanium for industry |
JPH10317118A (en) * | 1997-05-21 | 1998-12-02 | Nippon Steel Corp | Pure titanium suited to grain size control by batch type annealing |
JP2002003968A (en) * | 2000-06-21 | 2002-01-09 | Sumitomo Metal Ind Ltd | Titanium sheet excellent in processability and its production method |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012072444A (en) * | 2010-09-29 | 2012-04-12 | Kobe Steel Ltd | Titanium sheet having high strength and excellent formability, and method for producing titanium sheet |
JP2012082457A (en) * | 2010-10-08 | 2012-04-26 | Kobe Steel Ltd | Titanium-sheet excellent in formability, and method for manufacturing the titanium-sheet |
EP2481824A1 (en) | 2011-01-28 | 2012-08-01 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Pure titanium sheet excellent in balance between stamping formability and strenght |
US9353432B2 (en) | 2011-01-28 | 2016-05-31 | Kobe Steel, Ltd. | Pure titanium sheet excellent in balance between stamping formability and strength |
WO2012165470A1 (en) | 2011-05-30 | 2012-12-06 | 株式会社神戸製鋼所 | Pure titanium sheet having excellent balance between press formability and strength and excellent corrosion resistance, and process for manufacturing same |
JP2013007063A (en) * | 2011-06-22 | 2013-01-10 | Nippon Steel & Sumitomo Metal Corp | TITANIUM ALLOY THICK PLATE FOR DRUM FOR MANUFACTURING ELECTROLYTIC Cu FOIL, AND METHOD OF MANUFACTURING THE SAME |
JP2017048420A (en) * | 2015-09-01 | 2017-03-09 | 新日鐵住金株式会社 | Titanium material and cell component for solid high molecular weight form fuel cell therein |
JP2017061731A (en) * | 2015-09-25 | 2017-03-30 | 新日鐵住金株式会社 | Titanium made substrate, titanium material and cell member for solid polymer type fuel cell |
CN115961228A (en) * | 2023-01-05 | 2023-04-14 | 浙江申吉钛业股份有限公司 | Preparation method of titanium plate for deep drawing |
CN115961228B (en) * | 2023-01-05 | 2023-11-17 | 浙江申吉钛业股份有限公司 | Preparation method of titanium plate for deep drawing |
Also Published As
Publication number | Publication date |
---|---|
JP5021873B2 (en) | 2012-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5442857B2 (en) | High-strength near β-type titanium alloy and method for producing the same | |
EP2664687B1 (en) | Improved free-machining wrought aluminium alloy product and manufacturing process thereof | |
US20040191111A1 (en) | Er strengthening aluminum alloy | |
TW201416462A (en) | Steel for molding die having excellent thermal conductivity, mirror polishing properties and toughness | |
KR101364542B1 (en) | Copper alloy material for continuous casting mold and process of production same | |
US20140294662A1 (en) | Stainless steel for cutlery and method of manufacturing the same | |
JP7310978B2 (en) | Manufacturing method of precipitation hardening Ni alloy | |
JP2011144396A (en) | High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance | |
JP5021873B2 (en) | Titanium plate excellent in ductility and manufacturing method thereof | |
JP5555154B2 (en) | Copper alloy for electrical and electronic parts and method for producing the same | |
JP6719219B2 (en) | High strength aluminum alloy sheet excellent in formability and method for producing the same | |
JP2007186747A (en) | Aluminum alloy material to be formed at high temperature and a high speed, manufacturing method therefor and method for manufacturing formed article from aluminum alloy | |
CN106636743A (en) | Easy-to-cut titanium alloy | |
JP4581425B2 (en) | β-type titanium alloy and parts made of β-type titanium alloy | |
JPH10121170A (en) | Nickel-chromium alloy excellent in corrosion resistance and production thereof | |
CN113234964A (en) | Nickel-based corrosion-resistant alloy and processing method thereof | |
CN114807646B (en) | Nickel-based alloy plate blank and preparation method thereof | |
JP3581028B2 (en) | Hot work tool steel and high temperature members made of the hot work tool steel | |
JP4872577B2 (en) | Copper alloy backing plate and copper alloy manufacturing method for backing plate | |
JPS63270446A (en) | Production of al-mg base alloy thick plate for welded structure | |
JP6828947B2 (en) | Lightweight steel with excellent corrosion resistance and specific strength and its manufacturing method | |
JP6805583B2 (en) | Manufacturing method of precipitation type heat resistant Ni-based alloy | |
KR102434921B1 (en) | High-strength corrosion-resistant aluminum alloy and method for manufacturing same | |
KR101206830B1 (en) | Aluminum alloy for the mold extrusion and the manufacturing method of a aluminum alloy mold | |
JP2006200008A (en) | beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080620 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110322 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110330 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110404 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110405 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120612 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120615 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5021873 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150622 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |