[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002310007A - Egr gas cooling structure - Google Patents

Egr gas cooling structure

Info

Publication number
JP2002310007A
JP2002310007A JP2001116944A JP2001116944A JP2002310007A JP 2002310007 A JP2002310007 A JP 2002310007A JP 2001116944 A JP2001116944 A JP 2001116944A JP 2001116944 A JP2001116944 A JP 2001116944A JP 2002310007 A JP2002310007 A JP 2002310007A
Authority
JP
Japan
Prior art keywords
egr
egr gas
passage
intercooler
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001116944A
Other languages
Japanese (ja)
Other versions
JP3893895B2 (en
Inventor
Toshiyuki Gokan
俊行 後閑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2001116944A priority Critical patent/JP3893895B2/en
Publication of JP2002310007A publication Critical patent/JP2002310007A/en
Application granted granted Critical
Publication of JP3893895B2 publication Critical patent/JP3893895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0475Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly the intake air cooler being combined with another device, e.g. heater, valve, compressor, filter or EGR cooler, or being assembled on a special engine location
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/50Arrangements or methods for preventing or reducing deposits, corrosion or wear caused by impurities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To simultaneously solve three subjects, that is, the prevention of the breakdown of an engine caused by the intrusion of a cooling water of an EGR cooler, the prevention of the impairing of the cooling efficiency of the EGR gas caused by the retention of soot, and the uniform mixture of the EGR gas and fresh air. SOLUTION: This EGR gas cooling structure is provided with an EGR passage 8 for connecting an exhaust passage 4 of an engine 1 provided with a supercharger 5, and an intake passage 7, an EGR valve 9 mounted on the way of the EGR passage 8, and an intercooler 6 mounted on the intake passage 7 at a downstream side with respect to the supercharger 5, and an intake side- connecting part of the EGR passage 8 is connected to the intercooler 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガスの一部を吸
気側に還流させるEGR装置に適用される、EGRガス
冷却構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an EGR gas cooling structure applied to an EGR device for recirculating a part of exhaust gas to an intake side.

【0002】[0002]

【従来の技術】従来より、エンジンの排ガス中に含まれ
るNOx(窒素酸化物)を低減すべく、エンジンの排ガ
スの一部をエンジンの運転状態に応じて吸気系に再循環
させる排ガス再循環装置(EGR装置)が開発、実用化
されている。そして、このようなEGR装置では、エン
ジンの排気系(主に排気通路)から取り込んだ排ガス
(EGRガス)を吸気に混入させることで、燃焼室内で
の燃焼を緩慢なものとして燃焼温度を下げ、NOxの生
成が抑制される。
2. Description of the Related Art Conventionally, in order to reduce NOx (nitrogen oxides) contained in exhaust gas of an engine, an exhaust gas recirculation system for recirculating a part of the exhaust gas of the engine to an intake system according to the operation state of the engine. (EGR device) has been developed and put into practical use. In such an EGR device, exhaust gas (EGR gas) taken in from an exhaust system (mainly an exhaust passage) of an engine is mixed into intake air, so that combustion in a combustion chamber is slowed down and the combustion temperature is lowered. The generation of NOx is suppressed.

【0003】図5はEGR装置を備えたエンジン全体の
模式的な構成図であって、吸気通路7と排気通路4との
間には排ガスを吸気通路7に還流させるためのEGR通
路8が設けられている。また、このEGR通路8上に
は、EGRガスを冷却するためのEGRクーラ10及び
EGRガスの還流量(還流割合)を制御するためのEG
Rバルブ9が設けられている。そして、このEGRクー
ラ10でEGRガスを冷却することによりEGRガスの
体積を減少させて還流量を増大させることができるとと
もに、新気の吸入量を増大させることによりNOx及び
スモークの同時低減が図られる。
FIG. 5 is a schematic structural view of an entire engine provided with an EGR device. An EGR passage 8 for returning exhaust gas to the intake passage 7 is provided between the intake passage 7 and the exhaust passage 4. Have been. An EGR cooler 10 for cooling the EGR gas and an EG for controlling the recirculation amount (recirculation ratio) of the EGR gas are provided on the EGR passage 8.
An R valve 9 is provided. By cooling the EGR gas with the EGR cooler 10, the volume of the EGR gas can be reduced and the recirculation amount can be increased, and simultaneously, the NOx and smoke can be simultaneously reduced by increasing the intake amount of fresh air. Can be

【0004】一方、近年ではディーゼルエンジンにおい
てEGR装置と過給機(ターボチャージャ)5とを組み
合わせて出力の増大と排ガスの清浄化が図られている。
以下、ターボチャージャ5に着目して説明すると、排気
通路4及び吸気通路7にはそれぞれタービン5a及びコ
ンプレッサ5bが設けられており、また、吸気通路7上
にはコンプレッサ5bで過給された新気(吸気)を冷却
するインタクーラ6も設けられている。そして、排ガス
のエネルギによりタービン5aが回転駆動されると、こ
れによりコンプレッサ5bが回転駆動されて新気(吸
気)が加圧される。また、この加圧された新気はインタ
クーラ6で冷却されてエンジン1に供給される。
On the other hand, in recent years, an EGR device and a supercharger (turbocharger) 5 have been combined in a diesel engine to increase output and purify exhaust gas.
Hereinafter, focusing on the turbocharger 5, a turbine 5 a and a compressor 5 b are provided in the exhaust passage 4 and the intake passage 7, respectively, and fresh air supercharged by the compressor 5 b is provided on the intake passage 7. An intercooler 6 for cooling (intake) is also provided. When the turbine 5a is rotationally driven by the energy of the exhaust gas, the compressor 5b is rotationally driven by this, and fresh air (intake air) is pressurized. The pressurized fresh air is cooled by the intercooler 6 and supplied to the engine 1.

【0005】次に、EGR通路8に設けられたEGRク
ーラ10の構成の一例について図6(a),(b)を用
いて説明すると、図6(a)に示すEGRクーラ10
は、いわゆる多管式EGRクーラであって、ケーシング
101内に多数の円筒状の管(パイプ)102が設けら
れて構成されている。また、ケーシング101の両端に
はヘッダ105,106が設けられ、これらのヘッダ1
05,106にはEGRガスの入口103と出口104
とがそれぞれ形成されている。各ヘッダ105,106
内には空間が形成され、上記パイプ102の両端部はこ
のヘッダ105,106内の空間に開口して接続されて
いる。したがって、この入口103からEGRガスを流
入させると、このEGRガスは各パイプ102内を通っ
て出口104から排出される。
Next, an example of the configuration of the EGR cooler 10 provided in the EGR passage 8 will be described with reference to FIGS. 6A and 6B. The EGR cooler 10 shown in FIG.
Is a so-called multi-tube type EGR cooler, which is constituted by providing a large number of cylindrical pipes (pipes) 102 in a casing 101. Headers 105 and 106 are provided at both ends of the casing 101.
05 and 106 are an inlet 103 and an outlet 104 of the EGR gas.
Are formed respectively. Each header 105, 106
A space is formed therein, and both ends of the pipe 102 are connected to the spaces in the headers 105 and 106 by opening. Therefore, when the EGR gas flows in from the inlet 103, the EGR gas passes through each pipe 102 and is discharged from the outlet 104.

【0006】また、ケーシング101には、冷却水の供
給口107及び排出口108とがそれぞれ形成され、図
5に示す冷却水路11がそれぞれ接続されている。そし
て、このような構成により、ケーシング101内にエン
ジン1の冷却水が循環して、図6(b)に示すように、
EGRガスがパイプ102内を通る際に、パイプ102
の外にある冷却水にEGRガスの熱が奪われてガス温度
が低下し、熱交換が行なわれる。
Further, a cooling water supply port 107 and a discharge port 108 are formed in the casing 101, and the cooling water passages 11 shown in FIG. With such a configuration, the cooling water of the engine 1 circulates in the casing 101, as shown in FIG.
When the EGR gas passes through the pipe 102, the pipe 102
The heat of the EGR gas is taken off by the cooling water outside the gas, the gas temperature decreases, and heat exchange is performed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、EGR
ガスを冷却すると腐食性の液体(例えば硫酸)が発生す
る。このため、図6(c)に示すように、EGRクーラ
10内のろう付け個所が腐食してクラック等が生じ、こ
のようなクラックからエンジン1内に冷却水が浸入する
おそれがあった。なお、エンジン1内に冷却水が浸入す
ると、ウォータハンマ現象が生じてエンジンが破損する
可能性があるほか、冷却水が本来の冷却系統から流出す
ることでエンジン1がオーバヒートする可能性がある。
SUMMARY OF THE INVENTION However, EGR
Cooling the gas produces a corrosive liquid (eg, sulfuric acid). For this reason, as shown in FIG. 6C, the brazing portion in the EGR cooler 10 is corroded, and cracks or the like are generated. When the cooling water enters the engine 1, a water hammer phenomenon may occur and the engine may be damaged. In addition, the cooling water may flow out of the original cooling system and cause the engine 1 to overheat.

【0008】また、従来のEGRクーラでは、EGRガ
スを還流させない状態では、EGRクーラ内には流体の
流れが一切なくなるので、EGRガスに含まれるすすが
EGRクーラ内に滞留してしまい、EGRクーラの冷却
効率が低下するという課題がある。一方で、EGRガス
を還流させる際に各気筒で還流量が不均一であると、ス
モーク発生量が増大するため、EGRガスと新気とをな
るべく均一に混合して各気筒にバラツキなくEGRガス
を還流させたいという要望もある。このような要望に応
えるには、吸気通路7のなるべく上流側でEGRガスを
還流させるのが好ましいが、インタクーラ6は通常アル
ミニウム製であるため、EGRガスをインタクーラ6よ
りも上流側で還流させると、上記の腐食性の液体により
インタクーラ6が損傷したりするおそれがある。
Further, in the conventional EGR cooler, when the EGR gas is not recirculated, no fluid flows in the EGR cooler, soot contained in the EGR gas stays in the EGR cooler, so that the EGR cooler does not flow. However, there is a problem that the cooling efficiency is reduced. On the other hand, if the recirculation amount in each cylinder is not uniform when recirculating the EGR gas, the amount of smoke generated increases, so that the EGR gas and fresh air are mixed as uniformly as possible, and the EGR gas is uniformly distributed to each cylinder. There is also a demand for refluxing. In order to meet such a demand, it is preferable to recirculate the EGR gas as much as possible upstream of the intake passage 7. However, since the intercooler 6 is usually made of aluminum, it is preferable to recirculate the EGR gas upstream of the intercooler 6. The intercooler 6 may be damaged by the corrosive liquid described above.

【0009】このため、従来はインタクーラの下流側で
EGRガスを還流させているが、この場合にはEGRガ
スと新気との均一な混合が困難であり、各気筒でEGR
ガスの還流量がばらつくおそれがあった。なお、特開平
10−220305号公報にはインタクーラによりEG
Rガスを冷却するようにした技術が開示されているが、
この技術は、単にインタクーラの一部をEGRクーラと
して適用したに過ぎず、EGRガスを還流させない状態
では、インタクーラのEGRガス冷却部(公報の符号1
1参照)に何らの流体も流れないため、やはりEGRク
ーラ内にすすが滞留してしまい冷却効率が低下してしま
う。
For this reason, conventionally, EGR gas is recirculated downstream of the intercooler. However, in this case, it is difficult to uniformly mix the EGR gas and fresh air.
There was a possibility that the amount of gas reflux varied. Note that Japanese Patent Application Laid-Open No. 10-220305 discloses an EG
Although a technique for cooling the R gas is disclosed,
This technology merely applies a part of the intercooler as an EGR cooler. In a state where the EGR gas is not recirculated, the EGR gas cooling unit of the intercooler (reference numeral 1 in the publication)
No fluid flows through the EGR cooler, so that the soot stays in the EGR cooler and the cooling efficiency is reduced.

【0010】本発明は、このような課題に鑑み創案され
たもので、EGRクーラの冷却水のエンジン内への浸
入に起因するエンジン破損の防止,すすの滞留による
EGRガスの冷却効率の低下の抑制,EGRガスと新
気との均一な混合の3つの課題を同時に解決できるよう
にした、EGRガス冷却構造を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and prevents the engine from being damaged due to infiltration of the cooling water of the EGR cooler into the engine, and reduces the cooling efficiency of the EGR gas due to soot stagnation. It is an object of the present invention to provide an EGR gas cooling structure capable of simultaneously solving three problems of suppression and uniform mixing of EGR gas and fresh air.

【0011】[0011]

【課題を解決するための手段】請求項1記載の本発明の
EGRガス冷却構造では、過給機を備えたエンジンの排
気通路と吸気通路との間を接続するEGR通路と、該E
GR通路の途中に配設されたEGR弁と、該過給機より
も下流の吸気通路に配設されたインタクーラとをそな
え、該EGR通路の吸気側接続部が該インタクーラの上
流側ヘッダよりも下流のコア部に接続されていることを
特徴としている。
According to the present invention, there is provided an EGR gas cooling structure according to the present invention, wherein an EGR passage connecting an exhaust passage and an intake passage of an engine provided with a supercharger and the EGR passage are provided.
An EGR valve disposed in the middle of the GR passage, and an intercooler disposed in an intake passage downstream of the supercharger, wherein an intake-side connection portion of the EGR passage is located at a position higher than an upstream header of the intercooler. It is characterized in that it is connected to a downstream core part.

【0012】このため、EGRガスは排気通路からEG
R通路及びEGR弁を介してインタクーラのコア部に流
入し、このコア部で冷却され吸気通路の還流される。つ
まりインタクーラがEGRクーラの機能をも兼ねてお
り、インタクーラによりEGRガスが冷却される。した
がって、従来のようなEGRクーラが不要となる。ま
た、冷却水を用いていないので、仮にコア部に亀裂等が
生じてもこの亀裂からは空気しか流入しないのでエンジ
ンの破損を防止できる。また、EGRガスを還流させな
いときは、EGRガスの代わりに新気が導入されて、E
GRガスに含まれるすすが掃気される。さらに、EGR
ガスをインタークーラに還流させることでEGRガスと
新気の混合部からエンジンまで十分な距離を確保でき、
EGRガスと新気とを均一に混合でき、気筒毎のEGR
率のばらつきが抑制される。
Therefore, the EGR gas flows from the exhaust passage to the EG.
It flows into the core of the intercooler via the R passage and the EGR valve, and is cooled by this core and returned to the intake passage. That is, the intercooler also functions as an EGR cooler, and the EGR gas is cooled by the intercooler. Therefore, the conventional EGR cooler becomes unnecessary. Further, since no cooling water is used, even if a crack or the like occurs in the core portion, only air flows through the crack, so that damage to the engine can be prevented. When the EGR gas is not recirculated, fresh air is introduced instead of the EGR gas, and EGR gas is introduced.
Soot contained in the GR gas is scavenged. Furthermore, EGR
By recirculating the gas to the intercooler, a sufficient distance from the mixture of EGR gas and fresh air to the engine can be secured,
EGR gas and fresh air can be mixed uniformly, and EGR for each cylinder
Variation in rate is suppressed.

【0013】また、請求項2記載の本発明のEGRガス
冷却構造では、該インタクーラのうち、該EGR通路が
接続された部分のコア部が耐腐食性金属で形成されてい
ることを特徴としている。したがって、コア部の耐腐食
性が確保され、信頼性が向上する。
In the EGR gas cooling structure according to the present invention, the core portion of the intercooler to which the EGR passage is connected is formed of a corrosion-resistant metal. . Therefore, the corrosion resistance of the core portion is secured, and the reliability is improved.

【0014】[0014]

【発明の実施の形態】以下、図面により、本発明の一実
施形態にかかるEGRガス冷却構造について説明する
と、図1はその要部構成を示す模式図、図2,図3はい
ずれもその作用を説明するための図、図4は本発明が適
用されるエンジン全体の模式的な構成図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing an EGR gas cooling structure according to an embodiment of the present invention. FIG. FIG. 4 is a schematic configuration diagram of the entire engine to which the present invention is applied.

【0015】まず、図4を用いてエンジンの全体的な構
成について説明すると、エンジン1の吸気通路7と排気
通路4との間には排ガスを吸気通路7に還流させるため
のEGR通路8が設けられており、また、このEGR通
路8上には、EGRガスの還流量(還流割合)を制御す
るためのEGRバルブ(EGR弁)9が設けられてい
る。このEGRバルブ9は、エンジン回転速度及びエン
ジン負荷等に基づくエンジン運転状態に応じて設定され
る制御信号に基づいて、その作動が制御されるようにな
っている。
First, the overall structure of the engine will be described with reference to FIG. 4. An EGR passage 8 for returning exhaust gas to the intake passage 7 is provided between the intake passage 7 and the exhaust passage 4 of the engine 1. Further, an EGR valve (EGR valve) 9 for controlling a recirculation amount (recirculation ratio) of the EGR gas is provided on the EGR passage 8. The operation of the EGR valve 9 is controlled based on a control signal set according to an engine operating state based on an engine speed, an engine load, and the like.

【0016】また、エンジン1には吸気を過給する過給
機(ターボチャージャ)5が設けられており、図示する
ように、排気通路4及び吸気通路7にはそれぞれタービ
ン5a及びコンプレッサ5bが設けられている。また、
吸気通路7上にはコンプレッサ5bで過給された新気
(吸気)を冷却する空冷式のインタクーラ6が設けられ
ている。
The engine 1 is provided with a supercharger (turbocharger) 5 for supercharging intake air. As shown, a turbine 5a and a compressor 5b are provided in an exhaust passage 4 and an intake passage 7, respectively. Have been. Also,
An air-cooled intercooler 6 that cools fresh air (intake air) supercharged by the compressor 5b is provided on the intake passage 7.

【0017】ここで、図1を用いて本願発明の一実施形
態にかかるEGRガス冷却構造の要部について説明する
と、図示するように、上記EGR通路8の下流端部(吸
気側接続部)は、吸気通路7に設けられたインタクーラ
6に部分的に接続されており、このインタクーラ6によ
りEGRガスが冷却されるようになっている。インタク
ーラ6は、図示するように上流側のヘッダ62と下流側
のヘッダ63と、これらのヘッダ62,63との間を接
続するコア部61と備えて構成されており、コア部61
は通常のインタクーラ同様、断面が長円形状の多数のチ
ューブにより構成されている。また、詳細は図示しない
が、これらの各チューブ間には放熱用のフィンが取り付
けられている。
Here, the main part of the EGR gas cooling structure according to one embodiment of the present invention will be described with reference to FIG. 1. As shown in the figure, the downstream end (intake side connection) of the EGR passage 8 is , Is partially connected to an intercooler 6 provided in the intake passage 7, and the EGR gas is cooled by the intercooler 6. The intercooler 6 is provided with an upstream header 62 and a downstream header 63 as shown in the figure, and a core portion 61 for connecting the headers 62 and 63 to each other.
As in the case of a normal intercooler, is constituted by a large number of tubes having a cross section of an oval shape. Although not shown in detail, radiating fins are attached between these tubes.

【0018】また、図1に示すように、上記EGR通路
8は接続部64を介してインタクーラ6のコア部61に
接続されている。ここで、接続部64には、ヘッダ6
2,63と同様に内部に空間が形成され、この空間に上
流側のチューブと下流側のチューブとがそれぞれ開口し
て接続されている。また、コア部61は、新気のみが流
通する新気用コア部61aと、接続部64よりも下流側
であってEGR通路7からEGRガスが導入されるEG
R用コア部61bとから構成されており、新気用コア部
61aは従来のインタクーラと同様の素材(例えばアル
ミニウム)により形成されている。一方、EGR用コア
部61bは、耐腐食性の金属(例えばSUS材やアルマ
イト処理を施したアルミニウム等)により形成されてい
る。
As shown in FIG. 1, the EGR passage 8 is connected to a core portion 61 of the intercooler 6 via a connection portion 64. Here, the connection section 64 includes the header 6
A space is formed in the inside like 2 and 63, and an upstream tube and a downstream tube are opened and connected to this space, respectively. The core portion 61 includes a fresh air core portion 61a in which only fresh air flows, and an EG in which EGR gas is introduced from the EGR passage 7 downstream of the connection portion 64.
The fresh air core 61a is made of the same material (for example, aluminum) as the conventional intercooler. On the other hand, the EGR core portion 61b is formed of a corrosion-resistant metal (for example, SUS material or alumite-treated aluminum).

【0019】したがって、EGRバルブ9が全閉であれ
ば、新気用コア部61a及びEGR用コア部61bの両
方に新気が導入され、EGRバルブ9が開くとその開度
に応じてEGR用コア部61bを流れるEGRガスが増
大するようになっている。なお、インタクーラ6の新気
用コア部61aは、EGRバルブ9が全開となってEG
R用コア部61bに新気が全く流れないような状態とな
っても、十分に過給された新気を冷却できる程度の容量
に設定されている。
Therefore, if the EGR valve 9 is fully closed, fresh air is introduced into both the fresh air core portion 61a and the EGR core portion 61b, and when the EGR valve 9 is opened, the EGR valve is opened according to its opening degree. The EGR gas flowing through the core portion 61b increases. The fresh air core portion 61a of the intercooler 6 has an EG when the EGR valve 9 is fully opened.
Even if the fresh air does not flow at all into the R core portion 61b, the capacity is set to such a degree that the sufficiently supercharged fresh air can be cooled.

【0020】また、EGR用コア部61bの各チューブ
の両端は、本実施形態では、銅ろう又はより耐腐食性の
あるニッケルろうによって、下流側ヘッダ63及び接続
部64にそれぞれろう付けされている。本発明の一実施
形態にかかるEGRガス冷却構造は、上述のように構成
されているので、その作用を説明すると以下のようにな
る。
In this embodiment, both ends of each tube of the EGR core portion 61b are brazed to the downstream header 63 and the connection portion 64 by copper brazing or nickel brazing having higher corrosion resistance. . Since the EGR gas cooling structure according to one embodiment of the present invention is configured as described above, its operation will be described as follows.

【0021】まず、エンジン1の運転状態に応じて図示
しないコントロールユニット(ECU)により目標EG
R還流量が設定され、この目標EGR還流量となるよう
に上記ECUからEGRバルブ9に対して制御信号が設
定される。そして、EGRバルブ9がECUの制御信号
に基づき作動すると、図2に示すように、このEGRバ
ルブ9の開度に応じた量のEGRガスが接続部64を介
してインタクーラ6のEGR用コア部61bに流入す
る。このEGRガスは、接続部64において上流側から
流入する新気と混合されるとともに、EGR用コア部6
1bを流れる過程で冷却される。また、下流側ヘッダ6
3においてEGRガスは新気用コア部61aを通った新
気と合流する。
First, a target EG is controlled by a control unit (ECU) (not shown) according to the operating state of the engine 1.
The R recirculation amount is set, and a control signal is set from the ECU to the EGR valve 9 so as to attain the target EGR recirculation amount. When the EGR valve 9 is operated based on the control signal of the ECU, as shown in FIG. 2, the EGR gas of an amount corresponding to the opening degree of the EGR valve 9 is supplied to the EGR core portion of the intercooler 6 through the connection portion 64. 61b. The EGR gas is mixed with fresh air flowing in from the upstream side at the connection portion 64 and is mixed with the EGR core portion 6.
It is cooled in the process of flowing through 1b. Also, the downstream header 6
At 3, the EGR gas merges with fresh air that has passed through the fresh air core portion 61a.

【0022】そして、このようにEGRガスをインター
クーラ6に還流させることでEGRガスと新気との混合
部からエンジン1まで十分な距離を確保でき、吸気通路
7を通る過程でEGRガスと新気とを均一に混合するこ
とができる。したがって、エンジン1の各気筒に均一に
EGRガスが流入して、気筒間でのEGRガスの還流量
のばらつきが抑制される。
By recirculating the EGR gas to the intercooler 6 in this manner, a sufficient distance from the mixing portion of the EGR gas and the fresh air to the engine 1 can be ensured. Can be uniformly mixed. Therefore, the EGR gas flows into each cylinder of the engine 1 uniformly, and variation in the recirculation amount of the EGR gas between the cylinders is suppressed.

【0023】また、図3に示すように、EGRガスを還
流させないとき、即ちEGRバルブ9の開度が0(全
閉)の時には、EGR用コア部61bには新気が流入し
て、EGR用コア部61bに残留した排ガスのすすが掃
気される。したがって、EGR用コア部61bにすすが
滞留することがなく、EGR用コア部61bのチューブ
へのすすの付着が抑制され、これによりEGRガスの冷
却効率の低下を防止できる。
As shown in FIG. 3, when the EGR gas is not recirculated, that is, when the opening of the EGR valve 9 is 0 (fully closed), fresh air flows into the EGR core portion 61b, The soot of the exhaust gas remaining in the core 61b is scavenged. Therefore, the soot does not stay in the EGR core portion 61b, so that the adhesion of the soot to the tube of the EGR core portion 61b is suppressed, so that a decrease in the cooling efficiency of the EGR gas can be prevented.

【0024】また、従来のEGRクーラを廃止してイン
タクーラ6と機能を兼用することによりエンジンルーム
内のレイアウトが容易になるほか部品点数が低減されて
コストを低減することができる。さらに、EGRガス
(排ガス)を冷却したときにEGRガスから腐食性液体
(又は腐食性ガス)が発生しても、EGR用コア部61
bを耐腐食性金属で形成するとともに、EGR用コア部
61bを構成するチューブの端部を銅ろう又はより耐腐
食性のあるニッケルろうによりろう付けすることによ
り、十分な耐腐食性を得ることができエンジン全体の信
頼性が向上するという利点がある。
Further, by eliminating the conventional EGR cooler and using the same function as the intercooler 6, the layout in the engine room becomes easy, and the number of parts is reduced, so that the cost can be reduced. Further, even when corrosive liquid (or corrosive gas) is generated from the EGR gas when the EGR gas (exhaust gas) is cooled, the EGR core 61
b is formed of a corrosion-resistant metal, and sufficient corrosion resistance is obtained by brazing the end of the tube constituting the EGR core portion 61b with a copper braze or a nickel-brasion-resistant nickel braze. There is an advantage that the reliability of the entire engine is improved.

【0025】また、仮にEGR用コア部61bのチュー
ブが腐食して穴があいたり、チューブのろう付け個所が
腐食して亀裂が生じたとしても、空気によりEGRガス
を冷却しているので、吸気通路7には空気しか流入せ
ず、従来のEGRクーラのように冷却水がエンジン1に
流入してエンジン1を破損させるようなおそれが全くな
い。
Even if the tube of the EGR core portion 61b is corroded and punctured, or if the brazing portion of the tube is corroded and cracked, since the EGR gas is cooled by air, the intake air is cooled. Only air flows into the passage 7, and there is no possibility that the cooling water flows into the engine 1 and damages the engine 1 unlike the conventional EGR cooler.

【0026】なお、本発明のEGRガス冷却構造は上述
の実施形態に限定されるものではなく、本発明の趣旨を
逸脱しない範囲で種々の変形が可能である。例えばEG
Rバルブや過給機の構造については特に限定されるもの
ではなく、種々のタイプのEGRバルブや過給機に適用
することができる。また、インタクーラは走行風によっ
て冷却してもよいし、ファンによる送風により冷却して
もよい。
The EGR gas cooling structure of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, EG
The structures of the R valve and the supercharger are not particularly limited, and can be applied to various types of EGR valves and superchargers. Further, the intercooler may be cooled by running wind or may be cooled by blowing air from a fan.

【0027】[0027]

【発明の効果】以上詳述したように、請求項1にかかる
本発明のEGRガス冷却構造によれば、EGRクーラの
冷却水のエンジン内への浸入に起因するエンジンの破損
を防止できるとともに、EGRガスの冷却効率の低下の
抑制でき、さらにはEGRガスと新気とを均一に混合さ
せることができるようになる。
As described in detail above, according to the EGR gas cooling structure of the present invention according to the first aspect, it is possible to prevent the engine from being damaged due to the infiltration of the cooling water of the EGR cooler into the engine. A decrease in the cooling efficiency of the EGR gas can be suppressed, and the EGR gas and fresh air can be uniformly mixed.

【0028】すなわち、EGRガスの冷却時に腐食性液
体が発生してインタクーラ内に亀裂が生じても吸気通路
には空気が流入するので、従来のEGRクーラのように
冷却水がエンジンに流入してエンジンを破損させるよう
なおそれが全くないという利点がある。また、EGRガ
スをインタークーラに還流させることでEGRガスと新
気との混合部からエンジンまで十分な距離を確保でき、
吸気通路を通る過程でEGRガスと新気とを均一に混合
することができる。したがって、エンジンの各気筒に均
一にEGRガスが流入して、気筒間でのEGRガスの還
流量のばらつきを抑制できるという利点がある。
That is, even if a corrosive liquid is generated during cooling of the EGR gas and a crack is generated in the intercooler, air flows into the intake passage, so that cooling water flows into the engine as in a conventional EGR cooler. There is an advantage that there is no possibility of damaging the engine. In addition, by returning the EGR gas to the intercooler, a sufficient distance from the mixing section of the EGR gas and fresh air to the engine can be secured.
EGR gas and fresh air can be uniformly mixed in the process of passing through the intake passage. Therefore, there is an advantage that the EGR gas flows uniformly into each cylinder of the engine, and variation in the recirculation amount of the EGR gas among the cylinders can be suppressed.

【0029】また、EGRガスを還流させないときに
は、EGRガスの代わりに新気が導入されるので、EG
Rガスに含まれるすすが掃気されてインタクーラ内での
すすの滞留が防止されるので、チューブにすすが付着す
ることがなくなり、EGRガスの冷却効率の低下を防止
できるという利点がある。また、従来のEGRクーラを
廃止してインタクーラと機能を兼用することによりエン
ジンルーム内のレイアウトが容易になるほか部品点数が
低減されてコストを低減することができるという利点が
ある。
When the EGR gas is not recirculated, fresh air is introduced instead of the EGR gas.
Since the soot contained in the R gas is scavenged and soot is prevented from staying in the intercooler, there is an advantage that soot does not adhere to the tube and a reduction in the cooling efficiency of the EGR gas can be prevented. In addition, by eliminating the conventional EGR cooler and using the same function as the intercooler, there is an advantage that the layout in the engine room is facilitated and the number of parts is reduced to reduce the cost.

【0030】請求項2にかかる本発明のEGRガス冷却
構造によれば、インタクーラのうち、EGR通路が接続
された部分のコア部を耐腐食性金属で形成することによ
り、エンジン全体の信頼性をさらに向上させることがで
きるという利点がある。
According to the EGR gas cooling structure of the present invention, the core of the portion of the intercooler to which the EGR passage is connected is formed of a corrosion-resistant metal, thereby improving the reliability of the entire engine. There is an advantage that it can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態にかかるEGRガス冷却構
造の要部構成を示す模式図である。
FIG. 1 is a schematic diagram showing a main configuration of an EGR gas cooling structure according to an embodiment of the present invention.

【図2】本発明の一実施形態にかかるEGRガス冷却構
造の作用を説明するための図である。
FIG. 2 is a diagram for explaining an operation of an EGR gas cooling structure according to one embodiment of the present invention.

【図3】本発明の一実施形態にかかるEGRガス冷却構
造の作用を説明するための図である。
FIG. 3 is a diagram for explaining the operation of the EGR gas cooling structure according to one embodiment of the present invention.

【図4】本発明の一実施形態にかかるEGRガス冷却構
造が適用されるエンジン全体のの模式的な構成図であ
る。
FIG. 4 is a schematic configuration diagram of the entire engine to which the EGR gas cooling structure according to one embodiment of the present invention is applied.

【図5】従来のEGR装置を備えたエンジン全体の模式
的な構成図である。
FIG. 5 is a schematic configuration diagram of an entire engine including a conventional EGR device.

【図6】従来のEGRクーラを示す模式的な構成図であ
る。
FIG. 6 is a schematic configuration diagram showing a conventional EGR cooler.

【符号の説明】[Explanation of symbols]

1 エンジン 4 排気通路 5 ターボチャージャ(過給機) 6 インタクーラ 7 吸気通路 8 EGR通路 9 EGRバルブ(EGR弁) DESCRIPTION OF SYMBOLS 1 Engine 4 Exhaust passage 5 Turbocharger (supercharger) 6 Intercooler 7 Intake passage 8 EGR passage 9 EGR valve (EGR valve)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 過給機を備えたエンジンの排気通路と吸
気通路との間を接続するEGR通路と、 該EGR通路の途中に配設されたEGR弁と、 該過給機よりも下流の吸気通路に配設されたインタクー
ラとをそなえ、 該EGR通路の吸気側接続部が該インタクーラの上流側
ヘッダよりも下流のコア部に接続されていることを特徴
とする、EGRガス冷却構造。
1. An EGR passage connecting an exhaust passage and an intake passage of an engine provided with a supercharger, an EGR valve disposed in the middle of the EGR passage, and a downstream of the supercharger. An EGR gas cooling structure comprising an intercooler disposed in an intake passage, wherein an intake-side connection portion of the EGR passage is connected to a core portion downstream of an upstream header of the intercooler.
【請求項2】 該インタクーラのうち、該EGR通路が
接続された部分のコア部が耐腐食性金属で形成されてい
ることを特徴とする、請求項1記載のEGRガス冷却構
造。
2. The EGR gas cooling structure according to claim 1, wherein a core portion of the intercooler to which the EGR passage is connected is formed of a corrosion-resistant metal.
JP2001116944A 2001-04-16 2001-04-16 EGR gas cooling structure Expired - Fee Related JP3893895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001116944A JP3893895B2 (en) 2001-04-16 2001-04-16 EGR gas cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001116944A JP3893895B2 (en) 2001-04-16 2001-04-16 EGR gas cooling structure

Publications (2)

Publication Number Publication Date
JP2002310007A true JP2002310007A (en) 2002-10-23
JP3893895B2 JP3893895B2 (en) 2007-03-14

Family

ID=18967593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001116944A Expired - Fee Related JP3893895B2 (en) 2001-04-16 2001-04-16 EGR gas cooling structure

Country Status (1)

Country Link
JP (1) JP3893895B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2847004A1 (en) * 2002-11-12 2004-05-14 Peugeot Citroen Automobiles Sa Temperature regulation for engine intake air and recirculated exhaust gas, uses single unit housing two heat exchangers to exchange heat between exhaust gas, fluid and intake air, with control of fluid flow
FR2856746A1 (en) * 2003-06-25 2004-12-31 Valeo Thermique Moteur Sa Cooling module for motor vehicle, has charge air cooler and re-circulated exhaust gas cooler, where outlet case of gas cooler has outlet passage which opens directly into outlet case of air cooler
WO2005001271A1 (en) * 2003-06-25 2005-01-06 Valeo Thermique Moteur Module for cooling the charge air and recirculated gases from the internal combustion engine of a motor vehicle
JP2007530869A (en) * 2004-03-31 2007-11-01 スカニア シーブイ アクチボラグ(パブル) Exhaust gas recirculation device for a supercharged internal combustion engine
JP2008516176A (en) * 2004-10-07 2008-05-15 ベール ゲーエムベーハー ウント コー カーゲー Air-cooled exhaust gas heat transfer bodies, especially exhaust gas coolers for automobiles
JP2008520501A (en) * 2004-11-17 2008-06-19 スカニア シーブイ アクチボラグ(パブル) Vehicle cooling device
JP2008528876A (en) * 2005-02-02 2008-07-31 スカニア シーブイ アクチボラグ(パブル) Exhaust gas recirculation structure for a supercharged internal combustion engine of a vehicle
EP2074295A1 (en) * 2006-09-29 2009-07-01 Scania CV AB Cooling arrangement
JP2010510425A (en) * 2006-11-20 2010-04-02 バレオ・システムズ・ドウ・コントロール・モトウール Intake device and charge air cooler unit in internal combustion engine
CN105308408A (en) * 2013-03-12 2016-02-03 法雷奥热系统公司 Heat exchanger, in particular charge air cooler
US10018162B2 (en) 2015-07-07 2018-07-10 GM Global Technology Operations LLC Driving device for driving a vehicle as well as method and computer program product for operating this driving device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2847004A1 (en) * 2002-11-12 2004-05-14 Peugeot Citroen Automobiles Sa Temperature regulation for engine intake air and recirculated exhaust gas, uses single unit housing two heat exchangers to exchange heat between exhaust gas, fluid and intake air, with control of fluid flow
WO2004044402A1 (en) * 2002-11-12 2004-05-27 Peugeot Citroen Automobiles S.A. Device for the thermal regulation of the intake air for an engine and the recirculated exhaust gas emitted by said engine.
FR2856746A1 (en) * 2003-06-25 2004-12-31 Valeo Thermique Moteur Sa Cooling module for motor vehicle, has charge air cooler and re-circulated exhaust gas cooler, where outlet case of gas cooler has outlet passage which opens directly into outlet case of air cooler
WO2005001271A1 (en) * 2003-06-25 2005-01-06 Valeo Thermique Moteur Module for cooling the charge air and recirculated gases from the internal combustion engine of a motor vehicle
JP2007530869A (en) * 2004-03-31 2007-11-01 スカニア シーブイ アクチボラグ(パブル) Exhaust gas recirculation device for a supercharged internal combustion engine
JP2008516176A (en) * 2004-10-07 2008-05-15 ベール ゲーエムベーハー ウント コー カーゲー Air-cooled exhaust gas heat transfer bodies, especially exhaust gas coolers for automobiles
JP2008520501A (en) * 2004-11-17 2008-06-19 スカニア シーブイ アクチボラグ(パブル) Vehicle cooling device
JP2008528876A (en) * 2005-02-02 2008-07-31 スカニア シーブイ アクチボラグ(パブル) Exhaust gas recirculation structure for a supercharged internal combustion engine of a vehicle
EP2074295A1 (en) * 2006-09-29 2009-07-01 Scania CV AB Cooling arrangement
EP2074295A4 (en) * 2006-09-29 2013-02-13 Scania Cv Ab Cooling arrangement
JP2010510425A (en) * 2006-11-20 2010-04-02 バレオ・システムズ・ドウ・コントロール・モトウール Intake device and charge air cooler unit in internal combustion engine
KR101291482B1 (en) * 2006-11-20 2013-07-30 발레오 시스템므 드 꽁트롤르 모뙤르 Intake device and charge-air cooler unit in an internal combustion engine
CN105308408A (en) * 2013-03-12 2016-02-03 法雷奥热系统公司 Heat exchanger, in particular charge air cooler
US10018162B2 (en) 2015-07-07 2018-07-10 GM Global Technology Operations LLC Driving device for driving a vehicle as well as method and computer program product for operating this driving device

Also Published As

Publication number Publication date
JP3893895B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
US7607301B2 (en) Exhaust gas heat exchanger, exhaust gas recirculation system, and exhaust gas heat exchanging method
US9777680B2 (en) Exhaust gas heat exchanger
JP2007023911A (en) Exhaust gas re-circulation device
JP5270354B2 (en) Supply circuit for supplying at least one fluid to a supercharged engine and method for supplying at least one fluid to the engine
AU4466099A (en) Engine air intake manifold having built-in intercooler
JP2004028105A (en) Working fluid circuit for engine provided with turbo supercharger using exhaust gas recirculation
JP2001027157A (en) Strut for egr cooler
JP2002188526A (en) Egr device
JP3893895B2 (en) EGR gas cooling structure
JP5803397B2 (en) EGR device for internal combustion engine
US20070227141A1 (en) Multi-stage jacket water aftercooler system
JP2003328863A (en) Egr device
JPH09256915A (en) Egr device for diesel engine with intercooler
JP3664457B2 (en) EGR gas cooling device
JPH09280118A (en) Egr device for diesel engine
JP2005273512A (en) Egr cooler for engine
JP4248095B2 (en) EGR cooler
JP6447105B2 (en) Intake manifold
JP3491437B2 (en) Intercooler for turbocharged diesel engine
JPH10220305A (en) Egr device with intercooler
JPH1113550A (en) Egr cooler
JP3388157B2 (en) EGR valve cooling structure
US20150136369A1 (en) Egr cooler header casting
JPH1136995A (en) Exhaust gas cooling device
US20070227690A1 (en) High density corrosive resistant gas to air heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees