[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002373675A - Electrode assembly for solid electrolyte fuel cell, and manufacturing method of the same - Google Patents

Electrode assembly for solid electrolyte fuel cell, and manufacturing method of the same

Info

Publication number
JP2002373675A
JP2002373675A JP2001183237A JP2001183237A JP2002373675A JP 2002373675 A JP2002373675 A JP 2002373675A JP 2001183237 A JP2001183237 A JP 2001183237A JP 2001183237 A JP2001183237 A JP 2001183237A JP 2002373675 A JP2002373675 A JP 2002373675A
Authority
JP
Japan
Prior art keywords
solid electrolyte
film
porous
porous electrode
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001183237A
Other languages
Japanese (ja)
Other versions
JP5110337B2 (en
Inventor
Katsunori Yamada
勝則 山田
Hisafumi Takao
尚史 高尾
Tsuneko Uoshima
凡子 魚島
Nobuo Kamiya
信雄 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2001183237A priority Critical patent/JP5110337B2/en
Publication of JP2002373675A publication Critical patent/JP2002373675A/en
Application granted granted Critical
Publication of JP5110337B2 publication Critical patent/JP5110337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode assembly for a solid electrolyte fuel cell that is high in ion conductivity and long in three-phase boundary length between gas, a solid electrolyte and an electrode, and to provide a method that can easily manufacture such an electrode assembly. SOLUTION: The electrode assembly for a solid electrolyte fuel cell comprises a pair of porous electrode bases consisting of a porous material with infinite pores, and a solid electrolyte membrane, held between the pair of porous electrode bases. The solid electrolyte membrane has a membrane thickness of 30 μm or smaller at a portion held between the pair of porous electrode bases, and partly infiltrates into the porous electrode base pores to a depth of or over the membrane thickness in the thickness direction from a surface of at least either of the pair of porous electrode bases. The manufacturing method comprises a raw material paste preparing process, a membrane forming process and a baking process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池に用いられる電極構造体およびその製造方法に関す
る。
The present invention relates to an electrode structure used for a solid oxide fuel cell and a method for producing the same.

【0002】[0002]

【従来の技術】ガスの電気化学的反応を利用して、化学
エネルギを直接電気エネルギに変換する燃料電池は、カ
ルノー効率の制約を受けないため発電効率が高く、排出
されるガスがクリーンで環境に対する影響が極めて少な
いことから、近年、発電用、低公害の自動車用電源等、
種々の用途が期待されている。燃料電池は、その電解質
により分類することができ、例えば、リン酸型燃料電
池、溶融炭酸塩型燃料電池、固体電解質型燃料電池、固
体高分子型燃料電池等が知られている。
2. Description of the Related Art A fuel cell which directly converts chemical energy into electric energy by utilizing the electrochemical reaction of gas is not restricted by the Carnot efficiency, so that the power generation efficiency is high and the discharged gas is clean and environmentally friendly. In recent years, power generation for power generation and low-emission
Various applications are expected. Fuel cells can be classified according to their electrolytes. For example, phosphoric acid fuel cells, molten carbonate fuel cells, solid electrolyte fuel cells, solid polymer fuel cells, and the like are known.

【0003】なかでも、固体電解質型燃料電池(SOF
C)は、発電効率が高く、また、作動温度が約1000
℃と高温であるため、燃料の内部改質が可能であり、燃
料の多様化が図れることから、それらの利点を生かした
利用が期待されている。
In particular, solid oxide fuel cells (SOF)
C) has a high power generation efficiency and an operating temperature of about 1000
Since the temperature is as high as ° C., internal reforming of the fuel is possible, and diversification of the fuel can be achieved. Therefore, utilization utilizing these advantages is expected.

【0004】固体電解質型燃料電池は、通常、固体電解
質の両側に一対の電極を設けたセルを発電単位とし、一
方の電極(空気極)に酸素ガスあるいは空気を供給し、
他方の電極(燃料極)に水素やメタンガス等を供給し
て、ガスと固体電解質と電極との3相界面において電気
化学的な反応を進行させることにより電気を取り出すも
のである。
In a solid oxide fuel cell, a cell in which a pair of electrodes are provided on both sides of a solid electrolyte is used as a unit of power generation, and oxygen gas or air is supplied to one electrode (air electrode).
Hydrogen or methane gas is supplied to the other electrode (fuel electrode), and electricity is extracted by causing an electrochemical reaction to proceed at a three-phase interface between the gas, the solid electrolyte, and the electrode.

【0005】固体電解質型燃料電池における電極には、
ガス透過性の良好な多孔質材料が用いられ、例えば、燃
料極にはニッケルジルコニアサーメット等が、空気極に
はLa1-xSrxMnO3やLa1-xSrxCoO3等が用い
られている。また、固体電解質には、イオン導電体とし
て、例えば、イットリアをジルコニアに固溶したイット
リア安定化ジルコニア(YSZ)が用いられている。そ
して、例えば、電極となる上記多孔質材料の表面に、固
体電解質となるYSZを膜状に形成して電極構造体が構
成される。
[0005] Electrodes in a solid oxide fuel cell include:
A porous material having good gas permeability is used. For example, nickel zirconia cermet or the like is used for the fuel electrode, and La 1-x Sr x MnO 3 or La 1-x Sr x CoO 3 is used for the air electrode. ing. For the solid electrolyte, for example, yttria-stabilized zirconia (YSZ) in which yttria is dissolved in zirconia is used as an ionic conductor. Then, for example, YSZ as a solid electrolyte is formed in a film shape on the surface of the porous material as an electrode to form an electrode structure.

【0006】一般に、電極となる多孔質材料の表面に固
体電解質を膜状に形成して電極構造体を作製する方法と
して、ドクターブレード法、スクリーン印刷法、テープ
成形法等のスラリーコート法が採用されている。この方
法は、固体電解質の原料スラリーを直接多孔質電極基材
の表面に塗布、乾燥して固体電解質膜を形成し、電極構
造体とするものである。
Generally, a slurry coating method such as a doctor blade method, a screen printing method, and a tape forming method is employed as a method for forming an electrode structure by forming a solid electrolyte in a film on the surface of a porous material to be an electrode. Have been. According to this method, a raw material slurry of a solid electrolyte is directly applied to the surface of a porous electrode substrate and dried to form a solid electrolyte membrane to form an electrode structure.

【0007】[0007]

【発明が解決しようとする課題】多孔質電極基材の表面
に形成される固体電解質膜は、イオン導電体であり、イ
オン導電性をより向上すべく、その膜厚はできるだけ小
さいことが望まれる。一方、多孔質電極基材は表面およ
び内部に無数の細孔を有し、その表面は凹凸を有するも
のである。このような多孔質電極基材の表面に、膜厚が
30μm以下となる薄膜を形成することは、上記スラリ
ーコート法では極めて困難である。一般に、薄膜を形成
するためには、膜の原料スラリーをできるだけ低粘度化
して流動性を良くする必要がある。しかしながら、低粘
度化した原料スラリーを上記多孔質電極基材の表面に塗
布すると、原料スラリーが基材内部の細孔に吸い込まれ
てしまい、薄膜を形成することはできない。一方、原料
スラリーの粘度を高くすると、ある一定の厚さ以上の膜
しか形成することができず、目的とする厚さの薄膜を得
ることは困難となる。
The solid electrolyte membrane formed on the surface of the porous electrode substrate is an ionic conductor, and it is desired that the film thickness be as small as possible in order to further improve the ionic conductivity. . On the other hand, the porous electrode substrate has countless pores on the surface and inside, and the surface has irregularities. It is extremely difficult to form a thin film having a thickness of 30 μm or less on the surface of such a porous electrode substrate by the slurry coating method. Generally, in order to form a thin film, it is necessary to lower the viscosity of the raw material slurry of the film as much as possible to improve the fluidity. However, when the reduced viscosity raw material slurry is applied to the surface of the porous electrode substrate, the raw material slurry is sucked into the pores inside the substrate, and a thin film cannot be formed. On the other hand, when the viscosity of the raw material slurry is increased, only a film having a certain thickness or more can be formed, and it is difficult to obtain a thin film having a desired thickness.

【0008】本発明は上記問題を解決するためになされ
たものであり、多孔質電極基材の表面に固体電解質膜が
形成された固体電解質型燃料電池用電極構造体であっ
て、イオン導電性が大きく、ガスと固体電解質と電極と
の3相界面長が大きい電極構造体を提供することを課題
とする。また、そのような電極構造体を簡便に製造する
ことができる方法を提供することを課題とする。
The present invention has been made to solve the above problems, and is an electrode structure for a solid oxide fuel cell having a solid electrolyte membrane formed on the surface of a porous electrode substrate, comprising an ionic conductive material. It is an object to provide an electrode structure having a large three-phase interface length between a gas, a solid electrolyte, and an electrode. It is another object of the present invention to provide a method capable of easily manufacturing such an electrode structure.

【0009】[0009]

【課題を解決するための手段】本発明の固体電解質型燃
料電池用電極構造体は、無数の細孔を有する多孔質材料
からなる一対の多孔質電極基材と、該一対の多孔質電極
基材の間に挟まれた固体電解質膜とを含んでなる固体電
解質型燃料電池用電極構造体であって、前記固体電解質
膜は、前記一対の多孔質電極基材の間に挟まれた部分の
膜厚が30μm以下であり、その一部が前記一対の多孔
質電極基材のうち少なくとも一方のものの表面から厚さ
方向に該膜厚以上の深さまで該多孔質電極基材の前記細
孔に入り込んでいることを特徴とする。
An electrode structure for a solid oxide fuel cell according to the present invention comprises a pair of porous electrode bases made of a porous material having an infinite number of pores, and a pair of porous electrode bases. An electrode structure for a solid oxide fuel cell comprising: a solid electrolyte membrane sandwiched between materials; wherein the solid electrolyte membrane comprises a portion sandwiched between the pair of porous electrode substrates. The film thickness is 30 μm or less, a part of which extends from the surface of at least one of the pair of porous electrode substrates to the pores of the porous electrode substrate up to the thickness or more in the thickness direction. It is characterized by entering.

【0010】すなわち、本発明の電極構造体は、一対の
多孔質電極基材の間に膜厚が30μm以下である薄い固
体電解質膜が挟まれており、かつ、その固体電解質膜の
一部が一対の多孔質電極基材のうち少なくとも一方のも
のの細孔に膜厚以上の深さまで入り込んでいるものであ
る。
That is, in the electrode structure of the present invention, a thin solid electrolyte membrane having a thickness of 30 μm or less is sandwiched between a pair of porous electrode base materials, and a part of the solid electrolyte membrane is formed. In this case, at least one of the pair of porous electrode substrates penetrates into the pores to a depth equal to or greater than the film thickness.

【0011】本発明の電極構造体は、固体電解質膜の膜
厚が30μm以下と極めて薄いため、イオン導電性の大
きな電極構造体となる。また、固体電解質膜の一部が多
孔質電極基材の細孔に入り込んでいるため、ガスと固体
電解質と電極との3相界面長が大きくなり、反応面積が
大きいため、電池反応がより活性化した電極構造体とな
る。したがって、本発明の電極構造体は、固体電解質と
電極との界面における抵抗が小さいため、出力の大きな
燃料電池を構成することができる。
The electrode structure of the present invention is an electrode structure having a high ionic conductivity because the thickness of the solid electrolyte membrane is extremely thin, 30 μm or less. In addition, since a part of the solid electrolyte membrane enters the pores of the porous electrode base material, the three-phase interface length between the gas, the solid electrolyte, and the electrode increases, and the reaction area is large. The resulting electrode structure is obtained. Therefore, the electrode structure of the present invention has a low resistance at the interface between the solid electrolyte and the electrode, so that a fuel cell having a large output can be formed.

【0012】また、本発明の固体電解質型燃料電池用電
極構造体の製造方法は、固体電解質膜の原料となる酸化
物粉末を用い原料ペーストを調製する原料ペースト調製
工程と、前記原料ペーストを成膜基板の表面に塗布して
成膜し、その膜を該成膜基板から剥離して前駆体膜を得
る成膜工程と、前記前駆体膜の表面を一対の多孔質電極
基材のうち少なくとも一方のものの表面に接触させた状
態で該前駆体膜を焼成し、その一部が該多孔質電極基材
の細孔に入り込んだ固体電解質膜を得る焼成工程とを含
んで構成される。
Further, the method for producing an electrode structure for a solid oxide fuel cell according to the present invention comprises a raw material paste preparing step of preparing a raw material paste using an oxide powder which is a raw material of a solid electrolyte membrane, and forming the raw material paste. A film forming step of applying a film on the surface of the film substrate to form a film, and peeling the film from the film formed substrate to obtain a precursor film; And baking the precursor film in a state where the precursor film is in contact with the surface of one of them, and obtaining a solid electrolyte membrane in which a part thereof enters the pores of the porous electrode substrate.

【0013】すなわち、本発明の電極構造体の製造方法
は、一旦、固体電解質膜の前駆体膜を成膜しておき、そ
の前駆体膜の表面を多孔質電極基材の表面に接触させた
状態で焼成することにより電極構造体を得るものであ
る。緻密で表面が平滑な成膜基板を使用することで薄膜
状の前駆体膜を成膜することができ、その前駆体膜を多
孔質電極基材に重ね合わせることで、細孔を有する多孔
質電極基材の表面に膜厚の極めて薄い固体電解質膜を形
成することができる。
That is, in the method for manufacturing an electrode structure of the present invention, a precursor film of a solid electrolyte membrane is once formed, and the surface of the precursor film is brought into contact with the surface of the porous electrode substrate. The electrode structure is obtained by firing in the state. A thin film precursor film can be formed by using a film-forming substrate having a dense and smooth surface, and the precursor film is superimposed on a porous electrode substrate to form a porous film having pores. An extremely thin solid electrolyte membrane can be formed on the surface of the electrode substrate.

【0014】また、前駆体膜の表面を多孔質電極基材の
表面に接触させた状態で、前駆体膜を焼成することによ
り、膜の一部を多孔質電極基材の細孔に入り込ませるこ
とができる。つまり、焼成の際の昇温過程において、前
駆体膜が軟化し粘度が低下するため、多孔質電極基材の
細孔にその一部が流入し、そのまま焼成される。
Further, by baking the precursor film in a state where the surface of the precursor film is in contact with the surface of the porous electrode substrate, a part of the film is made to enter the pores of the porous electrode substrate. be able to. In other words, during the heating process during firing, the precursor film softens and the viscosity decreases, so that a part of the precursor film flows into the pores of the porous electrode substrate and is fired as it is.

【0015】したがって、本発明の固体電解質型燃料電
池用電極構造体の製造方法によれば、予め成膜した前駆
体膜の表面を多孔質電極基材の表面に接触させた状態で
焼成するという単純な工程により、上記イオン導電性が
大きく、かつ、ガスと固体電解質と電極との3相界面長
が大きな本発明の電極構造体を簡便に製造することがで
きる。
Therefore, according to the method for manufacturing an electrode structure for a solid oxide fuel cell of the present invention, firing is performed with the surface of the precursor film formed in advance in contact with the surface of the porous electrode substrate. By a simple process, the electrode structure of the present invention having a large ionic conductivity and a large three-phase interface length between the gas, the solid electrolyte, and the electrode can be easily manufactured.

【0016】[0016]

【発明の実施の形態】以下に、本発明の固体電解質型燃
料電池用電極構造体とその製造方法について、それぞれ
順に説明し、その後に、製造された電極構造体の利用形
態である固体電解質型燃料電池について言及する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an electrode structure for a solid oxide fuel cell according to the present invention and a method for manufacturing the same will be described in order. Reference is made to fuel cells.

【0017】〈電極構造体〉本発明の固体電解質型燃料
電池用電極構造体は、無数の細孔を有する多孔質材料か
らなる一対の多孔質電極基材と、該一対の多孔質電極基
材の間に挟まれた固体電解質膜とを含んでなる固体電解
質型燃料電池用電極構造体であって、前記固体電解質膜
は、前記一対の多孔質電極基材の間に挟まれた部分の膜
厚が30μm以下であり、その一部が前記一対の多孔質
電極基材のうち少なくとも一方のものの表面から厚さ方
向に該膜厚以上の深さまで該多孔質電極基材の前記細孔
に入り込んでいるものである。
<Electrode Structure> The electrode structure for a solid oxide fuel cell according to the present invention comprises a pair of porous electrode substrates made of a porous material having an infinite number of pores, and the pair of porous electrode substrates. An electrode structure for a solid oxide fuel cell, comprising a solid electrolyte membrane sandwiched between the solid electrolyte membrane, wherein the solid electrolyte membrane is a portion of the membrane sandwiched between the pair of porous electrode substrates. A thickness of 30 μm or less, a part of which enters the pores of the porous electrode substrate from the surface of at least one of the pair of porous electrode substrates to a depth of the film thickness or more in the thickness direction. It is something that is.

【0018】多孔質電極基材となる多孔質材料は、無数
の細孔を有しガス透過性が大きいものであれば、特に限
定されるものではなく、一般に、固体電解質型燃料電池
の電極として用いられる材料であればよい。例えば、燃
料極の材料としては、電子導電性が良好で、高温かつ酸
化性雰囲気で安定であることから、ニッケルジルコニア
サーメット、コバルト−ジルコニア、白金−ジルコニア
等が挙げられる。なかでも、例えば、電解質としてイッ
トリア安定化ジルコニア(YSZ)を用いた場合には、
耐酸化性が大きく、YSZとの熱膨張率の差が小さいと
いう理由から、ニッケルジルコニアサーメットを用いる
ことが望ましい。また、空気極の材料としては、電子導
電性が良好で、高温かつ還元性雰囲気で安定であること
から、La1-xSrxMnO3、Sm0.5Sr0.5CoO3
La1-xSrxCoO3、La1-xCaxMnO3、LaCr
3、La0.8Sr0.2Ga0.8Mg0.15Co0.053等の
結晶構造がペロブスカイト型の酸化物や、Ce0.8Sm
0.219/La1-xSrxMnO3(SDC/LSMO)等
が挙げられる。特に、電子導電性が高い、長期安定性が
良好である、電解質であるYSZとの熱膨張率の差が小
さい等の理由から、La1-xSrxMnO3を用いること
が望ましい。そして、上記多孔質材料から燃料極および
空気極を構成し、一対の多孔質電極基材とすればよい。
The porous material serving as the porous electrode substrate is not particularly limited as long as it has a large number of pores and high gas permeability, and is generally used as an electrode of a solid oxide fuel cell. Any material can be used as long as it is used. For example, as a material for the fuel electrode, nickel zirconia cermet, cobalt-zirconia, platinum-zirconia, and the like are cited since they have good electronic conductivity and are stable in a high-temperature and oxidizing atmosphere. Among them, for example, when yttria-stabilized zirconia (YSZ) is used as the electrolyte,
It is desirable to use nickel zirconia cermet because it has high oxidation resistance and a small difference in thermal expansion coefficient from YSZ. Further, as a material of the air electrode, La 1-x Sr x MnO 3 , Sm 0.5 Sr 0.5 CoO 3 ,
La 1-x Sr x CoO 3 , La 1-x Ca x MnO 3 , LaCr
O 3 , La 0.8 Sr 0.2 Ga 0.8 Mg 0.15 Co 0.05 O 3 and other crystal structures having perovskite-type crystals, Ce 0.8 Sm
0.2 O 19 / La 1-x Sr x MnO 3 (SDC / LSMO) and the like. In particular, it is desirable to use La 1-x Sr x MnO 3 for reasons such as high electron conductivity, good long-term stability, and a small difference in thermal expansion coefficient from YSZ as an electrolyte. Then, a fuel electrode and an air electrode may be formed from the porous material, and a pair of porous electrode substrates may be used.

【0019】固体電解質膜は、固体電解質を膜状に形成
したものであり、その固体電解質は、特に限定されるも
のではなく、一般に、固体電解質型燃料電池の固体電解
質として用いられる材料を使用すればよい。例えば、イ
オン導電性が大きく緻密な材料として、ジルコニア、イ
ットリア安定化ジルコニア(YSZ)、スカンジウムを
ジルコニアに固溶したスカンジウム安定化ジルコニア
(ScSZ)、イットリアをセリアに固溶したイットリ
ア安定化セリア、(LaSr)GaMgO、(LaS
r)GaMgCoO3、(LaSr)GaMgFeO3
(LaSr)GaMgNiO3等のペロブスカイト、C
eO2−GdO3系等の酸化物が挙げられる。特に、イオ
ン導電性が高く、機械的特性や安定性が良好である等の
理由から、スカンジウム安定化ジルコニアを用いること
が望ましい。
The solid electrolyte membrane is formed by forming a solid electrolyte into a film shape. The solid electrolyte is not particularly limited, and a material generally used as a solid electrolyte of a solid electrolyte fuel cell can be used. I just need. For example, as a dense material having high ionic conductivity, zirconia, yttria-stabilized zirconia (YSZ), scandium-stabilized zirconia (scSZ) in which scandium is dissolved in zirconia, yttria-stabilized ceria in which yttria is dissolved in ceria, ( (LaSr) GaMgO, (LaSr)
r) GaMgCoO 3 , (LaSr) GaMgFeO 3 ,
Perovskite such as (LaSr) GaMgNiO 3 , C
An oxide such as eO 2 -GdO 3 is used. In particular, it is desirable to use scandium-stabilized zirconia because of its high ionic conductivity and good mechanical properties and stability.

【0020】また、固体電解質膜は、一対の多孔質電極
基材の間に挟まれた部分の膜厚が30μm以下とする。
膜厚が30μmを超えると、イオン導電性が小さくな
り、電池を80℃以下の低温で作動させることが困難と
なるからである。なお、イオン導電性をより大きくする
という観点から、膜厚は10μm以下とすることがより
望ましい。
The thickness of the portion of the solid electrolyte membrane sandwiched between the pair of porous electrode substrates is 30 μm or less.
If the film thickness exceeds 30 μm, the ionic conductivity becomes small, and it becomes difficult to operate the battery at a low temperature of 80 ° C. or less. From the viewpoint of increasing the ionic conductivity, the film thickness is more preferably set to 10 μm or less.

【0021】さらに、固体電解質膜の一部は、後に写真
で示すように、一対の多孔質電極基材の少なくとも一方
のものの表面から厚さ方向に膜厚以上の深さまで多孔質
電極基材の細孔に入り込んでいる。つまり、固体電解質
膜の一部は、固体電解質膜と接している多孔質電極基材
の表面から厚さ方向に細孔に入り込んでいる。したがっ
て、電極の内部においてもガスと電解質と電極との反応
場が存在することとなり、より電池反応が活性化するこ
ととなる。なお、固体電解質膜の一部は、一対の多孔質
電極基材のうち一方の基材の細孔に入り込んだ態様であ
ってもよく、また、両方の基材の細孔に入り込んだ態様
であってもよい。
Further, as shown in a photograph later, a part of the solid electrolyte membrane is formed from the surface of at least one of the pair of porous electrode substrates to a depth of the film thickness or more in the thickness direction. It has penetrated the pores. That is, a part of the solid electrolyte membrane enters the pores in the thickness direction from the surface of the porous electrode substrate that is in contact with the solid electrolyte membrane. Therefore, a reaction field of the gas, the electrolyte, and the electrode also exists inside the electrode, and the battery reaction is more activated. Note that a part of the solid electrolyte membrane may be in a mode in which the pores of one of the pair of porous electrode substrates are penetrated, or in a mode in which the pores of both the substrates are penetrated. There may be.

【0022】また、細孔に入り込んでいる部分の深さ
は、固体電解質膜の膜厚の1倍以上3倍以下であること
が望ましい。1倍未満である場合には、その適正範囲の
ものと比較して、ガスと固体電解質と電極との3相界
面、すなわち反応面積が充分ではなく、3倍を超える
と、その適正範囲のものと比較して、ガス透過性が低下
し、電池反応の活性度が不充分な状態となるからであ
る。
Further, it is desirable that the depth of the portion penetrating into the pores is not less than 1 and not more than 3 times the thickness of the solid electrolyte membrane. If the ratio is less than one, the three-phase interface between the gas, the solid electrolyte, and the electrode, that is, the reaction area is not sufficient, and if the ratio is more than three, it is within the proper range. This is because the gas permeability is lowered as compared with that of the above, and the activity of the battery reaction becomes insufficient.

【0023】〈電極構造体の製造方法〉本発明の電極構
造体の製造方法は、原料ペースト調製工程、成膜工程、
焼成工程を含んで構成される。以下、各工程について詳
しく説明する。
<Method of Manufacturing Electrode Structure> The method of manufacturing an electrode structure according to the present invention includes a raw material paste preparing step, a film forming step,
It comprises a firing step. Hereinafter, each step will be described in detail.

【0024】(1)原料ペースト調製工程 本工程は、固体電解質膜の原料となる酸化物粉末を用い
原料ペーストを調製する工程である。固体電解質膜の原
料となる酸化物としては、上述した、ジルコニア、イッ
トリア安定化ジルコニア(YSZ)、スカンジウム安定
ジルコニア(ScSZ)等の酸化物を用いればよい。そ
して、それらの酸化物を粉末状にして、原料ペーストを
調製する。
(1) Raw Material Paste Preparation Step This step is a step of preparing a raw material paste using an oxide powder to be a raw material of a solid electrolyte membrane. As the oxide serving as a raw material of the solid electrolyte membrane, an oxide such as zirconia, yttria-stabilized zirconia (YSZ), or scandium-stable zirconia (ScSZ) described above may be used. Then, these oxides are powdered to prepare a raw material paste.

【0025】原料ペーストを調製する方法は、特に制限
するものではない。例えば、酸化物粉末を湿潤させた
後、有機バインダを混合して原料ペーストを調製するこ
とができる。この場合には、原料ペースト調製工程は、
酸化物粉末を湿潤させる湿潤工程を含み、湿潤させた該
酸化物粉末を用いて原料ペーストを調製する工程とすれ
ばよい。酸化物粉末を湿潤させるとは、粉末を構成する
粒子間に液体を介在させることであり、予めこのような
状態にしておくことにより、調製するペースト中での酸
化物粉末の凝集を抑制することができる。酸化物粉末を
湿潤させるには、例えば、酸化物粉末に溶媒を加えれば
よく、この場合、溶媒には、例えば、アセトン、エタノ
ール等の有機溶媒や、水等を用いればよい。
The method for preparing the raw material paste is not particularly limited. For example, after wetting the oxide powder, a raw material paste can be prepared by mixing an organic binder. In this case, the raw material paste preparation step includes:
The method may include a wetting step of wetting the oxide powder, and preparing a raw material paste using the wetted oxide powder. Wetting the oxide powder means that a liquid is interposed between the particles constituting the powder, and by previously setting such a state, the aggregation of the oxide powder in the prepared paste is suppressed. Can be. In order to wet the oxide powder, for example, a solvent may be added to the oxide powder, and in this case, for example, an organic solvent such as acetone or ethanol, water, or the like may be used.

【0026】また、酸化物粉末を構成する粒子の粒子径
は、製造される固体電解質膜の膜厚に影響を与える。よ
って、例えば、膜厚が30μm以下の固体電解質膜を得
るためには、酸化物粉末を構成する粒子の粒子径は、1
5μm以下とすることが望ましい。酸化物粉末の粒子径
の調整は、粉砕や、化学的な合成方法等、一般的に粒子
径の調整に用いられる方法を用いて行えばよい。例え
ば、比較的大きな粒子径の粉末を粉砕して酸化物粉末を
得る場合には、酸化物粉末を上記溶媒に分散して湿式粉
砕することができる。この場合には、粉砕後に溶媒をあ
る程度まで除去することで、簡便に酸化物粉末を湿潤さ
せることができる。
Further, the particle diameter of the particles constituting the oxide powder affects the thickness of the manufactured solid electrolyte membrane. Therefore, for example, in order to obtain a solid electrolyte membrane having a thickness of 30 μm or less, the particle diameter of the particles constituting the oxide powder should be 1
It is desirable that the thickness be 5 μm or less. Adjustment of the particle size of the oxide powder may be performed by a method generally used for adjusting the particle size, such as pulverization or a chemical synthesis method. For example, when an oxide powder is obtained by pulverizing a powder having a relatively large particle diameter, the oxide powder can be dispersed in the above solvent and wet-pulverized. In this case, the oxide powder can be easily wetted by removing the solvent to some extent after the pulverization.

【0027】有機バインダは、ペーストの粘度を調整
し、前駆体膜を形成するために添加するものであり、後
の成膜工程における成膜方法に応じて適宜選択すればよ
い。例えば、メタアクリル系樹脂、アクリル系樹脂、プ
リラール、ポリビニルアルコール、メチルセルロース、
エチルセルロース、ポリアセテート、エチルシリケー
ト、ポリエチレングリコール等を用いることができる。
なお、原料ペーストの粘度は、成膜する膜の厚さや成膜
方法等を考慮して適宜決定すればよく、通常、0.01
〜1Pa・s程度とすればよい。
The organic binder is added to adjust the viscosity of the paste and form a precursor film, and may be appropriately selected according to a film forming method in a later film forming step. For example, methacrylic resin, acrylic resin, prilal, polyvinyl alcohol, methylcellulose,
Ethyl cellulose, polyacetate, ethyl silicate, polyethylene glycol and the like can be used.
The viscosity of the raw material paste may be appropriately determined in consideration of the thickness of the film to be formed, the film formation method, and the like.
It may be set to about 1 Pa · s.

【0028】(2)成膜工程 本工程は、前記原料ペースト調製工程において調製した
原料ペーストを成膜基板の表面に塗布して成膜し、その
膜を該成膜基板から剥離して前駆体膜を得る工程であ
る。成膜基板は、特に制限されるものではなく、薄膜を
成膜することができる緻密で表面が平滑な基板を用いれ
ばよい。また、原料ペーストから成膜する方法は、原料
ペーストを成膜基板の表面に塗布して成膜する方法であ
れば、特に制限するものではない。例えば、原料ペース
トをスクリーン印刷、ドクターブレード、テープキャス
ティング、グラビアコート、スプレーコート、ディップ
コート等の方法で成膜基板の表面に塗布して成膜するこ
とができる。なかでも、均一な薄膜を形成できるという
観点から、スクリーン印刷、ドクターブレード、グラビ
アコートのいずれかの方法により成膜することが望まし
い。
(2) Film forming step In this step, the raw material paste prepared in the raw material paste preparing step is applied to the surface of a film forming substrate to form a film, and the film is peeled from the film forming substrate to form a precursor. This is the step of obtaining a film. The film formation substrate is not particularly limited, and a dense and smooth substrate on which a thin film can be formed may be used. The method for forming a film from the raw material paste is not particularly limited as long as the raw material paste is applied to the surface of the film formation substrate to form a film. For example, a film can be formed by applying a raw material paste to the surface of a film formation substrate by a method such as screen printing, doctor blade, tape casting, gravure coating, spray coating, dip coating, or the like. Above all, from the viewpoint that a uniform thin film can be formed, it is desirable to form the film by any one of screen printing, doctor blade, and gravure coating.

【0029】成膜条件は、目的とする固体電解質膜の膜
厚等を考慮して適宜決定すればよい。得られる固体電解
質膜は、その一部が多孔質電極基材に入り込んでいるた
め、成膜時に得られた膜の膜厚より薄く形成される。し
たがって、多孔質電極基材に入り込む厚さをも考慮し
て、例えば、成膜時の膜厚は、固体電解質膜の膜厚の1
〜4倍程度とすることが望ましい。
The film forming conditions may be appropriately determined in consideration of the desired thickness of the solid electrolyte membrane. Since a part of the obtained solid electrolyte membrane enters the porous electrode substrate, it is formed thinner than the film thickness obtained at the time of film formation. Therefore, in consideration of the thickness that enters the porous electrode substrate, for example, the film thickness at the time of film formation is 1% of the film thickness of the solid electrolyte film.
It is desirably about 4 times.

【0030】成膜した後にその膜を成膜基板から剥離す
る方法は、特に制限するものではない。例えば、予め水
溶性の樹脂をコートした成膜基板の表面に成膜し、その
後、成膜基板ごと水中に浸漬することにより、膜を成膜
基板から剥離して前駆体膜を得る態様を採用することが
できる。この態様を採用する場合には、膜を保形すると
いう理由から、成膜後、水中に浸漬させる前に、その膜
の表出している面をアクリル樹脂等の非水溶性の樹脂で
覆っておくことが望ましい。なお、この保護膜となる非
水溶性の樹脂は、後の焼成工程で燃焼し、消滅する。
The method of peeling the film from the film formation substrate after forming the film is not particularly limited. For example, a mode is adopted in which a film is formed on the surface of a film-forming substrate previously coated with a water-soluble resin, and then the film is peeled off from the film-forming substrate by immersing the film-forming substrate in water. can do. In the case of adopting this embodiment, after the film is formed and before being immersed in water, the exposed surface of the film is covered with a non-water-soluble resin such as an acrylic resin because the film is kept in shape. It is desirable to keep. The water-insoluble resin serving as the protective film burns and disappears in the subsequent firing step.

【0031】(3)焼成工程 本工程は、前記成膜工程において得られた前駆体膜の表
面を一対の多孔質電極基材のうち少なくとも一方のもの
の表面に接触させた状態で該前駆体膜を焼成し、その一
部が該多孔質電極基材の細孔に入り込んだ前記固体電解
質膜を得る工程である。多孔質電極基材は、上述した、
ニッケルジルコニアサーメット、La1- xSrxMnO3
系のペロブスカイト型酸化物等を用いればよい。
(3) Firing Step This step is a step for preparing the precursor film obtained in the film forming step.
The surface is at least one of a pair of porous electrode substrates
Baking the precursor film in contact with the surface of
The solid electrolysis in which a portion enters the pores of the porous electrode substrate
This is the step of obtaining a membrane. The porous electrode substrate is as described above,
Nickel Zirconia Cermet, La1- xSrxMnOThree
A perovskite oxide or the like may be used.

【0032】前駆体膜の表面を多孔質電極基材の表面に
接触させた状態で前駆体膜を焼成する方法は、特に限定
されるものではない。例えば、前駆体膜の両表面のうち
一方の表面と一方の多孔質電極基材の表面とを合わせた
状態、言い換えれば、前駆体膜を一方の多孔質電極基材
に重ね合わせた状態で焼成すればよい。また、多孔質電
極基材を前駆体膜を重ね合わせた面を下にして焼成台上
に置き焼成してもよい。さらに、多孔質電極基材を前駆
体膜を重ね合わせた面を下にして焼成台に置き、その多
孔質電極基材に荷重をかけながら焼成してもよい。特
に、多孔質電極基材の細孔により深い厚さまで入り込ん
だ固体電解質膜を得るという観点から、前駆体膜を重ね
合わせた面を下にして焼成台上に置き、多孔質電極基材
に荷重をかけながら焼成することが望ましい。なお、上
記態様を採用する場合には、焼成後に得られた固体電解
質膜の多孔質電極基材と接合していない表面に、他方の
多孔質電極基材をコーティングして、さらに焼成するこ
とで電極構造体とすることができる。
The method of firing the precursor film while the surface of the precursor film is in contact with the surface of the porous electrode substrate is not particularly limited. For example, firing in a state where one surface of both surfaces of the precursor film and the surface of one porous electrode substrate are combined, in other words, in a state where the precursor film is superimposed on one porous electrode substrate. do it. Further, the porous electrode base material may be fired on a firing table with the surface on which the precursor film is superimposed facing downward. Further, the porous electrode substrate may be placed on a firing table with the surface on which the precursor film is superimposed facing downward, and fired while applying a load to the porous electrode substrate. In particular, from the viewpoint of obtaining a solid electrolyte membrane that has penetrated to a deeper thickness due to the pores of the porous electrode substrate, the precursor film is placed on a firing table with the superimposed surface facing down, and a load is applied to the porous electrode substrate. It is desirable to bake while applying. In the case of adopting the above aspect, the surface of the solid electrolyte membrane obtained after firing, which is not bonded to the porous electrode substrate, is coated with the other porous electrode substrate, and further fired. It can be an electrode structure.

【0033】また、例えば、前駆体膜の両面を、一対の
多孔質電極基材の表面にそれぞれ接触させた状態で焼成
する態様を採用することができる。本態様の場合には、
前駆体膜を一対の多孔質電極基材の間に挟んだ状態で焼
成すればよい。なお、本態様の場合にも、上記同様、多
孔質電極基材に荷重をかけながら焼成することが望まし
い。
Further, for example, an embodiment in which both surfaces of the precursor film are fired in a state of being in contact with the surfaces of the pair of porous electrode substrates, respectively, can be adopted. In the case of this embodiment,
What is necessary is just to bake with the precursor film sandwiched between a pair of porous electrode base materials. Note that, in the case of this embodiment as well, it is desirable to perform firing while applying a load to the porous electrode substrate, as in the above.

【0034】焼成温度は、通常、固体電解質膜を焼結す
る温度とすればよく、1000〜1450℃程度の温度
で焼成すればよい。焼成は、一般に用いられる電気炉等
を使用すればよく、焼成時間は0.5〜6時間程度とす
ればよい。なお、焼成する際の昇温速度や、かける荷重
等を調整して、多孔質電極基材の細孔に入り込む固体電
解質膜の深さを調整することができる。
The sintering temperature is usually set to a temperature at which the solid electrolyte membrane is sintered, and may be set at a temperature of about 1000 to 1450 ° C. The firing may be performed using a commonly used electric furnace or the like, and the firing time may be about 0.5 to 6 hours. The depth of the solid electrolyte membrane that enters the pores of the porous electrode base material can be adjusted by adjusting the rate of temperature rise during firing, the applied load, and the like.

【0035】〈固体電解質型燃料電池〉本発明の電極構
造体の利用形態である固体電解質型燃料電池は、一般
に、一対の電極と固体電解質とを含んでなる電極構造体
から構成されるセルを発電単位とし、円筒方式、平板方
式、一体積層方式等、種々の構造を採用することができ
る。本実施形態の固体電解質型燃料電池も、電極構造体
に本発明の電極構造体を用いる他は、その一般的な構成
に従えばよい。
<Solid Electrolyte Fuel Cell> A solid electrolyte fuel cell, which is an application of the electrode structure of the present invention, generally comprises a cell comprising an electrode structure comprising a pair of electrodes and a solid electrolyte. As a power generation unit, various structures such as a cylindrical system, a flat plate system, and an integrated lamination system can be adopted. The solid oxide fuel cell of the present embodiment may also follow the general configuration except that the electrode structure of the present invention is used for the electrode structure.

【0036】〈他の実施形態の許容〉以上、本発明の固
体電解質型燃料電池用電極構造体およびその製造方法の
実施形態について説明したが、上述した実施形態は一実
施形態にすぎず、本発明の固体電解質型燃料電池用電極
構造体およびその製造方法は、上記実施形態を始めとし
て、当業者の知識に基づいて種々の変更、改良を施した
種々の形態で実施することができる。
<Allowance of Other Embodiments> The embodiment of the electrode structure for a solid oxide fuel cell and the method of manufacturing the same according to the present invention has been described above. However, the above-described embodiment is merely an embodiment, and The electrode structure for a solid oxide fuel cell and the method for manufacturing the same according to the present invention can be implemented in various forms including various modifications and improvements based on the knowledge of those skilled in the art, including the above-described embodiment.

【0037】[0037]

【実施例】上記実施の形態に基づいて、本発明の固体電
解質型燃料電池用電極構造体を製造した。以下、電極構
造体の製造方法および製造した電極構造体について説明
する。
EXAMPLE Based on the above embodiment, an electrode structure for a solid oxide fuel cell according to the present invention was manufactured. Hereinafter, a method for manufacturing the electrode structure and the manufactured electrode structure will be described.

【0038】〈電極構造体の製造〉アノードとなる多孔
質電極基材にニッケルジルコニアサーメットを、カソー
ドとなる多孔質電極基材にLa0.8Sr0.2MnO3を用
い、固体電解質膜をスカンジウム安定ジルコニア(Sc
SZ)とした電極構造体を製造した。まず、固体電解質
膜の原料となるSc23(11mol%)/ZrO
2(89mol%)にAl23を1wt%加えた酸化物
粉末をエタノール中に分散させ、ボールミルを用いて、
120時間湿式粉砕し、湿潤状態の酸化物粉末を得た。
この湿潤状態の酸化物粉末に、有機バインダとしてメタ
アクリル系樹脂を、重量比で酸化物粉末:有機バインダ
が8:5となるように混合し、残存するエタノールを蒸
発させて粘度が約0.06Pa・sである原料ペースト
を調製した。
<Manufacture of Electrode Structure> Using nickel zirconia cermet as a porous electrode substrate serving as an anode and La 0.8 Sr 0.2 MnO 3 as a porous electrode substrate serving as a cathode, and using a scandium-stable zirconia (solid electrolyte film) as a solid electrolyte membrane Sc
SZ) was manufactured. First, Sc 2 O 3 (11 mol%) / ZrO, which is a raw material of a solid electrolyte membrane,
An oxide powder obtained by adding 1 wt% of Al 2 O 3 to 2 (89 mol%) is dispersed in ethanol,
The wet pulverization was performed for 120 hours to obtain a wet oxide powder.
A methacrylic resin as an organic binder is mixed with the wet oxide powder in a weight ratio of oxide powder: organic binder of 8: 5, and the remaining ethanol is evaporated to a viscosity of about 0.5. A raw material paste having a pressure of 06 Pa · s was prepared.

【0039】調整した原料ペーストを、水溶性樹脂であ
るデキストリンをコートした成膜基板の表面にスクリー
ン印刷して成膜し、さらに、その膜表面全体を非水溶性
樹脂であるアクリル系樹脂でコートした。なお、成膜し
た膜の厚さは、約20μmであった。このように成膜、
コートした成膜基板を水中に浸漬し、成膜した膜を成膜
基板から剥離して、アクリル系樹脂でコートされた前駆
体膜を得た。
The prepared raw material paste is screen-printed on the surface of a film-forming substrate coated with dextrin as a water-soluble resin to form a film, and the entire film surface is coated with an acrylic resin as a water-insoluble resin. did. The thickness of the formed film was about 20 μm. Film formation,
The coated film-forming substrate was immersed in water, and the film formed was peeled off from the film-forming substrate to obtain a precursor film coated with an acrylic resin.

【0040】この前駆体膜を一方の多孔質電極基材であ
るニッケルジルコニアサーメットの表面に重ね合わせ、
その前駆体膜を重ね合わせた面を下にして焼成台上に設
置し、約50Paの荷重をかけて焼成した。焼成温度
は、約1400℃とし、昇温速度は、2℃/min、焼
成時間は約4時間とした。
This precursor film was superimposed on the surface of one porous electrode substrate, nickel zirconia cermet,
The precursor film was placed on a baking table with its superimposed surface facing down, and was baked with a load of about 50 Pa. The firing temperature was about 1400 ° C., the heating rate was 2 ° C./min, and the firing time was about 4 hours.

【0041】焼成後に得られた固体電解質膜のニッケル
ジルコニアサーメットと接合していない表面に、他方の
多孔質電極基材となるLa0.8Sr0.2MnO3粉末をス
クリーン印刷によりコーティングして、さらに約110
0℃で焼成して電極構造体を得た。なお、得られた固体
電解質膜は、一対の多孔質電極基材の間に挟まれた部分
の膜厚が約6μmであった。
The surface of the solid electrolyte membrane obtained after the firing, which is not bonded to the nickel zirconia cermet, is coated with La 0.8 Sr 0.2 MnO 3 powder as the other porous electrode base material by screen printing, and further coated for about 110 minutes.
It was fired at 0 ° C. to obtain an electrode structure. In addition, the obtained solid electrolyte membrane had a thickness of about 6 μm at a portion sandwiched between a pair of porous electrode substrates.

【0042】〈製造した電極構造体〉製造した電極構造
体の厚さ方向の断面を走査型電子顕微鏡(SEM)によ
り観察した写真を図1に示す。図1の写真の中央部分
は、固体電解質膜であるスカンジウム安定ジルコニア膜
であり、その上下は多孔質電極基材である。多孔質電極
基材には無数の細孔が存在し、固体電解質膜の一部が下
方の多孔質電極基材の表面から厚さ方向に膜厚以上の深
さまで細孔に入り込んでいることがわかる。そして、そ
の細孔に入り込んでいる深さは、固体電解質膜の膜厚の
約2倍であった。
<Manufactured Electrode Structure> FIG. 1 shows a photograph of a section of the manufactured electrode structure in a thickness direction observed by a scanning electron microscope (SEM). The central part of the photograph in FIG. 1 is a scandium-stable zirconia film which is a solid electrolyte film, and the upper and lower parts thereof are porous electrode substrates. There are countless pores in the porous electrode substrate, and a part of the solid electrolyte membrane may penetrate into the pores from the surface of the porous electrode substrate below to the depth of the film thickness in the thickness direction. Understand. Then, the depth of penetration into the pores was about twice the thickness of the solid electrolyte membrane.

【0043】したがって、本発明の固体電解質型燃料電
池用電極構造体の製造方法によれば、一対の多孔質電極
基材の間に挟まれた部分の膜厚が30μm以下であり、
その一部が一対の多孔質電極基材のうち少なくとも一方
のものの表面から厚さ方向に該膜厚以上の深さまで該多
孔質電極基材の細孔に入り込んでいる本発明の電極構造
体を製造することができることが確認できた。
Therefore, according to the method for producing an electrode structure for a solid oxide fuel cell of the present invention, the thickness of the portion sandwiched between the pair of porous electrode substrates is 30 μm or less,
An electrode structure according to the present invention, a part of which has penetrated into the pores of the porous electrode substrate from the surface of at least one of the pair of porous electrode substrates to the thickness or more in the thickness direction in the thickness direction. It was confirmed that it could be manufactured.

【0044】[0044]

【発明の効果】本発明の固体電解質型燃料電池用電極構
造体は、イオン導電性が大きく、ガスと電解質と電極と
の3相界面、つまり電極反応面積が大きいため、電解質
と電極との界面抵抗が小さく、発電効率の高い電極構造
体となる。また、本発明の固体電解質型燃料電池用電極
構造体の製造方法によれば、前駆体膜の厚さ等の成膜条
件や焼成条件等により、固体電解質膜の膜厚や、多孔質
電極基材の細孔へ入り込ませる程度等を調整することが
容易であり、上記本発明の電極構造体を簡便に製造する
ことができる。
The electrode structure for a solid oxide fuel cell according to the present invention has a high ionic conductivity and a three-phase interface between gas, electrolyte and electrode, that is, a large electrode reaction area. An electrode structure having low resistance and high power generation efficiency is obtained. Further, according to the method for manufacturing an electrode structure for a solid oxide fuel cell of the present invention, the film thickness of the solid electrolyte membrane, the porous electrode substrate, and the like depend on the film formation conditions such as the thickness of the precursor film and the firing conditions. It is easy to adjust the degree of entry into the pores of the material, and the electrode structure of the present invention can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の電極構造体の厚さ方向の断面を走査
型電子顕微鏡(SEM)により観察した写真を示す。
FIG. 1 shows a photograph of a cross section in the thickness direction of an electrode structure of the present invention observed by a scanning electron microscope (SEM).

【手続補正書】[Procedure amendment]

【提出日】平成13年6月19日(2001.6.1
9)
[Submission Date] June 19, 2001 (2001.6.1)
9)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 魚島 凡子 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 神谷 信雄 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 Fターム(参考) 5H018 AA06 AS02 AS03 BB01 BB08 BB12 CC06 DD08 DD10 EE12 EE13 HH03 5H026 AA06 BB01 BB04 BB08 CC10 CX04 EE12 HH03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Noriko Uojima 41, Chuchu-Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central R & D Laboratories Co., Ltd. No. 41 at Yokomichi 1 F Toyota term in Toyota Central R & D Laboratories F-term (reference)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 無数の細孔を有する多孔質材料からなる
一対の多孔質電極基材と、該一対の多孔質電極基材の間
に挟まれた固体電解質膜とを含んでなる固体電解質型燃
料電池用電極構造体であって、 前記固体電解質膜は、前記一対の多孔質電極基材の間に
挟まれた部分の膜厚が30μm以下であり、その一部が
前記一対の多孔質電極基材のうち少なくとも一方のもの
の表面から厚さ方向に該膜厚以上の深さまで該多孔質電
極基材の前記細孔に入り込んでいることを特徴とする固
体電解質型燃料電池用電極構造体。
1. A solid electrolyte type comprising: a pair of porous electrode substrates made of a porous material having innumerable pores; and a solid electrolyte membrane sandwiched between the pair of porous electrode substrates. An electrode structure for a fuel cell, wherein the solid electrolyte membrane has a thickness of 30 μm or less at a portion sandwiched between the pair of porous electrode substrates, and a part thereof is the pair of porous electrodes. An electrode structure for a solid oxide fuel cell, wherein the electrode structure penetrates the pores of the porous electrode substrate from a surface of at least one of the substrates to a depth not less than the film thickness in a thickness direction.
【請求項2】 前記細孔に入り込んでいる前記一部の深
さが前記膜厚の1倍以上3倍以下である請求項1に記載
の固体電解質型燃料電池用電極構造体。
2. The electrode structure for a solid oxide fuel cell according to claim 1, wherein the depth of the part penetrating into the pores is not less than 1 and not more than 3 times the film thickness.
【請求項3】 無数の細孔を有する多孔質材料からなる
一対の多孔質電極基材と、該一対の多孔質電極基材の間
に挟まれた固体電解質膜とを含んでなる固体電解質型燃
料電池用電極構造体の製造方法であって、 前記固体電解質膜の原料となる酸化物粉末を用い原料ペ
ーストを調製する原料ペースト調製工程と、 前記原料ペーストを成膜基板の表面に塗布して成膜し、
その膜を該成膜基板から剥離して前駆体膜を得る成膜工
程と、 前記前駆体膜の表面を前記一対の多孔質電極基材のうち
少なくとも一方のものの表面に接触させた状態で該前駆
体膜を焼成し、その一部が該多孔質電極基材の前記細孔
に入り込んだ前記固体電解質膜を得る焼成工程と、 を含んでなる固体電解質型燃料電池用電極構造体の製造
方法。
3. A solid electrolyte type comprising: a pair of porous electrode substrates made of a porous material having innumerable pores; and a solid electrolyte membrane sandwiched between the pair of porous electrode substrates. A method for manufacturing a fuel cell electrode structure, comprising: a raw material paste preparing step of preparing a raw material paste using an oxide powder that is a raw material of the solid electrolyte membrane; and applying the raw material paste to a surface of a film formation substrate. Film,
A film forming step of peeling the film from the film forming substrate to obtain a precursor film, and a step of contacting a surface of the precursor film with a surface of at least one of the pair of porous electrode substrates. And baking a precursor membrane to obtain the solid electrolyte membrane in which a part of the precursor membrane has entered the pores of the porous electrode substrate. A method for producing an electrode structure for a solid oxide fuel cell, comprising: .
【請求項4】 前記原料ペースト調製工程は、前記酸化
物粉末を湿潤させる湿潤工程を含み、湿潤させた該酸化
物粉末を用いて原料ペーストを調製する工程である請求
項3に記載の固体電解質型燃料電池用電極構造体の製造
方法。
4. The solid electrolyte according to claim 3, wherein the raw material paste preparing step includes a wetting step of wetting the oxide powder, and preparing a raw material paste using the moistened oxide powder. Of manufacturing an electrode structure for a fuel cell.
JP2001183237A 2001-06-18 2001-06-18 Electrode structure for solid oxide fuel cell and method for producing the same Expired - Fee Related JP5110337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001183237A JP5110337B2 (en) 2001-06-18 2001-06-18 Electrode structure for solid oxide fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001183237A JP5110337B2 (en) 2001-06-18 2001-06-18 Electrode structure for solid oxide fuel cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002373675A true JP2002373675A (en) 2002-12-26
JP5110337B2 JP5110337B2 (en) 2012-12-26

Family

ID=19023214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001183237A Expired - Fee Related JP5110337B2 (en) 2001-06-18 2001-06-18 Electrode structure for solid oxide fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP5110337B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049241A (en) * 2004-08-09 2006-02-16 Dainippon Printing Co Ltd Adhesive sheet for solid oxide fuel cell and manufacturing method of the same
JP2006049248A (en) * 2004-08-09 2006-02-16 Dainippon Printing Co Ltd Thermal transfer sheet and lamination body for solid oxide fuel cell
JP2007510255A (en) * 2003-09-10 2007-04-19 ビーティーユー インターナショナル インコーポレイテッド Manufacture of solid oxide fuel cells
JP2009266765A (en) * 2008-04-30 2009-11-12 Inst Nuclear Energy Research Rocaec Method for manufacturing electrolyte layer of high performance solid oxide fuel cell membrane-electrode assembly (sofc-mea) by sputtering method
JP2010232136A (en) * 2009-03-30 2010-10-14 Mitsubishi Materials Corp High-output power generating cell equipped with laminated solid electrolyte
JP2012079506A (en) * 2010-09-30 2012-04-19 Nippon Shokubai Co Ltd Solid oxide fuel cell electrolyte sheet manufacturing method
JP2012146498A (en) * 2011-01-12 2012-08-02 Kikusui Chemical Industries Co Ltd Single cell for direct flame type fuel cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134963A (en) * 1989-10-19 1991-06-07 Fuji Electric Co Ltd Solid electrolyte type fuel cell
JPH0652869A (en) * 1992-07-30 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> Solid electrolyte film of fuel cell and manufacture thereof
JPH06220676A (en) * 1992-11-06 1994-08-09 Dornier Gmbh Solid electrolyte prepared by applying multilayer electrode
JPH083714A (en) * 1994-06-17 1996-01-09 Ngk Insulators Ltd Production of laminante
JPH09259901A (en) * 1996-03-26 1997-10-03 Sekiyu Sangyo Kasseika Center Solid electrolytic plate in flat solid electrolytic fuel battery and flat solid electrolytic fuel battery using the plate
JPH1012247A (en) * 1996-06-18 1998-01-16 Murata Mfg Co Ltd Solid electrolyte fuel cell and manufacture therefor
JPH11283657A (en) * 1998-03-30 1999-10-15 Central Res Inst Of Electric Power Ind Flat solid-electrolyte fuel cell and cell-stack using the same
US6228521B1 (en) * 1998-12-08 2001-05-08 The University Of Utah Research Foundation High power density solid oxide fuel cell having a graded anode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134963A (en) * 1989-10-19 1991-06-07 Fuji Electric Co Ltd Solid electrolyte type fuel cell
JPH0652869A (en) * 1992-07-30 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> Solid electrolyte film of fuel cell and manufacture thereof
JPH06220676A (en) * 1992-11-06 1994-08-09 Dornier Gmbh Solid electrolyte prepared by applying multilayer electrode
JPH083714A (en) * 1994-06-17 1996-01-09 Ngk Insulators Ltd Production of laminante
JPH09259901A (en) * 1996-03-26 1997-10-03 Sekiyu Sangyo Kasseika Center Solid electrolytic plate in flat solid electrolytic fuel battery and flat solid electrolytic fuel battery using the plate
JPH1012247A (en) * 1996-06-18 1998-01-16 Murata Mfg Co Ltd Solid electrolyte fuel cell and manufacture therefor
JPH11283657A (en) * 1998-03-30 1999-10-15 Central Res Inst Of Electric Power Ind Flat solid-electrolyte fuel cell and cell-stack using the same
US6228521B1 (en) * 1998-12-08 2001-05-08 The University Of Utah Research Foundation High power density solid oxide fuel cell having a graded anode

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510255A (en) * 2003-09-10 2007-04-19 ビーティーユー インターナショナル インコーポレイテッド Manufacture of solid oxide fuel cells
JP2006049241A (en) * 2004-08-09 2006-02-16 Dainippon Printing Co Ltd Adhesive sheet for solid oxide fuel cell and manufacturing method of the same
JP2006049248A (en) * 2004-08-09 2006-02-16 Dainippon Printing Co Ltd Thermal transfer sheet and lamination body for solid oxide fuel cell
JP4560676B2 (en) * 2004-08-09 2010-10-13 大日本印刷株式会社 Adhesive sheet for solid oxide fuel cell and method for producing the same
JP4560677B2 (en) * 2004-08-09 2010-10-13 大日本印刷株式会社 Solid oxide fuel cell thermal transfer sheet and solid oxide fuel cell laminate
JP2009266765A (en) * 2008-04-30 2009-11-12 Inst Nuclear Energy Research Rocaec Method for manufacturing electrolyte layer of high performance solid oxide fuel cell membrane-electrode assembly (sofc-mea) by sputtering method
JP2010232136A (en) * 2009-03-30 2010-10-14 Mitsubishi Materials Corp High-output power generating cell equipped with laminated solid electrolyte
JP2012079506A (en) * 2010-09-30 2012-04-19 Nippon Shokubai Co Ltd Solid oxide fuel cell electrolyte sheet manufacturing method
JP2012146498A (en) * 2011-01-12 2012-08-02 Kikusui Chemical Industries Co Ltd Single cell for direct flame type fuel cell

Also Published As

Publication number Publication date
JP5110337B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
US5670270A (en) Electrode structure for solid state electrochemical devices
EP1698002B1 (en) Anode-supported solid oxide fuel cells using a cermet electrolyte
JP3502012B2 (en) Solid oxide fuel cell and method of manufacturing the same
Hsieh et al. Fabrication of electrolyte supported micro-tubular SOFCs using extrusion and dip-coating
KR20140085431A (en) Composite anode for a solid oxide fuel cell with improved mechanical integrity and increased efficiency
US10305116B2 (en) Cost-effective solid state reactive sintering method for protonic ceramic fuel cells
Yang et al. High performance intermediate temperature micro-tubular SOFCs with Ba0. 9Co0. 7Fe0. 2Nb0. 1O3− δ as cathode
KR20130047534A (en) Solid oxide fuel cell and solid oxide electrolysis cell including ni-ysz fuel(hydrogen) electrode, and fabrication method thereof
JP2016031933A (en) Proton-conducting laminate structure
Liu et al. Tailoring the pore structure of cathode supports for improving the electrochemical performance of solid oxide fuel cells
KR20080021012A (en) Method of electrode deposition for solid oxide fuel cells
JP2003178769A (en) Thin film laminated body, its manufacturing method, and solid oxide type fuel cell using the same
CN109360991B (en) Low-temperature solid oxide fuel cell composite cathode and preparation method thereof
JP4524791B2 (en) Solid oxide fuel cell
JP5110337B2 (en) Electrode structure for solid oxide fuel cell and method for producing the same
Torres-Garibay et al. Ln0. 6Sr0. 4Co1− yFeyO3− δ (Ln= La and Nd; y= 0 and 0.5) cathodes with thin yttria-stabilized zirconia electrolytes for intermediate temperature solid oxide fuel cells
JP6664132B2 (en) Porous structure, method of manufacturing the same, and electrochemical cell using the same and method of manufacturing the same
JP2006351406A (en) Air electrode powder for ceria coated sofc, its manufacturing method, and manufacturing method of air electrode
KR20090081567A (en) Thick-film electrolyte-supported solid oxide fuel cells and manufacturing method thereof
JP2008257943A (en) Electrode for solid oxide fuel cell and solid oxide fuel cell having same
KR101024593B1 (en) Micro-sofcs and methods for manufacturing the same using porous metal film support
US20060240314A1 (en) Electrode for fuel cell and solid oxide fuel cell using the same
JP4795701B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
CN110088952B (en) Anode for an electrochemical cell and method for manufacturing an electrochemical cell comprising such an anode
JP2008234927A (en) Manufacturing method of solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees