JP2002369446A - Disk drive - Google Patents
Disk driveInfo
- Publication number
- JP2002369446A JP2002369446A JP2002077461A JP2002077461A JP2002369446A JP 2002369446 A JP2002369446 A JP 2002369446A JP 2002077461 A JP2002077461 A JP 2002077461A JP 2002077461 A JP2002077461 A JP 2002077461A JP 2002369446 A JP2002369446 A JP 2002369446A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- disk drive
- concentric
- arc
- rotating shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000012530 fluid Substances 0.000 claims abstract description 16
- 230000001050 lubricating effect Effects 0.000 claims description 15
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 238000005461 lubrication Methods 0.000 abstract description 3
- 239000011553 magnetic fluid Substances 0.000 description 19
- 239000003921 oil Substances 0.000 description 17
- 230000003287 optical effect Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- 238000013016 damping Methods 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 4
- 239000010687 lubricating oil Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000006247 magnetic powder Substances 0.000 description 2
- 230000005405 multipole Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Motor Or Generator Frames (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Sliding-Contact Bearings (AREA)
- Rotational Drive Of Disk (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、精密、高速回転に
好適な軸受ユニット及びディスク駆動装置に係り、特に
磁気ディスク装置や光ディスク装置のディスク駆動装置
に関する。The present invention relates to a bearing unit and a disk drive suitable for precision and high-speed rotation, and more particularly to a disk drive for a magnetic disk drive and an optical disk drive.
【0002】[0002]
【従来の技術】磁気ディスク装置及び光ディスク装置
(CD−ROM装置、 DVD装置)は、パーソナルコ
ンピュータの著しい普及に伴い、記録の高密度、大容量
化及び装置の小型、高速化が進められている。これに用
いられるディスク駆動装置は、益々、高速、高精度回転
化及び低価格化が要求されている。従来、この種のディ
スクドライブ用の小型モータに用いられる軸受ユニット
としては、ボールベアリングが用いられており、ボール
ベアリングの加工精度や、潤滑等の改善によって回転精
度が高められてきた。2. Description of the Related Art With the remarkable spread of personal computers, magnetic disk devices and optical disk devices (CD-ROM devices, DVD devices) have been increasing in recording density, capacity, size and speed. . The disk drive used for this is increasingly required to have high speed, high precision rotation and low cost. Conventionally, a ball bearing has been used as a bearing unit used in this type of small motor for a disk drive, and the rotation accuracy has been improved by improving the processing accuracy of the ball bearing, lubrication and the like.
【0003】最近では、磁気ディスクドライブ装置のモ
ータには、より一層の高速、高精度回転化が要求されて
いるが、従来のボールベアリングはこの要求に対応でき
ないことから特開平5−336696号公報(以下、従
来技術1という)や特開平8−189525号公報(以
下、従来技術2という)に開示されているように、動圧
すべり軸受を搭載した駆動装置(モータ、モータ基板及
びモータが取り付けられているハウジングを含めて駆動
装置という)が提案されている。また、CD−ROM装
置のディスク駆動装置のモータにはコストの点で焼結含
油すべり軸受が使用されはじめている。[0003] Recently, the motor of a magnetic disk drive has been required to have higher speed and higher precision rotation. However, since conventional ball bearings cannot cope with this requirement, Japanese Patent Application Laid-Open No. 5-336696 has been proposed. As disclosed in Japanese Unexamined Patent Application Publication No. 8-189525 (hereinafter referred to as Conventional Technology 2) and Japanese Patent Laid-Open No. 8-189525 (hereinafter referred to as Conventional Technology 2), a driving device (motor, motor substrate, A drive device including the housing that is provided) has been proposed. In addition, sintered oil-impregnated plain bearings have begun to be used in motors of disk drive devices of CD-ROM devices in terms of cost.
【0004】[0004]
【発明が解決しようとする課題】磁気ディスクや光ディ
スクの駆動装置は、デスクトップタイプやノートタイプ
のパーソナルコンピュータの標準装備として普及し、高
速性や回転精度、量産性および低コスト化のほか取扱
性、すなわち机上や持ち運び中に落下してディスク駆動
装置としての機能が損なわれないよう耐衝撃性が必要と
されている。また、ノートタイプのパーソナルコンピュ
ータでは、それに加えてバッテリー駆動の点から低消費
電力のディスク駆動装置が必要とされている。The drive unit of a magnetic disk or an optical disk has been widely used as a standard equipment of a desktop type or a notebook type personal computer, and has high speed, rotational accuracy, mass productivity, low cost, easy handling, and the like. In other words, impact resistance is required so that the disk drive device does not fall down on a desk or while being carried, thereby impairing the function as a disk drive device. In addition, a notebook-type personal computer requires a disk drive with low power consumption in terms of battery drive.
【0005】高速、高精度回転に対しては、従来技術1
に開示されているような軸に動圧発生用の浅い溝を設け
たグルーブ軸受が提案されている。しかし、このグルー
ブ軸受は高速性や軸振れ精度等の特性面では優れた軸受
であるが、製作コストが高く量産性の問題を抱えてい
る。また、従来技術2に開示されている動圧三円弧軸受
は前記したグルーブ軸受と同等の高速、高精度回転が得
られるとともに、量産性、コストの面でも優れている
が、半径方向の衝撃力に対しては軸受形状の特殊性から
グルーブ軸受に比較して同等以下であり、数百G以上の
衝撃力が作用すると軸受端部が変形して軸受特性が損な
われることがある。[0005] For high-speed, high-precision rotation, the prior art 1
A groove bearing in which a shaft is provided with a shallow groove for generating dynamic pressure as disclosed in U.S. Pat. However, although this groove bearing is excellent in characteristics such as high speed and shaft runout accuracy, it has a problem of high production cost and mass productivity. Further, the dynamic pressure three-arc bearing disclosed in the prior art 2 can provide high-speed and high-precision rotation equivalent to the above-mentioned groove bearing, and is excellent in mass productivity and cost. Is less than or equal to that of a groove bearing due to the specialness of the bearing shape, and when an impact force of several hundred G or more is applied, the bearing end may be deformed and the bearing characteristics may be impaired.
【0006】消費電力に対しては、開示されている軸受
ユニットでは軸方向荷重を支持するスラスト軸受は軸受
端面で受けているため、ボールベアリング方式に比較し
て少なくとも数倍の軸受損失になり、低消費電力化には
限界がある。さらに、動圧軸受ユニットにおいては、潤
滑流体のシール性や軸受面への供給に配慮がないと油漏
れによるデスクの汚染や、潤滑不良による回転精度の低
下につながり、このような課題を解決する必要がある。With respect to power consumption, in the disclosed bearing unit, the thrust bearing supporting the axial load is received at the bearing end face, so that the bearing loss is at least several times that of the ball bearing system, There is a limit to reducing power consumption. Furthermore, in the case of a hydrodynamic bearing unit, if the sealing property of the lubricating fluid and the supply to the bearing surface are not taken into consideration, the leakage of oil leads to the contamination of the desk, and the poor lubrication leads to a decrease in the rotational accuracy. There is a need.
【0007】また、CD−ROM装置のディスクドライ
ブ装置のモータには、コストの点で焼結含油すべり軸受
が使用されはじめているが、特にCD−ROM装置に用
いられているディスク駆動装置のモータは、4倍速から
24倍速といった高速化が進み、ディスクの不釣り合い
による遠心荷重が著しく増大し、軸受の異常摩耗や軸受
損失の増大が避けられず、軸受の高剛性化と低損失化が
強く求められている。In addition, sintered oil-impregnated plain bearings have begun to be used for the motor of a disk drive of a CD-ROM device in terms of cost. In particular, the motor of a disk drive device used for a CD-ROM device is Higher speeds, such as 4x to 24x speeds, have increased the centrifugal load due to unbalanced discs, and unavoidable abnormal wear of bearings and increased bearing losses. High rigidity and low loss of bearings are strongly required. Have been.
【0008】本発明は、このような従来技術の欠点に鑑
みなされたもので、その目的は軸受剛性が高く、しかも
低損失で耐衝撃性や量産性優れる軸受ユニット及びこれ
を用いた寿命、信頼性の高いディスク駆動装置を提供す
ることにある。The present invention has been made in view of the above-mentioned drawbacks of the prior art, and has as its object to provide a bearing unit having high bearing rigidity, low loss, excellent impact resistance and excellent mass productivity, and a life and reliability using the same. It is an object of the present invention to provide a highly reliable disk drive.
【0009】[0009]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明のディスク駆動装置は、情報記憶媒体であ
るディスクと、このディスクを固定するハブと、前記ハ
ブと固着された回転軸と、この回転軸を回転自在に支持
する軸受ユニットとを備えたディスク駆動装置におい
て、前記軸受ユニットは、前記回転軸を径方向に支持す
るラジアル軸受と前記回転軸を軸方向に支持するスラス
ト軸受とを有し、前記ラジアル軸受とスラスト軸受部の
摺動面間に潤滑流体を介在させ、前記ラジアル軸受が、
同心の円弧面として形成された同心円弧面と、前記同心
円弧面とは非同心の円弧面として形成された非同心円弧
面とを備えて構成されており、同心円弧面で外部から加
わる衝撃荷重に対して大きなスクイズアクションによる
ダンピングを効かせるようにして、精密な回転を維持し
つつ耐衝撃性の向上を図っている。In order to achieve the above object, a disk drive of the present invention comprises a disk as an information storage medium, a hub for fixing the disk, and a rotating shaft fixed to the hub. And a bearing unit that rotatably supports the rotating shaft, wherein the bearing unit includes a radial bearing that radially supports the rotating shaft and a thrust bearing that axially supports the rotating shaft. Having a lubricating fluid interposed between the sliding surfaces of the radial bearing and the thrust bearing portion, wherein the radial bearing
A concentric arc surface formed as a concentric arc surface, and the concentric arc surface is configured to include a non-concentric arc surface formed as a non-concentric arc surface, and an impact load externally applied on the concentric arc surface By using a large squeeze action for damping, the impact resistance is improved while maintaining precise rotation.
【0010】具体的には、多円弧軸受と真円軸受を組み
合わせて多円弧軸受で回転軸を精度よく支持し、軸受と
同心円弧を有する真円軸受で外部から加わる衝撃荷重を
受けるようにしてもよく、軸受中心と同心の円弧面と非
同心の円弧面で構成された軸受面を複数個構成した多円
弧軸受を用いて、上記した回転軸を精度よく支持し、し
かも外部から加わる衝撃荷重を受けれるようにしてもよ
い。この多円弧軸受は、同心の円弧半径と非同心の円弧
半径で結ばれた軸受面のうち同心円弧部を1/6〜3/
4の範囲で構成するとともに、非同心円弧部と軸との距
離の最大値を同心円弧部と軸との距離の1.5〜3倍の
範囲で用いることにより、より確実に回転軸を精度よく
支持し、しかも外部から加わる衝撃荷重を受けれるよう
にするとよい。More specifically, the rotary shaft is accurately supported by the multi-arc bearing by combining the multi-arc bearing and the perfect circular bearing, and the impact load applied from the outside is received by the perfect circular bearing having the concentric arc with the bearing. Using a multi-arc bearing composed of a plurality of bearing surfaces composed of an arc surface concentric with the center of the bearing and a non-concentric arc surface, the above-mentioned rotating shaft is accurately supported, and an impact load applied from the outside. May be received. In this multi-arc bearing, a concentric arc portion of a bearing surface connected by a concentric arc radius and a non-concentric arc radius is 1/6 to 3 /
4 and the maximum value of the distance between the non-concentric arc portion and the shaft is used in the range of 1.5 to 3 times the distance between the concentric arc portion and the shaft, so that the rotation shaft can be more accurately positioned. It is good to support well and to be able to receive an external impact load.
【0011】さらに、ディスク駆動装置の軸受ユニット
では、精密な回転と潤滑流体の確実なシールを長期にわ
たり維持するために、上記した軸受構成に加えて以下の
手段を講じるとよい。すなわち、一端が閉じられ他端が
開放されている非磁性の軸受ハウジングに上記した耐衝
撃性を有し、かつ動圧作用に優れたラジアル軸受と軸受
ユニットの閉端部にスラスト軸受を配置し、回転軸と前
記軸受との間に潤滑流体を介在させるために2個のラジ
アル軸受間に永久磁石を挟み込むとともに、かつ軸受ハ
ウジングに潤滑油の中に磁性粉を分散させた磁性流体を
封入して、この磁性流体を軸受の潤滑流体として用いる
とともに、永久磁石で磁性流体を磁化し、シール性を確
実にしている。さらに、上記した軸受ユニットにおい
て、精密な回転と潤滑流体の確実なシールを長期にわた
り維持するために、ラジアル軸受の端面と軸受外周面に
連通する溝を設け、前記した2個のラジアル軸受間に挟
みこんだ永久磁石の磁気吸引力とラジアル軸受の動圧作
用によってラジアル軸受面に磁性流体を供給するととも
に、軸受ユニットの開放端側のラジアル軸受から溢れ出
た磁性流体を軸受の端面と、外周面に連通した溝を介し
て永久磁石の磁気吸引力によって引き込みシール性を確
実にしている。この永久磁石の磁気吸引力を高めるため
に希土類の永久磁石を用いることによって、より精密な
回転と潤滑流体のシール性の高い軸受ユニットとするこ
とができる。これらの軸受ユニットにおいては、上記し
た多円弧軸受は軸受中心と同心の円弧部を有するので軸
受の油膜の高剛性が図られる。また、真円軸受やグルー
ブ軸受に比較して軸受隙間が広いので粘性摩擦損失が小
さい。また、回転軸の一端を球面形状としピボットスラ
スト軸受とすればさらに、軸受ユニット全体の軸受損失
を低減することができる。しかも、多円弧軸受は精密成
形によって低価格で製作できる焼結軸受を用いることが
可能なのでディスク駆動装置の低損失化及び量産性や低
コスト化が図れる。Further, in the bearing unit of the disk drive device, in order to maintain precise rotation and reliable sealing of the lubricating fluid for a long period of time, the following means may be taken in addition to the above-described bearing configuration. That is, a non-magnetic bearing housing having one end closed and the other end open is provided with the above-described impact resistance, and a radial bearing excellent in dynamic pressure action and a thrust bearing disposed at a closed end of the bearing unit. A permanent magnet is sandwiched between two radial bearings to interpose a lubricating fluid between the rotating shaft and the bearing, and a magnetic fluid in which magnetic powder is dispersed in lubricating oil is sealed in the bearing housing. In addition, this magnetic fluid is used as a lubricating fluid for the bearing, and the magnetic fluid is magnetized by a permanent magnet to ensure sealing performance. Further, in the above-described bearing unit, in order to maintain precise rotation and a reliable seal of the lubricating fluid for a long period of time, a groove communicating with the end face of the radial bearing and the outer peripheral face of the bearing is provided, and between the two radial bearings described above. The magnetic fluid is supplied to the radial bearing surface by the magnetic attraction force of the sandwiched permanent magnet and the dynamic pressure action of the radial bearing, and the magnetic fluid overflowing from the radial bearing on the open end side of the bearing unit is transferred to the bearing end face and outer periphery. Through the groove communicating with the surface, the magnetic attraction force of the permanent magnet draws in and ensures the sealing performance. By using a rare-earth permanent magnet to increase the magnetic attraction force of the permanent magnet, a bearing unit with more precise rotation and high lubricating fluid sealing properties can be obtained. In these bearing units, the multi-arc bearing described above has an arc portion concentric with the center of the bearing, so that the oil film of the bearing has high rigidity. Further, the viscous friction loss is small since the bearing gap is wider than that of a perfect circular bearing or a groove bearing. Further, if one end of the rotating shaft is formed in a spherical shape to be a pivot thrust bearing, the bearing loss of the entire bearing unit can be further reduced. In addition, a sintered bearing that can be manufactured at low cost by precision molding can be used for the multi-arc bearing, so that the loss of the disk drive device, mass productivity, and cost can be reduced.
【0012】[0012]
【発明の実施の形態】以下、図面を参照し、本発明の実
施例について説明する。図1は、本発明の一実施例を示
す磁気ディスク駆動用モータの縦断面図である。回転軸
1を固着したハブ13にリング16を介してクランパー
18で磁気ディスク14、15及び多極着磁のモータロ
ータ9が固定され、回転軸1がラジアル軸受2、3、2
6及びスラスト軸受8によって回転自在に支持されてい
る。軸受ユニットは、非磁性の軸受ハウジング5にカバ
ー17、ラジアル軸受2、3、26及びスラスト軸受
8、抜け止め7が配置され、軸受ハウジング5の中には
潤滑流体6が封入されている。そして、モータケース1
2にはこの軸受ユニットとモータコイル11を備えたモ
ータ固定子10が固定されている。本構成のモータは、
DCブラシレスモータでコイル11に通電したときに発
生する回転磁界と多極着磁のモータロータ9の持つ磁界
によってハブ13が駆動される。図2は、軸受ユニットの
縦断面図を示したもので、非磁性の軸受ハウジング5に
は軸受と同心の円弧を有する真円軸受26、動圧三円弧
軸受2、3、スぺサー4とスラスト軸受8が配置されて
いて、先端が球面形状の回転軸1をこれらの軸受で回転
自在に支持できるようにしている。また、非磁性の軸受
ハウジング5には、潤滑流体6が封入されていて、回転
軸1は潤滑流体6を介して真円軸受26と動圧三円弧軸
受2、3によって非接触で支持されている。本実施例の
軸受ユニットでは、潤滑流体として通常の潤滑油を使用
してもよいが、シール機能を持たせるためにスぺサー4
に希土類の永久磁石を用い、潤滑流体6には潤滑油の中
に粒径0.01μm前後の超微粒子の磁性粉を分散させた磁
性流体を用いている。このような軸受ユニットの構成に
すると、磁性流体6は永久磁石製のスぺサー4に吸引さ
れ、封入された磁性流体6は軸受ユニット外に漏れる恐
れがない。また、回転軸1とラジアル軸受2、3、26
とで構成される摺動面の隙間はミクロンメータオーダの
狭い隙間であることから静止時は毛細管現象によって摺
動面が磁性流体6で潤されている。したがって、回転軸
1が駆動されると回転初期から軸受の摺動面は磁性流体
6で潤滑される。しかも、温度上昇による磁性流体6の
体積膨張や軸受の動圧作用などによってラジアル軸受2
の上端面に溢れ出る磁性流体6は、ラジアル軸受2、3
に軸受端面と軸受外周面に連通する溝19、20、21
を設けているので、この溝19、20、21を通って永
久磁石製のスぺサー4に吸引され、磁性流体6は軸受ユ
ニット外に漏れる恐れがない。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view of a magnetic disk drive motor according to an embodiment of the present invention. Axis of rotation
The magnetic disks 14, 15 and the multi-pole magnetized motor rotor 9 are fixed to the hub 13 to which the 1 is fixed via the ring 16 by the clamper 18, and the rotating shaft 1 is connected to the radial bearings 2, 3, 2,
6 and a thrust bearing 8 rotatably supported. In the bearing unit, a cover 17, radial bearings 2, 3 and 26, a thrust bearing 8, and a stopper 7 are arranged in a non-magnetic bearing housing 5, and a lubricating fluid 6 is sealed in the bearing housing 5. And motor case 1
2, a motor stator 10 having the bearing unit and the motor coil 11 is fixed. The motor of this configuration
The hub 13 is driven by the rotating magnetic field generated when the coil 11 is energized by the DC brushless motor and the magnetic field of the multi-pole magnetized motor rotor 9. FIG. 2 is a longitudinal sectional view of the bearing unit. The non-magnetic bearing housing 5 includes a perfect circular bearing 26 having an arc concentric with the bearing, three dynamic pressure circular arc bearings 2, 3, and a spacer 4. A thrust bearing 8 is arranged so that the rotating shaft 1 having a spherical tip can be rotatably supported by these bearings. A lubricating fluid 6 is sealed in the non-magnetic bearing housing 5, and the rotating shaft 1 is supported in a non-contact manner by the perfect circular bearing 26 and the dynamic pressure three-arc bearings 2, 3 via the lubricating fluid 6. I have. In the bearing unit of the present embodiment, ordinary lubricating oil may be used as the lubricating fluid.
Rare earth permanent magnets are used, and the lubricating fluid 6 is a magnetic fluid in which ultrafine magnetic powder having a particle size of about 0.01 μm is dispersed in lubricating oil. With such a configuration of the bearing unit, the magnetic fluid 6 is attracted to the spacer 4 made of a permanent magnet, and the enclosed magnetic fluid 6 does not leak out of the bearing unit. Further, the rotating shaft 1 and the radial bearings 2, 3, 26
Since the gap between the sliding surfaces formed by the above is a narrow gap on the order of micrometers, the sliding surface is moistened with the magnetic fluid 6 by a capillary phenomenon at rest. Therefore, when the rotating shaft 1 is driven, the sliding surface of the bearing is lubricated with the magnetic fluid 6 from the beginning of rotation. In addition, the radial bearing 2 may be expanded due to volume expansion of the magnetic fluid 6 due to temperature rise or dynamic pressure action of the bearing.
Of the magnetic fluid 6 overflowing to the upper end surface of the radial bearings 2 and 3
Grooves 19, 20, 21 communicating with the bearing end surface and the bearing outer peripheral surface
Is provided, the magnetic fluid 6 is attracted to the permanent magnet spacer 4 through the grooves 19, 20, and 21, so that the magnetic fluid 6 does not leak out of the bearing unit.
【0013】図3は、ラジアル軸受26の形状を示した
もので、円弧半径rの真円軸受である。図4は、ラジア
ル軸受2、3の形状を示したもので、軸受中心に対して
非同心で円弧半径Rの軸受面を持つ動圧三円弧軸受であ
る。このラジアル軸受の組み合わせで、モータを落下さ
せてハブ13を含む回転体に衝撃力が作用した場合、ラ
ジアル軸受26と回転軸1はほぼ同じ曲率を持つので面
接触になる。この場合、軸受摺動面に潤滑流体が介在し
ていると、スクイズアクション効果によるダンピングが
大きいので、回転軸1とラジアル軸受26は直接接触す
ることはない。回転中は、前記した真円軸受26の作用
効果に加え、さらに回転軸1はラジアル軸受2、3の動
圧作用によって油膜で非接触支持されているので耐衝撃
性が向上するとともに、回転軸1は油膜によって高剛性
に支持されるので、常に精密な回転を維持することがで
きる。FIG. 3 shows the shape of the radial bearing 26, which is a perfect circular bearing having an arc radius r. FIG. 4 shows the shape of the radial bearings 2 and 3, which is a hydrodynamic three-arc bearing having a bearing surface having an arc radius R that is not concentric with the center of the bearing. When an impact force is applied to the rotating body including the hub 13 by dropping the motor with this combination of the radial bearings, the radial bearing 26 and the rotating shaft 1 have substantially the same curvature, and thus come into surface contact. In this case, if the lubricating fluid is present on the bearing sliding surface, the damping due to the squeeze action effect is large, so that the rotating shaft 1 and the radial bearing 26 do not come into direct contact. During rotation, in addition to the above-described operation and effect of the perfect circular bearing 26, the rotary shaft 1 is supported in a non-contact manner by an oil film by the dynamic pressure action of the radial bearings 2 and 3, so that impact resistance is improved and the rotary shaft 1 is improved. Since 1 is supported with high rigidity by the oil film, precise rotation can always be maintained.
【0014】ラジアル軸受26を設けないで、ラジアル
軸受2、3で回転軸1を支持する場合、軸受摺動面は回
転軸1に比較して大きな曲率Rを持っているので、軸受
面と回転軸1の接触形態は線接触になり、軸受摺動面に
潤滑流体が介在していても真円軸受のような大きなスク
イズアクションによるダンピングが期待できない。した
がって、特に静止時にモータを落下させてハブ13を含
む回転体に衝撃力が作用すると、ラジアル軸受の端面で
接触して軸受が変形して十分な軸受性能が得られなくな
り、精密な回転を維持することができなくなる。When the rotating shaft 1 is supported by the radial bearings 2 and 3 without the radial bearing 26, the bearing sliding surface has a larger curvature R than that of the rotating shaft 1; The contact form of the shaft 1 is a line contact, and even if lubricating fluid is present on the bearing sliding surface, damping by a large squeeze action like a perfect circular bearing cannot be expected. Therefore, especially when the motor is dropped at rest and an impact force is applied to the rotating body including the hub 13, the bearing comes into contact with the end face of the radial bearing and the bearing is deformed, so that sufficient bearing performance cannot be obtained, and precise rotation is maintained. You can't do that.
【0015】図5は、本発明の他の実施例を示したもの
で、この実施例では真円軸受26を用いないで耐衝撃性
を持たせた構成を示す。図6はその軸受ユニットを示し
たもので、図2に示した軸受ユニットと異なるところ
は、ラジアル軸受26を設けないでラジアル軸受2及び
3で上記した衝撃力を受ける点である。モータや軸受ユ
ニットの構成は、図1及び図2とほぼ同じであり、詳細
な説明は省くが、この構成で新規なところはラジアル軸
受2及び3の形状が図7に示すように、図4に示した動
圧三円弧軸受とは異なり、軸受の摺動面の一部に回転軸
1と面接触する部分を持たせている。すなわち、ラジア
ル軸受2及び3には軸受中心と同心の円弧半径rを有す
る軸受面と軸受中心と非同心の円弧半径Rを有する軸受
面で結ばれた複数の曲率半径を持つ軸受面にしている。FIG. 5 shows another embodiment of the present invention. In this embodiment, a structure in which impact resistance is provided without using a perfect circular bearing 26 is shown. FIG. 6 shows the bearing unit. The difference from the bearing unit shown in FIG. 2 is that the radial bearings 2 and 3 receive the above-described impact force without providing the radial bearing 26. The configurations of the motor and the bearing unit are substantially the same as those in FIGS. 1 and 2, and detailed description thereof will be omitted. However, in this configuration, the radial bearings 2 and 3 have a new shape as shown in FIG. Unlike the dynamic pressure three-arc bearing shown in FIG. 1, a part of the sliding surface of the bearing has a portion that comes into surface contact with the rotating shaft 1. That is, the radial bearings 2 and 3 have a bearing surface having a plurality of radii of curvature connected by a bearing surface having an arc radius r concentric with the bearing center and a bearing surface having an arc radius R non-concentric with the bearing center. .
【0016】この動圧多円弧軸受2及び3では、回転軸
1と面接触する部分はθの部分で、前記した動圧三円弧
軸受と異なり、軸受面にダンピング効果の大きい面接触
部を持たせているので、外部からの衝撃力が作用しても
回転軸1と直接接触することが避けられる。特に、この
軸受は同心の円弧半径rを有する軸受面θの部分を適度
に設計すると軸受の油膜剛性が通常の動圧三円弧軸受の
1.5倍程度に増大するので、より精密な回転精度が得
られる。軸受剛性より決まる軸受面θの最適な寸法は1
軸受面の略1/3である。また、耐衝撃性を高めるには
軸受の油膜剛性は若干低下するが、θの寸法を1軸受面
の3/4程度の値にするとよい。それ以上にすると軸受
の油膜剛性が通常の動圧三円弧軸受並みになるので、本
軸受の効果が期待できなくなる。また、θの寸法は1軸
受面の1/6以下にしても同様の結果となり、θの値と
しては1/6〜3/4の範囲で設定することが望まし
い。また、この動圧多円弧軸受では、非同心円弧部と軸
とで構成される隙間aの最大が同心円弧部と軸とで構成
される隙間cの1.5〜3倍の範囲で設定すると動圧作
用による油膜の剛性が高くなる。なお、油膜の剛性が最
も高くなるのは非同心円弧部と軸とで構成される隙間a
の最大値が同心円弧部と軸とで構成される隙間cの略
2.5倍の時である。図8は、ラジアル軸受2及び3に
設けた軸受端面部の溝19及び外周面の溝20を示した
もので、それぞれの溝を連通させ、前記したように永久
磁石製のスペーサ4の磁気吸引力で軸受端面に溢れ出た
磁性流体6を回収するようにしている。In the dynamic pressure multi-arc bearings 2 and 3, the surface contact portion with the rotating shaft 1 is a portion θ, which is different from the dynamic pressure three-arc bearing described above, and has a surface contact portion having a large damping effect on the bearing surface. Therefore, direct contact with the rotating shaft 1 can be avoided even when an external impact force acts. Particularly, in this bearing, if the part of the bearing surface θ having a concentric arc radius r is designed appropriately, the oil film rigidity of the bearing increases to about 1.5 times that of a normal dynamic pressure three-arc bearing, so that more precise rotation accuracy Is obtained. The optimal dimension of the bearing surface θ determined by the bearing rigidity is 1
It is approximately 1/3 of the bearing surface. In order to improve the impact resistance, the oil film rigidity of the bearing slightly decreases, but it is preferable to set the dimension θ to a value of about / of one bearing surface. If it is larger than this, the oil film rigidity of the bearing becomes similar to that of a normal dynamic pressure three-arc bearing, so that the effect of the present bearing cannot be expected. The same result is obtained even when the dimension of θ is 1/6 or less of one bearing surface, and the value of θ is desirably set in the range of 1/6 to 3/4. Further, in this dynamic pressure multi-arc bearing, the maximum of the gap a formed by the non-concentric arc portion and the shaft is set to be 1.5 to 3 times the gap c formed by the concentric arc portion and the shaft. The rigidity of the oil film due to the dynamic pressure action increases. In addition, the rigidity of the oil film is highest in the gap a formed by the non-concentric arc portion and the shaft.
Is approximately 2.5 times the gap c formed by the concentric arc portion and the shaft. FIG. 8 shows the groove 19 on the bearing end face portion and the groove 20 on the outer peripheral surface provided in the radial bearings 2 and 3. The grooves are communicated with each other, and the magnetic attraction of the spacer 4 made of a permanent magnet as described above is performed. The magnetic fluid 6 that has overflowed to the bearing end face by force is collected.
【0017】図9は、本発明のさらに他の実施例である
動圧多円弧軸受の形状を示したもので、軸受の摺動面の
一部に回転軸1と面接触するθの部分を溝19に近い部
分に設け、動圧軸受作用の高いラジアル軸受を提供して
いる。ここで、図7及び図9に示した動圧多円弧軸受の
動圧作用について図10を用いて説明する。回転軸1が
図の矢印方向に回転すると、図に示すように回転軸1と
軸受面の一部では軸受隙間がゆるやかに狭くなっている
ので油膜の楔効果で図に示すプロフィルの油膜圧力Pa
が発生し、回転軸1を軸受中心に保つように作用する。
逆に、αの部分では回転軸1と軸受面で構成される隙間
は回転方向に広がっているので負の油膜圧力Pbが発生
し、軸受剛性を低下させるように作用する。軸受として
は負の油膜圧力Pbが小さいほうよいが、この負圧力は
軸受端面の磁性流体を軸受面に引き戻すことになる。し
たがって、この負圧力は軸受面へ磁性流体を引き込むよ
うに働くのでαの寸法を1軸受面の1/10程度の値に
設定すると、軸受性能はほとんど低下させないで、軸受
端面の磁性流体を軸受面に引き戻すことができる。図7
に示した軸受は、軸受の摺動面の一部に回転軸1と面接
触するθの部分を軸受面の中央部に設けているので可逆
回転に適した軸受であり、一方向回転での使用に対して
は図9に示した動圧多円弧軸受が適している。本実施例
では、三円弧軸受を一例として示したが、軸受面の数は
4ないしは5円弧といった3以上の複数の円弧軸受とし
ても同等の作用効果を奏するばかりでなく、本発明の動
圧多円弧軸受は高速回転ほど軸受剛性が高くなるので、
精度の高い回転が得られ、とくに高い回転精度が要求さ
れる磁気ディスク駆動装置に適している。FIG. 9 shows the shape of a hydrodynamic multi-arc bearing according to still another embodiment of the present invention. A radial bearing having a high dynamic pressure bearing effect is provided at a portion close to the groove 19. Here, the dynamic pressure action of the dynamic pressure multi-arc bearing shown in FIGS. 7 and 9 will be described with reference to FIG. When the rotating shaft 1 rotates in the direction of the arrow in the figure, as shown in the figure, the bearing gap is gradually narrowed on the rotating shaft 1 and a part of the bearing surface, so that the oil film pressure Pa of the profile shown in the figure due to the wedge effect of the oil film.
And acts to keep the rotating shaft 1 at the center of the bearing.
Conversely, in the portion α, the gap formed by the rotating shaft 1 and the bearing surface is widened in the rotation direction, so that a negative oil film pressure Pb is generated, which acts to reduce the bearing rigidity. The negative oil film pressure Pb of the bearing is preferably small, but this negative pressure pulls the magnetic fluid of the bearing end face back to the bearing face. Therefore, since this negative pressure acts to draw the magnetic fluid into the bearing surface, setting the dimension of α to a value of about 1/10 of one bearing surface does not substantially reduce the bearing performance. Can be pulled back to the surface. FIG.
The bearing shown in (1) is a bearing suitable for reversible rotation because a portion of θ which is in surface contact with the rotating shaft 1 is provided in a part of the sliding surface of the bearing at the center of the bearing surface. The dynamic pressure multi-arc bearing shown in FIG. 9 is suitable for use. In the present embodiment, a three-arc bearing is shown as an example. However, not only a plurality of three or more arc bearings such as four or five arcs having the same number of bearing surfaces can provide the same operation and effect, but also the dynamic pressure bearing of the present invention. The higher the rotation speed of the arc bearing, the higher the bearing rigidity.
It is suitable for a magnetic disk drive device that can achieve high-precision rotation and particularly requires high rotation accuracy.
【0018】図11は、本発明のさらに他の実施例であ
る光ディスク駆動用モータを示したもので、光ディスク
23を受けるターンテーブル22に回転軸1とロータケ
ース24が勘合されていて、前記した磁気ディスク駆動
モータと同様DCブラシレスモータで駆動される。軸受
ユニットの構成は図6と同じ構成であり、光ディスク駆
動用モータの場合は、ユーザが光ディスク23をターン
テーブル22に可換できるようにしているので、光ディ
スク23とターンテーブル22の勘合部の隙間が広く、
変心状態でセットされること及び光ディスク23そのも
のの精度がよくないためにディスクの持つ不釣り合い量
が比較的大きく、不釣り合い量が1g・cm前後のもの
がある。このような大きな不釣り合い量の光ディスク2
3を毎分数千回転以上で回転させると、軸受の油膜剛性
が低いと数百時間で軸受が摩耗し、回転精度が得られな
くなる。本実施例の動圧多円弧軸受において、回転軸1
の直径3mmの軸受を用いて寿命試験を行った結果、従
来の真円軸受に比較し10倍以上の寿命を有することが
分かった。さらに、本実施例の動圧多円弧軸受は従来の
三円弧軸受に比較し、面接触部を設け軸受の油膜剛性を
高めているので、同様の寿命試験を行った結果、回転軸
1の直径を2mmにしても直径3mmの寸法の軸受と同
等の寿命が得られた。これは、直径を2mmの寸法の動
圧多円弧軸受は直径を3mmの寸法の動圧多円弧軸受に
比較して軸受損失が約1/2と小さく、磁性流体の温
度、粘度効果によって同等の油膜剛性が得られ、軸受が
摩耗しないことが分かった。本実施例の動圧多円弧軸受
を用いた軸受ユニットは、このような実験結果から光デ
ィスク駆動装置では、回転軸1の径を従来の3mmから
2mmにし、ボールベアリング並みの軸受損失で使用で
きることを可能にした。FIG. 11 shows a motor for driving an optical disk according to still another embodiment of the present invention. The rotary shaft 1 and the rotor case 24 are fitted to a turntable 22 for receiving an optical disk 23. It is driven by a DC brushless motor like a magnetic disk drive motor. The configuration of the bearing unit is the same as that shown in FIG. 6. In the case of the optical disk driving motor, the user can replace the optical disk 23 with the turntable 22. Is wide,
Since the disc is set in an eccentric state and the precision of the optical disc 23 itself is not good, the disc has a relatively large unbalance amount, and some discs have a non-balance amount of about 1 g · cm. Optical disc 2 having such a large unbalanced amount
If 3 is rotated at several thousand revolutions per minute or more, if the oil film stiffness of the bearing is low, the bearing will wear in several hundred hours, and rotation accuracy cannot be obtained. In the dynamic pressure multi-arc bearing of the present embodiment, the rotating shaft 1
As a result of a life test using a bearing having a diameter of 3 mm, it was found that the bearing had a life ten times or more that of a conventional perfect circular bearing. Furthermore, since the hydrodynamic multi-arc bearing of this embodiment has a surface contact portion and increases the oil film rigidity of the bearing as compared with the conventional three-arc bearing, the same life test was carried out. Was set to 2 mm, a life equivalent to that of a bearing having a diameter of 3 mm was obtained. This is because a dynamic pressure multi-arc bearing having a diameter of 2 mm has a bearing loss as small as about 1/2 compared with a dynamic pressure multi-arc bearing having a diameter of 3 mm, and is equivalent to the temperature and viscosity effects of the magnetic fluid. It was found that oil film rigidity was obtained and the bearing did not wear. The bearing unit using the dynamic pressure multi-arc bearing of the present embodiment shows that the optical disk drive can be used with the diameter of the rotating shaft 1 from 3 mm in the past to 2 mm in bearing loss equivalent to that of a ball bearing. Made it possible.
【0019】[0019]
【発明の効果】本発明によれば、外部から加わる衝撃荷
重に対して大きなスクイズアクションによるダンピング
を効かせることができるので、静止時においても軸受高
剛が高く、耐衝撃性に優れる信頼性の高いディスク駆動
装置を提供することができる。According to the present invention, a large squeeze action can be used for damping against an impact load applied from the outside, so that the bearing has high rigidity even at rest and has high reliability in impact resistance. A high disk drive can be provided.
【図1】 本発明の一実施例に係る磁気ディスク駆動装
置の縦断面図。FIG. 1 is a longitudinal sectional view of a magnetic disk drive according to an embodiment of the present invention.
【図2】 本発明の一実施例に係る動圧多円弧軸受ユニ
ットの縦断面図。FIG. 2 is a longitudinal sectional view of a dynamic pressure multi-arc bearing unit according to one embodiment of the present invention.
【図3】 本発明の一実施例に係るラジアル軸受の説明
図。FIG. 3 is an explanatory view of a radial bearing according to one embodiment of the present invention.
【図4】 本発明の一実施例に係る動圧三円弧軸受の説
明図。FIG. 4 is an explanatory view of a dynamic pressure three-arc bearing according to one embodiment of the present invention.
【図5】 本発明の他の実施例に係る磁気ディスク駆動
装置の縦断面図。FIG. 5 is a longitudinal sectional view of a magnetic disk drive according to another embodiment of the present invention.
【図6】 本発明の他の実施例に係る動圧多円弧軸受ユ
ニットの縦断面図。FIG. 6 is a longitudinal sectional view of a dynamic pressure multi-arc bearing unit according to another embodiment of the present invention.
【図7】 本発明の他の実施例に係る動圧多円弧軸受の
形状の説明図。FIG. 7 is an explanatory diagram of a shape of a dynamic pressure multi-arc bearing according to another embodiment of the present invention.
【図8】 本発明の他の実施例に係る動圧多円弧軸受の
オイルガイドの説明図。FIG. 8 is an explanatory view of an oil guide of a dynamic pressure multi-arc bearing according to another embodiment of the present invention.
【図9】 本発明の他の実施例に係る動圧多円弧軸受の
形状の説明図。FIG. 9 is an explanatory view of a shape of a dynamic pressure multi-arc bearing according to another embodiment of the present invention.
【図10】 本発明の他の実施例に係る動圧多円弧軸受
の動圧作用の説明図。FIG. 10 is an explanatory diagram of a dynamic pressure action of a dynamic pressure multi-arc bearing according to another embodiment of the present invention.
【図11】 本発明のさらの他の実施例に係る光ディス
ク駆動装置の縦断面図。FIG. 11 is a longitudinal sectional view of an optical disk drive according to still another embodiment of the present invention.
1…軸、2、3…ラジアル軸受、4…永久磁石、5…軸
受ハウジング、6…磁性流体、8…スラスト軸受、1
9、20、21…溝、26…ラジアル軸受。DESCRIPTION OF SYMBOLS 1 ... shaft, 2, 3 ... radial bearing, 4 ... permanent magnet, 5 ... bearing housing, 6 ... magnetic fluid, 8 ... thrust bearing, 1
9, 20, 21 ... grooves, 26 ... radial bearings.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02K 7/09 H02K 7/09 (72)発明者 金丸 尚信 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 (72)発明者 熊坂 登行 茨城県ひたちなか市稲田1410番地 株式会 社日立製作所映像情報メディア事業部内 (72)発明者 河野 敬 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 柳瀬 裕一 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 村西 勝 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 Fターム(参考) 3J011 BA02 BA08 CA04 JA03 KA02 KA03 RA04 5D109 BB12 BB17 BB21 BB22 5H605 AA04 AA08 BB05 BB19 CC03 CC04 DD05 EB03 EB06 5H607 AA04 BB01 BB14 BB17 CC01 DD02 DD03 GG01 GG03 GG09 GG12 GG19 KK10 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme court ゛ (Reference) H02K 7/09 H02K 7/09 (72) Inventor Naoshin Kanamaru 2520 Oji Takaba, Hitachinaka City, Ibaraki Pref. Hitachi, Ltd. Automotive Equipment Division (72) Inventor Noboru Kumasaka 1410 Inada, Hitachinaka-shi, Ibaraki Prefecture Hitachi, Ltd. Video Information Media Division (72) Inventor Takashi Kawano 502, Kandachicho, Tsuchiura-shi, Ibaraki Prefecture Hitachi, Ltd. Inside the Machinery Research Laboratories (72) Inventor Yuichi Yanase 502 Kandate-cho, Tsuchiura-shi, Ibaraki Prefecture Machinery Research Laboratories, Inc. F term (reference) 3J011 BA02 BA08 CA04 JA03 KA02 KA03 RA04 5D109 BB12 BB17 BB21 BB22 5H605 AA04 AA08 B B05 BB19 CC03 CC04 DD05 EB03 EB06 5H607 AA04 BB01 BB14 BB17 CC01 DD02 DD03 GG01 GG03 GG09 GG12 GG19 KK10
Claims (5)
スクを固定するハブと、前記ハブと固着された回転軸
と、この回転軸を回転自在に支持する軸受ユニットとを
備えたディスク駆動装置において、 前記軸受ユニットは、前記回転軸を径方向に支持するラ
ジアル軸受と前記回転軸を軸方向に支持するスラスト軸
受とを有し、 前記ラジアル軸受とスラスト軸受部の摺動面間に潤滑流
体を介在させ、 前記ラジアル軸受が、同心の円弧面として形成された同
心円弧面と、前記同心円弧面とは非同心の円弧面として
形成された非同心円弧面とを備えて構成されていること
を特徴とするディスク駆動装置。1. A disk drive comprising a disk as an information storage medium, a hub for fixing the disk, a rotating shaft fixed to the hub, and a bearing unit for rotatably supporting the rotating shaft. The bearing unit has a radial bearing that radially supports the rotating shaft and a thrust bearing that axially supports the rotating shaft, and supplies a lubricating fluid between sliding surfaces of the radial bearing and the thrust bearing portion. The radial bearing is configured to include a concentric circular arc surface formed as a concentric circular arc surface, and a non-concentric circular arc surface formed as a non-concentric circular arc surface with the concentric circular arc surface. Characteristic disk drive.
て、前記同心円弧面と前記非同心円弧面とは、前記軸方
向に分離して配置されたことを特徴とするディスク駆動
装置。2. The disk drive device according to claim 1, wherein said concentric arc surface and said non-concentric arc surface are arranged separately in said axial direction.
て、前記非同心円弧面を前記ラジアル軸受の周方向に間
隔を置いて複数形成し、前記複数の非同心円弧面の間に
前記同心円弧面を形成したことを特徴とするディスク駆
動装置。3. The disk drive according to claim 1, wherein a plurality of said non-concentric circular arc surfaces are formed at intervals in a circumferential direction of said radial bearing, and said concentric circular arcs are provided between said plurality of non-concentric circular arc surfaces. A disk drive device having a surface formed.
て、前記ラジアル軸受の内周面の1/6〜3/4が前記
同心円弧面であることを特徴とするディスク駆動装置。4. The disk drive device according to claim 3, wherein 1/6 to 3/4 of the inner peripheral surface of said radial bearing is said concentric arc surface.
て、前記回転軸の外周面と前記非同心円弧面との距離の
最大値が、前記回転軸の外周面と前記同心円弧面との距
離の1.5〜3倍であることを特徴とする軸受ユニッ
ト。5. The disk drive according to claim 3, wherein the maximum value of the distance between the outer peripheral surface of the rotating shaft and the non-concentric arc surface is the distance between the outer peripheral surface of the rotating shaft and the concentric arc surface. The bearing unit is 1.5 to 3 times as large as the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002077461A JP2002369446A (en) | 2002-03-20 | 2002-03-20 | Disk drive |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002077461A JP2002369446A (en) | 2002-03-20 | 2002-03-20 | Disk drive |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25300997A Division JPH1196658A (en) | 1997-09-18 | 1997-09-18 | Bearing unit and disk driving device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002369446A true JP2002369446A (en) | 2002-12-20 |
Family
ID=19193297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002077461A Withdrawn JP2002369446A (en) | 2002-03-20 | 2002-03-20 | Disk drive |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002369446A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005098252A1 (en) * | 2004-04-09 | 2005-10-20 | Ntn Corporation | Dynamic pressure bearing device |
CN101852245A (en) * | 2006-03-24 | 2010-10-06 | Ntn株式会社 | Hydrodynamic bearing device |
US8016488B2 (en) * | 2006-10-27 | 2011-09-13 | Ntn Corporation | Fluid dynamic bearing device |
US10393010B2 (en) | 2015-07-16 | 2019-08-27 | Ihi Corporation | Multi-arc bearing and turbocharger |
-
2002
- 2002-03-20 JP JP2002077461A patent/JP2002369446A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005098252A1 (en) * | 2004-04-09 | 2005-10-20 | Ntn Corporation | Dynamic pressure bearing device |
US8782901B2 (en) | 2004-04-09 | 2014-07-22 | Ntn Corporation | Dynamic bearing device |
CN101852245A (en) * | 2006-03-24 | 2010-10-06 | Ntn株式会社 | Hydrodynamic bearing device |
US8016488B2 (en) * | 2006-10-27 | 2011-09-13 | Ntn Corporation | Fluid dynamic bearing device |
US10393010B2 (en) | 2015-07-16 | 2019-08-27 | Ihi Corporation | Multi-arc bearing and turbocharger |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11283321A (en) | Disk drive device having high impact durability and magnetic disk device | |
JP2000306319A (en) | Spindle motor and magnetic disk apparatus utilizing the same | |
US5783886A (en) | Spindle motor having magnetic bearing | |
US6545378B2 (en) | Electric spindle motor with magnetic bearing and hydrodynamic bearing | |
US5283491A (en) | Air-bearing motor assembly for magnetic recording systems | |
US6356408B1 (en) | Magnetic disk apparatus, including spindle motor having air flow passage in hub for pressure balance | |
JP4182056B2 (en) | Fluid dynamic pressure bearing configured with raceway for high efficiency | |
US6717308B2 (en) | Electric spindle motor and method having magnetic starting/stopping device | |
US20060002642A1 (en) | Fluid dynamic pressure bearing apparatus | |
JPH099568A (en) | Disc drive | |
US20030091250A1 (en) | Dynamic pressure bearing device | |
JP3939987B2 (en) | Spindle motor | |
US6592262B2 (en) | Bearing performance enhancement utilizing sleeve/hub radial surfaces | |
JP2002369446A (en) | Disk drive | |
JPH1196658A (en) | Bearing unit and disk driving device | |
JP3234030B2 (en) | Spindle motor | |
JP3782918B2 (en) | Hydrodynamic bearing unit | |
EP1555671A2 (en) | Spindle motor for disk drive | |
JP2004183867A (en) | Dynamic pressure fluid bearing device, and motor provided with the same | |
JPH1118384A (en) | Spindle motor | |
JP4030517B2 (en) | Hydrodynamic bearing device | |
JP2003172355A (en) | Magnetic fluid bearing | |
JP2001045700A (en) | Compact motor with dynamic pressure bearing and rolling bearing | |
KR20020045670A (en) | Spindle motor | |
JP2004036756A (en) | Motor using dynamic-pressure bearing, and disk drive device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050419 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20050620 |