[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002363649A - Method for producing high strength cold rolled steel sheet - Google Patents

Method for producing high strength cold rolled steel sheet

Info

Publication number
JP2002363649A
JP2002363649A JP2001171837A JP2001171837A JP2002363649A JP 2002363649 A JP2002363649 A JP 2002363649A JP 2001171837 A JP2001171837 A JP 2001171837A JP 2001171837 A JP2001171837 A JP 2001171837A JP 2002363649 A JP2002363649 A JP 2002363649A
Authority
JP
Japan
Prior art keywords
steel sheet
temperature
strength
cold
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001171837A
Other languages
Japanese (ja)
Other versions
JP3879440B2 (en
Inventor
Taro Kizu
太郎 木津
Yasunobu Nagataki
康伸 長滝
Yasushi Tanaka
靖 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2001171837A priority Critical patent/JP3879440B2/en
Publication of JP2002363649A publication Critical patent/JP2002363649A/en
Application granted granted Critical
Publication of JP3879440B2 publication Critical patent/JP3879440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a cold rolled steel sheet having a low yield ratio, excellent workability and weldability, and high tensile strength by which the problems of a high yield ratio and bad shape freezability on press forming which are the characteristics of a precipitation type and fine grain type high strength steel sheet are solved. SOLUTION: Steel containing, by mass, 0.016 to 0.2% C and one or more kinds selected from 0.025 to 1% Ti, 0.01 to 1.5% Nb, and 0.01 to 1% V is hot- rolled, and is thereafter coiled at <=650 deg.C. The steel sheet is cold-rolled at a draft of <=85%, and is subsequently annealed at a heating rate of >=30 deg.C/s in the temperature range from 600 deg.C to the completion of recrystallization. In this production method, within 1 second after the completion of final rolling in the hot rolling, the steel sheet is cooled at a cooling rate of >=100 deg.C/s in the temperature range of >=80 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、降伏比が低く、加
工性、溶接性に優れる高強度冷延鋼板の製造方法に関す
るものである。
The present invention relates to a method for producing a high-strength cold-rolled steel sheet having a low yield ratio and excellent workability and weldability.

【0002】[0002]

【従来の技術】近年、自動車用部品や家電製品などに使
用される鋼板において、引張強度の高い高強度冷延鋼板
が注目されている。従来より鋼の強化機構として、第74
・75回西山記念技術講座(昭和56年、日本鉄鋼協会)の
p.41に示されるように、固溶強化、析出強化、
変態強化、細粒化、加工硬化の5つの機構が知られ
ている。このうち、の加工硬化による高強度化は、鋼
の加工性を著しく劣化させるため、通常、高強度薄鋼板
の製造に関しては、〜の強化機構が用いられてい
る。
2. Description of the Related Art In recent years, high-strength cold-rolled steel sheets having high tensile strength have been attracting attention as steel sheets used for automobile parts and home electric appliances. Conventionally, as a steel strengthening mechanism, No. 74
・ As shown on p.41 of the 75th Nishiyama Memorial Technical Lecture (The Iron and Steel Institute of Japan, 1981), solid solution strengthening, precipitation strengthening,
Five mechanisms of transformation strengthening, grain refinement, and work hardening are known. Of these, the increase in strength due to work hardening significantly deteriorates the workability of steel, and therefore, in the production of high-strength thin steel sheets, the following strengthening mechanism is usually used.

【0003】ここで、の固溶強化は、Si、Mn、P等の
固溶元素の添加によりなされ、加工性をさほど劣化させ
ることなく高強度化する有効な手段である。しかし、S
i、Mnは多量に添加すると鋼板表面性状が劣化する。す
なわち、Siは赤スケールを発生させ、Mnはスラブ割れに
伴う表面欠陥が発生することで、鋼板表面性状が劣化す
る。またPについては固溶量が限られているため、固溶
強化機構のみで引張強度が500MPaを超えるような高強度
材の製造することは困難である。
Here, the solid solution strengthening is performed by adding a solid solution element such as Si, Mn, or P, and is an effective means for increasing the strength without significantly deteriorating the workability. But S
When i and Mn are added in large amounts, the surface properties of the steel sheet deteriorate. That is, Si generates red scale, and Mn causes surface defects accompanying slab cracking, thereby deteriorating the steel sheet surface properties. Further, since the solid solution amount of P is limited, it is difficult to produce a high-strength material having a tensile strength exceeding 500 MPa only by the solid solution strengthening mechanism.

【0004】の析出強化は、Ti、Nb、V等の炭窒化物
形成元素を添加し、炭窒化物を微細析出させることでな
され、微細析出物が転位のトラップサイトとして作用す
ることで引張強度の上昇が図れる。しかし、析出強化の
場合は必然的に降伏強度の上昇も伴うため、プレス成型
時の形状凍結性が劣るという問題点がある。
[0004] Precipitation strengthening is performed by adding carbonitride forming elements such as Ti, Nb, and V to finely precipitate carbonitrides, and the fine precipitates act as trap sites for dislocations, resulting in tensile strength. Can be increased. However, in the case of precipitation strengthening, the yield strength is inevitably increased, so that there is a problem that the shape freezing property during press molding is inferior.

【0005】さらに、熱延鋼板に比べて、薄物が可能
で、かつ、表面粗度および板厚精度にも優れる冷延鋼板
として製造する場合、多量の炭窒化物形成元素の添加
は、冷圧後の焼鈍時に、再結晶温度の上昇を招く。その
ため、オーステナイト域での焼鈍を余儀なくされること
になり、その場合、結晶粒が粗大化することで加工性が
著しく劣化してしまう。したがって、とくに冷延鋼板の
場合、析出強化による高強度化は困難である。
[0005] Further, in the case of producing a cold-rolled steel sheet which is thinner than a hot-rolled steel sheet and which is excellent in surface roughness and sheet thickness accuracy, the addition of a large amount of carbonitride forming element requires cold-rolling. During the subsequent annealing, the recrystallization temperature rises. Therefore, annealing in the austenite region is inevitable, and in this case, workability is significantly deteriorated due to coarsening of crystal grains. Therefore, especially in the case of a cold-rolled steel sheet, it is difficult to increase the strength by precipitation strengthening.

【0006】の変態強化は、高温域からの急冷により
なされ、その冷却制御により硬質変態相であるマルテン
サイト相やベイナイト相と軟質相であるフェライト相と
の混合組織とすることで高強度かつ加工性にも優れる鋼
板とすることができる。しかし、溶融亜鉛メッキ板とし
て製造する場合には、その製造プロセス上、急冷するこ
とはできない。そのためCr、Mo等の焼き入れ促進元素を
多量に添加する必要があり、製造コストの増大を招くと
いう問題点がある。
[0006] Transformation strengthening is performed by rapid cooling from a high temperature range, and by controlling the cooling, a mixed structure of a martensite phase or a bainite phase which is a hard transformation phase and a ferrite phase which is a soft phase is formed to have high strength and workability. It is possible to obtain a steel sheet having excellent properties. However, when it is manufactured as a hot-dip galvanized plate, it cannot be rapidly cooled due to its manufacturing process. Therefore, it is necessary to add a large amount of quenching promoting elements such as Cr and Mo, which causes a problem that the production cost is increased.

【0007】さらに、薄鋼板は溶接性を要求される場合
が多く、急冷により形成された硬質相は、溶接時の熱影
響により焼き戻されて軟質化してしまうという問題点も
ある。このように、低温変態相の生成をベースとした強
化機構は溶接性の観点から不利である。
[0007] Further, in many cases, thin steel sheets are required to have weldability, and there is also a problem that the hard phase formed by rapid cooling is tempered and softened by the influence of heat during welding. Thus, the strengthening mechanism based on the formation of the low-temperature transformation phase is disadvantageous from the viewpoint of weldability.

【0008】の細粒化は、熱間で強加工をおこない、
急冷することでなされる。したがって、薄物が可能で、
かつ、表面粗度や板厚精度にも優れる冷延板として製造
する場合には、細粒化をおこなうことは困難である。さ
らに、細粒化は粒界が転位のトラップサイトとして作用
することで引張強度の上昇が図れるが、必然的に降伏強
度の上昇も伴うため、プレス成型時の形状凍結性が劣る
という問題点もある。
[0008] The grain refining is carried out by strong working hot.
This is done by quenching. Therefore, thin objects are possible,
Moreover, when manufacturing as a cold rolled sheet excellent in surface roughness and sheet thickness accuracy, it is difficult to reduce the grain size. Furthermore, grain refinement can increase tensile strength by acting as a trap site for dislocations at the grain boundaries, but inevitably involves an increase in yield strength, resulting in poor shape freezing during press molding. is there.

【0009】以上のように、これら〜の強化機構を
利用した製造方法では、降伏強度が低くプレス成型時の
形状凍結性に優れ、かつ加工性がよく、溶接時にHAZ軟
化しない薄鋼板を製造することは困難であった。その中
で、次のようないくつかの技術が提案されている。
As described above, according to the production method utilizing these strengthening mechanisms, a thin steel sheet having low yield strength, excellent shape freezing property during press molding, good workability, and HAZ softening during welding is produced. It was difficult. Among them, the following several technologies have been proposed.

【0010】加工性に優れた低降伏比高強度冷延鋼板の
製造方法に関しては、例えば特公昭60-54373号公報に開
示されているように、Tiを重量%でTi/C=2〜20となる
ように添加した鋼を、通常の方法で熱間圧延、冷間圧延
をおこなった後、急速加熱による再結晶焼鈍をおこな
い、20℃/s以下の平均冷却速度で冷却する方法があ
る。
Regarding a method for producing a low-yield-ratio high-strength cold-rolled steel sheet excellent in workability, for example, as disclosed in Japanese Patent Publication No. 60-54373, Ti / C is 2 to 20 by weight% of Ti. After the hot rolled steel and the cold rolled steel are added by ordinary methods, recrystallization annealing by rapid heating is performed, and the steel is cooled at an average cooling rate of 20 ° C./s or less.

【0011】この方法では、とくにCをTiで固定するこ
とを目的とし、再結晶焼鈍後の徐冷により固溶Cを残留
させないことに主眼をおいている。急速加熱に関して
は、生産性という観点から急速ほど好ましいという観点
であり、実施例においても750℃まで1分以内に加熱する
という表現にとどまっていることからも、実質15〜20℃
/s程度の加熱速度を意図しているものと思われる。
This method aims at fixing C with Ti in particular, and focuses on not leaving solid solution C by slow cooling after recrystallization annealing. Regarding the rapid heating, it is a viewpoint that it is more preferable as quickly as possible from the viewpoint of productivity.Since the expression is limited to heating to 750 ° C. within one minute in the examples, substantially 15 to 20 ° C.
It seems that a heating rate of about / s is intended.

【0012】伸びフランジ性に優れた高張力冷延鋼板の
製造方法に関しては、例えば特許2688384号公報に開示
されているように、Nbを0.005〜0.045wt%添加した鋼を
熱間圧延および冷間圧延をおこなった後、5℃/s以上の
加熱速度で加熱、焼鈍をおこなう方法がある。この方法
では、とくにNb添加により細粒化を実現することを意図
するものである。
Regarding a method for producing a high-tensile cold-rolled steel sheet having excellent stretch flangeability, for example, as disclosed in Japanese Patent No. 2688384, a steel to which 0.005 to 0.045 wt% of Nb is added is subjected to hot rolling and cold rolling. After rolling, there is a method in which heating and annealing are performed at a heating rate of 5 ° C./s or more. In this method, it is intended to realize grain refinement particularly by adding Nb.

【0013】さらに、加熱速度も大きいほうが微細化に
は有利とされ、そのため5℃/s以上、好ましくは10℃/
s以上とされており、実施例では最大20℃/sまでの例
が示されている。そして、このとき、フェライト粒径と
して平均11μmまでの細粒化が実現されている。
Further, it is considered that a higher heating rate is advantageous for miniaturization, so that the heating rate is 5 ° C./s or more, preferably 10 ° C./s.
s or more, and the example shows an example up to a maximum of 20 ° C./s. At this time, the grain size is reduced to an average of 11 μm as the ferrite grain size.

【0014】また、焼付硬化性に優れた高強度冷延鋼板
の製造方法として、例えば特開平4-365814号公報に開示
されているように、Ti、Nbの1種以上およびCr、Moを添
加した鋼を、熱間圧延、冷間圧延および再結晶焼鈍をお
こなう方法がある。ここで、焼鈍時の加熱速度は、高速
ほど(111)面の発達により加工性が向上するとされる
が、高強度冷延鋼板の場合は重要ではなく、とくに規定
はしないが、通常の加熱方法として5〜5000℃/s程度と
記載されている。
As a method for producing a high-strength cold-rolled steel sheet having excellent bake hardenability, for example, as disclosed in JP-A-4-365814, one or more of Ti and Nb and Cr and Mo are added. There is a method of performing hot rolling, cold rolling, and recrystallization annealing on the resulting steel. Here, the higher the heating rate during annealing, the higher the workability is improved by the development of the (111) plane. However, in the case of a high-strength cold-rolled steel sheet, this is not important, and although not particularly specified, the normal heating method is used. About 5 to 5000 ° C./s.

【0015】[0015]

【発明が解決しようとする課題】しかし、前述の従来技
術については、次のような問題点があった。特公昭60-5
4373号公報記載の技術については、固溶Cと同様、降伏
強度に大きく影響をおよぼす固溶Nに関しては、Alで固
定することになっている。しかし、第74・75回西山記念
技術講座(昭和56年、日本鉄鋼協会)のp.55にも示さ
れるように、Tiが優先的に窒化物を形成することは明白
である。従って、その上にTiでCおよびNを固定しようと
すれば、多量のTi添加を必要とすることから、製造コス
トの増大を招くという問題がある。
However, the above-mentioned prior art has the following problems. Tokiko Showa 60-5
In the technique described in Japanese Patent No. 4373, similarly to solid solution C, solid solution N which greatly affects yield strength is fixed with Al. However, as shown in p.55 of the 74.75th Nishiyama Memorial Technical Lecture (The Iron and Steel Institute of Japan, 1981), it is clear that Ti preferentially forms nitride. Therefore, if C and N are to be fixed on top of that, a large amount of Ti needs to be added, which causes a problem of increasing the manufacturing cost.

【0016】特許2688384号公報記載の技術について
は、このようなNb添加により細粒化を実現する方法での
高強度化では、従来から指摘されるように降伏強度の上
昇が避けられない。そのため、プレス成型時の形状凍結
性が悪くなるという問題点がある。
As for the technique described in Japanese Patent No. 2688384, in such a method of realizing finer grains by adding Nb, an increase in yield strength is inevitable as conventionally pointed out. Therefore, there is a problem that the shape freezing property at the time of press molding is deteriorated.

【0017】特開平4-365814号公報記載の技術について
は、得られた材質特性値も降伏比(=降伏強度/引張強
度)が高い。このような高降伏比は、従来から指摘され
るようなTi、Nb系の炭窒化物析出の影響と考えられ、し
たがって、この方法においても、プレス成型時の形状凍
結性が悪くなるという問題点は解消されない。焼鈍時の
加熱速度については、実施例には記載がなく、とくに急
速加熱は指向しておらず、実施例としてもなされていな
いと考えるのが妥当である。
With respect to the technique described in Japanese Patent Application Laid-Open No. 4-365814, the obtained material characteristic values also have a high yield ratio (= yield strength / tensile strength). Such a high yield ratio is considered to be due to the influence of Ti, Nb-based carbonitride precipitation as conventionally pointed out, and therefore, even in this method, the shape freezing property during press molding is deteriorated. Is not resolved. The heating rate at the time of annealing is not described in the examples, and it is reasonable to consider that rapid heating is not particularly intended and is not performed as an example.

【0018】本発明は、析出型、細粒型高強度鋼板の特
徴である降伏比が高く、プレス成型時の形状凍結性が悪
いという課題を解決するものであり、降伏比が低く、か
つ、加工性、溶接性に優れる引張強度の高い冷延鋼板の
製造方法を提供することを目的とする。
The present invention solves the problem of high yield ratio, which is a feature of precipitation-type and fine-grained high-strength steel sheets, and poor shape freezing property during press forming. An object of the present invention is to provide a method for producing a cold-rolled steel sheet having excellent workability and weldability and high tensile strength.

【0019】[0019]

【課題を解決するための手段】上記の課題は、次の発明
により解決される。その発明は、mass%で、C:0.016〜
0.2%、かつ、Ti:0.025〜1%、Nb:0.01〜1.5%、V:0.01
〜1%のいずれか1種以上を含有する鋼を、熱間圧延後65
0℃以下で巻き取り、85%以下の圧下率で冷間圧延後、6
00℃から再結晶終了までの温度域を30℃/s以上の加熱速
度で焼鈍することを特徴とする高強度冷延鋼板の製造方
法である。
The above object is achieved by the following invention. The invention, in mass%, C: 0.016 ~
0.2%, Ti: 0.025-1%, Nb: 0.01-1.5%, V: 0.01
After hot rolling 65% of steel containing at least one of
Winding at 0 ° C or less, cold rolling at a rolling reduction of 85% or less, 6
A method for producing a high-strength cold-rolled steel sheet, comprising annealing a temperature range from 00 ° C. to the end of recrystallization at a heating rate of 30 ° C./s or more.

【0020】この発明は、上述した問題を解決すべく鋭
意研究を重ねた結果なされた。研究の過程で、溶接性の
観点から、低温変態相の生成をベースとした強化機構は
不利であり、本発明では析出による高強度化を指向し
た。析出については、熱間圧延段階では炭窒化物を極力
析出させず、それに続く冷間圧延後の再結晶焼鈍過程に
おいて急速加熱をおこなうことで、組織が飛躍的に細粒
化し、析出強化との複合作用で、大幅な強度上昇が得ら
れるとともに、加工性も良好で、かつ、降伏比も大幅に
低下することを見出した。
The present invention has been made as a result of intensive studies to solve the above-mentioned problems. In the course of the research, a strengthening mechanism based on the formation of a low-temperature transformation phase was disadvantageous from the viewpoint of weldability, and the present invention aimed at increasing the strength by precipitation. Regarding precipitation, the carbonitride is not precipitated as much as possible in the hot rolling stage, and rapid heating is performed in the recrystallization annealing process after the subsequent cold rolling, whereby the structure is drastically refined and precipitation strengthening is performed. It has been found that by the combined action, a great increase in strength can be obtained, the workability is good, and the yield ratio also drops significantly.

【0021】なお、本発明が対象とする冷延鋼板の中に
は、溶融亜鉛メッキ材や電気亜鉛メッキ材などの表面処
理を施した鋼板も含む。
The cold-rolled steel sheet to which the present invention is applied includes a steel sheet subjected to a surface treatment such as a hot-dip galvanized material or an electro-galvanized material.

【0022】まず、本発明の化学成分について説明す
る。
First, the chemical components of the present invention will be described.

【0023】C:0.016〜0.2% Cは、鋼の強度を高める上で、安価で有効な元素であ
る。さらに、Ti、Nb、Vの添加により炭化物を微細に析
出し、粒成長を抑制するとともに析出強化により強度上
昇に寄与する。この効果を得るためには、C含有量とし
て0.016%必要である。一方、0.2%を超える多量のC添
加は、パーライト量の増大を招き、延性、伸びフランジ
性が劣化するのみならず、溶接性にも悪影響をおよぼ
す。そのため、C量は0.016〜0.2%の範囲内に規定す
る。
C: 0.016-0.2% C is an inexpensive and effective element for increasing the strength of steel. Furthermore, the addition of Ti, Nb, and V causes fine precipitation of carbides, suppresses grain growth, and contributes to an increase in strength by precipitation strengthening. To obtain this effect, 0.016% is required as the C content. On the other hand, the addition of a large amount of C exceeding 0.2% causes an increase in the amount of pearlite, and not only deteriorates ductility and stretch flangeability, but also adversely affects weldability. Therefore, the amount of C is specified in the range of 0.016 to 0.2%.

【0024】Ti:0.025〜1%、Nb:0.01〜1.5%、V:0.01
〜1% Ti、Nb、Vはいずれも、炭窒化物形成元素で、炭窒化物
を微細に析出することで強度上昇に寄与する。この効果
を得るためには、Ti≧0.025%、Nb≧0.01%、V≧0.01%
のいずれか1種以上を含有することが必要である。
Ti: 0.025-1%, Nb: 0.01-1.5%, V: 0.01
11% Ti, Nb and V are all carbonitride forming elements, and contribute to an increase in strength by finely depositing carbonitride. To obtain this effect, Ti ≧ 0.025%, Nb ≧ 0.01%, V ≧ 0.01%
It is necessary to contain at least one of the following.

【0025】なお、連続鋳造から一旦スラブの温度を下
げたのち熱延加熱炉にて再加熱するプロセスの場合、と
くにTi、Nbは、多量に添加しても炭窒化物が熱延加熱炉
で再固溶しきれず、粗大なまま存在し、強度上昇には寄
与しなくなる。従って、この場合は、Ti、Nbを0.2%程
度以下で添加するのが好ましい。
In the case of a process in which the temperature of the slab is temporarily lowered from continuous casting and then reheated in a hot-rolling heating furnace, especially when a large amount of Ti and Nb are added, carbonitrides remain in the hot-rolling heating furnace. It does not completely re-dissolve and remains coarse and does not contribute to an increase in strength. Therefore, in this case, it is preferable to add Ti and Nb at about 0.2% or less.

【0026】連続鋳造から再加熱過程を経ることなく直
接熱間圧延を開始する場合においては、Ti、Nbの添加量
の上限はない。しかし、C当量以上のTi、Nb、Vは、強度
上昇に寄与しないだけでなく、経済的に不利である。し
たがって、Ti、Nb、Vの上限をそれぞれ、1%、1.5%、1
%に規定する。
In the case where hot rolling is directly started from the continuous casting without going through the reheating process, there is no upper limit of the addition amount of Ti and Nb. However, Ti, Nb, and V having a C equivalent or more do not contribute to the strength increase and are economically disadvantageous. Therefore, the upper limits of Ti, Nb, and V are 1%, 1.5%, and 1%, respectively.
%.

【0027】つぎに、本発明の製造条件について説明す
る。
Next, the manufacturing conditions of the present invention will be described.

【0028】巻取温度:650℃以下 熱間圧延後の巻取りにおいて、650℃を超える高温で巻
き取った場合には、Ti、Nb、Vの炭窒化物が巻き取り後
の冷却過程で析出する。そのため、冷間圧延、再結晶焼
鈍後の析出により形成すると考えられる粒界近傍の無析
出物帯は形成されず、その結果、降伏強度が上昇してし
まう。
Winding temperature: 650 ° C. or less In the case of winding after hot rolling, when winding is performed at a high temperature exceeding 650 ° C., carbonitrides of Ti, Nb, and V precipitate during the cooling process after winding. I do. Therefore, no precipitate-free zone near the grain boundary, which is considered to be formed by precipitation after cold rolling and recrystallization annealing, is not formed, and as a result, the yield strength increases.

【0029】さらに、この炭窒化物が冷間圧延後の再結
晶焼鈍過程において、再結晶を妨げるため、焼鈍温度や
時間を上昇せざるを得ず、結果的に粒成長を助長し強度
の低下を招いてしまう。したがって、熱間圧延後は650
℃以下で巻き取ることと規定する。巻取温度の下限はと
くに規定せず、材料特性の観点からは室温で巻き取って
も構わない。
Furthermore, in the recrystallization annealing process after cold rolling, the carbonitride hinders recrystallization, so that the annealing temperature and time must be increased, and as a result, grain growth is promoted and strength is reduced. Will be invited. Therefore, 650 after hot rolling
It is specified that the film is to be wound at a temperature of not more than ° C. The lower limit of the winding temperature is not particularly specified, and the winding may be performed at room temperature from the viewpoint of material properties.

【0030】冷間圧延率:85%以下 冷間圧延においては、冷間圧延率が85%を超える過度の
冷間圧延は、加工性に不利な再結晶集合組織の発達を助
長する。また、冷間圧延ミルの負荷も高くなってしまう
ことから、冷間圧延率は85%以下と規定する。
Cold Rolling Ratio: 85% or Less In cold rolling, excessive cold rolling at a cold rolling ratio exceeding 85% promotes the development of a recrystallized texture disadvantageous to workability. Further, since the load of the cold rolling mill increases, the cold rolling ratio is specified to be 85% or less.

【0031】焼鈍における加熱速度:30℃/s以上 冷間圧延後の再結晶焼鈍におけるその加熱過程は、本発
明の最も重要な部分である。この加熱速度が遅い場合、
加熱途中で歪の回復が進行してしまい、焼鈍目標温度に
達したときには、再結晶核発生のための駆動力が小さく
なってしまい、その結果微細粒を得ることができなくな
ってしまう。
Heating rate in annealing: 30 ° C./s or more The heating process in recrystallization annealing after cold rolling is the most important part of the present invention. If this heating rate is slow,
Strain recovery progresses during heating, and when the temperature reaches the annealing target temperature, the driving force for generating recrystallization nuclei decreases, and as a result, fine grains cannot be obtained.

【0032】焼鈍における加熱速度を十分早くし、30℃
/s以上とすることで、加熱途中での歪の回復を抑制し、
焼鈍目標温度で、再結晶核を一気に生成させることがで
き、超微細組織が得られる。それとともに、再結晶後の
粒界からの炭窒化物の析出を促進し、粒界近傍に無析出
物帯を形成することで、低降伏比鋼とすることができ
る。
The heating rate in the annealing should be sufficiently high,
/ s or more suppresses the recovery of distortion during heating,
At the annealing target temperature, recrystallization nuclei can be generated at once, and an ultrafine structure can be obtained. At the same time, the precipitation of carbonitride from the grain boundary after recrystallization is promoted, and a non-precipitated zone is formed in the vicinity of the grain boundary, whereby a low yield ratio steel can be obtained.

【0033】さらに、二相域以上の温度においては、微
小フェライト粒の再結晶進行にともない、オーステナイ
ト粒が微小化し、C濃化が促進されることから、焼鈍後
の冷却時に焼きが入りやすい(微小化したマルテンサイ
ト相が生成し易い)ことも低降伏比化に寄与する。した
がって、冷間圧延後の再結晶焼鈍における加熱速度は30
℃/s以上と規定する。
Further, at a temperature higher than or equal to the two-phase range, austenite grains are miniaturized with the progress of recrystallization of fine ferrite grains, and C concentration is promoted. The micronized martensite phase is easily formed), which also contributes to a low yield ratio. Therefore, the heating rate in recrystallization annealing after cold rolling is 30
Specified as ℃ / s or more.

【0034】なお、加熱方法はとくに限定しないが、誘
導加熱や直接通電等によって加熱してもよい。ここで、
生産性の点からは室温から焼鈍温度まで30℃/s以上の加
熱速度で加熱するのが好ましいが、室温から600℃まで
の範囲においては、低速加熱であっても歪の回復量自体
が小さいため、30℃/sを下回っても構わない。したが
って、本発明で言うところの30℃/s以上の加熱速度は、
少なくとも600℃から焼鈍温度、より詳しくは600℃から
再結晶完了温度までの領域において、30℃/s以上の加熱
速度で加熱することを意味するものである。
The heating method is not particularly limited, but heating may be performed by induction heating, direct energization, or the like. here,
From the viewpoint of productivity, it is preferable to heat at a heating rate of 30 ° C./s or more from room temperature to the annealing temperature, but in the range from room temperature to 600 ° C., the amount of strain recovery itself is small even at low speed heating. Therefore, the temperature may be lower than 30 ° C./s. Therefore, the heating rate of 30 ° C./s or more in the present invention is,
This means that heating is performed at a heating rate of 30 ° C./s or more at least in the region from 600 ° C. to the annealing temperature, more specifically, from 600 ° C. to the recrystallization completion temperature.

【0035】上記の発明においてさらに、熱間圧延の最
終圧延終了後1s以内に、100℃/s以上の冷却速度で80
℃以上の温度範囲にわたって冷却することを特徴とする
高強度冷延鋼板の製造方法とすることもできる。
In the above invention, further, within 1 second after the end of the final rolling of hot rolling, at a cooling rate of 100 ° C./s or more,
A method for producing a high-strength cold-rolled steel sheet characterized by cooling over a temperature range of not less than ° C.

【0036】この発明は、仕上圧延後の冷却条件を規定
することにより、炭窒化物の析出をより確実に抑制す
る。冷却は、熱間圧延後、巻取りまでのランナウトテー
ブル上において、熱間での最終仕上圧延終了直後の1s
以内に100℃/s以上の冷却速度で80℃以上冷却する。こ
のように、炭窒化物の析出が開始する前に冷却を開始
し、析出が顕著である温度領域を急速に冷却すること
で、炭窒化物の析出を抑制する。
According to the present invention, the precipitation conditions of carbonitrides are more reliably suppressed by defining the cooling conditions after finish rolling. Cooling is performed on the runout table from hot rolling to winding up for 1 s immediately after the end of hot final finishing rolling.
Within 80 ° C or more at a cooling rate of 100 ° C / s or more. As described above, the cooling is started before the precipitation of the carbonitride starts, and the temperature region where the precipitation is remarkable is rapidly cooled to suppress the precipitation of the carbonitride.

【0037】[0037]

【発明の実施の形態】発明の実施に当たっては、まず、
上記の化学成分の鋼を溶製する。溶製方法は、通常の転
炉法、電炉法等、適宜適用することができる。発明では
その他の元素はとくに規定しないが、発明の高強度冷延
鋼板の製造においては、以下の成分が好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In practicing the invention, first,
The steel of the above chemical composition is melted. The smelting method can be appropriately applied, such as a normal converter method or an electric furnace method. Other elements are not particularly specified in the invention, but the following components are preferable in the production of the high-strength cold-rolled steel sheet of the invention.

【0038】Si: 好ましくは2.0%以下 Siは加工性を劣化することなくフェライトを固溶強化
し、強度と加工性のバランスを高くする作用を有するた
め、要求される強度レベルに応じて添加するのが好まし
い。ただし、多量のSi添加は、靭性および溶接性を劣化
させるため2.0%程度を上限とするのが好ましい。
Si: preferably 2.0% or less Si has the effect of solid-solution strengthening ferrite without deteriorating workability, and has the effect of increasing the balance between strength and workability. Therefore, Si is added according to the required strength level. Is preferred. However, since the addition of a large amount of Si deteriorates toughness and weldability, the upper limit is preferably about 2.0%.

【0039】さらに、多量のSi添加は、熱延加熱時にお
けるスラブ表面にファイヤライトの生成を促進し、いわ
ゆる赤スケールと呼ばれる表面模様の発生を助長すると
ともに、溶融亜鉛メッキ鋼板として使用される場合に
は、Siによる不メッキの不良も誘発することから、表面
性状を必要とする鋼板や溶融亜鉛メッキ鋼板の場合に
は、0.5%程度を上限に、さらに望ましくは0.2%程度を
上限にするのが好ましい。
Further, the addition of a large amount of Si promotes the formation of firelite on the slab surface during hot rolling and heating, and promotes the generation of a so-called red scale surface pattern. In the case of steel sheets that require surface properties or hot-dip galvanized steel sheets, the upper limit should be about 0.5%, more preferably about 0.2%, because non-plating defects due to Si are also induced. Is preferred.

【0040】Mn : 好ましくは2.5%以下 Mnは固溶強化として、高強度化に有効な元素であり、要
求される強度レベルに応じて添加するのが好ましい。た
だし、多量のMn添加は溶接性の劣化を招くことから、2.
5%程度を上限とするのが好ましい。
Mn: preferably 2.5% or less Mn is an element effective for increasing the strength as solid solution strengthening, and is preferably added according to the required strength level. However, a large amount of Mn addition causes deterioration of weldability.
The upper limit is preferably about 5%.

【0041】P : 好ましくは0.1%以下 Pは固溶強化として、高強度化に有効な元素であり、さ
らに、Si添加鋼の場合には、赤スケールの発生を抑制す
ることから、必要に応じて添加するのが好ましい。ただ
し、多量のP添加は、粒界への偏析を促進し、延性、靭
性を低下させることから、0.1%程度を上限とするのが
好ましい。
P: preferably 0.1% or less P is an element effective for increasing the strength as solid solution strengthening. In the case of Si-added steel, it suppresses the generation of red scale. It is preferable to add them. However, the addition of a large amount of P promotes segregation at grain boundaries and lowers ductility and toughness, so the upper limit is preferably about 0.1%.

【0042】S : 好ましくは0.01%以下 Sは、熱間での延性を著しく低下させることで、熱間割
れを誘発し、表面性状を著しく劣化させてしまう。さら
に、強度にほとんど寄与しないばかりか、不純物元素と
して、粗大なMnSを形成したり、Ti添加鋼の場合には、
多量の粗大なTi系硫化物を生成することで、延性、伸び
フランジ性を低下させるため極力低減することが望まし
い。従って、Sは0.01%を上限とするのが好ましい。
S: preferably 0.01% or less S significantly reduces hot ductility, thereby inducing hot cracking and significantly deteriorating the surface properties. Furthermore, not only does it hardly contribute to strength, but also forms coarse MnS as an impurity element, and in the case of Ti-added steel,
By generating a large amount of coarse Ti-based sulfide, ductility and stretch flangeability are reduced. Therefore, the upper limit of S is preferably set to 0.01%.

【0043】sol.Al : 好ましくは0.1%以下 sol.Alは、脱酸元素として鋼中の介在物を減少させる作
用を有しているが、多量に添加した場合にはアルミナ系
介在物が増加し、延性が低下するので0.1%程度を上限
とするのが好ましい。
Sol.Al: preferably 0.1% or less sol.Al acts as a deoxidizing element to reduce inclusions in steel, but when added in large amounts, alumina-based inclusions increase. However, since the ductility decreases, the upper limit is preferably about 0.1%.

【0044】N : 好ましくは0.01%以下 Nは多量に添加すると熱間圧延中にスラブ割れを伴い、
表面疵が発生する恐れがあることから0.01%程度を上限
とするのが好ましい。
N: preferably 0.01% or less When a large amount of N is added, slab cracking occurs during hot rolling,
It is preferable to set the upper limit to about 0.01% because there is a possibility that surface flaws may occur.

【0045】Cu、Ni、Cr、Mo、B: 必要に応じ添加 さらに、要求される強度レベルに応じて、Cu、Ni、Cr、
Mo、B等の添加元素を添加してもよい。但し、1%を超え
るCuの添加は、熱間割れにより表面疵が発生し易くな
る。また、1%を超えるNi、Cr、Moの添加は、合金コス
トが増加する。Bについては、0.01%を超えて添加して
も効果が飽和する。従って、Cu、Ni、Cr、Moを添加する
場合はそれぞれ1%以下、Bを添加する場合は0.01%以下
とする。
Cu, Ni, Cr, Mo, B: added as required. Further, depending on the required strength level, Cu, Ni, Cr,
Additional elements such as Mo and B may be added. However, addition of Cu exceeding 1% tends to cause surface flaws due to hot cracking. Also, the addition of Ni, Cr, and Mo exceeding 1% increases the alloy cost. Regarding B, the effect saturates even if it exceeds 0.01%. Therefore, when Cu, Ni, Cr, and Mo are added, the content is 1% or less, and when B is added, the content is 0.01% or less.

【0046】溶製された鋼は、スラブに鋳造後、そのま
ま又は冷却して加熱し、熱間圧延を施す。仕上圧延後の
熱延鋼板は前述の巻取温度で巻き取り、通常の冷間圧延
を施す。
After the molten steel is cast into a slab, it is heated as it is or cooled and hot-rolled. The hot-rolled steel sheet after finish rolling is wound at the above-mentioned winding temperature and subjected to ordinary cold rolling.

【0047】焼鈍については、前述の加熱条件で急速加
熱を行う。焼鈍温度(再結晶温度)はとくに規定しない
が、各化学成分について再結晶焼鈍に必要な温度まで焼
鈍することとし、その範囲においては、極力低温にする
のが好ましい。焼鈍時間もとくに規定しないが、再結晶
温度以上の温度域に滞在する時間はとくに必要ない。
For annealing, rapid heating is performed under the above-mentioned heating conditions. Although the annealing temperature (recrystallization temperature) is not particularly specified, annealing is performed for each chemical component to a temperature required for recrystallization annealing, and in that range, it is preferable to keep the temperature as low as possible. Although the annealing time is not specified, the time for staying in the temperature range higher than the recrystallization temperature is not particularly required.

【0048】焼鈍後の冷却も、放冷でも急冷でも構わな
い。とくに溶融亜鉛メッキ鋼板や合金化溶融亜鉛メッキ
鋼板として製造される場合は、そのプロセスにおける熱
履歴で構わない。
The cooling after annealing may be either standing cooling or rapid cooling. In particular, when manufactured as a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet, the heat history in the process may be used.

【0049】このようにして、本発明により、降伏比が
低く、かつ、加工性、溶接性に優れる引張強度の高い冷
延鋼板の製造が可能となる。この理由に関しては、本発
明の請求範囲を限定するものではないが、つぎのように
考えられる。
As described above, according to the present invention, it is possible to produce a cold-rolled steel sheet having a low yield ratio and excellent workability and weldability and high tensile strength. For this reason, the scope of the present invention is not limited, but is considered as follows.

【0050】すなわち、冷間圧延後の再結晶焼鈍過程に
おいて、徐加熱をおこなった場合には、その加熱途中に
歪の回復が進行し、冷間圧延で蓄積された歪の多くが消
失するため、再結晶には、高温での長時間保持を必要と
する。そして、その再結晶核も熱延鋼板段階での粒界か
ら優先的に発生し、その核が成長することで、再結晶は
進行する。
That is, in the recrystallization annealing process after the cold rolling, when gradual heating is performed, the recovery of the strain progresses during the heating, and most of the strain accumulated in the cold rolling disappears. In addition, recrystallization requires long-term holding at a high temperature. Then, the recrystallization nucleus is also preferentially generated from the grain boundary at the stage of the hot-rolled steel sheet, and the nucleus grows, whereby the recrystallization proceeds.

【0051】一方、急速加熱をおこなった場合には、加
熱途中で歪の回復が進行することなく再結晶温度域に達
することができる。そして、歪が回復することなく即座
に高温域に移行されることから、その再結晶核生成のた
めの駆動力は莫大となり、熱延段階での粒界のみなら
ず、粒内からも瞬時に核発生が進行するものと考えられ
る。この核発生サイトの増加により、超微細組織が形成
されると推定される。
On the other hand, when rapid heating is performed, the temperature can reach the recrystallization temperature range without recovery of strain during heating. And since the strain is immediately shifted to the high temperature range without recovery, the driving force for the recrystallization nucleation becomes enormous, and it is instantaneous not only from the grain boundaries at the hot rolling stage but also from within the grains. It is thought that nucleation proceeds. It is presumed that an ultrafine structure is formed due to the increase in the number of nucleation sites.

【0052】そして、この急速加熱による再結晶過程は
瞬時に進行するため、熱延段階で固溶状態にある炭窒化
物形成元素は、加熱段階では析出できず、再結晶完了後
に析出することになる。その結果、その炭窒化物の析出
は、再結晶粒界において優先的に起こるが、急速加熱材
では超微細粒であり、粒界面積が大きいことから、析出
のほとんどが粒界で発生することになる。
Since the recrystallization process by the rapid heating proceeds instantaneously, the carbonitride forming element which is in a solid solution state in the hot rolling step cannot be precipitated in the heating step, but precipitates after the recrystallization is completed. Become. As a result, the precipitation of carbonitrides occurs preferentially at the recrystallized grain boundaries, but most of the precipitation occurs at the grain boundaries due to the ultra-fine grains and the large grain boundary area of the rapidly heated material. become.

【0053】その結果として、粒界に析出した炭窒化物
が粒成長を抑えるとともに、粒界近傍には無析出物帯
(PFZ)が形成されることになる。このような超微細粒
組織と析出とによる複合強化鋼においては、高強度化を
実現しつつ、プレス成型時のような加工歪を加えた場合
には、粒界近傍の無析出物帯に歪が集中することで降伏
強度が低下すると考えられる。
As a result, the carbonitride precipitated at the grain boundaries suppresses grain growth, and a non-precipitated zone (PFZ) is formed near the grain boundaries. In a composite strengthened steel with such an ultra-fine grain structure and precipitation, when a work strain such as that at the time of press forming is applied while realizing high strength, a strain is generated in a non-precipitated zone near a grain boundary. It is considered that the yield strength decreases due to the concentration of.

【0054】さらに、二相域以上の急速加熱において
は、微小フェライト粒の再結晶進行にともない、オース
テナイト粒も微小化し、C濃化が極端に促進される。し
たがって、焼鈍後の冷却時に焼きが入りやすくなり(マ
ルテンサイト相が生成し易やすくなり)、鋼板中に歪が
残留することも低降伏比化に寄与すると推定される。そ
の結果、本発明により、高強度化を実現しつつ低降伏比
を実現できる。
Further, in rapid heating in the two-phase region or higher, austenite grains are also miniaturized as recrystallization of fine ferrite grains progresses, and C enrichment is extremely accelerated. Therefore, it is presumed that, during cooling after annealing, quenching is likely to occur (a martensite phase is easily generated), and that residual strain in the steel sheet also contributes to lowering the yield ratio. As a result, according to the present invention, a low yield ratio can be realized while realizing high strength.

【0055】このように、本発明の冷延鋼板の組織は、
微小フェライト粒の粒界に微細なマルテンサイト相が生
成している。従って、厳密な意味では二相組織鋼とも言
えるが、その第2相体積率はごく僅か(数%程度)で強度
を確保できるほど多くはないので、本発明の冷延鋼板の
組織は実質的には微細なフェライト組織と言える。
As described above, the structure of the cold rolled steel sheet of the present invention is as follows:
A fine martensite phase is formed at the grain boundaries of the fine ferrite grains. Therefore, in a strict sense, it can be said that it is a dual-phase structure steel, but its second phase volume fraction is very small (about several percent) and not large enough to secure the strength, so that the structure of the cold-rolled steel sheet of the present invention is substantially Can be said to be a fine ferrite structure.

【0056】フェライト粒界の微細なマルテンサイトは
降伏応力には影響するが、微細であるため塑性変形の際
にクラックの起点になるほどの寸法ではないものと考え
られる。その結果、二相組織鋼では不可避である伸びフ
ランジ性の低下を、防止することが可能となる。
Although the fine martensite at the ferrite grain boundary affects the yield stress, it is considered that the fine martensite is not so large as to be a starting point of a crack at the time of plastic deformation. As a result, it is possible to prevent a decrease in stretch flangeability, which is inevitable in dual-phase steel.

【0057】[0057]

【実施例】本発明の実施例について説明する。なお、本
発明はこれらの実施例のみに限定されるものではない。
An embodiment of the present invention will be described. Note that the present invention is not limited to only these examples.

【0058】表1に示す成分の鋼を実験室真空溶解炉に
て溶製し、一旦室温まで冷却した。
Steel having the components shown in Table 1 was melted in a laboratory vacuum melting furnace, and once cooled to room temperature.

【0059】[0059]

【表1】 [Table 1]

【0060】その後、鋼塊を1250℃で再加熱しラボ熱間
圧延をおこなった。圧延後は種々の水冷条件で一旦冷却
したのち、続けて巻取り相当温度まで空冷し、その温度
の炉で1時間保持したのち炉冷をおこなうことで巻き取
り相当の熱処理とした。熱間圧延後は、種々の冷圧率で
冷間圧延したのち、種々の加熱条件で再結晶焼鈍をおこ
ない、焼鈍後は空冷した。冷圧後の板厚はいずれも1.2m
mとした。表2に実験条件を示す。
Thereafter, the steel ingot was reheated at 1250 ° C. and subjected to lab hot rolling. After the rolling, the steel sheet was once cooled under various water cooling conditions, then air-cooled to a temperature corresponding to winding, kept in a furnace at that temperature for 1 hour, and then cooled in a furnace to obtain a heat treatment equivalent to winding. After hot rolling, cold rolling was performed at various cold pressure ratios, and then recrystallization annealing was performed under various heating conditions, and air cooling was performed after the annealing. 1.2m after cold pressing
m. Table 2 shows the experimental conditions.

【0061】[0061]

【表2】 [Table 2]

【0062】ここで、鋼板No.4〜7、10〜13、15〜20は
発明鋼板である。また、鋼板No.1〜3は焼鈍における加
熱速度、鋼板No.8〜9は巻取温度、No.14は冷圧率がそれ
ぞれ本発明範囲外の比較鋼板である。
Here, steel sheets Nos. 4 to 7, 10 to 13, and 15 to 20 are invention steel sheets. Steel sheets Nos. 1 to 3 are comparative steel sheets whose heating rates during annealing, steel sheets Nos. 8 to 9 are coiling temperatures, and No. 14 is a cold-rolling rate outside the range of the present invention.

【0063】焼鈍後のサンプルを用いて、引張特性、穴
拡げ特性(伸びフランジ特性)、溶接性を調査した。こ
こで、溶接性は、TIGビードオン溶接で溶接部の硬度分
布を調査し、母材硬度に対するHAZ軟化部の硬度比(HAZ
軟化部硬度/母材部硬度)で評価した。表3に、これら
のサンプルの特性値をまとめて示す。
Using the annealed samples, tensile properties, hole expanding properties (stretch flange properties), and weldability were investigated. Here, the weldability was investigated by examining the hardness distribution of the welded part by TIG bead-on welding, and the hardness ratio of the HAZ softened part to the base metal hardness (HAZ
(Hardened part hardness / base material part hardness). Table 3 summarizes the characteristic values of these samples.

【0064】[0064]

【表3】 [Table 3]

【0065】以下、製造条件と特性値の関係を、図を用
いて説明する。まず、焼鈍における加熱速度の影響につ
いて、図1〜5に示す。ここでは、鋼種Aに関し、熱延条
件として最終仕上温度が850℃、冷却開始時間が3s、降
下温度が100℃、巻取処理温度が600℃、冷延条件として
冷圧率が60%、焼鈍条件として焼鈍温度が800℃、焼鈍
時間が1sのとき材料特性におよぼす焼鈍時の加熱速度
の影響を示す。
Hereinafter, the relationship between the manufacturing conditions and the characteristic values will be described with reference to the drawings. First, the influence of the heating rate on annealing is shown in FIGS. Here, regarding steel type A, the final finishing temperature is 850 ° C., the cooling start time is 3 s, the falling temperature is 100 ° C., the winding temperature is 600 ° C., the cold rolling rate is 60%, and the annealing is cold rolling. The effects of the heating rate during annealing on the material properties when the annealing temperature is 800 ° C and the annealing time is 1 s are shown.

【0066】図1に降伏および引張強度におよぼす加熱
速度の影響を示す。図に示すように、加熱速度が本発明
の請求範囲の下限30℃/sを下回るとき、降伏強度は490
〜500MPa、引張強度は550〜570MPaであるのに対し、加
熱速度が本発明の請求範囲である30℃/s以上のとき、
降伏強度は400MPa以下と低くなり、引張強度は600MPa以
上と高くなった。
FIG. 1 shows the effect of heating rate on yield and tensile strength. As shown in the figure, when the heating rate is below the lower limit of 30 ° C./s in the claims of the present invention, the yield strength is 490.
~ 500MPa, while the tensile strength is 550 ~ 570MPa, when the heating rate is 30 ° C / s or more which is the claim of the present invention,
The yield strength decreased to 400 MPa or less, and the tensile strength increased to 600 MPa or more.

【0067】図2に降伏比(=降伏強度/引張強度)に
およぼす加熱速度の影響を示す。図に示すように、加熱
速度が本発明の請求範囲の下限30℃/sを下回るとき、
降伏比は86〜88%であるのに対し、加熱速度が本発明の
請求範囲である30℃/s以上のときは63%以下と低くな
った。
FIG. 2 shows the effect of the heating rate on the yield ratio (= yield strength / tensile strength). As shown in the figure, when the heating rate is lower than the lower limit 30 ° C./s of the claims of the present invention,
The yield ratio was 86 to 88%, whereas the heating rate was as low as 63% or less when the heating rate was 30 ° C./s or more, which is claimed in the present invention.

【0068】さらに、図3に全伸びにおよぼす加熱速度
の影響を示す。図に示すように、加熱速度が本発明の請
求範囲外である30℃/sを下回るとき、全伸びは29〜31
%であるのに対し、加熱速度が本発明の請求範囲である
30℃/s以上のときは34%以上と高くなった。
FIG. 3 shows the effect of the heating rate on the total elongation. As shown in the figure, when the heating rate is lower than 30 ° C./s, which is outside the scope of the present invention, the total elongation is 29 to 31.
%, Whereas the heating rate is within the scope of the present invention.
When the temperature was 30 ° C./s or more, it was as high as 34% or more.

【0069】また、図4に穴拡げ率におよぼす加熱速度
の影響を示す。図に示すように、加熱速度が本発明の請
求範囲の下限30℃/sを下回るとき、穴拡げ率は58〜65
%であるのに対し、加熱速度が本発明の請求範囲である
30℃/s以上のときは78%以上と高くなった。
FIG. 4 shows the effect of the heating rate on the hole expansion rate. As shown in the figure, when the heating rate is lower than the lower limit of 30 ° C./s in the claims of the present invention, the hole expansion rate is 58 to 65.
%, Whereas the heating rate is within the scope of the present invention.
When the temperature was 30 ° C./s or more, the value was as high as 78% or more.

【0070】また、図5にHAZ軟化硬度比におよぼす加熱
速度の影響を示す。図に示すように、加熱速度が本発明
の請求範囲の下限30℃/sを下回るときは、HAZ軟化硬度
比は0.79〜0.82であるのに対し、加熱速度が本発明の請
求範囲である30℃/s以上のときは0.95以上と高くなっ
た。
FIG. 5 shows the effect of the heating rate on the HAZ softening hardness ratio. As shown in the figure, when the heating rate is lower than the lower limit 30 ° C./s of the claim of the present invention, the HAZ softening hardness ratio is 0.79 to 0.82, whereas the heating rate is the claim 30 of the present invention. At ℃ / s or more, it was as high as 0.95 or more.

【0071】以上のように、焼鈍時の加熱速度を30℃/
s以上とすることで、低降伏でかつ高強度、さらに延
性、穴拡げ性に優れ、溶接時にHAZ軟化のし難い鋼板を
製造することができる。
As described above, the heating rate during annealing was set to 30 ° C. /
By setting it to s or more, it is possible to produce a steel plate having low yield, high strength, excellent ductility and hole expandability, and which is difficult to be softened by HAZ during welding.

【0072】さらに、図6〜10に、鋼種Aに関し、熱延条
件として最終仕上温度が850℃、冷却開始時間が3s、降
下温度が100℃、冷延条件として冷圧率が60%、焼鈍条
件として加熱速度が100℃/s、焼鈍温度が800℃、焼鈍
時間が1sのとき材料特性におよぼす熱延時の巻取処理
温度の影響を示す。
FIGS. 6 to 10 show that, for steel type A, the final finishing temperature was 850 ° C., the cooling start time was 3 s, the drop temperature was 100 ° C., the cold rolling rate was 60%, and the annealing was cold rolling. When the heating rate is 100 ° C./s, the annealing temperature is 800 ° C., and the annealing time is 1 s, the effect of the winding temperature during hot rolling on the material properties is shown.

【0073】図6に降伏および引張強度におよぼす巻取
処理温度の影響を示す。図に示すように、巻取処理温度
が本発明の請求範囲外である650℃を上回るとき、降伏
強度は470〜480MPa、引張強度は570〜580MPaであるのに
対し、巻取処理温度が本発明の請求範囲である650℃以
下のとき、降伏強度は380MPa以下と小さくなり、引張強
度は605MPa以上と大きくなった。
FIG. 6 shows the effect of the winding temperature on the yield and tensile strength. As shown in the figure, when the winding temperature exceeds 650 ° C., which is outside the scope of the present invention, the yield strength is 470 to 480 MPa and the tensile strength is 570 to 580 MPa, whereas the winding temperature is When the temperature was 650 ° C. or lower, which is the scope of the invention, the yield strength was reduced to 380 MPa or less, and the tensile strength was increased to 605 MPa or more.

【0074】そして、図7に降伏比(=降伏強度/引張
強度)におよぼす巻取処理温度の影響を示す。図に示す
ように、巻取処理温度が本発明の請求範囲外である650
℃を上回るとき、降伏比は82%であるのに対し、巻取処
理温度が本発明の請求範囲である650℃以下のときは63
%以下と小さくなった。
FIG. 7 shows the effect of the winding temperature on the yield ratio (= yield strength / tensile strength). As shown in the figure, the winding process temperature is out of the range of the present invention.
When the temperature exceeds ℃, the yield ratio is 82%, whereas when the winding temperature is 650 ° C or less, which is the claim of the present invention, the yield ratio is 63%.
% Or less.

【0075】さらに、図8に全伸びにおよぼす巻取処理
温度の影響を示す。図に示すように、巻取処理温度が本
発明の請求範囲外である650℃を上回るとき、全伸びは3
0〜32%であるのに対し、巻取処理温度が本発明の請求
範囲である650℃以下のときは34%以上と大きくなっ
た。
FIG. 8 shows the effect of the winding temperature on the total elongation. As shown in the figure, when the winding temperature exceeds 650 ° C., which is outside the scope of the present invention, the total elongation is 3
On the other hand, when the winding treatment temperature is 650 ° C. or less, which is the claimed range of the present invention, it is as high as 34% or more.

【0076】また、図9に穴拡げ率におよぼす巻取処理
温度の影響を示す。図に示すように、巻取処理温度が本
発明の請求範囲外である650℃を上回るとき、穴拡げ率
は66〜67%であるのに対し、巻取処理温度が本発明の請
求範囲である650℃以下のときは79%以上と大きくなっ
た。
FIG. 9 shows the effect of the winding temperature on the hole expansion rate. As shown in the figure, when the winding processing temperature exceeds 650 ° C., which is outside the scope of the present invention, the hole expansion rate is 66 to 67%, whereas the winding processing temperature is within the scope of the present invention. At a certain temperature of 650 ° C or lower, it increased to 79% or more.

【0077】また、図10にHAZ軟化硬度比におよぼす巻
取処理温度の影響を示す。図に示すように、巻取処理温
度が本発明の請求範囲外である650℃を上回るときは、H
AZ軟化硬度比は0.83〜0.84であるのに対し、巻取処理温
度が本発明の請求範囲である650℃以下のときは0.94以
上と大きくなった。
FIG. 10 shows the effect of the winding temperature on the HAZ softening hardness ratio. As shown in the figure, when the winding temperature exceeds 650 ° C., which is outside the scope of the present invention, H
While the AZ softening hardness ratio was 0.83 to 0.84, when the winding treatment temperature was 650 ° C. or less, which is the claimed range of the present invention, it increased to 0.94 or more.

【0078】以上のように、焼鈍時の巻取処理温度を65
0℃以下とすることで、低降伏でかつ高強度、さらに延
性、穴拡げ性に優れ、溶接時にHAZ軟化のし難い鋼板を
製造することができる。
As described above, the winding temperature during annealing is set at 65 ° C.
By controlling the temperature to 0 ° C. or lower, it is possible to produce a steel sheet having low yield, high strength, excellent ductility and hole expandability, and which is difficult to soften HAZ during welding.

【0079】さらに、発明鋼板の中でも、鋼板No.15に
示すように、熱延条件において、仕上最終圧延後の冷却
開始時間を0.5s、冷却速度を200℃/s、温度降下量を1
50℃とすることで、同じ鋼種Aで巻取処理以降は同一条
件である鋼板No.5に対し、より高強度、高延性、低降伏
比、高穴拡げ率、高HAZ軟化硬度比とすることができ
た。
Further, among the steel sheets of the invention, as shown in steel sheet No. 15, under the hot rolling conditions, the cooling start time after the final rolling was 0.5 s, the cooling rate was 200 ° C./s, and the temperature drop was 1 s.
By setting the temperature to 50 ° C, the same steel type A is used for the steel sheet No. 5 which has the same conditions after the winding process and has higher strength, higher ductility, lower yield ratio, higher hole expansion ratio, and higher HAZ softening hardness ratio. I was able to.

【0080】また、比較鋼板No.14に示すように、熱間
圧延後の冷間圧延において、冷圧率を90%と、本発明の
請求範囲を外れる場合は、冷圧率以外は同一条件である
本発明鋼板No.5に対し全伸びが著しく低下した。
Further, as shown in Comparative steel sheet No. 14, in the cold rolling after the hot rolling, the cold pressure ratio was 90%. The total elongation of the steel sheet No. 5 of the present invention was remarkably reduced.

【0081】[0081]

【発明の効果】以上のように、本発明では、熱延巻取条
件および焼鈍条件を限定することにより、熱間圧延段階
では炭窒化物を極力析出させず、それに続く冷間圧延後
の再結晶焼鈍過程において急速加熱をおこなうことによ
り、組織を飛躍的に細粒化させ、析出強化との複合作用
で、大幅な強度上昇が得られるとともに、加工性も良好
で、かつ、降伏応力を大幅に低下させることができる。
その結果、低降伏比で、加工性、溶接性に優れた高強度
冷延鋼板の製造方法が提供され、工業上有効な効果がも
たらされる。
As described above, according to the present invention, by limiting the hot rolling and winding conditions and the annealing conditions, carbonitride is not precipitated as much as possible in the hot rolling stage, and the carbonitride is not reprecipitated after the subsequent cold rolling. Rapid heating in the crystal annealing process drastically refines the structure and combines with precipitation strengthening to achieve a significant increase in strength, good workability, and large yield stress. Can be reduced.
As a result, a method for producing a high-strength cold-rolled steel sheet having a low yield ratio and excellent workability and weldability is provided, and an industrially effective effect is brought.

【図面の簡単な説明】[Brief description of the drawings]

【図1】降伏、引張強度におよぼす冷圧後焼鈍時の加熱
速度の影響を示す図である。
FIG. 1 is a diagram showing the effect of heating rate during annealing after cold pressure on yield and tensile strength.

【図2】降伏比におよぼす冷圧後焼鈍時の加熱速度の影
響を示す図である。
FIG. 2 is a graph showing the effect of the heating rate during annealing after cold pressure on the yield ratio.

【図3】全伸びにおよぼす冷圧後焼鈍時の加熱速度の影
響を示す図である。
FIG. 3 is a diagram showing the effect of a heating rate during post-cold-pressure annealing on total elongation.

【図4】穴拡げ率におよぼす冷圧後焼鈍時の加熱速度の
影響を示す図である。
FIG. 4 is a diagram showing the effect of the heating rate during post-cold pressure annealing on the hole expansion rate.

【図5】HAZ軟化硬度比におよぼす冷圧後焼鈍時の加熱速
度の影響を示す図である。
FIG. 5 is a graph showing the effect of the heating rate during annealing after cold pressure on the HAZ softening hardness ratio.

【図6】降伏、引張強度におよぼす熱間圧延後の巻取処
理温度の影響を示す図である。
FIG. 6 is a diagram showing the effect of the winding treatment temperature after hot rolling on yield and tensile strength.

【図7】降伏比におよぼす熱間圧延後の巻取処理温度の
影響を示す図である。
FIG. 7 is a diagram showing the effect of the winding treatment temperature after hot rolling on the yield ratio.

【図8】全伸びにおよぼす熱間圧延後の巻取処理温度の
影響を示す図である。
FIG. 8 is a diagram showing the effect of the winding temperature after hot rolling on the total elongation.

【図9】穴拡げ率におよぼす熱間圧延後の巻取処理温度
の影響を示す図である。
FIG. 9 is a diagram showing the effect of the winding treatment temperature after hot rolling on the hole expansion ratio.

【図10】HAZ軟化硬度比におよぼす熱間圧延後の巻取処
理温度の影響を示す図である。
FIG. 10 is a diagram showing the effect of the winding treatment temperature after hot rolling on the HAZ softening hardness ratio.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 靖 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K037 EA01 EA02 EA05 EA06 EA11 EA13 EA15 EA16 EA17 EA18 EA20 EA23 EA25 EA27 EA28 EA31 EA32 FD04 FE01 FE02 FG00 FH00 FJ01 FJ04 FJ05 HA00  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yasushi Tanaka 1-2-1 Marunouchi, Chiyoda-ku, Tokyo F-term in Nihon Kokan Co., Ltd. 4K037 EA01 EA02 EA05 EA06 EA11 EA13 EA15 EA16 EA17 EA18 EA20 EA23 EA25 EA27 EA28 EA31 EA32 FD04 FE01 FE02 FG00 FH00 FJ01 FJ04 FJ05 HA00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 mass%で、C:0.016〜0.2%、かつ、Ti:
0.025〜1%、Nb:0.01〜1.5%、V:0.01〜1%のいずれか1
種以上を含有する鋼を、熱間圧延後650℃以下で巻き取
り、85%以下の圧下率で冷間圧延後、600℃から再結晶
終了までの温度域を30℃/s以上の加熱速度で焼鈍するこ
とを特徴とする高強度冷延鋼板の製造方法。
[Claim 1] In mass%, C: 0.016 to 0.2%, and Ti:
0.025 to 1%, Nb: 0.01 to 1.5%, V: 0.01 to 1%
After hot rolling, the steel containing more than one kind is taken up at 650 ° C or less, cold rolled at a rolling reduction of 85% or less, and the temperature range from 600 ° C to the end of recrystallization is 30 ° C / s or more. A method for producing a high-strength cold-rolled steel sheet, comprising annealing at a low temperature.
【請求項2】 熱間圧延の最終圧延終了後1s以内に、10
0℃/s以上の冷却速度で80℃以上の温度範囲にわたって
冷却することを特徴とする請求項1に記載の高強度冷延
鋼板の製造方法。
2. Within 1 s after the end of the final rolling of hot rolling, 10
The method for producing a high-strength cold-rolled steel sheet according to claim 1, wherein cooling is performed at a cooling rate of 0 ° C / s or more over a temperature range of 80 ° C or more.
JP2001171837A 2001-06-07 2001-06-07 Manufacturing method of high strength cold-rolled steel sheet Expired - Fee Related JP3879440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001171837A JP3879440B2 (en) 2001-06-07 2001-06-07 Manufacturing method of high strength cold-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001171837A JP3879440B2 (en) 2001-06-07 2001-06-07 Manufacturing method of high strength cold-rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2002363649A true JP2002363649A (en) 2002-12-18
JP3879440B2 JP3879440B2 (en) 2007-02-14

Family

ID=19013540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001171837A Expired - Fee Related JP3879440B2 (en) 2001-06-07 2001-06-07 Manufacturing method of high strength cold-rolled steel sheet

Country Status (1)

Country Link
JP (1) JP3879440B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231352A (en) * 2006-02-28 2007-09-13 Jfe Steel Kk Precipitation hardening high strength steel sheet and its production method
EP2014781A1 (en) * 2006-05-16 2009-01-14 JFE Steel Corporation High-strength hot-rolled steel plate having excellent stretch properties, stretch flanging properties and tension fatigue properties, and method for production thereof
EP2177640A1 (en) * 2007-07-31 2010-04-21 JFE Steel Corporation High-strength steel sheet
CN103088255A (en) * 2013-01-02 2013-05-08 河北钢铁股份有限公司邯郸分公司 Manufacturing process of automobile low-alloy high-strength steel cold-rolled sheet with high product of strength and elongation
CN103131843A (en) * 2013-01-02 2013-06-05 河北钢铁股份有限公司邯郸分公司 Stabilization continuous annealing process of low-alloy and high-strength steel cold-rolled sheet used for automobile structural components
CN104060162A (en) * 2013-09-12 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Hot rolled sheet steel for cold forming and making method thereof
CN104334460A (en) * 2012-06-06 2015-02-04 杰富意钢铁株式会社 Three-piece can and method for producing same
CN104357744A (en) * 2014-11-17 2015-02-18 武汉钢铁(集团)公司 Tensile strength more than or equal to 780MPa grade hot-rolled dual phase steel and production method thereof
CN105063479A (en) * 2015-08-25 2015-11-18 内蒙古包钢钢联股份有限公司 Production method for boron-containing cold heading steel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106834915B (en) * 2016-12-06 2018-09-11 内蒙古包钢钢联股份有限公司 The processing method of 800MPa grades of hot-rolled dual-phase steels of 2~4mm thickness
CN106834948A (en) * 2017-03-03 2017-06-13 内蒙古包钢钢联股份有限公司 Longitudinal yield strength 700MPa grades of hot rolled strip and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736853B2 (en) * 2006-02-28 2011-07-27 Jfeスチール株式会社 Precipitation strengthened high strength steel sheet and method for producing the same
JP2007231352A (en) * 2006-02-28 2007-09-13 Jfe Steel Kk Precipitation hardening high strength steel sheet and its production method
EP2014781A1 (en) * 2006-05-16 2009-01-14 JFE Steel Corporation High-strength hot-rolled steel plate having excellent stretch properties, stretch flanging properties and tension fatigue properties, and method for production thereof
EP2014781A4 (en) * 2006-05-16 2012-01-25 Jfe Steel Corp High-strength hot-rolled steel plate having excellent stretch properties, stretch flanging properties and tension fatigue properties, and method for production thereof
EP2177640A1 (en) * 2007-07-31 2010-04-21 JFE Steel Corporation High-strength steel sheet
EP2177640A4 (en) * 2007-07-31 2012-01-18 Jfe Steel Corp High-strength steel sheet
CN104334460A (en) * 2012-06-06 2015-02-04 杰富意钢铁株式会社 Three-piece can and method for producing same
CN103088255A (en) * 2013-01-02 2013-05-08 河北钢铁股份有限公司邯郸分公司 Manufacturing process of automobile low-alloy high-strength steel cold-rolled sheet with high product of strength and elongation
CN103131843B (en) * 2013-01-02 2014-05-28 河北钢铁股份有限公司邯郸分公司 Stabilization continuous annealing process of low-alloy and high-strength steel cold-rolled sheet used for automobile structural components
CN103131843A (en) * 2013-01-02 2013-06-05 河北钢铁股份有限公司邯郸分公司 Stabilization continuous annealing process of low-alloy and high-strength steel cold-rolled sheet used for automobile structural components
CN104060162A (en) * 2013-09-12 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Hot rolled sheet steel for cold forming and making method thereof
CN104357744A (en) * 2014-11-17 2015-02-18 武汉钢铁(集团)公司 Tensile strength more than or equal to 780MPa grade hot-rolled dual phase steel and production method thereof
CN105063479A (en) * 2015-08-25 2015-11-18 内蒙古包钢钢联股份有限公司 Production method for boron-containing cold heading steel

Also Published As

Publication number Publication date
JP3879440B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
CN109097705B (en) 800 MPa-grade cold-rolled hot-galvanized dual-phase steel and production method thereof
JP5267297B2 (en) Steel plate for welded structure with excellent low-temperature toughness of weld heat affected zone
CN104928569B (en) A kind of low density steel of 800MPa level high ductibility and its manufacture method
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
JP4085826B2 (en) Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP4529549B2 (en) Manufacturing method of high-strength cold-rolled steel sheets with excellent ductility and hole-expansion workability
JP2005240172A (en) High strength thin steel sheet having excellent workability and surface property and method for manufacturing the same
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP2020522619A (en) Low cost, high formability, 1180 MPa class cold rolled annealed two-phase steel sheet and method for producing the same
JP4457681B2 (en) High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof
CN110050083B (en) High-strength steel sheet having excellent cold-zone punching workability and method for producing same
US20080118390A1 (en) High-Stiffness High-Strength Thin Steel Sheet and Method For Producing the Same
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4085809B2 (en) Hot-dip galvanized cold-rolled steel sheet having an ultrafine grain structure and excellent stretch flangeability and method for producing the same
JP2000273577A (en) High tensile strength hot rolled steel plate excellent in stretch-flanging workability and material stability and its production
CN113802060A (en) Low-cost steel plate for engineering structure and manufacturing method thereof
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JP4492105B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flangeability
JP3831137B2 (en) Manufacturing method of high-strength steel sheet with excellent ductility and stretch flangeability
JP2003034825A (en) Method for manufacturing high strength cold-rolled steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060830

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees