[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002356374A - Free cutting ceramic and its manufacturing - Google Patents

Free cutting ceramic and its manufacturing

Info

Publication number
JP2002356374A
JP2002356374A JP2001106053A JP2001106053A JP2002356374A JP 2002356374 A JP2002356374 A JP 2002356374A JP 2001106053 A JP2001106053 A JP 2001106053A JP 2001106053 A JP2001106053 A JP 2001106053A JP 2002356374 A JP2002356374 A JP 2002356374A
Authority
JP
Japan
Prior art keywords
powder
mass
boron nitride
silicon nitride
sintering aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001106053A
Other languages
Japanese (ja)
Other versions
JP3890915B2 (en
Inventor
Shunichi Eto
俊一 衛藤
Tadahisa Arahori
忠久 荒堀
Yasuki Yoshitomi
靖樹 吉富
Kuniaki Nakagawa
邦昭 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001106053A priority Critical patent/JP3890915B2/en
Publication of JP2002356374A publication Critical patent/JP2002356374A/en
Application granted granted Critical
Publication of JP3890915B2 publication Critical patent/JP3890915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a low thermal expansive free cutting ceramic having excellent machineability and high strength by firing in atmospheric pressure. SOLUTION: Silicon nitride powder containing silicon oxide of 0.5 to 10 mass%, the mean grain diameter of which is <=5 μm, and boron nitride powder containing boron oxide of 2 to 15 mass%, the grain diameter of which is <=0.5 μm are mixed at a ratio of 40 to 85 mass% silicon nitride part to 15 to 60 mass% boron nitride part, then, 15 to 31 mass% sintering aide based on the sum of silicon nitride, boron nitride and sintering aid is mixed thereto, then, the obtained mixed powder is press formed, and fired in an inert gas of atmospheric pressure. The free cutting ceramic has >=200 MPa bending stress, <=4×10<-6> / deg.C thermal expansion coefficient at 25 to 300 deg.C, cutting speed of 18 m/min using carbide tool of K-10 and abrasion width of major flank of cutting tool of <=0.2 mm in the turning test for 5 min. under the condition that feeding speed is 0.03 mm/rev. and cutting is 0.1 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、良好な被削性と高
強度を併せ持ち、かつ低熱膨張性のセラミックス焼結体
からなる快削性セラミックスに関する。本発明のセラミ
ックスは、半導体製造装置部材や半導体検査装置部材、
ならびに回路基板等に好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a free-cutting ceramic which has both good machinability and high strength and is made of a ceramic sintered body having low thermal expansion. Ceramics of the present invention, semiconductor manufacturing equipment members and semiconductor inspection equipment members,
It is also suitable for circuit boards and the like.

【0002】[0002]

【従来の技術】セラミックス材料は、機械的特性や高温
特性に優れることから、半導体製造装置や半導体検査装
置、ならびに回路基板向けの絶縁性構造用部材に適用で
きる。しかし、セラミックスは焼結時の収縮が大きいた
め、所望の形状、寸法を高精度で得るには研削加工が必
要であり、その際にセラミックスの難加工性が問題にな
る。
2. Description of the Related Art Ceramic materials are excellent in mechanical characteristics and high-temperature characteristics, and therefore can be applied to semiconductor manufacturing equipment, semiconductor inspection equipment, and insulating structural members for circuit boards. However, since ceramics undergo large shrinkage during sintering, grinding is required to obtain a desired shape and dimensions with high accuracy, and at that time, the difficulty in processing the ceramics becomes a problem.

【0003】セラミックスの加工性を改善するため、セ
ラミックスやガラスマトリックスに劈開性を持つ別のセ
ラミックス、例えば、マイカや窒化硼素、を分散させた
快削性セラミックスと呼ばれる材料が知られている。し
かし、高精度の微細加工を可能にする加工性を確保する
には、高強度と良好な被削性の両立が必要であるが、従
来の快削性セラミックスには、それらが両立した、優れ
た加工性を持つものが少ない。また、従来の加工性に優
れたセラミックスのほとんどは、コストが高く、単純形
状しか作製できない、加圧焼成を利用した方法により製
造されるものである。ガラスマトリックスにマイカを分
散させた、常圧焼成可能な快削性セラミックスも知られ
ているが、これは熱膨張性が大きく、使用温度環境の変
化によって加工寸法精度に狂いを生じるという問題があ
った。
In order to improve the workability of ceramics, there is known a material called free-cutting ceramics in which another ceramic having a cleavage property, such as mica or boron nitride, is dispersed in a ceramic or glass matrix. However, in order to ensure workability that enables high-precision micromachining, it is necessary to achieve both high strength and good machinability. There are few that have workability. In addition, most of the conventional ceramics having excellent workability are manufactured by a method using pressure sintering, which is expensive and can produce only a simple shape. A free-cutting ceramic that can be fired at normal pressure, in which mica is dispersed in a glass matrix, is also known, but it has a large thermal expansion property, and there is a problem in that the working dimensional accuracy may be degraded due to changes in the operating temperature environment. Was.

【0004】加工性が良好なセラミックスとして、特公
平5−85504 号公報に記載されているような、窒化珪素
粉末と窒化硼素粉末との混合物に、窒化珪素に対して1
〜10重量%の焼結助剤(アルミナおよびイットリア)を
配合した粉末組成物を焼結したセラミックスがある。し
かし、この公報に開示されたセラミックスは、常圧焼成
した場合には微細加工に必要な十分な強度が得られず、
平均粒径が10μmと原料粒度の粗いことに起因して加工
表面粗度が大きいため、超硬工具による数十ミクロンレ
ベルの微細加工は不可能であった。
[0004] As a ceramic having good workability, a mixture of a silicon nitride powder and a boron nitride powder, as described in Japanese Patent Publication No. 5-85504, is used.
There is a ceramic obtained by sintering a powder composition containing up to 10% by weight of a sintering aid (alumina and yttria). However, the ceramics disclosed in this publication do not have sufficient strength required for fine processing when fired at normal pressure,
Since the surface roughness was large due to the coarse raw material having an average particle diameter of 10 μm, fine processing on the order of several tens of microns using a carbide tool was impossible.

【0005】常圧焼成による窒化珪素と窒化硼素との複
合材料の製造方法として、特開平1−131062号公報に記
載されているような、焼結助剤を添加せずに原料粉末を
作製して焼成したセラミックスがある。しかし、このよ
うな方法で得たセラミックス材料は、焼結助剤が無いた
め、焼結が不十分で、強度が不足しているため、前記の
ようなミクロンレベルの微細加工は不可能であった。
As a method for producing a composite material of silicon nitride and boron nitride by normal-pressure sintering, a raw material powder is prepared without adding a sintering aid, as described in Japanese Patent Application Laid-Open No. 1-131062. There are ceramics fired. However, since the ceramic material obtained by such a method has no sintering aid, the sintering is insufficient, and the strength is insufficient. Was.

【0006】[0006]

【発明が解決しようとする課題】近年の半導体高集積化
にともなって、その製造装置、検査装置、さらには回路
基板等に用いられるセラミックスにも、ミクロンレベル
の穴、スリットなどの微細加工を高精度に実施できるこ
とが求められてきている。従来材では、それに耐えうる
高強度と被削性を合わせ持ったセラミックスがないこと
から、そのようなセラミックスと、それを低コストで複
雑形状も作製できる常圧焼成によって作製する方法の提
供が望まれていた。
With the recent increase in the degree of integration of semiconductors, microfabrication such as micron-level holes and slits has been increasingly required for ceramics used in manufacturing equipment, inspection equipment, and circuit boards. It is required that the method can be performed with high accuracy. Since conventional materials do not have ceramics that have both high strength and machinability that can withstand them, it is desirable to provide such ceramics and a method for producing them by normal-pressure sintering that can produce complex shapes at low cost. Was rare.

【0007】本発明は、低コストで複雑形状も作製でき
る常圧焼成により製造可能で、超硬工具にて容易に加工
できる被削性と、穿孔などの機械加工時に割れや欠けを
起こさない高強度とを併せ持ち、かつ使用温度環境が変
動しても寸法の狂いが生じにくい低熱膨張性を有する快
削性セラミックスと、その製造方法とを提供することを
課題とする。
The present invention can be manufactured by normal-pressure sintering, which can produce complex shapes at low cost, and has high machinability that can be easily machined with a carbide tool and high cracking or chipping during machining such as drilling. It is an object of the present invention to provide a free-cutting ceramic having both strength and low thermal expansion, which is less likely to be out of order even when the operating temperature environment fluctuates, and a method of manufacturing the same.

【0008】[0008]

【課題を解決するための手段】本発明者らは、窒化珪素
と窒化硼素を主成分とし、焼結助剤を配合した、熱膨張
性の低いセラミックスについて、常圧焼成で加工性に優
れたセラミックスを製造すべく検討を重ねた。その結
果、原料の窒化珪素粉末と窒化硼素粉末の表面に不可避
的に存在する酸化物、即ち、それぞれ珪素酸化物および
硼素酸化物、が焼結助剤と反応して、これらの酸化物と
焼結助剤との反応物(これを、上記主成分に対して、本
発明では副成分という)からなる粒界ガラス相を形成
し、この副成分の粒界ガラス相で主成分が結合されるこ
とにより焼結が起こることに着目した。ここで、粒界ガ
ラス相とは、結晶質、非晶質およびそれらの中間的な状
態のいずれをも含むものとする。そして、粉末表面の酸
化物の量をある程度多くした上で、焼結助剤を比較的多
量に配合した場合には、常圧焼成でも高強度のセラミッ
クスが得られ、このセラミックスは被削性にも優れてい
ることを見出した。
Means for Solving the Problems The present inventors have developed a low thermal expansion ceramic which contains silicon nitride and boron nitride as main components and has a sintering additive, and has excellent workability at normal pressure firing. Investigations were repeated to produce ceramics. As a result, oxides inevitably present on the surfaces of the raw material silicon nitride powder and boron nitride powder, that is, silicon oxide and boron oxide, respectively, react with the sintering aid and burn with these oxides. A grain boundary glass phase composed of a reaction product with a binder (this is referred to as an auxiliary component in the present invention with respect to the main component) is formed, and the main component is bound by the grain boundary glass phase of the sub component. We noticed that sintering occurs. Here, the grain boundary glass phase includes any of crystalline, amorphous, and intermediate states thereof. When the amount of oxide on the powder surface is increased to some extent and a relatively large amount of sintering aid is added, a high-strength ceramic can be obtained even at normal pressure firing, and this ceramic has a poor machinability. Also found to be excellent.

【0009】これについては次のように考えられる。主
成分の原料(主原料)となる粉末表面に存在する酸化物
(硼素酸化物および珪素酸化物) は、粉末の表面全体を
覆う酸化物層を形成している。この酸化物層を反応成分
として焼結反応に関与させることにより、粉末の結合剤
となる粒界ガラス相が、粉末の表面全体を覆い、かつ焼
結体全体に均一に分布するように生成する。それに加え
て、焼結反応の反応成分である酸化物と焼結助剤をそれ
ぞれ十分な量で存在させることにより、常圧焼成でも、
主成分の窒化物を粒界ガラス相で強固かつ緻密に結合す
ることが可能となり、高強度のセラミックス体になる。
また、粒界ガラス相が均一に分布することで、高強度を
保持するとともに被削性も改善され、特に加工面の表面
粗さが小さくなる。
This is considered as follows. Oxide present on the powder surface as the main ingredient (main ingredient)
(Boron oxide and silicon oxide) form an oxide layer covering the entire surface of the powder. By causing this oxide layer to participate in the sintering reaction as a reactive component, a grain boundary glass phase serving as a binder for the powder is generated so as to cover the entire surface of the powder and to be uniformly distributed throughout the sintered body. . In addition, the presence of oxides and sintering aids, which are the reaction components of the sintering reaction, in a sufficient amount, respectively, allows for normal pressure firing,
The main component nitride can be firmly and densely bonded in the grain boundary glass phase, resulting in a high-strength ceramic body.
Further, since the grain boundary glass phase is uniformly distributed, high strength is maintained and machinability is also improved, and particularly, the surface roughness of the processed surface is reduced.

【0010】ここに、本発明は、窒化珪素および窒化硼
素からなる主成分と、珪素酸化物、硼素酸化物および焼
結助剤の反応物である副成分とから構成されるセラミッ
クスであって、前記主成分が窒化珪素40〜85質量%およ
び窒化硼素15〜60質量%からなり、前記焼結助剤の量が
焼結助剤と主成分との合計量に対して15〜31質量%であ
り、曲げ強度が200 MPa 以上、25〜300 ℃での熱膨張係
数が4×10-6/℃以下であることを特徴とする、快削性
セラミックスである。
The present invention provides a ceramic comprising a main component consisting of silicon nitride and boron nitride, and a subcomponent which is a reaction product of silicon oxide, boron oxide and a sintering aid, The main component is composed of 40 to 85% by mass of silicon nitride and 15 to 60% by mass of boron nitride, and the amount of the sintering aid is 15 to 31% by mass with respect to the total amount of the sintering aid and the main component. A free-cutting ceramic having a bending strength of 200 MPa or more and a coefficient of thermal expansion at 25 to 300 ° C. of 4 × 10 −6 / ° C. or less.

【0011】本発明の快削性セラミックスは、超硬−K
10種工具を用いた研削速度18 m/min、送り速度0.03 mm/
rev 、切り込み0.1 mmの条件での5分間の旋削試験での
工具逃げ面摩耗幅が0.2 mm以下、被削材の表面粗さがR
max 5μm以下、と優れた被削性を示し、かつ上記のよ
うに高強度であるため、加工性に優れ、ミクロンレベル
の穴、スリットなどの微細加工を精度よく施すことがで
きる。
[0011] The free-cutting ceramic of the present invention is made of carbide-K
Grinding speed using 10 kinds of tools 18 m / min, feed rate 0.03 mm /
rev, the tool flank wear width is less than 0.2 mm in a 5-minute turning test under the condition of 0.1 mm depth of cut, and the surface roughness of the work material is R
It exhibits excellent machinability of max 5 μm or less, and has high strength as described above, so that it is excellent in workability and can perform micromachining such as micron level holes and slits with high precision.

【0012】本発明によればまた、表面に珪素の酸化物
層を有する粉末を含む、珪素酸化物含有量が 0.5〜10質
量%の窒化珪素粉末と、表面に硼素の酸化物層を有する
粉末を含む、硼素酸化物含有量が2〜15質量%の窒化硼
素粉末と、焼結助剤とを混合する工程と、得られた混合
粉末を所定の形状に加圧成形する工程と、得られた成形
体を不活性雰囲気中で焼成する工程とを含み、混合工程
における窒化珪素粉末と窒化硼素粉末の割合が、粉末中
の窒化珪素分と窒化硼素分の合計量に対して窒化珪素が
40〜85質量%、窒化硼素が15〜60質量%であり、焼結助
剤の量が窒化珪素分および窒化硼素分の合計量と焼結助
剤との総和に基づいて10〜31質量%であることを特徴と
する、快削性セラミックスの製造方法も提供される。
According to the present invention, there is also provided a silicon nitride powder having a silicon oxide content of 0.5 to 10% by mass, including a powder having a silicon oxide layer on the surface, and a powder having a boron oxide layer on the surface. A step of mixing a boron nitride powder having a boron oxide content of 2 to 15% by mass with a sintering aid, and a step of press-molding the obtained mixed powder into a predetermined shape. Baking the molded body in an inert atmosphere, wherein the ratio of the silicon nitride powder and the boron nitride powder in the mixing step is such that silicon nitride is added to the total amount of silicon nitride and boron nitride in the powder.
40 to 85 mass%, boron nitride is 15 to 60 mass%, and the amount of the sintering aid is 10 to 31 mass% based on the total amount of the silicon nitride and boron nitride and the sintering aid. A method for producing a free-cutting ceramic is also provided.

【0013】この方法の好適態様においては、前記窒化
珪素粉末の平均粒径が5μm以下であり、前記窒化硼素
粉末の平均粒径が0.5 μm以下である。また、前記焼成
工程は、好ましくは常圧焼成により行う。
In a preferred embodiment of the method, the average particle diameter of the silicon nitride powder is 5 μm or less, and the average particle diameter of the boron nitride powder is 0.5 μm or less. Further, the firing step is preferably performed by normal pressure firing.

【0014】[0014]

【発明の実施の形態】以下に、本発明のセラミックスと
その製造方法について、より具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the ceramic of the present invention and a method for producing the same will be described more specifically.

【0015】本発明のセラミックスは、主原料の窒化硼
素と窒化珪素の各粉末を焼結助剤と一緒に常圧焼成する
ことにより製造される。原料の窒化硼素粉末は、六方晶
系のもの(h−BN)がよい。
The ceramic of the present invention is produced by firing each powder of the main raw materials, boron nitride and silicon nitride, together with a sintering aid under normal pressure. The raw material boron nitride powder is preferably hexagonal (h-BN).

【0016】窒化硼素および窒化珪素の粉末はいずれ
も、硼素および珪素が易酸化性元素であるため、表面が
不可避的に酸化されており、表面にそれぞれ硼素酸化物
および珪素酸化物からなる酸化物層を有する。この粉末
表面の酸化物層が、前述したように焼成中に焼結反応に
関与して、硼素酸化物と珪素酸化物と焼結助剤との反応
物からなるガラス質の粒界相を形成し、この副成分であ
る粒界ガラス相により主成分の窒化物が焼結された、本
発明のセラミックスとなる。
Since the powders of boron nitride and silicon nitride are both oxidizable elements because boron and silicon are easily oxidizable elements, their surfaces are inevitably oxidized. With layers. The oxide layer on the powder surface participates in the sintering reaction during sintering as described above, and forms a glassy grain boundary phase composed of a reaction product of boron oxide, silicon oxide, and a sintering aid. Then, the ceramic of the present invention is obtained by sintering the nitride of the main component by the grain boundary glass phase as the subcomponent.

【0017】このように、主原料の窒化物粉末の表面の
酸化物層を焼結成分として積極的に利用するため、本発
明では、これらの原料粉末の酸化物層の量、即ち、酸化
物の含有量、が特定範囲内のものを使用することが好ま
しい。
As described above, in order to positively utilize the oxide layer on the surface of the nitride powder as the main raw material as a sintering component, in the present invention, the amount of the oxide layer of these raw material powders, Is preferably within a specific range.

【0018】具体的には、本発明で用いる原料粉末のう
ち、窒化硼素粉末は、硼素酸化物の含有量が2〜15質量
%、好ましくは5〜12質量%であり、窒化珪素粉末は、
珪素酸化物の含有量が 0.5〜10質量%、好ましくは1〜
5質量%である。原料粉末の酸化物の含有量が少なすぎ
ると、常圧焼成では焼結が不十分となり、焼結体の緻密
化が不足し、強度の低いセラミックスとなる。原料粉末
の酸化物の含有量が多すぎると、焼結体の粒界ガラス層
が多くなりすぎ、やはり強度低下を起こす。
Specifically, among the raw material powders used in the present invention, the boron nitride powder has a boron oxide content of 2 to 15% by mass, preferably 5 to 12% by mass.
When the content of silicon oxide is 0.5 to 10% by mass, preferably 1 to
5% by mass. If the content of the oxide in the raw material powder is too small, sintering becomes insufficient at normal pressure firing, densification of the sintered body becomes insufficient, and a ceramic having low strength is obtained. When the content of the oxide in the raw material powder is too large, the grain boundary glass layer of the sintered body becomes too large, and the strength is also lowered.

【0019】原料粉末の平均粒径は、窒化硼素粉末が好
ましくは0.5 μm以下、より好ましくは0.1 μm以下で
あり、窒化珪素粉末は好ましくは5μm以下、より好ま
しくは1μm以下である。平均粒径が大きすぎる原料粉
末を使用すると、焼結体の微細組織が粗くなり、強度低
下を起こすとともに、加工後の表面租度が大きくなっ
て、微細加工に不都合をきたす。
The average particle size of the raw material powder is preferably 0.5 μm or less, more preferably 0.1 μm or less for boron nitride powder, and preferably 5 μm or less, more preferably 1 μm or less for silicon nitride powder. If a raw material powder having an average particle size that is too large is used, the fine structure of the sintered body becomes coarse and the strength is reduced, and the surface roughness after processing is increased, resulting in inconvenience in fine processing.

【0020】窒化硼素と窒化珪素の各粉末は、酸化物含
有量と平均粒径が上記範囲であれば、市販のもの使用し
てもよい。また、表面酸化物層をふやす目的で、微細な
窒化硼素粉末または窒化珪素粉末を酸化性雰囲気で熱処
理した粉末を使用することもできる。この熱処理は、例
えば、粉末を大気中 800〜1000℃の温度に加熱すること
により実施できる粉末の酸化物含有量は、例えば酸素窒
素分析装置により分析することができる。市販の窒化硼
素および窒化珪素の粉末について純度表示がある場合、
不純物のほとんどが酸化物であるとみなすことができ
る。
As the powders of boron nitride and silicon nitride, commercially available powders may be used as long as the oxide content and the average particle size are in the above ranges. Further, for the purpose of increasing the surface oxide layer, a powder obtained by heat-treating a fine boron nitride powder or a silicon nitride powder in an oxidizing atmosphere can be used. This heat treatment can be performed, for example, by heating the powder to a temperature of 800 to 1000 ° C. in the air. The oxide content of the powder can be analyzed by, for example, an oxygen nitrogen analyzer. If there is a purity indication for commercially available boron nitride and silicon nitride powders,
Most of the impurities can be considered as oxides.

【0021】一般に、窒化硼素および窒化珪素の各粉末
の酸化物含有量は、粉末の表面積に依存するので、粉末
の平均粒径が小さくなるほど粉末の酸化物含有量は増大
する傾向がある。従って、特に粉末の平均粒径が比較的
大きい時は、市販品では粉末の酸化物含有量が不足する
ことがあるので、必要であれば、酸化性雰囲気中で粉末
を熱処理して、その酸化物含有量を上記のように調整す
る。
Generally, the oxide content of each of the powders of boron nitride and silicon nitride depends on the surface area of the powder. Therefore, as the average particle size of the powder becomes smaller, the oxide content of the powder tends to increase. Therefore, especially when the average particle size of the powder is relatively large, the oxide content of the powder may be insufficient in a commercially available product.If necessary, heat-treat the powder in an oxidizing atmosphere to oxidize the powder. The substance content is adjusted as described above.

【0022】上記のような酸化物含有量と平均粒径を有
する、主原料の窒化珪素粉末と窒化硼素粉末を、その酸
化物を除外した窒化珪素分と窒化硼素分の合計量を100
質量%として、窒化珪素40〜85質量%および窒化硼素15
〜60質量%となるような割合で混合する。この割合は、
好ましくは窒化珪素50〜70質量%、窒化硼素30〜50質量
%である。窒化硼素の割合が少なすぎると、被削性が低
下して、超硬工具での加工ができなくなり、多すぎる
と、強度不足から微細加工時に割れや欠けを発生する。
A silicon nitride powder and a boron nitride powder as main raw materials having the above-mentioned oxide content and average particle size are mixed with silicon nitride and boron nitride, excluding the oxide, in a total amount of 100.
As mass%, silicon nitride 40 to 85 mass% and boron nitride 15
Mix at a ratio of up to 60% by mass. This percentage is
Preferably, it is 50 to 70% by mass of silicon nitride and 30 to 50% by mass of boron nitride. If the proportion of boron nitride is too small, the machinability decreases and machining with a carbide tool becomes impossible, and if it is too large, cracks or chips occur during micromachining due to insufficient strength.

【0023】焼結助剤の配合量は、窒化珪素粉末中の窒
化珪素分と窒化硼素粉末中の窒化硼素分との合計量 (即
ち、粉末中の酸化物を除外した、窒化珪素+窒化硼素の
合計量) と焼結助剤との総和 (窒化珪素+窒化硼素+焼
結助剤の総和) に基づく質量%で、焼結助剤の割合が15
〜31質量%の範囲となるようにする。焼結助剤の割合は
好ましくは15〜25質量%である。焼結助剤の配合量が15
質量%より少ないと、常圧焼成した場合には、特に窒化
珪素の焼結が不十分となり、焼結体の強度が低下する。
焼結助剤の配合量が多すぎると、強度の低い粒界ガラス
層が増加して、焼結体の強度低下を招くとともに、未反
応の助剤単層が析出し、被削性も劣化する。
The compounding amount of the sintering aid is the total amount of silicon nitride in the silicon nitride powder and boron nitride in the boron nitride powder (that is, silicon nitride + boron nitride excluding oxides in the powder). And the sintering aid is 15% by mass based on the sum of the sintering aid and the sum of the sintering aids (sum of silicon nitride + boron nitride + sintering aids).
To be in the range of 31% by mass. The proportion of the sintering aid is preferably from 15 to 25% by weight. Amount of sintering aid is 15
When the amount is less than the mass%, when sintering under normal pressure, sintering of silicon nitride in particular becomes insufficient, and the strength of the sintered body decreases.
If the compounding amount of the sintering aid is too large, the grain boundary glass layer having low strength increases, which causes a decrease in the strength of the sintered body, and a single layer of unreacted auxiliary agent precipitates, and the machinability also deteriorates. I do.

【0024】上記基準で15質量%以上という焼結助剤の
配合量は、従来技術で使用される量に比べて多量であ
る。加圧焼成の場合、このような多量の焼結助剤の配合
は、焼結体の強度に悪影響があるので使用されない。し
かし、常圧焼成では、焼結助剤を15質量%以上配合する
方が高強度の焼結体が得られる。窒化珪素/窒化硼素系
セラミックスにおいて、このような多量に焼結助剤を配
合し、なおかつ高強度を有するものはこれまで知られて
いなかった。但し、後述するように、焼成工程を加圧焼
成により行う場合には、焼結助剤の割合は上記基準で10
質量%以上であればよく、より少ない焼結助剤でも十分
に焼結できる。
The amount of the sintering aid of 15% by mass or more based on the above standard is larger than the amount used in the prior art. In the case of pressure firing, such a large amount of the sintering aid is not used because it has an adverse effect on the strength of the sintered body. However, in normal-pressure firing, a high-strength sintered body can be obtained by blending a sintering aid in an amount of 15% by mass or more. Among silicon nitride / boron nitride ceramics, those having such a large amount of a sintering aid and having high strength have not been known so far. However, as described later, when the firing step is performed by pressure firing, the ratio of the sintering aid is 10
The sintering can be sufficiently performed with less sintering aid.

【0025】前述したように、主原料の粉末中の酸化物
は焼結反応成分であるので、本発明では、この酸化物を
除外した窒化珪素分および窒化硼素分の合計量を基準に
して、焼結助剤の配合量を決める。
As described above, since the oxide in the powder of the main raw material is a sintering reaction component, in the present invention, based on the total amount of silicon nitride and boron nitride excluding this oxide, Determine the amount of the sintering aid.

【0026】なお、焼成は不活性雰囲気中で行うため、
焼成中に窒化珪素や窒化硼素の実質的な酸化は起こらな
い。従って、焼成後には、主成分 (窒化珪素+窒化硼
素) と焼結助剤との合計量に対して上記の量で焼結助剤
を含有するセラミックスが得られることになる。
Since the firing is performed in an inert atmosphere,
No substantial oxidation of silicon nitride or boron nitride occurs during firing. Therefore, after firing, a ceramic containing the sintering aid in the above amount based on the total amount of the main component (silicon nitride + boron nitride) and the sintering aid is obtained.

【0027】焼結助剤は、窒化珪素や窒化硼素の焼結に
従来から使用されているものから選択することができ
る。好ましい焼結助剤は、酸化アルミニウム(アルミ
ナ)、酸化マグネシウム(マグネシア)、酸化イットリ
ウム(イットリア)、およびランタノイド金属の酸化
物、ならびにスピネルなどの複合酸化物、から選ばれた
1種もしくは2種以上であり、より好ましくはアルミナ
とイットリアの混合物、もしくはこれにさらにマグネシ
アを添加した混合物である。
The sintering aid can be selected from those conventionally used for sintering silicon nitride or boron nitride. Preferred sintering aids are one or more selected from aluminum oxide (alumina), magnesium oxide (magnesia), yttrium oxide (yttria), oxides of lanthanoid metals, and composite oxides such as spinel. And more preferably a mixture of alumina and yttria, or a mixture obtained by further adding magnesia thereto.

【0028】本発明のような窒化珪素と窒化硼素との複
合材料の焼結では、窒化硼素粉末の表面の硼素酸化物
と、窒化珪素粉末の表面の珪素酸化物と、添加した焼結
助剤とが反応して、液相を生成し、焼結が行われる。各
粉末の酸化物の含有量と好ましくは平均粒径、ならびに
焼結助剤の配合量を上記のように設定することにより、
焼結反応に関与する成分の分布と量が最適化され、常圧
焼成により高強度で被削性に優れた焼結体となる。
In the sintering of a composite material of silicon nitride and boron nitride as in the present invention, boron oxide on the surface of boron nitride powder, silicon oxide on the surface of silicon nitride powder, and an added sintering aid Reacts to generate a liquid phase and sintering is performed. By setting the content of the oxide of each powder and preferably the average particle size, and the amount of the sintering aid as described above,
The distribution and amount of the components involved in the sintering reaction are optimized, and a sintered body having high strength and excellent machinability is obtained by normal pressure firing.

【0029】上記のような割合で2種類の原料粉末と焼
結助剤とを混合して混合粉末を調製した後、この混合粉
末を加圧成形し、得られた成形体を不活性雰囲気中で焼
成して、本発明のセラミックスを製造する。これらの混
合、成形、および焼成の各工程の操作それ自体は、任意
の適当な方法に従って実施すればよい。次に、その方法
の1例を説明するが、例示した方法に制限されるもので
はない。
After mixing the two kinds of raw material powder and the sintering aid in the above ratio to prepare a mixed powder, the mixed powder is subjected to pressure molding, and the obtained molded body is placed in an inert atmosphere. To produce the ceramic of the present invention. The operation itself of each of the mixing, molding, and firing steps may be performed according to any appropriate method. Next, an example of the method will be described, but the method is not limited to the illustrated method.

【0030】混合工程は乾式混合により行うことも可能
であるが、次の成形工程における成形を容易にするため
に少量のバインダ (通常は有機樹脂) を含有させること
が望ましいので、湿式ボールミル等で湿式混合すること
が有利である。湿式混合により得られた粉末スラリーに
バインダを加えてから、スプレードライ法により乾燥し
て、少量のバインダを含有する混合粉末を得る。湿式粉
砕の液体媒質は有機溶媒、例えば、アルコール類が好ま
しい。バインダとしては各種の樹脂が使用できる。バイ
ンダの添加量は、一般に焼結助剤も含めた粉末合計量に
対して1〜5質量%とごく少量でよい。
Although the mixing step can be performed by dry mixing, it is desirable to include a small amount of a binder (usually an organic resin) in order to facilitate molding in the next molding step. Wet mixing is advantageous. A binder is added to the powder slurry obtained by wet mixing and then dried by a spray drying method to obtain a mixed powder containing a small amount of binder. The liquid medium for wet grinding is preferably an organic solvent, for example, alcohols. Various resins can be used as the binder. The amount of the binder added may be as small as 1 to 5% by mass based on the total amount of the powder including the sintering aid.

【0031】上記の混合粉末を、例えばCIP (冷間静
水圧加圧)等により加圧成形する。得られた成形体を不
活性雰囲気下で焼成する。焼成温度は、一般に1700〜19
50℃の範囲内、好ましくは1700〜1800℃の範囲内であ
る。焼成温度が低すぎると緻密化せず、高すぎると、窒
化珪素の分解や、焼結助剤ならびに硼素酸化物や珪素酸
化物の揮発が起こり、焼結に悪影響を及ぼす。バインダ
を使用した場合には、焼成前に脱バインダのための低温
加熱を実施してもよい。この低温加熱は、原料粉末の酸
化が避けられる温度であるなら、大気中で実施してもよ
い。
The mixed powder is compacted by, for example, CIP (cold isostatic pressing). The obtained molded body is fired under an inert atmosphere. The firing temperature is generally 1700-19
It is in the range of 50 ° C, preferably in the range of 1700-1800 ° C. If the firing temperature is too low, densification does not occur. If the firing temperature is too high, decomposition of silicon nitride and volatilization of the sintering aid and boron oxide and silicon oxide occur, which adversely affects sintering. When a binder is used, low-temperature heating for removing the binder may be performed before firing. This low-temperature heating may be performed in the air if the temperature is such that oxidation of the raw material powder can be avoided.

【0032】焼成は常圧焼成とすることが好ましい。本
発明では、前述したように原料粉末の酸化物量や焼結助
剤の量の適正化により、常圧焼成でも十分に高強度で被
削性に優れた焼結体となる。それにより、低コストで複
雑形状のセラミックスを製造することが可能となる。
The firing is preferably carried out at normal pressure. In the present invention, as described above, by optimizing the amount of the oxide of the raw material powder and the amount of the sintering aid, a sintered body having sufficiently high strength and excellent machinability even at normal pressure firing can be obtained. This makes it possible to manufacture ceramics having a complicated shape at low cost.

【0033】しかし、焼成はHIP (熱間静水圧加圧)
やホットプレスなどの加圧焼成により行うことも可能で
あり、それにより曲げ強度がさらに向上した焼結体が得
られる。例えば、上記粉末を黒鉛製モールドに充填し、
熱間で加圧しながら焼成することもできる。この場合、
加圧力は20〜50 Mpaの範囲内が適当である。この場合に
は、前述したように、焼結助剤の割合を前記基準で10〜
31質量%と、常圧焼成の場合より低減させることができ
る。加圧焼成の場合の好ましい焼結助剤の割合は、前記
基準で10〜15質量%である。
However, firing is HIP (hot isostatic pressing)
It is also possible to carry out by sintering under pressure such as hot pressing or hot pressing, whereby a sintered body with further improved bending strength can be obtained. For example, filling the above powder into a graphite mold,
It is also possible to bake while applying pressure while hot. in this case,
Appropriate pressure is in the range of 20-50 Mpa. In this case, as described above, the ratio of the sintering aid is 10 to
It can be reduced to 31% by mass as compared with the case of normal pressure firing. The preferred ratio of the sintering aid in the case of pressure firing is 10 to 15% by mass based on the above-mentioned standard.

【0034】常圧焼成と加圧焼成のいずれでも、高強度
で被削性も良好な、微細加工可能な焼結体が得られ、こ
れに超硬工具を用いて微細な穴あけ加工かスリット加工
を施した場合、割れや欠けのない加工を精度よく施すこ
とができ、工具の過度の摩耗や破損も防止される。
In both normal pressure firing and pressure firing, a high-strength and good machinability sintered body that can be fine-processed is obtained, and a fine drilling or slitting process is performed using a carbide tool. In this case, processing without cracking or chipping can be performed with high accuracy, and excessive wear and breakage of the tool can be prevented.

【0035】[0035]

【実施例】以下の実施例、比較例において、%は特に指
定のない限り質量%である。 (実施例1、2)平均粒径0.05μm、硼素酸化物含有量8
%の六方晶窒化硼素(h-BN)粉末と、平均粒径0.2 μm、
珪素酸化物含有量 2.3%の窒化珪素(Si3N4) 粉末とを、
表1の主成分組成に示すSi3N4 : BN重量比となるような
割合で混合した。この粉末混合物に、粉末中の窒化珪素
分+窒化硼素分の合計量と焼結助剤との総和を基準とす
る比率で5%のアルミナと16%のイットリアとを加え、
エチルアルコールを液体媒体とする湿式ボールミル混合
を行ってスラリーを作製した。得られたスラリーに、バ
インダとしてアクリル樹脂を粉末合計量に対して3%の
量で加えて溶解させてから、スラリーをスプレードライ
法により乾燥・造粒を行って、混合粉末を得た。
EXAMPLES In the following examples and comparative examples,% is% by mass unless otherwise specified. (Examples 1 and 2) Average particle size 0.05 μm, boron oxide content 8
% Hexagonal boron nitride (h-BN) powder, average particle size 0.2 μm,
2.3% silicon oxide (Si 3 N 4 ) powder with silicon oxide content
The components were mixed at a ratio such that the weight ratio of Si 3 N 4 : BN shown in the main component composition in Table 1 was obtained. To this powder mixture was added 5% alumina and 16% yttria in a ratio based on the total amount of silicon nitride + boron nitride in the powder and the sintering aid,
A slurry was prepared by performing wet ball mill mixing using ethyl alcohol as a liquid medium. To the obtained slurry, an acrylic resin was added as a binder in an amount of 3% based on the total amount of the powder and dissolved, and then the slurry was dried and granulated by a spray drying method to obtain a mixed powder.

【0036】この混合粉末を、120 mm平方の金型に充填
し、1500 kgf/cm2で冷間静水圧加圧により加圧成形して
成形体を得た。得られた成形体を、大気中600 ℃に加熱
して脱バインダを行った後、窒素雰囲気中1750℃で4時
間の常圧焼成を行って、厚さ約15 mm のセラミックス焼
結体を得た。
This mixed powder was filled in a 120 mm square mold, and pressed under cold isostatic pressure at 1500 kgf / cm 2 to obtain a formed body. The obtained molded body is heated to 600 ° C. in the atmosphere to remove the binder, and then calcined at 1750 ° C. in a nitrogen atmosphere for 4 hours under normal pressure to obtain a ceramic sintered body having a thickness of about 15 mm. Was.

【0037】この焼結体に対して、下記の試験を行っ
た。これらの試験結果も表1に併せて示す。曲げ強度 焼結体から30×40×360 mmサイズの試験片を切り出し、
3点曲げ試験で破壊強度を測定し、曲げ強度を求めた。
The following test was performed on this sintered body. These test results are also shown in Table 1. Cut out a test piece of 30 × 40 × 360 mm size from the bending strength sintered body,
The breaking strength was measured by a three-point bending test, and the bending strength was determined.

【0038】被削性 超硬−K10種工具を用いて、研削速度18 m/min、送り速
度0.03 mm/rev 、切り込み0.1 mmの条件で旋削試験を行
い、5分後の被削材の表面粗さと工具の逃げ面摩耗幅
(工具の摩耗の程度を示す)を測定した。
[0038] Using the machinability carbide -K10 or tools, grinding rate 18 m / min, feed rate 0.03 mm / rev, performs turning test under the conditions of cut 0.1 mm, workpiece surface after 5 minutes The roughness and the flank wear width of the tool (indicating the degree of tool wear) were measured.

【0039】熱膨張係数 押棒式熱膨張計により、焼結体の熱膨張係数を室温(25
℃)〜300 ℃の範囲で測定した。
Thermal expansion coefficient The thermal expansion coefficient of the sintered body was measured at room temperature (25
° C) to 300 ° C.

【0040】加工性 加工性は穴あけ加工およびスリット加工の両方で評価し
た。穴あけ加工では、焼結体を厚さ300 μmの薄板状に
切り出した試験片に、直径50μmの超硬ドリル (材質S
KH9)を使用して、璧厚み10μmで縦30列、横20列
(合計600 個)の貫通穴をあけた。穴の直径は60μm、
深さは300 μmであった。
The workability workability was evaluated in both the drilling and slitting. In the drilling process, a 50μm diameter carbide drill (material S) was cut out from a test piece obtained by cutting a sintered body into a thin plate with a thickness of 300μm.
Using KH9), through-holes of 30 rows vertically and 20 rows horizontally (a total of 600 pieces) were drilled with a wall thickness of 10 μm. The diameter of the hole is 60 μm,
The depth was 300 μm.

【0041】得られた貫通穴の穴径と穴ピッチの精度を
測定し、この精度が±4μm以内で、割れや欠けがない
場合を○、穴あけ加工は可能であるものの、精度が不十
分か、割れや欠けが発生した場合を△、ドリルが折れる
などして穴あけ加工が不可能な場合を×と評価した。
The accuracy of the hole diameter and the hole pitch of the obtained through holes was measured. If the accuracy was within ± 4 μm and there was no crack or chipping, ○ indicates that the drilling was possible but the accuracy was insufficient. The case where cracking or chipping occurred was evaluated as Δ, and the case where drilling was impossible due to breakage of the drill was evaluated as ×.

【0042】スリット加工では、焼結体を 500μm厚み
に切り出した試験片に、研削砥石(レジンボンドダイヤ
モンド砥石#200 、厚み40μm、外径50 mm )を用い
て、スリット(幅=40μm、壁厚み=15μm、深さ=30
0 μm)を100 個形成した。
In the slit processing, a test piece obtained by cutting a sintered body to a thickness of 500 μm is slit (width = 40 μm, wall thickness) using a grinding wheel (resin bond diamond wheel # 200, thickness 40 μm, outer diameter 50 mm). = 15μm, depth = 30
0 μm).

【0043】スリット加工は可能であるが、精度が不十
分、(ピッチ精度が±4 μmを超える)か、割れおよぴ
/欠け(チッピング)が発生した場合を△、十分な精度
でスリット加工が可能で、割れや欠けが発生しない場合
を○と評価した。
Slit processing is possible, but if the accuracy is insufficient, (pitch accuracy exceeds ± 4 μm), or if cracking and chipping occur, Was possible, and a case where cracking or chipping did not occur was evaluated as ○.

【0044】(実施例3)窒化珪素粉末を、平均粒径1.0
μm、珪素酸化物含有量4.7 %のものに変更した以外
は実施例1と同様にして、焼結体を作製して、試験を実
施した。
Example 3 Silicon nitride powder was prepared by adding an average particle size of 1.0
A sintered body was prepared and tested in the same manner as in Example 1 except that the thickness was changed to that of μm and the silicon oxide content was 4.7%.

【0045】(実施例4、5)焼結助剤の配合量を、実
施例1に記載の総和を基準とする比率で、実施例4では
アルミナ5%、イットリア11%に変更し、実施例5では
アルミナ6%、イットリア20%に変更した以外は、実施
例1と同様にして焼結体を作製し、試験を実施した。
(Examples 4 and 5) In Example 4, the amount of the sintering aid was changed to 5% alumina and 11% yttria in a ratio based on the total amount described in Example 1. In Example 5, a sintered body was prepared and tested in the same manner as in Example 1 except that the alumina was changed to 6% and the yttria was changed to 20%.

【0046】(比較例1、2)主原料 (窒化珪素と窒化
硼素の粉末) の配合比率を、酸化物を除外した比率で、
表1に記載のように変更し、比較例2では焼結助剤の配
合量を、実施例1に記載の総和を基準とする比率で、ア
ルミナ10%、イットリア21%に変更した以外は、実施例
1と同様にして焼結体を作製し、試験を実施した。
(Comparative Examples 1 and 2) The mixing ratios of the main raw materials (powder of silicon nitride and boron nitride) were determined by excluding oxides.
Except that the amount was changed as shown in Table 1 and that the amount of the sintering aid in Comparative Example 2 was changed to 10% alumina and 21% yttria in a ratio based on the total amount described in Example 1, A sintered body was prepared and tested in the same manner as in Example 1.

【0047】(比較例3)窒化硼素粉末を、平均粒径1.0
μm、硼素酸化物含有量 1.0%のものに変更し、焼結
助剤の配合量を比較例2と同様に変更した以外は、実施
例1と同様にして焼結体を作製し、試験を実施した。
(Comparative Example 3) A boron nitride powder having an average particle size of 1.0
μm, a boron oxide content of 1.0%, and a sintered body was prepared in the same manner as in Example 1 except that the compounding amount of the sintering aid was changed in the same manner as in Comparative Example 2. Carried out.

【0048】(比較例4、5)焼結助剤の配合量を、実
施例1に記載の総和を基準とする比率で、比較例4では
アルミナ11%、イットリア25%に変更し、比較例5では
アルミナ2%、イットリア7%に変更した以外は、実施
例1と同様にして焼結体を作製し、試験を実施した。
(Comparative Examples 4 and 5) The amount of the sintering aid was changed to 11% alumina and 25% yttria in Comparative Example 4 in a ratio based on the total amount described in Example 1. In Example 5, a sintered body was prepared and tested in the same manner as in Example 1, except that alumina was changed to 2% and yttria was changed to 7%.

【0049】[0049]

【表1】 [Table 1]

【0050】表1から分かるように、焼成工程を常圧焼
成により行ったにもかかわらず、本発明に従った実施例
で得られたセラミックス焼結体は、被削性に優れ、曲げ
強度も十分に高かった。そのため、スリット加工と穴あ
け加工のいずれにおいても、割れや欠けを生じることな
く高精度な微細加工を行うことができた。また、高温で
の寸法精度誤差の少ない低熱膨張の材料であることも確
認できた。
As can be seen from Table 1, despite the firing step performed at normal pressure, the ceramic sintered body obtained in the example according to the present invention has excellent machinability and bending strength. It was high enough. Therefore, in both the slit processing and the drilling processing, high-precision fine processing could be performed without causing cracks or chipping. It was also confirmed that the material had low thermal expansion with little dimensional accuracy error at high temperatures.

【0051】これに対し、比較例に示すように、主成分
の窒化硼素と窒化珪素の配合比率やその酸化物含有量、
または焼結助剤の配合量が本発明の範囲外であると、曲
げ強度または被削性のいずれかが悪化し、穴あけ加工時
に欠けや割れの発生や工具破損が起こったり、スリット
加工時に欠けや割れが発生し、微細加工に不都合を生じ
た。
On the other hand, as shown in the comparative example, the mixing ratio of the main components boron nitride and silicon nitride, the oxide content thereof,
Or, if the compounding amount of the sintering agent is out of the range of the present invention, either the bending strength or machinability deteriorates, chipping or cracking occurs during drilling, tool breakage occurs, or chipping occurs during slit processing. And cracks occurred, causing inconvenience in fine processing.

【0052】図1には、実施例1をベースにして (即
ち、窒化珪素:窒化硼素の質量比=68:32、粉末の酸化
物含有量と平均粒径は実施例1に同じ) 、焼結助剤の配
合量だけを変化させた場合の焼結体の曲げ強度と焼結助
剤添加量との関係を示し、図2は、この場合の焼結体の
熱膨張係数と焼結助剤の配合量との関係を示す。表2に
は、この場合の焼結体の被削性と焼結助剤の配合量との
関係を示す。表2の焼結助剤の配合量のうち、11%の例
は、アルミナ4%、イットリア7%であり、その他は上
記実施例または比較例の場合と同じである。
FIG. 1 is based on Example 1 (that is, the silicon nitride: boron nitride mass ratio = 68: 32, the oxide content of powder and the average particle diameter are the same as in Example 1). FIG. 2 shows the relationship between the bending strength of the sintered body and the amount of the sintering additive added when only the amount of the binder was changed. FIG. 2 shows the thermal expansion coefficient and the sintering aid of the sintered body in this case. The relationship with the compounding amount of the agent is shown. Table 2 shows the relationship between the machinability of the sintered body and the amount of the sintering aid in this case. Of the blending amounts of the sintering aids in Table 2, the example of 11% is 4% of alumina and 7% of yttria, and the others are the same as those of the above-mentioned Examples or Comparative Examples.

【0053】[0053]

【表2】 [Table 2]

【0054】図1から、曲げ強度は、焼結助剤の量が20
%前後で最大となり、特に焼結助剤が少なすぎると、良
好な曲げ強度が得られないことがわかる。図2からわか
るように、熱膨張係数は、焼結助剤の量が多くなると増
大する傾向がある。表2からは、被削性について、焼結
助剤が多すぎると、工具の摩耗幅と被削剤の加工面粗さ
がいずれも悪化することがわかる。図1、2および表2
の結果を総合すると、焼結助剤の量が15〜25%の範囲内
で焼結体の強度と被削性の両方が特によい結果となる。
FIG. 1 shows that the flexural strength was determined when the amount of the sintering aid was 20%.
%, It is understood that good bending strength cannot be obtained particularly when the amount of the sintering aid is too small. As can be seen from FIG. 2, the coefficient of thermal expansion tends to increase as the amount of the sintering aid increases. From Table 2, it can be seen that regarding the machinability, when the amount of the sintering aid is too large, both the wear width of the tool and the machined surface roughness of the machinable material are deteriorated. Figures 1 and 2 and Table 2
In summary, when the amount of the sintering aid is in the range of 15 to 25%, both the strength and machinability of the sintered body are particularly good.

【0055】[0055]

【発明の効果】本発明により、常圧焼成されるセラミッ
クス材料により、微細加工を可能にする高強度と優れた
被削性を兼ね備え、かつ25〜300 ℃での熱膨張係数が小
さい、快削性セラミックスを提供することが可能なる。
According to the present invention, a ceramic material which is fired under normal pressure has both high strength and excellent machinability enabling fine processing and a small thermal expansion coefficient at 25 to 300 ° C. It is possible to provide conductive ceramics.

【0056】本発明の快削性セラミックスは、薄い壁厚
みで幅または直径の小さい深いスリットまたは貫通穴を
精度良く形成する必要がある、半導体製造装置部材、半
導体検査装置ジグ、回路基板等に適用できる。このセラ
ミックスは、熱膨張係数が小さいため、使用環境の温度
変化による位置ずれがおきにくく、加工部品使用の際の
信頼性が高まる。
The free-cutting ceramic of the present invention is applied to semiconductor manufacturing equipment members, semiconductor inspection equipment jigs, circuit boards, etc., in which it is necessary to accurately form a deep slit or through hole having a small wall thickness and a small width or diameter. it can. Since this ceramic has a small coefficient of thermal expansion, it is difficult for the ceramic to be misaligned due to a temperature change in the use environment, and the reliability when using a machined component is enhanced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】焼結助剤の添加量と焼結体の3点曲げ強度との
関係を示すグラフ。
FIG. 1 is a graph showing the relationship between the amount of a sintering aid added and the three-point bending strength of a sintered body.

【図2】焼結助剤の添加量と焼結体の25〜300 ℃におけ
る熱膨張係数との関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the amount of a sintering aid added and the coefficient of thermal expansion of a sintered body at 25 to 300 ° C.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉富 靖樹 兵庫県尼崎市東向島西之町1番地 住金セ ラミックス株式会社関西工場内 (72)発明者 中川 邦昭 石川県松任市漆島町1142番地 住金セラミ ックス株式会社本社工場内 Fターム(参考) 4G001 BA02 BA03 BA04 BA09 BA32 BA35 BB03 BB09 BB32 BB35 BC13 BC23 BC54 BC56 BD05 BD11 BD14 BD38  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasuki Yoshitomi 1 Nishinocho, Higashimukaijima, Amagasaki City, Hyogo Sumikin Ceramics Co., Ltd.Kansai Plant (72) Inventor Kuniaki Nakagawa 1142 Urushijimacho, Matsuto City, Ishikawa Pref. 4G001 BA02 BA03 BA04 BA09 BA32 BA35 BB03 BB09 BB32 BB35 BC13 BC23 BC54 BC56 BD05 BD11 BD14 BD38

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 窒化珪素および窒化硼素からなる主成分
と、珪素酸化物、硼素酸化物および焼結助剤の反応物で
ある副成分とから構成されるセラミックスであって、前
記主成分が窒化珪素40〜85質量%および窒化硼素15〜60
質量%からなり、前記焼結助剤の量が焼結助剤と主成分
との合計量に対して15〜31質量%であり、曲げ強度が20
0 MPa 以上、25〜300 ℃での熱膨張係数が4×10-6/℃
以下であることを特徴とする、快削性セラミックス。
1. A ceramic comprising a main component composed of silicon nitride and boron nitride and a subcomponent that is a reaction product of silicon oxide, boron oxide and a sintering aid, wherein the main component is nitrided. 40 to 85% by mass of silicon and 15 to 60% of boron nitride
%, The amount of the sintering aid is 15 to 31% by weight based on the total amount of the sintering aid and the main component, and the bending strength is 20%.
0 MPa or more, coefficient of thermal expansion at 25-300 ° C is 4 × 10 -6 / ° C
A free-cutting ceramic characterized by the following.
【請求項2】 快削性セラミックスの製造方法であっ
て、 表面に珪素の酸化物層を有する粉末を含む、珪素酸化物
含有量が 0.5〜10質量%の窒化珪素粉末と、表面に硼素
の酸化物層を有する粉末を含む、硼素酸化物含有量が2
〜15質量%の窒化硼素粉末と、焼結助剤とを混合する工
程と、 得られた混合粉末を所定の形状に加圧成形する工程と、 得られた成形体を不活性雰囲気中で焼成する工程とを含
み、 混合工程における窒化珪素粉末と窒化硼素粉末の割合
が、粉末中の窒化珪素分と窒化硼素分の合計量に対して
窒化珪素が40〜85質量%、窒化硼素が15〜60質量%であ
り、焼結助剤の量が窒化珪素分および窒化硼素分の合計
量と焼結助剤との総和に基づいて10〜31質量%であるこ
とを特徴とする方法。
2. A method for producing a free-cutting ceramic, comprising: a silicon nitride powder having a silicon oxide content of 0.5 to 10% by mass, including a powder having a silicon oxide layer on the surface; A boron oxide content of 2 including powder having an oxide layer;
Mixing boron nitride powder of up to 15% by mass with a sintering aid, pressing the obtained mixed powder into a predetermined shape, and sintering the obtained molded body in an inert atmosphere. Wherein the proportion of the silicon nitride powder and the boron nitride powder in the mixing step is such that silicon nitride is 40 to 85% by mass and boron nitride is 15 to 85% by mass based on the total amount of silicon nitride and boron nitride in the powder. 60% by mass, and the amount of the sintering aid is 10 to 31% by mass based on the total amount of the silicon nitride and boron nitride and the sintering aid.
【請求項3】 前記窒化珪素粉末の平均粒径が5μm以
下であり、前記窒化硼素粉末の平均粒径が0.5 μm以下
である請求項2記載の方法。
3. The method according to claim 2, wherein the silicon nitride powder has an average particle size of 5 μm or less, and the boron nitride powder has an average particle size of 0.5 μm or less.
【請求項4】 焼成を常圧焼成により行う請求項2また
は3記載の方法。
4. The method according to claim 2, wherein the calcination is performed by normal pressure calcination.
JP2001106053A 2001-03-28 2001-04-04 Free-cutting ceramics and manufacturing method thereof Expired - Fee Related JP3890915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001106053A JP3890915B2 (en) 2001-03-28 2001-04-04 Free-cutting ceramics and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-93544 2001-03-28
JP2001093544 2001-03-28
JP2001106053A JP3890915B2 (en) 2001-03-28 2001-04-04 Free-cutting ceramics and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002356374A true JP2002356374A (en) 2002-12-13
JP3890915B2 JP3890915B2 (en) 2007-03-07

Family

ID=26612410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001106053A Expired - Fee Related JP3890915B2 (en) 2001-03-28 2001-04-04 Free-cutting ceramics and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3890915B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102985390A (en) * 2010-07-14 2013-03-20 日本发条株式会社 Ceramic member, and method of producing probe holder and ceramic member
US8410009B2 (en) 2009-05-28 2013-04-02 Nhk Spring Co., Ltd. Ceramic member, probe holder, and method for manufacturing ceramic member
JP2020019677A (en) * 2018-08-01 2020-02-06 株式会社フェローテックセラミックス Ceramic antibacterial material, antibacterial part, manufacturing method of antibacterial part, and ceramic composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8410009B2 (en) 2009-05-28 2013-04-02 Nhk Spring Co., Ltd. Ceramic member, probe holder, and method for manufacturing ceramic member
CN102985390A (en) * 2010-07-14 2013-03-20 日本发条株式会社 Ceramic member, and method of producing probe holder and ceramic member
US9238593B2 (en) 2010-07-14 2016-01-19 Nhk Spring Co., Ltd. Ceramic member, probe holder, and manufacturing method of ceramic member
JP2020019677A (en) * 2018-08-01 2020-02-06 株式会社フェローテックセラミックス Ceramic antibacterial material, antibacterial part, manufacturing method of antibacterial part, and ceramic composite material
JP7026904B2 (en) 2018-08-01 2022-03-01 株式会社フェローテックマテリアルテクノロジーズ Ceramic antibacterial materials, antibacterial parts, manufacturing methods of antibacterial parts and ceramic composite materials

Also Published As

Publication number Publication date
JP3890915B2 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
EP0780351B1 (en) Aluminum nitride sintered body and method for manufacturing the same
JP5046221B2 (en) Manufacturing method of highly reliable silicon nitride ceramics with high reliability
WO2012060442A1 (en) High rigidity ceramic material and method for producing same
JP3214890B2 (en) Aluminum nitride sintered body, method for producing the same, and firing jig using the same
JP5087339B2 (en) Method for producing free-cutting ceramics
US7749932B2 (en) Composition, sintered product of silicon nitride, article of manufacture, and cutting method
JP4850007B2 (en) Silicon nitride sintered body
JPH0777986B2 (en) Manufacturing method of silicon carbide sintered body
JP2002356374A (en) Free cutting ceramic and its manufacturing
TWI759081B (en) Machinable ceramic composite and method for preparing the same
JP2004059346A (en) Silicon nitride-based ceramic sintered compact, and its production process
JP2002220282A (en) Aluminum nitride sintered compact and method of manufacture
JP6720053B2 (en) Method for manufacturing silicon nitride sintered body
JP5161060B2 (en) Heat resistant black member and method for producing the same
JPH06100306A (en) Sialon crystal particle and sintered compact of complex ceramics
JP2006117472A (en) Silicon carbide tool material for firing and its manufacturing method
JP2001181053A (en) Silicon nitride sintered product and method for producing the same
JP2005298304A (en) Highly dense silicon carbide ceramic and its producing method
JP3177650B2 (en) High-strength alumina sintered body and method for producing the same
JP4542747B2 (en) Manufacturing method of high strength hexagonal boron nitride sintered body
JPS63100055A (en) Alumina base ceramic for cutting tool and manufacture
KR101565845B1 (en) MANUFACTURING METHOD FOR MACHINABLE SiC CERAMICS AND SiC CERAMICS MANUFACTURED BY THE METHOD
JP2000335976A (en) Silicon nitride-based sintered compact and its production and abrasion-resistant member using the same
JPH11240765A (en) Silicon nitride sintered product and its production
KR20060063667A (en) Ceramics for a glass mold

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R150 Certificate of patent or registration of utility model

Ref document number: 3890915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees