JP2002355696A - Supercritical water oxidative decomposition apparatus - Google Patents
Supercritical water oxidative decomposition apparatusInfo
- Publication number
- JP2002355696A JP2002355696A JP2001163985A JP2001163985A JP2002355696A JP 2002355696 A JP2002355696 A JP 2002355696A JP 2001163985 A JP2001163985 A JP 2001163985A JP 2001163985 A JP2001163985 A JP 2001163985A JP 2002355696 A JP2002355696 A JP 2002355696A
- Authority
- JP
- Japan
- Prior art keywords
- preheating means
- mixed fluid
- fluid
- preheating
- reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Landscapes
- Treatment Of Sludge (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、スケールの防止に
有効な超臨界水酸化分解装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supercritical hydroxylation / decomposition apparatus effective for preventing scale.
【0002】[0002]
【従来の技術】従来、下水汚泥等を酸化処理する方法と
して、主に焼却による方法が一般的であった。しかしな
がら、下水汚泥は水分含有量が97〜98%と高いた
め、下水汚泥を焼却処理するためには、予め下水汚泥を
スクリュープレス型脱水機等の脱水手段により脱水し、
焼却可能な範囲までその水分量を低減させる必要があっ
た。2. Description of the Related Art Heretofore, as a method of oxidizing sewage sludge and the like, a method of mainly incineration has been generally used. However, since the sewage sludge has a high water content of 97 to 98%, in order to incinerate the sewage sludge, the sewage sludge is previously dehydrated by a dehydration means such as a screw press type dehydrator.
It was necessary to reduce the water content to the extent that it could be incinerated.
【0003】一方近年になり、超臨界状態の水を用い
て、下水汚泥を直接酸化処理する方法が提案されてい
る。On the other hand, in recent years, a method of directly oxidizing sewage sludge using water in a supercritical state has been proposed.
【0004】しかしながら、下水汚泥を超臨界水酸化処
理する場合、汚泥中に含まれる無機物質が固形物として
沈降すると超臨界水酸化装置の配管が閉塞する可能性が
あり、安定的に超臨界水酸化処理を行うことができな
い。閉塞を防ぐためには、固形物が沈降しないように、
被処理物混合流体の流速をある一定以上にする必要があ
る。そのため、流体の流路は反応器も含めて一定の太さ
にする必要がある。[0004] However, when the sewage sludge is subjected to the supercritical water oxidation treatment, if the inorganic substances contained in the sludge settle as solids, there is a possibility that the pipe of the supercritical water oxidation apparatus may be clogged, and the supercritical water may be stably superposed. Oxidation treatment cannot be performed. To prevent blockage, ensure that solids do not settle,
It is necessary to make the flow velocity of the mixed fluid of the object to be processed at least a certain value. Therefore, the flow path of the fluid needs to have a certain thickness including the reactor.
【0005】また、下水汚泥は含まれる有機物の濃度が
薄く、発熱量が大きくないため、下水汚泥を超臨界水で
酸化するためには、下水汚泥を予熱することが必要とな
る。[0005] Further, sewage sludge has a low concentration of organic substances contained therein and does not generate a large amount of heat. Therefore, in order to oxidize sewage sludge with supercritical water, it is necessary to preheat the sewage sludge.
【0006】図3を参照して、従来の下水汚泥を超臨界
水酸化する超臨界水酸化装置を説明する。図3は従来の
超臨界水酸化装置の構成を示すフローシートである。従
来の超臨界水酸化装置30は、図3に示すように、超臨
界水酸化反応を行う反応器として、チューブラー状の長
い耐圧密閉型反応器31を備え、反応器31の上流に
は、下水汚泥を供給する下水汚泥ポンプ39と酸素を供
給する空気圧縮機40と反応物を予熱する二重管式熱交
換器32を、反応器31の下流には、反応生成物を冷却
する熱交換器33及び冷却器34を備えている。熱交換
器33で反応生成物を冷却することにより、熱媒は高温
となり、二重管式熱交換器32で被処理物混合流体を予
熱する熱源として使用される。更に、超臨界水酸化装置
30は、反応器31内の圧力を制御する圧力制御弁35
を冷却器34の下流に、反応生成物をガスとスラリーと
に気液分離する気液分離器36を圧力制御弁35の下流
に、及び、スラリー状の反応生成物を固液分離して、無
機固形物を反応生成物から分離する固液分離器37を備
えている。固液分離器37で分離された無機固形物は、
主として、反応物中に含まれ、反応に寄与しなかったも
のであって、加えて、超臨界水酸化反応により生成した
塩を含むこともある。Referring to FIG. 3, a conventional supercritical water oxidation apparatus for supercritical water oxidation of sewage sludge will be described. FIG. 3 is a flow sheet showing the configuration of a conventional supercritical water oxidation apparatus. As shown in FIG. 3, the conventional supercritical water oxidation apparatus 30 includes a tubular long pressure-resistant closed reactor 31 as a reactor for performing a supercritical water oxidation reaction, and upstream of the reactor 31, A sewage sludge pump 39 for supplying sewage sludge, an air compressor 40 for supplying oxygen, and a double-pipe heat exchanger 32 for preheating the reactants are provided downstream of the reactor 31 for heat exchange for cooling the reaction products. A device 33 and a cooler 34 are provided. When the reaction product is cooled by the heat exchanger 33, the heat medium becomes high in temperature, and is used as a heat source for preheating the mixed fluid to be processed by the double-tube heat exchanger 32. Further, the supercritical water oxidation device 30 includes a pressure control valve 35 for controlling the pressure in the reactor 31.
Downstream of the cooler 34, a gas-liquid separator 36 for gas-liquid separation of the reaction product into gas and slurry, downstream of the pressure control valve 35, and solid-liquid separation of the slurry-like reaction product, A solid-liquid separator 37 for separating inorganic solids from reaction products is provided. The inorganic solid separated by the solid-liquid separator 37 is
It is mainly contained in the reaction product and has not contributed to the reaction, and may additionally contain a salt generated by the supercritical hydroxylation reaction.
【0007】図3に示したように、予熱部を含む反応器
は略同一径の配管であり、予熱には二重管式熱交換器3
2が用いられ、内管に下水汚泥と酸素の被処理混合物が
流れ、外管に高温の熱媒が流れている。As shown in FIG. 3, the reactor including the preheating section is a pipe having substantially the same diameter.
2, a mixture to be treated of sewage sludge and oxygen flows through the inner tube, and a high-temperature heat medium flows through the outer tube.
【0008】この場合、予熱部の二重管式熱交換器32
の外管に高温の熱媒が流れるため、内管には半径方向に
熱勾配が生じ、内管の内壁近傍が最も高温となってい
る。In this case, the double tube heat exchanger 32 of the preheating section
Since a high-temperature heat medium flows through the outer tube, a thermal gradient is generated in the inner tube in the radial direction, and the temperature near the inner wall of the inner tube is the highest.
【0009】一方下水汚泥中には無機物質として各種の
スケール成分が含まれており、なかでもCa塩等は温度
の上昇とともに溶解度が減少し、析出する性質を有して
いる。従って、内管の内壁では最もスケール成分の析出
が進行する。溶解していたスケール成分が配管の内壁で
析出すると、スケールとして配管の内壁に付着し管径が
減少する。さらに、付着したスケールが種結晶となり、
さらにスケール成分の析出・付着を促進する。On the other hand, sewage sludge contains various scale components as inorganic substances. Among them, Ca salts and the like have a property of decreasing in solubility with increasing temperature and precipitating. Therefore, deposition of the scale component proceeds most on the inner wall of the inner tube. When the dissolved scale component precipitates on the inner wall of the pipe, it adheres to the inner wall of the pipe as a scale, and the pipe diameter decreases. Furthermore, the attached scale becomes a seed crystal,
Further, it promotes deposition and adhesion of scale components.
【0010】このように、超臨界水酸化装置の予熱部分
ではスケールが生成し付着しやすいため、結果的に伝熱
効率の低下や管径の減少に伴う管圧力損失の増大を引き
起こし、安定に超臨界水酸化装置を連続運転することが
困難になる。[0010] As described above, scale is easily formed and adhered in the preheating portion of the supercritical water oxidation apparatus, and as a result, the heat transfer efficiency is reduced and the pipe pressure loss is increased due to the decrease in the pipe diameter. It becomes difficult to continuously operate the critical water oxidation apparatus.
【0011】なお下水汚泥にスケール防止剤を添加する
ことも考えられるが、スケール防止剤を添加した場合、
スケールの発生温度が多少上昇する程度で、スケール生
成を防止することはできない。It is also conceivable to add a scale inhibitor to the sewage sludge, but when the scale inhibitor is added,
The generation of scale cannot be prevented only when the temperature at which the scale is generated slightly increases.
【0012】一方、予熱部におけるスケールは、流速を
大きくすることにより、抑制できる。これは、壁面付近
に析出しても固着に至っていないスケール成分が、大き
な流速により壁面での流れが乱れることにより、スケー
ルとして管壁に付着しにくくなるためと考えられる。On the other hand, the scale in the preheating section can be suppressed by increasing the flow velocity. This is presumably because scale components that have not been fixed even when deposited near the wall surface are difficult to adhere to the tube wall as scale because the flow on the wall surface is disturbed by a large flow velocity.
【0013】ただし、流速を大きくすると、スケール付
着前から圧力損失が大きくなり、圧力損失分だけ設計圧
力を高くしなければならず、装置が大きくなる。However, if the flow velocity is increased, the pressure loss increases before the scale is attached, and the design pressure must be increased by the amount corresponding to the pressure loss.
【0014】このように、スケールを抑制しようとする
と圧力損失が増大し、圧力損失を低く抑えようとすると
スケールが生成し、いずれの場合でも結果として圧力損
失が増大する。As described above, the pressure loss increases when the scale is suppressed, and the scale is generated when the pressure loss is suppressed low, and in any case, the pressure loss is increased.
【0015】[0015]
【発明が解決しようとする課題】本発明が解決しようと
する課題は、従来の下水汚泥等の超臨界水酸化装置の欠
点を解消し、スケールの付着防止と圧力損失を抑制し
て、安定に連続運転が可能な下水汚泥等の超臨界水酸化
装置を提供することにある。The problem to be solved by the present invention is to overcome the drawbacks of the conventional supercritical water oxidation apparatus for sewage sludge and the like, to prevent the adhesion of scale and to suppress the pressure loss, and to stabilize it. It is an object of the present invention to provide a supercritical water oxidation apparatus for sewage sludge that can be continuously operated.
【0016】[0016]
【課題を解決するための手段】本発明者らは、下水汚泥
を超臨界水酸化処理する方法におけるスケール生成のメ
カニズムを研究し、予熱部分の中でも流体温度が約20
0℃〜350℃程度の部分に集中的にスケールが生成す
ること見出した。The present inventors have studied the mechanism of scale formation in the method of supercritical water oxidation of sewage sludge.
It has been found that scale is intensively generated in a portion of about 0 ° C. to 350 ° C.
【0017】スケールは主に溶解していたスケール成分
が配管壁で析出することにより生成する。既に析出して
いたスケール成分に付いては、その付着性にもよるが、
流体中に懸濁物として浮遊しているため、スケールとし
て配管に付着しにくい。350℃近傍ではスケール成分
はほとんど全て析出しているため、スケールとして内管
壁に付着せず、約350℃を超える温度ではスケール生
成が顕著でなかったものと考えられる。The scale is formed mainly by dissolving the scale component dissolved on the pipe wall. For scale components that have already been deposited, depending on their adhesion,
Since it is suspended as a suspension in the fluid, it does not easily adhere to the pipe as a scale. It is probable that almost all of the scale components were precipitated at around 350 ° C., so that they did not adhere to the inner tube wall as scale, and that scale formation was not remarkable at temperatures exceeding about 350 ° C.
【0018】本発明は、上記知見に基づいてなされたも
のであり、圧力損失の低い流速で運転する第1予熱手段
での加熱を200℃未満に抑えた後、200℃以上に予
熱する第2予熱手段において高流速で運転することによ
りスケール付着を防止することを特徴とするものであ
る。The present invention has been made on the basis of the above-described findings, and is intended to suppress the heating by the first preheating means operating at a low pressure loss flow rate to less than 200 ° C., and then to preheat to 200 ° C. or more. It is characterized in that scale adhesion is prevented by operating at a high flow rate in the preheating means.
【0019】すなわち、上記課題を解決するための請求
項1に記載した本発明は、超臨界水中で無機物を含む有
機物および酸化剤を反応させ、有機物を超臨界水酸化分
解する装置において、該有機物、水および酸化剤を水の
臨界圧力以上に加圧供給する被処理物供給手段と、該被
処理物供給手段から加圧供給された有機物、水および酸
化剤からなる被処理物混合流体の超臨界水酸化反応を行
う反応器と、該反応器から流出する反応後の処理流体を
冷却する冷却手段と、該冷却手段から流出する冷却され
た処理流体を取り出す取り出し手段を備えた超臨界水酸
化分解装置であって、反応器の前段に被処理物混合流体
を予熱する第1予熱手段と第2予熱手段を設け、該第1
予熱手段は被処理物混合流体の温度を200℃未満に予
熱しかつ第1予熱手段に設けられた被処理物混合流体の
流路は圧力損失の少ない流速で被処理物混合流体が流れ
る断面積を有し、第2予熱手段は第1予熱手段から流出
した被処理物混合流体の温度を200℃以上に予熱しか
つ第2予熱手段に設けられた被処理物混合流体の流路は
スケール成分が流路内壁に付着しにくい流速で被処理物
混合流体が流れる断面積を有することを特徴とする無機
物を含む有機物の超臨界水酸化分解装置に関するもので
ある。That is, in order to solve the above-mentioned problem, the present invention is directed to an apparatus for reacting an organic substance containing an inorganic substance and an oxidizing agent in supercritical water to supercritically decompose the organic substance. Object supply means for supplying water and an oxidizing agent at a pressure equal to or higher than the critical pressure of water, and a superposition of an object mixed fluid comprising an organic substance, water and an oxidizing agent pressurized and supplied from the object supply means. Supercritical water oxidation comprising a reactor for performing a critical hydroxylation reaction, cooling means for cooling the processed processing fluid flowing out of the reactor, and taking-out means for taking out the cooled processing fluid flowing out of the cooling means. A decomposition apparatus, comprising: a first preheating means and a second preheating means for preheating a mixed fluid to be treated in a stage preceding a reactor;
The preheating means preheats the temperature of the mixed fluid to be processed to less than 200 ° C., and the flow path of the mixed fluid to be provided provided in the first preheating means has a cross-sectional area where the mixed fluid flows at a flow rate with a small pressure loss. The second preheating means preheats the temperature of the mixed fluid flowing out of the first preheating means to 200 ° C. or more, and the flow path of the mixed fluid provided in the second preheating means has a scale component. The present invention relates to an apparatus for supercritically decomposing organic substances including inorganic substances, wherein the apparatus has a cross-sectional area in which a mixed fluid to be processed flows at a flow rate at which the mixed fluid hardly adheres to the inner wall of the flow path.
【0020】上記課題を解決するするための請求項2に
記載した本発明は、超臨界水中で無機物を含む有機物お
よび酸化剤を反応させ、有機物を超臨界水酸化分解する
装置において、該有機物、水および酸化剤を水の臨界圧
力以上に加圧供給する被処理物供給手段と、該被処理物
供給手段から加圧供給された有機物、水および酸化剤か
らなる被処理物混合流体の超臨界水酸化反応を行う反応
器と、該反応器から流出する反応後の処理流体を冷却す
る冷却手段と、該冷却手段から流出する冷却された処理
流体を取り出す取り出し手段を備えた超臨界水酸化分解
装置であって、反応器の前段に被処理物混合流体を予熱
する第1予熱手段、第2予熱手段および第3予熱手段を
設け、該第1予熱手段は被処理物混合流体の温度を20
0℃未満に予熱しかつ第1予熱手段に設けられた被処理
物混合流体の流路は圧力損失の少ない流速で被処理物混
合流体が流れる断面積を有し、第2予熱手段は第1予熱
手段から流出した被処理物混合流体の温度を330℃〜
350℃に予熱しかつ第2予熱手段に設けられた被処理
物混合流体の流路はスケール成分が流路内壁に付着しに
くい流速で被処理物混合流体が流れる断面積を有し、第
3予熱手段は第2予熱手段から流出した被処理物混合流
体を350℃を超える温度に予熱しかつ第3予熱手段に
設けられた被処理物混合流体の流路は圧力損失の少ない
流速で被処理物混合流体が流れる断面積を有することを
特徴とする無機物を含む有機物の超臨界水酸化分解装置
に関するものである。The present invention as set forth in claim 2 for solving the above-mentioned problems is directed to an apparatus for reacting an organic substance containing an inorganic substance and an oxidizing agent in supercritical water to supercritically decompose the organic substance. An object supply means for supplying water and an oxidizing agent at a pressure equal to or higher than the critical pressure of water; and a supercritical material mixed liquid comprising an organic substance, water and an oxidizing agent supplied under pressure from the object supply means. Supercritical hydroxylic decomposition provided with a reactor for performing a hydroxylation reaction, cooling means for cooling the processed processing fluid flowing out of the reactor and cooling means for taking out the cooled processing fluid flowing out of the cooling means A first preheating means, a second preheating means, and a third preheating means for preheating a mixed fluid to be treated in a stage preceding the reactor, wherein the first preheating means sets the temperature of the mixed fluid to be treated to 20;
The flow path of the mixed fluid to be treated, which is preheated to less than 0 ° C. and provided in the first preheating means, has a cross-sectional area in which the mixed fluid to be treated flows at a flow rate with a small pressure loss, and the second preheating means has the first preheating means. The temperature of the mixed fluid flowing out of the preheating means is set to 330 ° C.
The flow path of the mixed fluid to be treated, which is preheated to 350 ° C. and provided in the second preheating means, has a cross-sectional area in which the mixed fluid to be processed flows at a flow rate at which the scale component does not easily adhere to the inner wall of the flow path. The preheating means preheats the mixed fluid flowing out of the second preheating means to a temperature exceeding 350 ° C., and the flow path of the mixed fluid provided in the third preheating means is processed at a flow rate with a small pressure loss. The present invention relates to an apparatus for supercritically hydrolyzing an organic substance containing an inorganic substance, wherein the apparatus has a cross-sectional area through which a substance mixed fluid flows.
【0021】上記課題を解決するための請求項3に記載
した本発明は、前記スケール成分が流路内壁に付着しに
くい流速が、1.2m/s以上であることを特徴とする
ものである。The present invention described in claim 3 for solving the above-mentioned problem is characterized in that the flow rate at which the scale component does not easily adhere to the inner wall of the flow path is 1.2 m / s or more. .
【0022】[0022]
【発明の実施の形態】本発明の超臨界水酸化分解装置
は、超臨界状態の水と酸化剤の存在下に無機物を含む有
機物の酸化分解を行う反応器を備えたものである。反応
器において行なわれる超臨界水酸化反応は、水を超臨界
状態とする温度、圧力条件であれば特に限定されるもの
ではないが、例えば、温度374℃以上、好ましくは5
00〜650℃、かつ圧力22MPa以上、好ましくは
22〜25MPaの条件とすればよい。酸化剤として
は、例えば空気、純酸素、過酸化水素、液体酸素を挙げ
ることができ、これらの酸化剤は化学量論要求量以上用
いればよい。超臨界水酸化分解を行う反応器は、パイプ
(管状)型、ベッセル型のいずれでもよい。BEST MODE FOR CARRYING OUT THE INVENTION The supercritical hydroxylation decomposition apparatus of the present invention is provided with a reactor for oxidatively decomposing organic substances including inorganic substances in the presence of supercritical water and an oxidizing agent. The supercritical hydroxylation reaction performed in the reactor is not particularly limited as long as the temperature and pressure conditions bring water into a supercritical state.
The temperature may be in the range of 00 to 650 ° C. and the pressure of 22 MPa or more, preferably 22 to 25 MPa. Examples of the oxidizing agent include air, pure oxygen, hydrogen peroxide, and liquid oxygen. These oxidizing agents may be used in a stoichiometrically required amount or more. The reactor for performing the supercritical hydroxylation decomposition may be any of a pipe (tubular) type and a vessel type.
【0023】水は、超臨界状態では、有機物やガス状物
質に対して良好な溶媒となるため、反応器内では超臨界
水、有機物および酸化剤は均一相を形成し、超臨界水酸
化反応が進行し、極めて短時間のうちに有機物は酸化分
解される。Since water is a good solvent for organic substances and gaseous substances in the supercritical state, supercritical water, organic substances and oxidizing agent form a homogeneous phase in the reactor, and the supercritical water oxidation reaction The organic matter is oxidatively decomposed in a very short time.
【0024】本発明における無機物を含む有機物とは、
例えば下水汚泥、工場廃液、パルプ廃液等を挙げること
ができる。下水汚泥は、その大部分が有機物であるが、
約20%前後の無機物を含み、無機物の主成分はSi、
Al、Ca、P等を含むものである。The organic substance including the inorganic substance in the present invention is
For example, sewage sludge, factory waste liquid, pulp waste liquid and the like can be mentioned. Sewage sludge is mostly organic,
Contains about 20% of inorganic substances, the main components of which are Si,
It contains Al, Ca, P and the like.
【0025】本発明における被処理物混合流体とは、無
機物を含む有機物、酸化剤および水を含む混合流体であ
り、必要に応じて補助燃料やスケール防止剤を含んでい
てもよい。The fluid to be treated in the present invention is a mixed fluid containing an organic substance containing an inorganic substance, an oxidizing agent and water, and may contain an auxiliary fuel and a scale inhibitor as required.
【0026】以下、図面を用いて本発明の実施形態を説
明する。An embodiment of the present invention will be described below with reference to the drawings.
【0027】(第1実施形態)第1の実施形態は、無機
物を含む有機物を超臨界水中で酸化処理する反応器の前
段に第1予熱手段と第2予熱手段を設け、この第1予熱
手段は被処理物混合流体の温度を200℃未満に予熱し
かつ第1予熱手段に設けられた被処理物混合流体の流路
は圧力損失の少ない流速で被処理物混合流体が流れる断
面積を有するものであり、第2予熱手段は第1予熱手段
から流出した被処理物混合流体の温度を200℃以上に
予熱しかつ第2予熱手段に設けられた被処理物混合流体
の流路はスケール成分が流路内壁に付着しにくい流速で
被処理物混合流体が流れる断面積を有することを特徴と
するものである。(First Embodiment) In a first embodiment, a first preheating means and a second preheating means are provided in a stage preceding a reactor for oxidizing an organic substance containing an inorganic substance in supercritical water, and the first preheating means is provided. Preheats the temperature of the mixed fluid to be processed to less than 200 ° C., and the flow path of the mixed fluid to be provided provided in the first preheating means has a cross-sectional area in which the mixed fluid flows at a flow rate with a small pressure loss. The second preheating means preheats the temperature of the mixed fluid flowing out of the first preheating means to 200 ° C. or more, and the flow path of the mixed fluid provided in the second preheating means has a scale component. Has a cross-sectional area in which the mixed fluid to be processed flows at a flow rate that is hard to adhere to the inner wall of the flow path.
【0028】第1予熱手段における200℃未満の温度
領域では、汚泥の粘度が高くスケールが付着しにくい。
流路内を流れる被処理物混合流体の温度は流量の変動や
被処理物の濃度等の変動によって変化し、その温度を厳
密に制御することは困難である。従って、本発明におけ
る200℃未満とは、被処理物混合流体の温度が概ね2
00℃未満となる温度であればよく、例えば200±2
0℃を下回ればよい。In the temperature range of less than 200 ° C. in the first preheating means, the sludge has a high viscosity and the scale is hardly adhered.
The temperature of the mixed fluid flowing in the flow path changes due to a change in the flow rate or a change in the concentration of the processing object, and it is difficult to precisely control the temperature. Therefore, the term “less than 200 ° C.” in the present invention means that the temperature of the mixed fluid to be treated is approximately 2 ° C.
The temperature may be lower than 00 ° C., for example, 200 ± 2
The temperature may be lower than 0 ° C.
【0029】第1予熱手段に設けられた被処理物混合流
体の流路は、圧力損失の少ない流速で被処理物混合流体
が流れる断面積を有するものである。圧力損失の少ない
流速とは、圧力損失を引き起こすことの少ない程度の低
流速のことであり、例えば1.0m/s以下、好ましく
は0.7〜0.8m/sである(本発明における流速と
は、常温部に被処理流体のみが流れていると想定した時
の流速であり、以下同様である)。第1予熱手段に設け
られた被処理物混合流体の流路の断面積は、上記流速と
なるように定めればよい。The flow path of the mixture fluid provided in the first preheating means has a cross-sectional area in which the mixture fluid flows at a flow rate with low pressure loss. The flow rate with a small pressure loss is a low flow rate that does not cause a pressure loss, and is, for example, 1.0 m / s or less, preferably 0.7 to 0.8 m / s (the flow rate in the present invention). Is the flow velocity when it is assumed that only the fluid to be processed is flowing in the normal temperature part, and the same applies hereinafter.) The cross-sectional area of the flow path of the fluid mixture to be processed provided in the first preheating means may be determined so as to have the above-mentioned flow velocity.
【0030】第2予熱手段における200℃以上の温度
領域は、スケールが生成しやすい温度である。第2予熱
手段では、第1予熱手段の出口温度から、所定の予熱温
度まで予熱する。上限は、特に限定されるものではない
が、被処理流体の反応熱により所定の温度に到達できる
ように予熱すればよい。例えば、汚泥濃度10%の下水
汚泥の場合で、反応温度を550℃とする場合は、第2
予熱手段で350℃まで予熱すればよい。The temperature range of 200 ° C. or higher in the second preheating means is a temperature at which scale is easily generated. The second preheating means preheats from the outlet temperature of the first preheating means to a predetermined preheating temperature. The upper limit is not particularly limited, but may be preheated so that a predetermined temperature can be reached by reaction heat of the fluid to be treated. For example, in the case of sewage sludge with a sludge concentration of 10% and the reaction temperature is 550 ° C., the second
What is necessary is just to preheat to 350 degreeC with preheating means.
【0031】第2予熱手段に設けられた被処理物混合流
体の流路はスケール成分が流路内壁に付着しにくい流速
で被処理物混合流体が流れる断面積を有するものであ
る。スケール成分が流路内壁に付着しにくい流速とは、
比較的高流速であり、例えば1.2m/s以上である。
第2予熱手段に設けられた被処理物混合流体の流路の管
径は、上記流速となるように定めればよい。The flow path of the mixture fluid provided in the second preheating means has a cross-sectional area in which the mixture fluid flows at a flow rate at which the scale component does not easily adhere to the inner wall of the flow path. What is the flow rate at which the scale component is less likely to adhere to the inner wall of the flow path?
The flow velocity is relatively high, for example, 1.2 m / s or more.
The pipe diameter of the flow path of the mixed fluid to be processed provided in the second preheating means may be determined so as to have the above-mentioned flow velocity.
【0032】第1予熱手段および第2予熱手段で被処理
物混合流体を予熱する方法は特に限定されないが、例え
ば反応器から流出する処理流体の熱を熱交換器で回収し
て利用すればよい。The method of preheating the mixed fluid to be treated by the first preheating means and the second preheating means is not particularly limited. For example, the heat of the processing fluid flowing out of the reactor may be recovered by a heat exchanger and used. .
【0033】第1予熱手段および第2予熱手段として
は、二重管式熱交換器を挙げることができ、反応器の後
段に設ける冷却手段も二重管式熱交換器とし、両者を配
管で接続し、熱媒を流すことにより熱交換を行って、被
処理物混合流体の予熱および反応後の処理流体の冷却を
行えばよい。As the first preheating means and the second preheating means, a double-pipe heat exchanger can be mentioned, and the cooling means provided at the latter stage of the reactor is also a double-pipe heat exchanger, and both are provided by piping. It is sufficient to perform heat exchange by connecting and flowing a heat medium to preheat the mixed fluid to be processed and cool the processed fluid after the reaction.
【0034】図1のフロー図により、本発明の第1実施
形態を説明する。The first embodiment of the present invention will be described with reference to the flowchart of FIG.
【0035】本発明の超臨界水酸化装置は、図1に示す
ように、超臨界水酸化反応を行う反応器として、チュー
ブラー状の長い耐圧密閉型反応器10を備え、反応器1
0の上流には、下水汚泥等の被処理物流体を水の臨界圧
力以上に加圧供給する加圧供給手段としての加圧供給ポ
ンプ26と、酸化剤を加圧供給する加圧供給手段として
の加圧供給ポンプ28(酸化剤が酸素等の気体の場合は
加圧供給コンプレッサ)と、被処理物混合流体を予熱す
る予熱手段としての二重管式熱交換器の第1予熱器12
aおよび第2予熱器12bを備えている。反応器10の
下流には、二重管式の熱交換器14と、反応後の処理流
体を冷却する冷却器16を備えている。更に、超臨界水
酸化分解装置は、反応器10内の圧力を制御する圧力制
御弁18を冷却器16の下流に備えている。冷却された
処理流体を取り出す手段として、ガスとスラリーとに気
液分離する気液分離器20を圧力制御弁18の下流に、
及び、スラリー状の反応生成物を固液分離して、無機固
形物を反応生成物から分離する固液分離器22を備えて
いる。固液分離器22で分離された無機固形物は、主と
して、反応物中に含まれ、反応に寄与しなかったもので
あって、加えて、超臨界水酸化反応により生成した塩を
含むこともある。As shown in FIG. 1, the supercritical water oxidation apparatus of the present invention includes a long tubular pressure-resistant closed reactor 10 as a reactor for performing a supercritical water oxidation reaction.
On the upstream side of the pressure source 0, a pressurized supply pump 26 as a pressurized supply unit for pressurizing and supplying a fluid to be treated such as sewage sludge to a pressure higher than the critical pressure of water, and a pressurized supply unit for pressurizedly supplying an oxidizing agent Pressurized supply pump 28 (a pressurized supply compressor when the oxidant is a gas such as oxygen) and a first preheater 12 of a double-pipe heat exchanger as preheating means for preheating the mixed fluid to be processed.
a and a second preheater 12b. Downstream of the reactor 10, a double-tube heat exchanger 14 and a cooler 16 for cooling the processed fluid after the reaction are provided. Further, the supercritical hydroxylation decomposition apparatus includes a pressure control valve 18 for controlling the pressure in the reactor 10 downstream of the cooler 16. As means for taking out the cooled processing fluid, a gas-liquid separator 20 for gas-liquid separation into gas and slurry is provided downstream of the pressure control valve 18,
Further, a solid-liquid separator 22 is provided which separates a solid reaction product from the reaction product by solid-liquid separation of the slurry reaction product. The inorganic solid separated by the solid-liquid separator 22 is mainly contained in the reaction product and has not contributed to the reaction, and may also contain a salt generated by the supercritical water oxidation reaction. is there.
【0036】第1予熱器12aおよび第2予熱器12b
は、被処理物と酸化剤からなる被処理物混合流体が流れ
る内管と、被処理物混合流体を加熱する外管からなる二
重管式熱交換器である。First preheater 12a and second preheater 12b
Is a double-pipe heat exchanger including an inner pipe through which a mixed fluid of a processing object and an oxidant flows, and an outer pipe for heating the mixed fluid of the processing object.
【0037】第1予熱器12aでは、スケールの発生を
抑制するために、被処理物混合流体の温度を200℃未
満に制御する。第1予熱器に設けられた流路における被
処理物混合流体はスケールが発生しにくい温度に制御さ
れているので、圧力損失の少ない低流速で流すことがで
きる。従って、被処理物混合流体が流れる流路11aの
断面積は、被処理物混合流体の流速が1.0m/s以下
となるように定めればよい。In the first preheater 12a, the temperature of the mixed fluid to be processed is controlled to less than 200 ° C. in order to suppress the generation of scale. Since the mixed fluid to be processed in the flow path provided in the first preheater is controlled to a temperature at which scale is unlikely to be generated, it can flow at a low flow rate with a small pressure loss. Therefore, the cross-sectional area of the flow path 11a through which the mixed fluid to be processed flows may be determined so that the flow velocity of the mixed fluid to be processed is 1.0 m / s or less.
【0038】第1予熱器12aで200℃未満に予熱さ
れた被処理物混合流体は、第2予熱器12bにより、2
00℃以上に予熱される。200℃以上ではスケールが
生成しやすいため、スケール成分の付着を防ぐために第
2予熱器12bに設けた流路11bに流れる被処理物混
合流体は、スケールが内壁に付着しにくい高流速で流す
必要がある。従って、流路11bの断面積を、スケール
成分が付着しにくい高流速(1.2m/s以上)となる
ように定めればよい。The fluid mixture to be processed, which has been preheated to less than 200 ° C. in the first preheater 12a,
Preheated to above 00 ° C. Since the scale is easily formed at 200 ° C. or higher, the mixed fluid to be processed flowing through the flow path 11b provided in the second preheater 12b needs to flow at a high flow rate at which the scale does not easily adhere to the inner wall in order to prevent adhesion of scale components. There is. Therefore, the cross-sectional area of the flow channel 11b may be determined so as to have a high flow rate (1.2 m / s or more) to which the scale component does not easily adhere.
【0039】第2予熱器12bで200℃以上に予熱さ
れた被処理物混合流体は、反応器10内で超臨界水酸化
される。被処理物が下水汚泥等の場合、熱量が足りず反
応器10内で臨界温度に達しないときは、被処理物に予
め補助燃料の有機物を加え、超臨界水酸化が進行するよ
うにすればよい。The mixed fluid pretreated at 200 ° C. or higher in the second preheater 12 b is subjected to supercritical water oxidation in the reactor 10. In the case where the object to be treated is sewage sludge, etc., when the calorific value is insufficient and the temperature does not reach the critical temperature in the reactor 10, an organic substance as an auxiliary fuel is added to the object to be treated in advance, so that supercritical water oxidation proceeds. Good.
【0040】超臨界水中、酸化剤の存在下で、被処理物
中の有機物は、速やかに酸化されて二酸化炭素、水等に
分解される。分解生成物、無機物および超臨界水からな
る処理流体は反応器10から流出する。In supercritical water, in the presence of an oxidizing agent, organic substances in the object to be treated are quickly oxidized and decomposed into carbon dioxide, water and the like. A processing fluid consisting of decomposition products, inorganic substances and supercritical water flows out of the reactor 10.
【0041】高温高圧の処理流体は、反応器10の下流
に設けられた二重管式の熱交換器14により、熱の一部
が回収される。熱交換器14と第1予熱器12a、第2
熱交換器12bは配管24で接続され、熱媒が循環して
おり、熱交換器14から流出する加熱された熱媒は第2
予熱器12bへ供給され被処理物混合流体を200℃以
上に加熱する。第2予熱器12bから流出した熱媒は、
第1予熱器12aへ供給され、被処理物混合流体を20
0℃未満に予熱する。A part of the heat of the high-temperature and high-pressure processing fluid is recovered by a double-tube heat exchanger 14 provided downstream of the reactor 10. Heat exchanger 14, first preheater 12a, second
The heat exchanger 12b is connected by a pipe 24, a heat medium is circulated, and the heated heat medium flowing out of the heat exchanger 14 is the second heat medium.
The mixed fluid supplied to the preheater 12b is heated to 200 ° C. or higher. The heat medium flowing out of the second preheater 12b is
The mixed fluid supplied to the first preheater 12a is
Preheat below 0 ° C.
【0042】熱の一部が回収された処理流体は、冷却器
16で常温まで冷却される。冷却された処理流体は取り
出し手段により、処理液、無機固形物及び排ガスとして
取り出される。取り出し手段としては、冷却された処理
流体の圧力を制御する圧力制御弁18と、大気圧に開放
された処理流体を分離する気液分離器20、固液分離器
22を挙げることができる。The processing fluid from which a part of the heat has been recovered is cooled by the cooler 16 to room temperature. The cooled processing fluid is extracted as a processing liquid, an inorganic solid, and an exhaust gas by an extracting unit. Examples of the extracting means include a pressure control valve 18 for controlling the pressure of the cooled processing fluid, a gas-liquid separator 20 for separating the processing fluid released to the atmospheric pressure, and a solid-liquid separator 22.
【0043】本実施形態を採用することにより、圧力損
失を抑えながら、スケールの生成を効率的に抑制するこ
とが可能となる。By employing this embodiment, it is possible to efficiently suppress the generation of scale while suppressing the pressure loss.
【0044】(第2実施形態)図2に本発明の第2実施
形態のフロー図を示す。第1実施形態と同一の構成要素
には同一の符号を付し、詳細な説明は省略する。(Second Embodiment) FIG. 2 shows a flowchart of a second embodiment of the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
【0045】第2実施形態が第1実施形態と異なる点
は、200℃以上に予熱する第2予熱器12bが200
〜350℃に予熱する第2予熱器12b’であり、その
第2予熱器12b’の後段に350℃を超える温度に予
熱する第3予熱手段として第3予熱器12cを設け、第
3予熱器12cに圧力損失の少ない流速で被処理物混合
流体が流れる断面積を有する流路11cを設けた点であ
る。The difference between the second embodiment and the first embodiment is that the second preheater 12b for preheating to 200 ° C. or more
A third preheater 12c as a third preheating means for preheating to a temperature exceeding 350 ° C at a stage subsequent to the second preheater 12b '. The difference is that a flow path 11c having a cross-sectional area in which the mixed fluid to be processed flows at a flow rate with a small pressure loss is provided in 12c.
【0046】第2予熱器12b’は、スケールが生成し
やすい200〜350℃とし、かつ第2予熱器12b’
に設けた流路には、スケール成分が内壁に付着しにくい
高流速(1.2m/s以上)で被処理物混合流体を流
す。流路内を流れる被処理物混合流体の温度を200〜
350℃に厳密に制御することは困難であり、本発明に
おける200〜350℃とは、被処理物混合流体の温度
が概ね200〜350℃となる温度であり、例えば20
0±20℃〜350±35℃であればよい。The second preheater 12b 'is set to a temperature of 200 to 350.degree.
In the flow path provided in the above, the mixture fluid to be processed flows at a high flow rate (1.2 m / s or more) in which the scale component is hard to adhere to the inner wall. The temperature of the mixture fluid to be processed flowing in the flow path is 200 to
It is difficult to strictly control the temperature to 350 ° C., and the temperature of 200 to 350 ° C. in the present invention is a temperature at which the temperature of the mixed fluid to be processed is approximately 200 to 350 ° C.
The temperature may be 0 ± 20 ° C. to 350 ± 35 ° C.
【0047】被処理物混合流体を350℃を超える温度
に予熱するために第3予熱手段を設けたのは、前述した
ように350℃ではスケール成分はほとんどすべて析出
するので、スケールとして流路の内壁に付着しないため
である。第3予熱手段では第2予熱手段の出口温度から
所定の予熱温度まで予熱する。上限は、特に限定される
ものではないが、被処理流体の反応熱により所定の温度
に到達できるように予熱すればよい。例えば、汚泥濃度
10%の下水汚泥の場合で反応温度600℃とする場合
は、第3予熱手段で370℃まで予熱すればよい。The provision of the third preheating means for preheating the mixed fluid to be processed to a temperature exceeding 350 ° C. is because at 350 ° C., almost all of the scale components are deposited at 350 ° C. This is because it does not adhere to the inner wall. The third preheating means preheats from the outlet temperature of the second preheating means to a predetermined preheating temperature. The upper limit is not particularly limited, but may be preheated so that a predetermined temperature can be reached by reaction heat of the fluid to be treated. For example, when the reaction temperature is set to 600 ° C. in the case of sewage sludge having a sludge concentration of 10%, the third preheating means may be preheated to 370 ° C.
【0048】第3予熱手段では、被処理物混合流体はス
ケールが内壁に析出しにくい温度に制御されるため、そ
こに設けられた流路には、圧力損失の少ない低流速で被
処理物混合流体を流すことができる。圧力損失の少ない
流速とは、圧力損失を引き起こすことの少ない程度の低
流速のことであり、例えば1.0m/s以下、好ましく
は0.7〜0.8m/sである。第3予熱手段に設けら
れた被処理物混合流体の流路の断面積は、上記流速とな
るように定めればよい。[0048] In the third preheating means, the mixed fluid of the object to be treated is controlled to a temperature at which the scale is hardly deposited on the inner wall. Fluid can flow. The flow velocity with a small pressure loss is a low flow velocity that does not cause a pressure loss, and is, for example, 1.0 m / s or less, preferably 0.7 to 0.8 m / s. The cross-sectional area of the flow path of the fluid mixture to be processed provided in the third preheating means may be determined so as to have the above-mentioned flow velocity.
【0049】350℃を超える第3予熱手段を設け、第
3予熱手段の流路は圧力損失の少ない断面積のものとす
ることができるので、第1実施形態に比べてより圧力損
失を抑制することができる。The third preheating means having a temperature exceeding 350 ° C. is provided, and the flow path of the third preheating means can have a cross-sectional area having a small pressure loss. Therefore, the pressure loss is further suppressed as compared with the first embodiment. be able to.
【0050】[0050]
【発明の効果】請求項1に記載の発明により、圧力損失
を抑えながら、スケールの生成を効率的に抑制すること
ができ、超臨界水酸化分解装置を長期間安定に運転する
ことができる。According to the first aspect of the present invention, it is possible to efficiently suppress the formation of scale while suppressing the pressure loss, and to stably operate the supercritical hydroxylation and cracking apparatus for a long period of time.
【0051】請求項2に記載の発明により、上記効果に
加え、より圧力損失を抑制することができる。According to the second aspect of the present invention, in addition to the above effects, the pressure loss can be further suppressed.
【図1】本発明の第1実施形態を示すフロー図。FIG. 1 is a flowchart showing a first embodiment of the present invention.
【図2】本発明の第2実施形態を示すフロー図。FIG. 2 is a flowchart showing a second embodiment of the present invention.
【図3】従来の超臨界水酸化装置を示すフロー図。FIG. 3 is a flowchart showing a conventional supercritical water oxidation apparatus.
10 反応器 11a、11b、11c 流路 12a 第1予熱器 12b、12b’ 第2予熱器 12c 第3予熱器 14 熱交換器 16 冷却器 18 圧力制御弁 20 気液分離器 22 固液分離器 24 熱媒用配管 26 加圧供給ポンプ 28 加圧供給ポンプ DESCRIPTION OF SYMBOLS 10 Reactor 11a, 11b, 11c Channel 12a First preheater 12b, 12b 'Second preheater 12c Third preheater 14 Heat exchanger 16 Cooler 18 Pressure control valve 20 Gas-liquid separator 22 Solid-liquid separator 24 Heat medium piping 26 Pressurized supply pump 28 Pressurized supply pump
フロントページの続き (72)発明者 鈴垣 裕志 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 (72)発明者 伊藤 新治 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 (72)発明者 鈴木 明 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 Fターム(参考) 4D059 AA05 AA30 BC01 BC02 BK30 DA44 DA47 EB06 EB20 Continued on the front page (72) Inventor Hiroshi Suzugaki 1-2-8 Shinsuna, Koto-ku, Tokyo Organo Corporation (72) Inventor Shinji Ito 1-2-8 Shinsuna, Koto-ku, Tokyo Organo Corporation (72) Inventor Akira Suzuki 1-2-2, Shinsuna, Koto-ku, Tokyo Organo Corporation F-term (reference) 4D059 AA05 AA30 BC01 BC02 BK30 DA44 DA47 EB06 EB20
Claims (3)
酸化剤を反応させ、有機物を超臨界水酸化分解する装置
において、該有機物、水および酸化剤を水の臨界圧力以
上に加圧供給する加圧供給手段と、該加圧供給手段から
加圧供給された有機物、水および酸化剤からなる被処理
物混合流体の超臨界水酸化反応を行う反応器と、該反応
器から流出する反応後の処理流体を冷却する冷却手段
と、該冷却手段から流出する冷却された処理流体を取り
出す取り出し手段を備えた超臨界水酸化分解装置であっ
て、反応器の前段に被処理物混合流体を予熱する第1予
熱手段と第2予熱手段を設け、該第1予熱手段は被処理
物混合流体の温度を200℃未満に予熱しかつ第1予熱
手段に設けられた被処理物混合流体の流路は圧力損失の
少ない流速で被処理物混合流体が流れる断面積を有し、
第2予熱手段は第1予熱手段から流出した被処理物混合
流体の温度を200℃以上に予熱しかつ第2予熱手段に
設けられた被処理物混合流体の流路はスケール成分が流
路内壁に付着しにくい流速で被処理物混合流体が流れる
断面積を有することを特徴とする無機物を含む有機物の
超臨界水酸化分解装置。In an apparatus for reacting an organic substance containing an inorganic substance and an oxidizing agent in supercritical water and supercritically decomposing the organic substance by supercritical water, the organic substance, water and the oxidizing agent are supplied under pressure higher than the critical pressure of water. A pressure supply means, a reactor for performing a supercritical hydroxylation reaction of the mixed fluid of the processing object comprising the organic substance, water and the oxidant supplied under pressure from the pressure supply means, and a reaction after the reaction flowing out of the reactor. What is claimed is: 1. A supercritical hydroxylation cracking apparatus comprising: a cooling means for cooling a processing fluid; and a takeout means for taking out a cooled processing fluid flowing out of the cooling means, wherein a mixed fluid to be processed is preheated at a stage preceding a reactor. A first preheating means and a second preheating means are provided, and the first preheating means preheats the temperature of the mixed fluid to be processed to less than 200 ° C. and the flow path of the mixed fluid provided to the first preheating means is Workpiece with low pressure loss flow rate A cross-sectional area through which the mixed fluid flows,
The second preheating means preheats the temperature of the mixed fluid flowing out of the first preheating means to 200 ° C. or more, and the flow path of the mixed processing fluid provided in the second preheating means has a scale component on the inner wall of the flow path. An apparatus for supercritically decomposing organic substances including inorganic substances, wherein the apparatus has a cross-sectional area in which a mixed fluid to be processed flows at a flow rate that is difficult to adhere to the substrate.
酸化剤を反応させ、有機物を超臨界水酸化分解する装置
において、該有機物、水および酸化剤を水の臨界圧力以
上に加圧供給する加圧供給手段と、該加圧供給手段から
加圧供給された有機物、水および酸化剤からなる被処理
物混合流体の超臨界水酸化反応を行う反応器と、該反応
器から流出する反応後の処理流体を冷却する冷却手段
と、該冷却手段から流出する冷却された処理流体を取り
出す取り出し手段を備えた超臨界水酸化分解装置であっ
て、反応器の前段に被処理物混合流体を予熱する第1予
熱手段、第2予熱手段および第3予熱手段を設け、該第
1予熱手段は被処理物混合流体の温度を200℃未満に
予熱しかつ第1予熱手段に設けられた被処理物混合流体
の流路は圧力損失の少ない流速で被処理物混合流体が流
れる断面積を有し、第2予熱手段は第1予熱手段から流
出した被処理物混合流体の温度を330℃〜350℃に
予熱しかつ第2予熱手段に設けられた被処理物混合流体
の流路はスケール成分が流路内壁に付着しにくい流速で
被処理物混合流体が流れる断面積を有し、第3予熱手段
は第2予熱手段から流出した被処理物混合流体を350
℃を超える温度に予熱しかつ第3予熱手段に設けられた
被処理物混合流体の流路は圧力損失の少ない流速で被処
理物混合流体が流れる断面積を有することを特徴とする
無機物を含む有機物の超臨界水酸化分解装置。2. An apparatus for reacting an organic substance containing an inorganic substance and an oxidizing agent in supercritical water and supercritically decomposing the organic substance by supercritical water to supply the organic substance, water and the oxidizing agent under a pressure higher than the critical pressure of water. A pressure supply means, a reactor for performing a supercritical hydroxylation reaction of the mixed fluid of the processing object comprising the organic substance, water and the oxidant supplied under pressure from the pressure supply means, and a reaction after the reaction flowing out of the reactor. What is claimed is: 1. A supercritical hydroxylation decomposition apparatus comprising a cooling means for cooling a processing fluid and a take-out means for taking out a cooled processing fluid flowing out of the cooling means, wherein a mixed fluid to be processed is preheated at a stage preceding a reactor. A first preheating means, a second preheating means, and a third preheating means, wherein the first preheating means preheats the temperature of the mixed fluid to be processed to less than 200 ° C. and mixes the processing object provided in the first preheating means; Fluid flow path has low pressure loss The second preheating means preheats the temperature of the processing object mixed fluid flowing out of the first preheating means to 330 ° C. to 350 ° C. and supplies the second preheating means to the second preheating means. The flow path of the mixed fluid of the processing object provided has a cross-sectional area in which the mixed fluid of the processing object flows at a flow rate at which the scale component does not easily adhere to the inner wall of the flow path. 350 mixed fluids
The flow path of the mixed fluid to be treated, which is preheated to a temperature exceeding ℃ and provided in the third preheating means, has an inorganic material characterized by having a cross-sectional area in which the mixed fluid to be treated flows at a flow rate with a small pressure loss. Supercritical water oxidation decomposition equipment for organic substances.
くい流速が、1.2m/s以上であることを特徴とする
請求項1または2に記載の超臨界水酸化分解装置。3. The supercritical hydroxylation decomposition apparatus according to claim 1, wherein a flow rate at which the scale component hardly adheres to the inner wall of the flow channel is 1.2 m / s or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001163985A JP2002355696A (en) | 2001-05-31 | 2001-05-31 | Supercritical water oxidative decomposition apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001163985A JP2002355696A (en) | 2001-05-31 | 2001-05-31 | Supercritical water oxidative decomposition apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002355696A true JP2002355696A (en) | 2002-12-10 |
Family
ID=19006856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001163985A Pending JP2002355696A (en) | 2001-05-31 | 2001-05-31 | Supercritical water oxidative decomposition apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002355696A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004313936A (en) * | 2003-04-16 | 2004-11-11 | Ngk Insulators Ltd | Preheating unit for high-temperature and high-pressure treatment apparatus |
CN1330589C (en) * | 2003-12-17 | 2007-08-08 | 财团法人工业技术研究院 | Supercritical water oxidation system |
CN102176178A (en) * | 2011-01-12 | 2011-09-07 | 西安交通大学 | Method for controlling outlet temperature of electric heater in supercritical water treatment system |
CN104865996A (en) * | 2015-05-06 | 2015-08-26 | 新奥科技发展有限公司 | Supercritical water reaction temperature control method, device and supercritical water reactor system |
JP7578676B2 (en) | 2019-08-21 | 2024-11-06 | ネーデルランツェ・オルガニザーティ・フォール・トゥーヘパストナトゥールウェテンシャッペレイク・オンダーズーク・テーエヌオー | Biomass hot water treatment reactor |
-
2001
- 2001-05-31 JP JP2001163985A patent/JP2002355696A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004313936A (en) * | 2003-04-16 | 2004-11-11 | Ngk Insulators Ltd | Preheating unit for high-temperature and high-pressure treatment apparatus |
CN1330589C (en) * | 2003-12-17 | 2007-08-08 | 财团法人工业技术研究院 | Supercritical water oxidation system |
CN102176178A (en) * | 2011-01-12 | 2011-09-07 | 西安交通大学 | Method for controlling outlet temperature of electric heater in supercritical water treatment system |
CN104865996A (en) * | 2015-05-06 | 2015-08-26 | 新奥科技发展有限公司 | Supercritical water reaction temperature control method, device and supercritical water reactor system |
JP7578676B2 (en) | 2019-08-21 | 2024-11-06 | ネーデルランツェ・オルガニザーティ・フォール・トゥーヘパストナトゥールウェテンシャッペレイク・オンダーズーク・テーエヌオー | Biomass hot water treatment reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5240619A (en) | Two-stage subcritical-supercritical wet oxidation | |
US6709601B2 (en) | Hydrothermal treatment system and method | |
JPH0134114B2 (en) | ||
WO1998047612A1 (en) | Supercritical reaction apparatus and method | |
JP5988155B2 (en) | Waste liquid treatment equipment | |
JPH04247293A (en) | Temperature control method for oxidation treatment process for combustible substance- containing aqueous waste liquid | |
JPH088982B2 (en) | Oxidation method of substances dissolved or suspended in aqueous solution | |
US20230348306A1 (en) | Process for the supercritical oxidation of sewage sludge and other waste streams | |
AU747415B2 (en) | Method and apparatus for treating salt streams | |
JP2015513458A (en) | Reactor for oxidizing substrate | |
JP2002355696A (en) | Supercritical water oxidative decomposition apparatus | |
JPH07313987A (en) | High pressure reaction container apparatus | |
JP2002355697A (en) | Supercritical water oxidative decomposition apparatus and method | |
JP2000126798A (en) | Waste treatment apparatus by supercritical hydroxylation method | |
JP2002102672A (en) | Method and apparatus for hydrothermal reaction | |
JP2002177975A (en) | Supercritical hydroxylation decomposition equipment for organic matter | |
JP3836270B2 (en) | Method for shutting down supercritical water reactor | |
RU2704193C1 (en) | Oxidation by moist air at low temperatures | |
JP2002355700A (en) | Supercritical water oxidative decomposition apparatus | |
JP2003236594A (en) | Apparatus for treating sludge | |
JP4355246B2 (en) | High temperature and high pressure treatment equipment for organic waste | |
JP2001259696A (en) | Method and device for treating night soil and/or septic- tank sludge | |
JP2000271468A (en) | Supercritical water reaction device | |
JP2002119996A (en) | Method and apparatus for treating excretion and/or septic tank sludge | |
JP2004290819A (en) | High-temperature and high-pressure treatment apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080513 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100928 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110208 |