[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002349255A - Sealing material for holding catalyst converter, its manufacturing method and catalyst converter - Google Patents

Sealing material for holding catalyst converter, its manufacturing method and catalyst converter

Info

Publication number
JP2002349255A
JP2002349255A JP2001157701A JP2001157701A JP2002349255A JP 2002349255 A JP2002349255 A JP 2002349255A JP 2001157701 A JP2001157701 A JP 2001157701A JP 2001157701 A JP2001157701 A JP 2001157701A JP 2002349255 A JP2002349255 A JP 2002349255A
Authority
JP
Japan
Prior art keywords
sealing material
surface side
catalyst carrier
catalytic converter
holding sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001157701A
Other languages
Japanese (ja)
Other versions
JP4730495B2 (en
Inventor
Kazutomo Tanahashi
一智 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001157701A priority Critical patent/JP4730495B2/en
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to EP20080172140 priority patent/EP2034151B1/en
Priority to CNB2005100735723A priority patent/CN100353040C/en
Priority to US10/332,511 priority patent/US20040234428A1/en
Priority to EP20080172697 priority patent/EP2034153A3/en
Priority to CNB2005100735668A priority patent/CN100400811C/en
Priority to CN2010102517989A priority patent/CN101935516B/en
Priority to CN2007101098740A priority patent/CN101054509B/en
Priority to EP20100173381 priority patent/EP2246537A3/en
Priority to EP20080172252 priority patent/EP2037093A3/en
Priority to CN2006101371517A priority patent/CN1940259B/en
Priority to CN2009102535255A priority patent/CN101876266B/en
Priority to EP15150077.4A priority patent/EP2878783B1/en
Priority to EP20020728161 priority patent/EP1418317A4/en
Priority to EP20080172756 priority patent/EP2034154A3/en
Priority to PCT/JP2002/005124 priority patent/WO2002103171A1/en
Priority to EP20080172246 priority patent/EP2034152A3/en
Priority to CNB2005100735653A priority patent/CN1317239C/en
Priority to EP20090150016 priority patent/EP2037094A3/en
Priority to EP20100173388 priority patent/EP2246538A3/en
Priority to EP20090150418 priority patent/EP2042699A3/en
Priority to CNB02801846XA priority patent/CN1272531C/en
Priority to KR1020037001153A priority patent/KR100882071B1/en
Priority to CN2010102517743A priority patent/CN101914366B/en
Publication of JP2002349255A publication Critical patent/JP2002349255A/en
Priority to US12/269,949 priority patent/US7790121B2/en
Priority to US12/273,947 priority patent/US8540941B2/en
Priority to US12/273,895 priority patent/US8303901B2/en
Priority to US12/274,109 priority patent/US8790581B2/en
Publication of JP4730495B2 publication Critical patent/JP4730495B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6224Fibres based on silica
    • C04B35/62245Fibres based on silica rich in aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/10Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material by decomposition of organic substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • F01N3/2864Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing the mats or gaskets comprising two or more insulation layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/14Sintered material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2350/00Arrangements for fitting catalyst support or particle filter element in the housing
    • F01N2350/02Fitting ceramic monoliths in a metallic housing
    • F01N2350/04Fitting ceramic monoliths in a metallic housing with means compensating thermal expansion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Fibers (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Nonwoven Fabrics (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sealing material for holding a catalyst converter in which initial bearing pressure is high, aged deterioration of bearing pressure hardly occurs and sealing performance is excellent. SOLUTION: This sealing material 4 for holding has an alumna-silica fiber gathering in a mat state as its component and is arranged at a gap between a catalyst supporting body 2 and a metal shell 3. The crystallization rate gets larger from a first face S2 to a second face S2 in the sealing material 4 for holding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、触媒コンバータ用
保持シール材及びその製造方法、触媒コンバータに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a holding material for a catalytic converter, a method for manufacturing the same, and a catalytic converter.

【0002】[0002]

【従来の技術】従来、車両用、特に自動車の動力源とし
て、ガソリンや軽油を燃料とする内燃機関が百年以上に
わたり用いられてきた。しかしながら、排気ガスが健康
や環境に害を与えることが次第に問題となってきてい
る。それゆえ、最近では排気ガス中に含まれているC
O、NOx、HC等を除去する排気ガス浄化用触媒コン
バータや、PM等を除去するDPFが各種提案されるに
至っている。通常の排気ガス浄化用触媒コンバータは、
触媒担持体と、前記触媒担持体の外周を覆う金属製シェ
ルと、両者間のギャップに配置される保持シール材とを
備えている。触媒担持体としてはハニカム状に成形した
コージェライト担体が用いられており、それには白金等
の触媒が担持されている。
2. Description of the Related Art Conventionally, an internal combustion engine using gasoline or light oil as fuel has been used as a power source for vehicles, particularly automobiles, for more than 100 years. However, it is becoming increasingly problematic that exhaust gases harm health and the environment. Therefore, recently, C contained in exhaust gas
Various exhaust gas purifying catalytic converters for removing O, NOx, HC and the like, and various types of DPFs for removing PM and the like have been proposed. A typical catalytic converter for exhaust gas purification is
The fuel cell system includes a catalyst carrier, a metal shell that covers the outer periphery of the catalyst carrier, and a holding sealing material disposed in a gap between the two. As the catalyst carrier, a cordierite carrier formed in a honeycomb shape is used, on which a catalyst such as platinum is supported.

【0003】また最近では、石油を動力源としない次期
のクリーンな動力源の研究が進められており、そのうち
特に有望なものとして例えば燃料電池がある。燃料電池
とは、水素と酸素とが反応して水ができる際に得られる
電気を、動力源として用いるものである。酸素は空気中
からじかに取り出される反面、水素についてはメタノー
ル、ガソリン等を改質して用いている。この場合、メタ
ノール等の改質は触媒反応によって行われる。そして、
このような燃料電池にも、触媒担持体と、触媒担持体の
外周を覆う金属製シェルと、両者間のギャップに配置さ
れる保持シール材とを備える燃料電池用触媒コンバータ
が用いられている。触媒担持体としてはハニカム状に成
形したコージェライト担体が用いられており、それには
銅系の触媒が担持されている。
In recent years, research on the next clean power source not using oil as a power source has been advanced, and among them, a fuel cell, for example, is particularly promising. A fuel cell uses electricity obtained when water reacts with hydrogen to produce water as a power source. Oxygen is directly extracted from the air, while hydrogen is obtained by reforming methanol, gasoline, and the like. In this case, the reforming of methanol or the like is performed by a catalytic reaction. And
Such a fuel cell also uses a fuel cell catalytic converter including a catalyst carrier, a metal shell that covers the outer periphery of the catalyst carrier, and a holding sealing material disposed in a gap between the two. A cordierite carrier formed in a honeycomb shape is used as the catalyst carrier, and a copper-based catalyst is supported on the cordierite carrier.

【0004】上記の触媒コンバータを製造する方法をこ
こで簡単に説明しておく。まず、アルミナ源及びシリカ
源を含む出発材料を約2000℃に加熱して熔融させた
状態で紡糸及び急冷を行い、アルミナ含有率及びシリカ
含有率が同程度のセラミック繊維を得る。この後、前記
セラミック繊維をマット状に集合させてなる材料を作製
する。この材料を金型で打ち抜くことによって、帯状の
保持シール材を作製する。次に、この保持シール材を触
媒担持体の外周面に巻き付け、この状態で金属製シェル
内に前記触媒担持体を収容する。その結果、触媒コンバ
ータが完成するようになっている。
[0004] A method of manufacturing the above catalytic converter will now be briefly described. First, a starting material containing an alumina source and a silica source is heated and melted at about 2000 ° C., and then spun and quenched to obtain ceramic fibers having the same alumina content and silica content. Thereafter, a material is prepared by gathering the ceramic fibers in a mat shape. A band-shaped holding sealing material is produced by punching out this material with a mold. Next, this holding sealing material is wound around the outer peripheral surface of the catalyst carrier, and in this state, the catalyst carrier is accommodated in a metal shell. As a result, the catalytic converter is completed.

【0005】[0005]

【発明が解決しようとする課題】ところで、この種の触
媒コンバータの保持シール材には、触媒担持体を長期に
わたって確実に保持する性能が要求されている。
By the way, the holding sealing material of this type of catalytic converter is required to have a performance of reliably holding the catalyst carrier for a long period of time.

【0006】しかしながら、上記熔融法により作製され
た従来のセラミック繊維は、非結晶成分が多いことに加
え、結晶化率(ムライト化率)が1重量%未満と、極め
て低い。このため、同繊維が長期にわたって高温に晒さ
れると、結晶化の進行によって熱収縮が生じ、繊維が脆
弱化して折れやすくなる。ゆえに、同繊維を用いて作製
された保持シール材の場合、十分高い初期面圧を期待で
きないばかりか、面圧の経時劣化の度合いも大きかっ
た。
However, the conventional ceramic fibers produced by the above-mentioned melting method have an extremely low crystallization ratio (mullite ratio) of less than 1% by weight in addition to a large amount of non-crystalline components. For this reason, when the fiber is exposed to a high temperature for a long period of time, heat shrinkage occurs due to progress of crystallization, and the fiber becomes brittle and easily broken. Therefore, in the case of the holding sealing material produced using the same fiber, not only a sufficiently high initial surface pressure could not be expected, but also the degree of deterioration of the surface pressure with time was large.

【0007】そこで、セラミック繊維の結晶化率を10
重量%程度に上げるという対策が考えられる。ところ
が、この場合には繊維の硬質化に起因して保持シール材
の弾力性や伸縮性が損なわれ、シール性の悪化を来して
しまう。
Therefore, the crystallization rate of the ceramic fiber is set to 10
Countermeasures such as increasing to about% by weight can be considered. However, in this case, the elasticity and elasticity of the holding sealing material are impaired due to the hardening of the fibers, and the sealing property is deteriorated.

【0008】本発明は上記の課題に鑑みてなされたもの
であり、その目的は、初期面圧が高くて面圧の経時劣化
を起こしにくいことに加え、シール性にも優れた触媒コ
ンバータ用保持シール材、触媒コンバータを提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object the purpose of holding a catalytic converter having a high initial surface pressure, preventing the surface pressure from deteriorating with time, and having excellent sealing properties. It is to provide a sealing material and a catalytic converter.

【0009】また、本発明の別の目的は、上記の保持シ
ール材を得るうえで好適な製造方法を提供することにあ
る。
Another object of the present invention is to provide a manufacturing method suitable for obtaining the above-mentioned holding sealing material.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
めに、請求項1に記載の発明では、マット状に集合した
アルミナーシリカ系繊維の繊維集合体を構成要素とし、
触媒担持体とその触媒担持体の外周を覆う金属製シェル
とのギャップに配置される保持シール材であって、第1
面側部位の結晶化率と第2面側部位の結晶化率とが異な
ることを特徴とする触媒コンバータ用保持シール材をそ
の要旨とする。
In order to solve the above-mentioned problems, according to the first aspect of the present invention, a fiber aggregate of alumina-silica fibers aggregated in a mat shape is used as a constituent element,
A holding sealing material disposed in a gap between the catalyst carrier and a metal shell covering the outer periphery of the catalyst carrier,
The gist of the present invention is a holding seal material for a catalytic converter, characterized in that the crystallization ratio of the surface side portion and the crystallization ratio of the second surface side portion are different.

【0011】請求項2に記載の発明では、マット状に集
合したアルミナーシリカ系繊維の繊維集合体を構成要素
とし、触媒担持体とその触媒担持体の外周を覆う金属製
シェルとのギャップに配置される保持シール材であっ
て、第1面側から第2面側に行くに従って結晶化率が大
きくなっていることを特徴とする触媒コンバータ用保持
シール材をその要旨とする。
According to the second aspect of the present invention, a fiber aggregate of alumina-silica fibers aggregated in a mat shape is used as a constituent element, and a gap between a catalyst carrier and a metal shell covering the outer periphery of the catalyst carrier is formed. The gist of the present invention is a holding sealing material for a catalytic converter, wherein the holding sealing material is arranged such that the crystallization ratio increases from the first surface side to the second surface side.

【0012】請求項3に記載の発明では、請求項2にお
いて、1枚の繊維集合体からなり、その繊維集合体の第
1面側から第2面側に行くに従って結晶化率が大きくな
っているとした。
According to the third aspect of the present invention, in the second aspect, the fiber assembly comprises one fiber assembly, and the crystallization ratio increases from the first surface side to the second surface side of the fiber assembly. I said

【0013】請求項4に記載の発明は、請求項1乃至3
のいずれか1項において、第1面側部位の結晶化率と第
2面側部位の結晶化率との差は3重量%以上であるとし
た。請求項5に記載の発明は、請求項1乃至3のいずれ
か1項において、第1面側部位の結晶化率は0重量%〜
1重量%、第2面側部位の結晶化率は1重量%〜10重
量%であるとした。
The invention described in claim 4 is the first to third aspects of the present invention.
In any one of the above items, the difference between the crystallization ratio of the first surface side portion and the crystallization ratio of the second surface side portion is 3% by weight or more. According to a fifth aspect of the present invention, in any one of the first to third aspects, the crystallization ratio of the first surface side portion is 0% by weight or less.
1% by weight, and the crystallization ratio of the second surface side portion was 1% by weight to 10% by weight.

【0014】請求項6に記載の発明では、マット状に集
合したアルミナーシリカ系繊維を構成要素とし、触媒担
持体とその触媒担持体の外周を覆う金属製シェルとのギ
ャップに配置される保持シール材であって、結晶化率が
部位により異なることを特徴とする触媒コンバータ用保
持シール材をその要旨とする。
According to the present invention, the alumina-silica-based fibers assembled in a mat form are used as constituent elements, and the holding member is arranged in a gap between the catalyst carrier and a metal shell covering the outer periphery of the catalyst carrier. The gist of the present invention is a sealing material for a catalytic converter, which is a sealing material, wherein a crystallization ratio varies depending on a portion.

【0015】請求項7に記載の発明では、請求項1乃至
5のいずれか1項に記載の保持シール材の製造方法であ
って、セラミック繊維紡糸原液を材料として前駆体繊維
を得る紡糸工程と、前記前駆体繊維を積層してマット状
繊維集合体とする積層工程と、第1面側の焼成温度と第
2面側の焼成温度との間で差を設けるようにして前記繊
維集合体を焼結させる焼成工程とを含むことを特徴とす
る触媒コンバータ用保持シール材の製造方法をその要旨
とする。
According to a seventh aspect of the present invention, there is provided the method for producing a holding sealing material according to any one of the first to fifth aspects, wherein a spinning step of obtaining a precursor fiber from a ceramic fiber spinning solution is used. A laminating step of laminating the precursor fibers to form a mat-like fiber aggregate, and providing a difference between a firing temperature on the first surface side and a firing temperature on the second surface side to form the fiber aggregate. A method for manufacturing a holding sealing material for a catalytic converter, comprising a sintering step of sintering.

【0016】請求項8に記載の発明は、請求項7におい
て、前記焼成温度の差を100℃以上に設定することと
した。請求項9に記載の発明は、請求項7において、第
1面側の焼成温度を800℃〜1100℃に設定し、第
2面側の焼成温度を1100℃〜1400℃に設定する
こととした。
According to an eighth aspect of the present invention, in the seventh aspect, the difference between the firing temperatures is set to 100 ° C. or more. According to a ninth aspect of the present invention, the sintering temperature of the first surface is set to 800 ° C. to 1100 ° C., and the sintering temperature of the second surface is set to 1100 ° C. to 1400 ° C. .

【0017】請求項10に記載の発明では、触媒担持体
と、その触媒担持体の外周を覆う筒状の金属製シェル
と、それらのギャップ間に配置され、マット状に集合し
たアルミナーシリカ系繊維を構成要素とする保持シール
材とを備える触媒コンバータにおいて、前記保持シール
材は、結晶化率が相対的に小さい第1面側を前記金属製
シェルに接触させ、かつ結晶化率が相対的に大きい第2
面側を前記触媒担持体に接触させた状態で、前記ギャッ
プ間に配置されていることを特徴とする触媒コンバータ
をその要旨とする。
In the tenth aspect of the present invention, a catalyst carrier, a cylindrical metal shell for covering the outer periphery of the catalyst carrier, and an alumina-silica-based In a catalytic converter comprising a holding sealing material having fibers as a constituent element, the holding sealing material contacts a first surface side having a relatively small crystallization rate with the metal shell, and has a relatively low crystallization rate. Second big
The gist of the present invention is a catalytic converter characterized in that the catalytic converter is arranged between the gaps with its surface side in contact with the catalyst carrier.

【0018】以下、本発明の「作用」について説明す
る。請求項1に記載の発明によると、第1面側部位の結
晶化率と第2面側部位の結晶化率とが異なっている。こ
のため、結晶化率が相対的に大きくて耐熱性に優れた面
側を高温側に配置するとともに、結晶化率が相対的に小
さくて弾力性や伸縮性に優れた面側を低温側に配置する
ことができる。従って、高温側においては繊維が脆弱化
しにくくなる一方、低温側においては他部材との間に隙
間が生じにくくなる。よって、初期面圧が高くて面圧の
経時劣化を起こしにくいことに加え、シール性にも優れ
た触媒コンバータ用保持シール材を実現することができ
る。
Hereinafter, the "action" of the present invention will be described. According to the first aspect of the present invention, the crystallization ratio of the first surface side portion is different from the crystallization ratio of the second surface side portion. For this reason, the surface side having a relatively large crystallization rate and excellent in heat resistance is arranged on the high temperature side, and the surface side having a relatively small crystallization rate and excellent in elasticity and elasticity is located on the low temperature side. Can be arranged. Therefore, on the high temperature side, the fibers are not easily weakened, while on the low temperature side, a gap is hardly generated between the fibers and other members. Therefore, it is possible to realize a catalytic converter holding sealing material that has a high initial surface pressure and is unlikely to cause deterioration with time of the surface pressure, and also has excellent sealing properties.

【0019】請求項2に記載の発明によると、第1面側
から第2面側に行くに従って結晶化率が大きくなってい
るため、耐熱性に優れた第2面側を高温側に配置すると
ともに、弾力性や伸縮性に優れた第1面側を低温側に配
置することができる。従って、高温側においては繊維が
脆弱化しにくくなる一方、低温側においては他部材との
間に隙間が生じにくくなる。よって、初期面圧が高くて
面圧の経時劣化を起こしにくいことに加え、シール性に
も優れた触媒コンバータ用保持シール材を実現すること
ができる。
According to the second aspect of the present invention, since the crystallization ratio increases from the first surface to the second surface, the second surface having excellent heat resistance is arranged on the high temperature side. At the same time, the first surface having excellent elasticity and elasticity can be arranged on the low temperature side. Therefore, on the high temperature side, the fibers are not easily weakened, while on the low temperature side, a gap is hardly generated between the fibers and other members. Therefore, it is possible to realize a catalytic converter holding sealing material that has a high initial surface pressure and is unlikely to cause deterioration with time of the surface pressure, and also has excellent sealing properties.

【0020】請求項3に記載の発明によると、例えば結
晶化率が異なる複数枚の繊維集合体により構成されたも
のとは異なり、繊維集合体同士を重ねて貼り合わせる等
の作業が不要になり、製造時の工数が少なくなる。ま
た、複数枚重ね構造のものに比べて肉薄にすることが可
能なため、狭いギャップに比較的容易に配置することが
できる。さらに、複数枚重ね構造のものでは繊維集合体
同士の界面を流体が通過する可能性があるのに対し、本
発明のような1枚構造であればそもそも界面がないた
め、流体の通過を心配する必要がなくなる。よって、シ
ール性に優れたものとなる。
According to the third aspect of the present invention, unlike the case where a plurality of fiber aggregates having different crystallization ratios are formed, for example, an operation of stacking and bonding the fiber aggregates together becomes unnecessary. In addition, the number of man-hours during manufacturing is reduced. In addition, since the thickness can be reduced as compared with the multi-layer structure, it can be relatively easily arranged in a narrow gap. Further, in the case of a multi-layered structure, there is a possibility that the fluid may pass through the interface between the fiber aggregates, whereas in the case of the single-layer structure as in the present invention, since there is no interface in the first place, there is concern about the passage of the fluid. You don't have to. Therefore, the sealing performance is excellent.

【0021】請求項5に記載の発明によると、第1面側
部位の結晶化率及び第2面側部位の結晶化率をそれぞれ
上記好適範囲内に設定したことにより、面圧特性及びシ
ール性を確実に向上させることができる。第1面側部位
の結晶化率が1重量%を超えた場合や、第2面側部位の
結晶化率が1重量%未満となった場合には、両者間の結
晶化率差が小さくなりすぎ、目的とする性質が得られな
くなってしまう。第2面側部位の結晶化率が10重量%
を超えた場合には、かえって当該部位の耐熱性が低下す
るおそれがある。
According to the fifth aspect of the present invention, the crystallization ratio of the first surface side portion and the crystallization ratio of the second surface side portion are respectively set within the above-mentioned preferred ranges, so that the surface pressure characteristics and the sealing properties are improved. Can be reliably improved. When the crystallization ratio of the first surface side portion exceeds 1% by weight or when the crystallization ratio of the second surface side portion becomes less than 1% by weight, the difference in crystallization ratio between the two decreases. Too long, and the desired properties cannot be obtained. The crystallization ratio of the second surface side portion is 10% by weight.
If the ratio exceeds the range, the heat resistance of the site may be reduced.

【0022】請求項6に記載の発明によると、結晶化率
が均一ではなく部位により異なっている。このため、結
晶化率が相対的に大きくて耐熱性に優れた部位を高温側
に配置するとともに、結晶化率が相対的に小さくて弾力
性や伸縮性に優れた部位を低温側に配置することができ
る。従って、高温側においては繊維が脆弱化しにくくな
る一方、低温側においては他部材との間に隙間が生じに
くくなる。よって、初期面圧が高くて面圧の経時劣化を
起こしにくいことに加え、シール性にも優れた触媒コン
バータ用保持シール材を実現することができる。
According to the sixth aspect of the invention, the crystallization ratio is not uniform but varies depending on the portion. Therefore, a portion having a relatively large crystallization rate and excellent in heat resistance is arranged on the high temperature side, and a portion having a relatively small crystallization rate and excellent in elasticity and elasticity is arranged on the low temperature side. be able to. Therefore, on the high temperature side, the fibers are not easily weakened, while on the low temperature side, a gap is hardly generated between the fibers and other members. Therefore, it is possible to realize a catalytic converter holding sealing material that has a high initial surface pressure and is unlikely to cause deterioration with time of the surface pressure, and also has excellent sealing properties.

【0023】請求項7に記載の発明によると、第1面側
の焼成温度と第2面側の焼成温度との間で差を設けるよ
うにしてマット状繊維集合体を焼結させることにより、
両面の結晶化率の異なる保持シール材を比較的簡単にか
つ確実に製造することができる。また、このような製造
方法は、1枚の繊維集合体において第1面側から第2面
側に行くに従って結晶化率が大きくなっている保持シー
ル材の製造にも適している。しかも、この製造方法であ
れば、特殊な焼成用装置を用いるまでもなく既存の焼成
用装置を流用することが可能である。よって、設備コス
トの増大を回避することができる。
According to the seventh aspect of the present invention, the mat-like fiber aggregate is sintered by providing a difference between the firing temperature on the first side and the firing temperature on the second side.
A holding sealing material having a different crystallization ratio on both surfaces can be relatively easily and reliably manufactured. Further, such a manufacturing method is also suitable for manufacturing a holding sealing material in which the crystallization rate increases from the first surface side to the second surface side in one fiber aggregate. Moreover, according to this manufacturing method, it is possible to divert an existing firing apparatus without using a special firing apparatus. Therefore, an increase in equipment cost can be avoided.

【0024】請求項8に記載の発明によると、焼成温度
の差を100℃以上に設定することにより、第1面側と
第2面側とで焼結しやすさに差異ができ、結晶化率に差
を持たせることが可能となる。よって、両面の結晶化率
の異なる保持シール材をより確実に製造することができ
る。
According to the eighth aspect of the present invention, by setting the difference in sintering temperature to 100 ° C. or more, the sintering easiness can be made different between the first surface side and the second surface side. It is possible to make the ratio different. Therefore, it is possible to more reliably manufacture holding sealing materials having different crystallization rates on both surfaces.

【0025】請求項9に記載の発明によると、第1面側
の焼成温度のほうが第2面側の焼成温度よりも低く設定
されているため、焼成を行うと、第1面側から第2面側
に行くに従って結晶化率が大きくなっている保持シール
材を得ることができる。
According to the ninth aspect of the invention, the firing temperature on the first surface is set lower than the firing temperature on the second surface. It is possible to obtain a holding sealing material in which the crystallization rate increases toward the surface side.

【0026】第1面側の焼成温度が800℃未満である
と、そもそも焼結反応が十分に進まず、必要とされる機
械的強度を得ることができなくなる。第1面側の焼成温
度が1100℃を超えたり、第2面側の焼成温度が11
00℃未満の場合、両者間の結晶化率差が小さくなりす
ぎ、目的とする性質が得られなくなってしまう。第2面
側の焼成温度が1400℃を越えると、結晶化が進行し
すぎてかえって機械的強度、耐熱性の低下につながって
しまうおそれがある。
If the sintering temperature on the first surface side is lower than 800 ° C., the sintering reaction does not proceed sufficiently in the first place, and the required mechanical strength cannot be obtained. The firing temperature on the first side exceeds 1100 ° C., or the firing temperature on the second side is 11
If the temperature is lower than 00 ° C., the difference in crystallization ratio between the two is too small, and the desired properties cannot be obtained. If the sintering temperature on the second side exceeds 1400 ° C., crystallization may proceed too much, leading to a decrease in mechanical strength and heat resistance.

【0027】請求項10に記載の発明の作用は以下のと
おりである。通常、触媒コンバータの使用時には、高温
の流体に直接晒される触媒担持体のほうが高温になる一
方、金属製シェルは触媒担持体ほど高温にはならない。
よって、触媒担持体に接する面側において特に高温耐久
性が要求される。本発明ではこの事実に鑑みて、結晶化
率が相対的に大きい第2面側、即ち耐熱性に優れた面側
を触媒担持体に接触させている。一方、結晶化率が相対
的に小さい第1面側、即ち耐熱性には劣るが弾力性や伸
縮性に優れた面側を金属製シェルに接触させている。そ
れゆえ、触媒担持体に接している部位の繊維が脆弱化し
にくくなり、結果として初期面圧が高くて面圧の経時劣
化を起こしにくい保持シール材となる。また、金属製シ
ェルに接している部位には弾性力が作用することから、
金属製シェルとの間に隙間が生じにくくなり、結果とし
てシール性に優れた保持シール材となる。
The operation of the invention described in claim 10 is as follows. Normally, when a catalytic converter is used, the temperature of the catalyst carrier directly exposed to the high-temperature fluid is higher, while the temperature of the metal shell is not as high as that of the catalyst carrier.
Therefore, high-temperature durability is particularly required on the surface side in contact with the catalyst carrier. In the present invention, in view of this fact, the second surface having a relatively large crystallization ratio, that is, the surface having excellent heat resistance, is brought into contact with the catalyst carrier. On the other hand, the first surface side having a relatively small crystallization ratio, that is, the surface side which is inferior in heat resistance but excellent in elasticity and elasticity, is brought into contact with the metal shell. Therefore, the fibers in the portion in contact with the catalyst carrier are less likely to be weakened, and as a result, the holding seal material has a high initial surface pressure and is unlikely to cause deterioration with time of the surface pressure. In addition, since elastic force acts on the part in contact with the metal shell,
A gap is less likely to be formed between the shell and the metal shell, and as a result, a holding sealing material having excellent sealing properties is obtained.

【0028】以上のことから、触媒担持体の保持性に優
れるとともに、流体が漏れにくくて処理効率のよい触媒
コンバータを実現することができる。
As described above, it is possible to realize a catalytic converter which is excellent in retention of the catalyst carrier, hardly leaks fluid, and has high processing efficiency.

【0029】[0029]

【発明の実施の形態】以下、本発明を具体化した一実施
形態の自動車排気ガス浄化装置用触媒コンバータを図1
〜図5に基づき詳細に説明する。
FIG. 1 shows a catalytic converter for an automobile exhaust gas purifying apparatus according to an embodiment of the present invention.
This will be described in detail with reference to FIG.

【0030】図3に示される本実施形態の触媒コンバー
タ1は、自動車の車体において、エンジンの排気管の途
中に設けられる。エンジンから触媒コンバータ1までの
距離は比較的短いため、触媒コンバータ1には約700
℃〜900℃の高温の排気ガスが供給されるようになっ
ている。エンジンがリーンバーンエンジンである場合に
は、触媒コンバータ1には約900℃〜1000℃とい
う、さらに高温の排気ガスが供給されるようになってい
る。
The catalytic converter 1 according to the present embodiment shown in FIG. 3 is provided in the body of an automobile in the middle of an exhaust pipe of an engine. Since the distance from the engine to the catalytic converter 1 is relatively short, about 700
Exhaust gas at a high temperature of from 900C to 900C is supplied. When the engine is a lean burn engine, the catalytic converter 1 is supplied with a still higher exhaust gas of about 900 ° C. to 1000 ° C.

【0031】図3に示されるように、本実施形態の触媒
コンバータ1は、基本的に、触媒担持体2と、触媒担持
体2の外周を覆う金属製シェル3と、両者2,3間のギ
ャップに配置される保持シール材4とによって構成され
ている。
As shown in FIG. 3, the catalytic converter 1 of the present embodiment basically includes a catalyst carrier 2, a metal shell 3 covering the outer periphery of the catalyst carrier 2, and a metal shell 3 between the two. And a holding sealing material 4 arranged in the gap.

【0032】前記触媒担持体2は、コージェライト等に
代表されるセラミック材料を用いて作製されている。こ
の触媒担持体2は断面円形状をした柱状部材となってい
る。また、触媒担持体2は、軸線方向に沿って延びる多
数のセル5を有するハニカム構造体であることが好まし
い。セル壁には排気ガス成分を浄化しうる白金やロジウ
ム等の貴金属系触媒が担持されている。なお、触媒担持
体2として、上記のコージェライト担体のほかにも、例
えば炭化珪素、窒化珪素等のハニカム多孔質焼結体等を
用いてもよい。
The catalyst carrier 2 is made of a ceramic material typified by cordierite or the like. The catalyst carrier 2 is a columnar member having a circular cross section. Further, the catalyst carrier 2 is preferably a honeycomb structure having a large number of cells 5 extending along the axial direction. A noble metal catalyst such as platinum or rhodium that can purify exhaust gas components is supported on the cell walls. In addition, as the catalyst carrier 2, besides the above cordierite carrier, for example, a honeycomb porous sintered body of silicon carbide, silicon nitride or the like may be used.

【0033】前記金属製シェル3としては、例えば組み
付けに際して圧入方式を採用する場合には、断面O字状
の金属製円筒部材が用いられる。なお、円筒部材を形成
するための金属材料としては、耐熱性や耐衝撃性に優れ
た金属(例えばステンレス等のような鋼材等)が選択さ
れることがよい。圧入方式に代えていわゆるキャニング
方式を採用する場合には、前記断面O字状の金属製円筒
部材を軸線方向に沿って複数片に分割したもの(即ちク
ラムシェル)が用いられる。
As the metal shell 3, for example, when a press-fitting method is employed for assembling, a metal cylindrical member having an O-shaped cross section is used. In addition, as a metal material for forming the cylindrical member, a metal having excellent heat resistance and impact resistance (for example, a steel material such as stainless steel) is preferably selected. When a so-called canning method is adopted instead of the press-fitting method, a metal cylindrical member having an O-shaped cross section divided into a plurality of pieces along the axial direction (ie, a clam shell) is used.

【0034】そのほか、組み付けに際して巻き締め方式
を採用する場合には、例えば断面C字状ないしU字状の
金属製円筒部材、言い換えるといわば軸線方向に沿って
延びるスリット(開口部)を1箇所にのみ有する金属製
円筒部材が用いられる。この場合、触媒担持体2の組み
付けに際し、触媒担持体2に保持シール材4を固定した
ものを金属製シェル3内に収め、その状態で金属製シェ
ル3を巻き締めた後に開口端が接合(溶接、接着、ボル
ト締め等)される。溶接、接着、ボルト締め等といった
接合作業は、キャニング方式を採用したときにも同様に
行われる。
In addition, in the case of employing a winding method for assembling, for example, a metal cylindrical member having a C-shaped or U-shaped cross section, in other words, a slit (opening) extending along the axial direction is provided at one place. Only a metal cylindrical member having only one is used. In this case, at the time of assembling the catalyst carrier 2, the one in which the holding sealing material 4 is fixed to the catalyst carrier 2 is housed in the metal shell 3, the metal shell 3 is wound up in that state, and the open end is joined ( Welding, bonding, bolting, etc.). Joining operations such as welding, bonding, and bolting are performed similarly when the canning method is adopted.

【0035】図1に示されるように、この保持シール材
4は長尺状のマット状物であって、その一端には凹状合
わせ部11が設けられ、他端には凸状合わせ部12が設
けられている。図2に示されるように、触媒担持体2へ
の巻き付け時には、凸状合わせ部12が凹状合わせ部1
1にちょうど係合するようになっている。
As shown in FIG. 1, the holding sealing material 4 is a long mat-like material, and has a concave mating portion 11 at one end and a convex mating portion 12 at the other end. Is provided. As shown in FIG. 2, at the time of winding around the catalyst carrier 2, the convex fitting portion 12 is
1 just engages.

【0036】本実施形態の保持シール材4は、マット状
に集合したセラミック繊維(即ち繊維集合体M1)を主
要な要素として構成されたものである。前記セラミック
繊維として、本実施形態ではアルミナ−シリカ系繊維6
が用いられている。
The holding sealing material 4 of the present embodiment is composed mainly of ceramic fibers (that is, fiber aggregate M1) assembled in a mat shape. In the present embodiment, the alumina-silica fiber 6 is used as the ceramic fiber.
Is used.

【0037】本実施形態の保持シール材4では、ムライ
ト結晶化率が均一ではなく部位により異なっている。即
ち、1枚の繊維集合体M1における第1面側S1部位の
結晶化率と第2面側S2部位の結晶化率とが異なり、具
体的には第1面側S1から第2面側S2に行くに従って
結晶化率が大きくなっている。
In the holding sealing material 4 of the present embodiment, the mullite crystallization rate is not uniform but differs depending on the portion. That is, the crystallization rate of the first surface side S1 portion and the crystallization ratio of the second surface side S2 portion in one fiber assembly M1 are different, and specifically, from the first surface side S1 to the second surface side S2. The crystallization ratio increases as going to.

【0038】なお、保持シール材4における第1面側S
1は、相対的に低温で焼成された面側であって、耐熱性
がそれほど要求されていない金属製シェル3側に接触す
るようにして配置されている。ゆえに、第1面側S1
は、低温焼成面またはシェル側接触面と把握することも
できる。一方、第2面側S2は、相対的に高温で焼成さ
れた面側であって、耐熱性が要求されている触媒担持体
2側に接触するようにして配置されている。ゆえに、第
2面側S2は、高温焼成面または担持体側接触面として
把握することもできる。
The first side S of the holding sealing material 4
Reference numeral 1 denotes a surface which is fired at a relatively low temperature, and is arranged so as to come into contact with the metal shell 3 which does not require much heat resistance. Therefore, the first surface side S1
Can be regarded as a low-temperature sintering surface or a shell-side contact surface. On the other hand, the second surface side S2 is a surface side fired at a relatively high temperature and is arranged so as to be in contact with the catalyst carrier 2 side where heat resistance is required. Therefore, the second surface S2 can also be grasped as a high-temperature firing surface or a carrier-side contact surface.

【0039】ここで、第1面側S1の表層部位の結晶化
率と、第2面側S2の表層部位の結晶化率との差は、3
重量%以上であることが好ましい。より具体的には、第
1面側S1の表層部位の結晶化率は0重量%〜1重量
%、第2面側S2の表層部位の結晶化率は1重量%〜1
0重量%であることが好ましい。
Here, the difference between the crystallization ratio of the surface layer portion on the first surface side S1 and the crystallization ratio of the surface layer portion on the second surface side S2 is 3
It is preferred that the content be not less than% by weight. More specifically, the crystallization ratio of the surface layer portion on the first surface side S1 is 0% by weight to 1% by weight, and the crystallization ratio of the surface layer portion on the second surface side S2 is 1% by weight to 1% by weight.
It is preferably 0% by weight.

【0040】第1面側S1の表層部位の結晶化率が1重
量%を超えた場合や、第2面側S2の表層部位の結晶化
率が1重量%未満となった場合には、両者間の結晶化率
差が小さくなりすぎ、目的とする性質が得られなくなっ
てしまう。第2面側S2の表層部位の結晶化率が10重
量%を超えた場合には、かえって当該部位の耐熱性が低
下するおそれがある。なお、第1面側S1の表層部位の
結晶化率が0重量%であること、言い換えると当該部位
は非晶質からなるものであることが望ましい。
When the crystallization ratio of the surface portion on the first surface side S1 exceeds 1% by weight, or when the crystallization ratio of the surface portion on the second surface side S2 becomes less than 1% by weight, both of them are used. The crystallization rate difference between them becomes too small, and the desired properties cannot be obtained. If the crystallization ratio of the surface layer portion on the second surface side S2 exceeds 10% by weight, the heat resistance of the portion may be rather reduced. In addition, it is desirable that the crystallization ratio of the surface layer portion on the first surface side S1 is 0% by weight, in other words, that the portion is made of amorphous.

【0041】アルミナ−シリカ系繊維6におけるアルミ
ナ量は40重量%〜100重量%であることがよく、シ
リカ量は0重量%〜60重量%であることがよい。ま
た、アルミナ−シリカ系繊維6の平均繊維径は、3μm
〜25μm程度であることがよく、さらには5μm〜1
5μm程度であることがなおよい。平均繊維径を小さく
しすぎると、呼吸器系に吸い込まれやすくなるという不
都合が生じるからである。アルミナ−シリカ系繊維6の
平均繊維長は、0.1mm〜100mm程度であることがよ
く、さらには2mm〜50mm程度であることがなおよい。
The amount of alumina in the alumina-silica fiber 6 is preferably 40 to 100% by weight, and the amount of silica is preferably 0 to 60% by weight. The average fiber diameter of the alumina-silica fiber 6 is 3 μm.
About 25 μm, more preferably about 5 μm to 1 μm.
More preferably, it is about 5 μm. If the average fiber diameter is too small, there is a disadvantage that the fiber is easily sucked into the respiratory system. The average fiber length of the alumina-silica fiber 6 is preferably about 0.1 mm to 100 mm, and more preferably about 2 mm to 50 mm.

【0042】第2面側S2に存在するアルミナ−シリカ
系繊維6については、繊維引張強度が1.0GPa以
上、繊維曲げ強度が0.8GPa以上、弾性率が9.5
×10 10N/m2以上であることがよい。第1面側S1
に存在するアルミナ−シリカ系繊維6については、繊維
引張強度が2.0GPa以上、繊維曲げ強度が1.5G
Pa以上、弾性率が11.0×1010N/m2以上であ
ることがよい。その理由は、繊維引張強度や繊維曲げ強
度等が大きくなると、引っ張りや曲げに対して極めて強
いアルミナ−シリカ系繊維6となるからである。
Alumina-silica existing on the second surface side S2
As for the system fiber 6, the fiber tensile strength is 1.0 GPa or less.
Above, the fiber bending strength is 0.8 GPa or more, and the elastic modulus is 9.5.
× 10 TenN / mTwoIt is better to be above. First surface side S1
About the alumina-silica fiber 6 existing in
Tensile strength of 2.0 GPa or more, fiber bending strength of 1.5 G
Pa or more, elastic modulus is 11.0 × 10TenN / mTwoIs over
Is better. The reason is that fiber tensile strength and fiber bending strength
When the degree is large, it is extremely resistant to tension and bending.
This is because the alumina-silica fiber 6 is obtained.

【0043】なお、アルミナ−シリカ系繊維6の断面形
状は、真円形状でもよいほか、異形断面形状(例えば楕
円形状、長円形状、略三角形状等)でも構わない。組み
付け前の状態における保持シール材4の厚さは、触媒担
持体2と金属製シェル3とがなすギャップの1.1倍〜
4.0倍程度、さらには1.5倍〜3.0倍程度である
ことが望ましい。前記厚さが1.1倍未満であると、高
い担持体保持性を得ることができず、触媒担持体2が金
属製シェル3に対してズレたりガタついたりするおそれ
がある。勿論、この場合には高いシール性も得られなく
なるため、ギャップ部分からの排気ガスのリークが起こ
りやすくなり、高度な低公害性を実現できなくなってし
まう。また、前記厚さが4.0倍を超えると、特に圧入
方式を採用した場合には、触媒担持体2の金属製シェル
3への配置が困難になってしまう。よって、組み付け性
の向上を達成できなくなるおそれがある。
The cross-sectional shape of the alumina-silica fiber 6 may be a perfect circular shape or an irregular cross-sectional shape (for example, an elliptical shape, an oval shape, a substantially triangular shape, etc.). Before the assembly, the thickness of the holding sealing material 4 is 1.1 times or more the gap formed between the catalyst carrier 2 and the metal shell 3.
It is desirably about 4.0 times, and more preferably about 1.5 times to 3.0 times. If the thickness is less than 1.1 times, high support holding property cannot be obtained, and the catalyst support 2 may be displaced or rattled with respect to the metal shell 3. Of course, in this case, a high sealing property cannot be obtained, so that the leakage of the exhaust gas from the gap portion is likely to occur, and a high low pollution property cannot be realized. On the other hand, if the thickness exceeds 4.0 times, it is difficult to dispose the catalyst carrier 2 on the metal shell 3 especially when the press-fitting method is adopted. Therefore, there is a possibility that improvement in assemblability cannot be achieved.

【0044】また、組み付け後における保持シール材4
のGBD(嵩密度)は、0.10g/cm3〜0.30
g/cm3、さらには0.10g/cm3〜0.25g/
cm3となるように設定されることが好ましい。GBD
の値が極端に小さいと、十分に高い初期面圧を実現する
ことが困難になる場合がある。一方、GBDが大きすぎ
ると、材料として使用すべきアルミナ−シリカ系繊維6
の量が増え、コスト高を招きやすくなる。
Further, the holding sealing material 4 after the assembling is performed.
Has a GBD (bulk density) of 0.10 g / cm 3 to 0.30.
g / cm 3 , and further 0.10 g / cm 3 to 0.25 g /
It is preferably set to be cm 3 . GBD
Is extremely small, it may be difficult to realize a sufficiently high initial surface pressure. On the other hand, if the GBD is too large, the alumina-silica fiber 6
And the cost is likely to increase.

【0045】組み付け状態における保持シール材4の初
期面圧は50kPa以上、さらには70kPa以上であ
ることが好ましい。初期面圧の値が高ければ、面圧の経
時劣化が起こったとしても、触媒担持体2の好適な保持
性を維持することができるからである。
The initial surface pressure of the holding sealing material 4 in the assembled state is preferably 50 kPa or more, more preferably 70 kPa or more. This is because if the value of the initial surface pressure is high, even if the surface pressure deteriorates with time, a suitable holding property of the catalyst carrier 2 can be maintained.

【0046】なお、保持シール材4に対し必要に応じ
て、ニードルパンチ処理や樹脂含浸処理等を施してもよ
い。これらの処理を施すことにより、保持シール材4を
厚さ方向に圧縮して肉薄化することが可能となるからで
ある。
The holding sealing material 4 may be subjected to a needle punching treatment, a resin impregnation treatment, or the like, if necessary. This is because by performing these processes, the holding sealing material 4 can be compressed in the thickness direction to be reduced in thickness.

【0047】次に、触媒コンバータ1を製造する手順を
説明する。まず、アルミニウム塩水溶液、シリカゾル及
び有機重合体を混合し、紡糸原液を作製する。言い換え
ると、無機塩法により紡糸原液を作製する。アルミナ源
であるアルミニウム塩水溶液は、紡糸原液に粘性を付与
するための成分でもある。なお、このような水溶液とし
て、塩基性アルミニウム塩の水溶液を選択することがよ
い。シリカ源であるシリカゾルは、繊維に高い強度を付
与するための成分でもある。有機重合体は紡糸原液に曳
糸性付与剤としての役割を果たす成分であって、本実施
形態においては例えばPVA(ポリビニルアルコール)
等が用いられている。
Next, a procedure for manufacturing the catalytic converter 1 will be described. First, an aluminum salt aqueous solution, a silica sol, and an organic polymer are mixed to prepare a spinning solution. In other words, a spinning stock solution is prepared by the inorganic salt method. The aqueous solution of an aluminum salt as an alumina source is also a component for imparting viscosity to the spinning dope. It is preferable to select an aqueous solution of a basic aluminum salt as such an aqueous solution. Silica sol, which is a silica source, is also a component for imparting high strength to fibers. The organic polymer is a component that plays a role as a spinnability imparting agent in the spinning solution, and in the present embodiment, for example, PVA (polyvinyl alcohol)
Etc. are used.

【0048】次いで、得られた紡糸原液を減圧濃縮する
ことにより、紡糸に適した濃度・温度・粘度等に調製し
た紡糸原液とする。ここでは、20重量%程度であった
紡糸原液を濃縮して30重量%〜40重量%程度にする
ことがよい。また、粘度を10ポアズ〜2000ポアズ
に設定することがよい。
Next, the obtained spinning dope is concentrated under reduced pressure to obtain a spinning dope adjusted to a concentration, temperature, viscosity and the like suitable for spinning. Here, the spinning stock solution, which was about 20% by weight, is preferably concentrated to about 30% to 40% by weight. Further, the viscosity is preferably set to 10 poise to 2000 poise.

【0049】さらに、調製後の紡糸原液を紡糸装置のノ
ズルから空気中に吐出すると、ノズルの開口形状に相似
の断面形状を有する前駆体繊維が連続的に得られる。こ
のようにして紡出された前駆体繊維を延伸しながら順次
巻き取るようにする。この場合、例えば乾式圧力紡糸法
などが採用されることが好ましい。
Further, when the prepared spinning dope is discharged from the nozzle of the spinning device into the air, precursor fibers having a cross-sectional shape similar to the opening shape of the nozzle are continuously obtained. The precursor fibers spun in this manner are sequentially wound while being drawn. In this case, for example, a dry pressure spinning method is preferably employed.

【0050】続いて、前駆体繊維の長繊維を所定長さに
チョップしてある程度短繊維化する。この後、短繊維を
集綿、解繊及び積層することにより、あるいは、短繊維
を水に分散させて得た繊維分散液を成形型内に流し込ん
で加圧・乾燥することにより、マット状の繊維集合体M
1を得る。
Subsequently, the long fibers of the precursor fibers are chopped to a predetermined length to shorten the fibers to some extent. Thereafter, by collecting, defibrating and laminating the staple fibers, or by pouring a fiber dispersion obtained by dispersing the staple fibers in water into a molding die and pressing and drying, a mat-like shape is obtained. Fiber assembly M
Get 1.

【0051】上記積層工程に続いて繊維集合体M1の焼
成工程を行い、前駆体繊維を焼結してセラミック化(結
晶化)する。これにより前駆体繊維を硬化させ、アルミ
ナ−シリカ系繊維6とする。図4には、本実施形態にお
いて使用される焼成用装置としての電気炉21が例示さ
れている。
Subsequent to the laminating step, a firing step of the fiber assembly M1 is performed, and the precursor fiber is sintered to be ceramicized (crystallized). Thereby, the precursor fiber is cured to obtain the alumina-silica fiber 6. FIG. 4 illustrates an electric furnace 21 as a firing device used in the present embodiment.

【0052】この電気炉21は、被焼成物を水平方向に
搬送しながら連続的に加熱・焼成するための装置であ
る。電気炉21を構成する本体22内には、搬送手段と
してのネットコンベア23が収容されている。ネットコ
ンベア23上には、被焼成物である前記マット状繊維集
合体M1が載置されている。ネットコンベア23の上方
には第1加熱手段としての上側電熱ヒータ24が離間配
置され、ネットコンベア23の下方には第2加熱手段と
しての下側電熱ヒータ25が離間配置されている。これ
らの電熱ヒータ24,25は、図示しない温度制御手段
を介して電源に接続されている。この装置では2種つの
電熱ヒータ24,25の温度制御を個別に行うことがで
きるようになっている。
The electric furnace 21 is an apparatus for continuously heating and firing the object to be fired while transporting the object in the horizontal direction. In a main body 22 constituting the electric furnace 21, a net conveyor 23 as a conveying means is accommodated. On the net conveyor 23, the mat-like fiber aggregate M1 which is an object to be fired is placed. Above the net conveyor 23, an upper electric heater 24 as a first heating means is spaced apart, and below the net conveyor 23, a lower electric heater 25 as a second heating means is spaced apart. These electric heaters 24 and 25 are connected to a power supply via temperature control means (not shown). In this device, the temperature control of the two types of electric heaters 24 and 25 can be individually performed.

【0053】そして焼成工程では、大気かつ常圧に保持
された電気炉21内で、上記繊維集合体M1に対する予
備加熱(前処理)を行った後、同じく大気かつ常圧に保
持された電気炉21内で本加熱(焼成)を行う。
In the firing step, after the fiber assembly M1 is preheated (pre-treated) in the electric furnace 21 maintained at atmospheric pressure and normal pressure, the electric furnace 21 is also maintained at atmospheric pressure and normal pressure. The main heating (firing) is performed in 21.

【0054】このとき、2種の電熱ヒータ24,25の
温度設定を変え、ある程度の温度差を与えるようにす
る。即ち、第1面側S1の焼成温度と第2面側S2の焼
成温度との間で、差を設けるようにして繊維集合体M1
を焼結させるようにする。なお、本実施形態では、上側
電熱ヒータ24の設定温度を下側電熱ヒータ25の設定
温度よりも高くなるようにしている。
At this time, the temperature settings of the two types of electric heaters 24 and 25 are changed to give a certain temperature difference. That is, a difference is provided between the firing temperature of the first surface side S1 and the firing temperature of the second surface side S2 so that the fiber assembly M1 is provided.
To be sintered. In the present embodiment, the set temperature of the upper electric heater 24 is set higher than the set temperature of the lower electric heater 25.

【0055】この場合、焼成時に設定する温度の差を1
00℃以上に設定することがよく、特には200℃以上
にすることがよりよい。前記温度差が100℃未満であ
ると、第1面側S1と第2面側S2とで焼結しやすさに
十分な差異を設けることができず、結晶化率に差を持た
せることが困難になるからである。
In this case, the difference in temperature set during firing is 1
The temperature is preferably set to 00 ° C. or higher, and more preferably to 200 ° C. or higher. If the temperature difference is less than 100 ° C., it is not possible to provide a sufficient difference in sintering easiness between the first surface side S1 and the second surface side S2, and it is possible to provide a difference in crystallization ratio. Because it becomes difficult.

【0056】また、第1面側S1の焼成温度を800℃
〜1100℃に設定し、第2面側S2の焼成温度を11
00℃〜1400℃に設定することがよい。第1面側S
1の焼成温度が800℃未満であると、そもそも焼結反
応が十分に進まず、必要とされる機械的強度を得ること
ができなくなる。第1面側S1の焼成温度が1100℃
を超えたり、第2面側S2の焼成温度が1100℃未満
の場合、両者間の結晶化率差が小さくなりすぎ、目的と
する性質が得られなくなる。第2面側S2の焼成温度が
1400℃を越えると、結晶化が進行しすぎてかえって
機械的強度、耐熱性の低下につながってしまうおそれが
ある。
Further, the sintering temperature of the first surface S1 is 800 ° C.
11100 ° C., and the firing temperature of the second surface side S2 is 11
It is preferable that the temperature is set to 00 ° C to 1400 ° C. 1st surface side S
If the sintering temperature is less than 800 ° C., the sintering reaction does not proceed sufficiently in the first place, and the required mechanical strength cannot be obtained. The firing temperature of the first surface S1 is 1100 ° C.
Or when the firing temperature of the second surface S2 is lower than 1100 ° C., the difference in crystallization ratio between the two becomes too small, and the desired properties cannot be obtained. If the sintering temperature of the second surface S2 exceeds 1400 ° C., crystallization may proceed too much, leading to a reduction in mechanical strength and heat resistance.

【0057】さらに、焼成時間(具体的には最高加熱温
度にて保持する時間)は10分〜60分に設定すること
がよい。焼成時間が短すぎると、十分高い温度が設定さ
れていたとしても、焼結反応が十分に進まなくなるおそ
れがある。よって、必要とされる機械的強度を得ること
ができなくなる。焼成時間が長すぎると、生産効率の低
下を来すばかりでなく、結晶化が進行しすぎてかえって
機械的強度、耐熱性の低下につながってしまうおそれが
ある。
Further, the firing time (specifically, the time for holding at the maximum heating temperature) is preferably set to 10 minutes to 60 minutes. If the firing time is too short, the sintering reaction may not proceed sufficiently even if a sufficiently high temperature is set. Therefore, the required mechanical strength cannot be obtained. If the firing time is too long, not only does the production efficiency decrease, but crystallization may proceed too much, leading to a reduction in mechanical strength and heat resistance.

【0058】続く打ち抜き工程では、焼成工程を経たマ
ット状繊維集合体M1を所定形状に打ち抜いて保持シー
ル材4とする。この後、必要に応じて保持シール材4に
対する有機バインダの含浸を行った後、さらに保持シー
ル材4を厚さ方向に圧縮成形してもよい。この場合の有
機バインダとしては、アクリルゴムやニトリルゴム等の
ようなラテックス等のほか、ポリビニルアルコール、ア
クリル樹脂等が挙げられる。
In the subsequent punching step, the mat-like fiber aggregate M1 that has undergone the firing step is punched into a predetermined shape to form the holding sealing material 4. After that, if necessary, the holding sealing material 4 may be impregnated with the organic binder, and then the holding sealing material 4 may be compression-molded in the thickness direction. In this case, examples of the organic binder include latex such as acrylic rubber and nitrile rubber, as well as polyvinyl alcohol and acrylic resin.

【0059】そして、保持シール材4を触媒担持体2の
外周面に巻き付けて有機テープ13を固定する。その
後、圧入、キャニングまたは巻き締めを行えば、所望の
触媒コンバータ1が完成する。
Then, the holding sealing material 4 is wound around the outer peripheral surface of the catalyst carrier 2, and the organic tape 13 is fixed. Thereafter, if press-fitting, canning or winding is performed, a desired catalytic converter 1 is completed.

【0060】以下、上記実施形態をより具体化した実施
例及びその比較例について説明する。
Hereinafter, examples and comparative examples of the above embodiment will be described.

【0061】[0061]

【実施例及び比較例】(実施例)実施例では、まず、塩
基性塩化アルミニウム水溶液(23.5重量%)、シリ
カゾル(20重量%、シリカ粒径15nm)及び曳糸性
付与剤であるポリビニルアルコール(10重量%)を混
合し、紡糸原液を作製した。次いで、得られた紡糸原液
をエバポレータを用いて50℃で減圧濃縮し、濃度38
重量%、粘度1500ポアズの紡糸原液に調製した。
Examples and Comparative Examples (Examples) In the examples, first, a basic aluminum chloride aqueous solution (23.5% by weight), silica sol (20% by weight, silica particle size of 15 nm) and polyvinyl as a spinnability imparting agent were used. An alcohol (10% by weight) was mixed to prepare a spinning dope. Subsequently, the obtained spinning stock solution was concentrated under reduced pressure at 50 ° C. using an evaporator to obtain a concentration of 38%.
It was prepared as a spinning solution having a weight percentage of 1500 poise and a viscosity of 1500 poise.

【0062】調製後の紡糸原液を紡糸装置のノズル(断
面真円状)から空気中に連続的に噴出するとともに、形
成された前駆体繊維を延伸しながら巻き取った。続い
て、前駆体繊維の長繊維を5mm長にチョップして短繊
維化した。その後、この短繊維を水に分散させ、得られ
た繊維分散液を成形型枠内に流し込んで加圧・乾燥する
ことにより、マット状の繊維集合体M1を得た。
The prepared spinning dope was continuously jetted into the air from a nozzle (circular cross section) of a spinning device, and the formed precursor fiber was wound up while being stretched. Subsequently, the long fiber of the precursor fiber was chopped to a length of 5 mm to be shortened. Thereafter, the short fibers were dispersed in water, and the obtained fiber dispersion was poured into a molding die, followed by pressing and drying to obtain a mat-like fiber aggregate M1.

【0063】上記積層工程に続く焼成工程では、大気か
つ常圧に保持された電気炉21内で、上記繊維集合体M
1に対する250℃、30分間の加熱(前処理)をあら
かじめ行った後、同じく大気かつ常圧に保持された電気
炉21内でその焼成を行った。
In the firing step following the above-mentioned laminating step, the fiber assembly M is placed in an electric furnace 21 maintained at atmospheric pressure and normal pressure.
After heating (pretreatment) at 250 ° C. for 30 minutes for 1 in advance, it was fired in an electric furnace 21 also maintained at atmospheric pressure and normal pressure.

【0064】本実施例では、焼成時における第1面側S
1の表面温度が1250℃となるように上側電熱ヒータ
24の温度を高めに設定し、第2面側S2の表面温度が
1000℃となるように下側電熱ヒータ25の温度を低
めに設定した。つまり、250℃の焼成温度差を設け
た。焼成時間は30分間とした。
In this embodiment, the first surface S
The temperature of the upper electric heater 24 was set higher so that the surface temperature of No. 1 became 1250 ° C., and the temperature of the lower electric heater 25 was set lower so that the surface temperature of the second surface S2 became 1000 ° C. . That is, a firing temperature difference of 250 ° C. was provided. The firing time was 30 minutes.

【0065】このようにして得られた繊維集合体M1の
第1面側S1の表層部位及び第2面側S2の表層部位の
アルミナ−シリカ系繊維6をそれぞれ採取し、いくつか
の項目について調査を行った。その結果を表1に示す。
The alumina-silica-based fibers 6 in the surface layer portion on the first surface side S1 and the surface layer portion on the second surface side S2 of the fiber assembly M1 thus obtained were respectively collected and investigated for several items. Was done. Table 1 shows the results.

【0066】アルミナ−シリカ系繊維6の結晶化率につ
いては、第1面側S1の表層部位のほうが第2面側S2
の表層部位に比べて明らかに小さくなっていた。逆に、
アルミナ−シリカ系繊維6の繊維引張強度、繊維曲げ強
度、弾性率及び伸度については、第1面側S1の表層部
位のほうが第2面側S2の表層部位に比べて大きくなっ
ていた。
Regarding the crystallization ratio of the alumina-silica fiber 6, the surface layer on the first side S1 is closer to the second side S2.
It was clearly smaller than the surface layer of vice versa,
Regarding the fiber tensile strength, fiber bending strength, elastic modulus, and elongation of the alumina-silica fiber 6, the surface portion on the first surface side S1 was larger than the surface portion on the second surface side S2.

【0067】なお、アルミナ/シリカの重量比は72:
28、平均繊維径は10.5μm、繊維の断面形状は真
円状であった。上記マット状繊維集合体M1を25mm
角に打ち抜いて面圧測定用サンプルとし、これを専用の
治具にて挟持し、嵩密度(GBD)が0.3g/cm3
となるようにした。この状態の面圧測定用サンプルを1
000℃の大気圧中に保持し、1時間後、10時間後、
100時間後の面圧を測定した。なお、1時間後の面圧
を「初期面圧」として位置付け、100時間後の面圧を
「耐久後面圧」として位置付けた。また、(耐久後面圧
/初期面圧)×100(%)を計算し、面圧経時劣化率
とした。それらの結果を図5のグラフに示す。
The weight ratio of alumina / silica was 72:
28, the average fiber diameter was 10.5 μm, and the cross-sectional shape of the fiber was a perfect circle. The above-mentioned mat-like fiber assembly M1 is 25 mm
Punched into a corner to obtain a surface pressure measurement sample, which was clamped by a special jig, and had a bulk density (GBD) of 0.3 g / cm 3.
It was made to become. One sample for surface pressure measurement in this state
Held at atmospheric pressure of 000 ° C., after 1 hour and 10 hours,
The surface pressure after 100 hours was measured. In addition, the surface pressure after 1 hour was positioned as "initial surface pressure", and the surface pressure after 100 hours was positioned as "after-durability surface pressure". Further, (surface pressure after endurance / initial surface pressure) × 100 (%) was calculated and defined as the surface pressure aging deterioration rate. The results are shown in the graph of FIG.

【0068】これによると、実施例のサンプルでは、初
期面圧も耐久後面圧も100kPaを超えており、面圧
経時劣化率も比較的小さかった。また、前記マット状繊
維集合体M1を所定形状に打ち抜いて実際に保持シール
材4を作製した後、これを触媒担持体2に巻き付けて金
属製シェル3内に圧入した。触媒担持体2としては、外
径130mmφ、長さ100mmのコージェライトモノ
リスを用いた。金属製シェル3としては、肉厚1.5m
mかつ内径140mmφであって断面O字状のSUS3
04製円筒部材を用いた。このようにして組み立てられ
た触媒コンバータ1を、3リットルのガソリンエンジン
に実際に搭載して連続運転するという試験を行った。そ
の結果、走行時における異音の発生も触媒担持体2のガ
タつきも認められず、初期面圧の向上及び面圧の経時劣
化の防止が確実に図られていることが実証された。ま
た、排気ガスの漏れも認められずシール性に優れていた
ことに加え、風蝕性能についても好適であった。 (比較例)比較例では、焼成温度差を何ら設けることな
く一律に1250℃で30分間焼成した。そして、これ
以外の点については基本的に実施例と同様の条件に設定
して繊維集合体M1を作製した。
According to this, in the sample of the example, both the initial surface pressure and the surface pressure after endurance exceeded 100 kPa, and the rate of deterioration with time of the surface pressure was relatively small. Further, after the mat-like fiber assembly M1 was punched into a predetermined shape to actually produce the holding sealing material 4, this was wound around the catalyst carrier 2 and pressed into the metal shell 3. As the catalyst carrier 2, a cordierite monolith having an outer diameter of 130 mmφ and a length of 100 mm was used. 1.5m thick metal shell 3
SUS3 having a diameter of 140 mm and an O-shaped cross section
A cylindrical member made of 04 was used. A test was conducted in which the catalytic converter 1 thus assembled was actually mounted on a 3-liter gasoline engine and operated continuously. As a result, no abnormal noise was generated during running and no looseness of the catalyst carrier 2 was recognized, and it was proved that the improvement of the initial surface pressure and the prevention of the deterioration with time of the surface pressure were surely achieved. In addition, no leakage of exhaust gas was observed and the sealing performance was excellent, and the wind erosion performance was also favorable. (Comparative Example) In the comparative example, firing was performed at 1250 ° C for 30 minutes without any difference in firing temperature. The other conditions were basically set to the same conditions as in the example, to produce a fiber assembly M1.

【0069】比較例において、アルミナ−シリカ系繊維
6の物性(結晶化率、繊維引張強度、繊維曲げ強度、弾
性率及び伸度)は、実施例の第2面側S2の表層部位に
存在するアルミナ−シリカ系繊維6の物性とほぼ同じで
あった。即ち、部位による結晶化度等の差は特になかっ
た。
In the comparative example, the physical properties (crystallization rate, fiber tensile strength, fiber bending strength, elastic modulus and elongation) of the alumina-silica fiber 6 exist in the surface layer portion on the second surface side S2 of the embodiment. The physical properties of the alumina-silica fiber 6 were almost the same. That is, there was no particular difference in the degree of crystallization between the sites.

【0070】また、実施例に従い面圧測定用サンプルを
作製した後、初期面圧、耐久後面圧及び面圧経時劣化率
を測定した。その結果、図5のグラフに示すように、比
較例のサンプルは実施例よりも明らかに劣っていた。
After a sample for measuring surface pressure was prepared according to the examples, the initial surface pressure, the surface pressure after endurance, and the deterioration rate with time of surface pressure were measured. As a result, as shown in the graph of FIG. 5, the sample of the comparative example was clearly inferior to the example.

【0071】[0071]

【表1】 従って、本実施形態によれば以下のような効果を得るこ
とができる。
[Table 1] Therefore, according to the present embodiment, the following effects can be obtained.

【0072】(1)通常、触媒コンバータ1の使用時に
は、高温の排気ガスに直接晒される触媒担持体2のほう
が高温になる一方、金属製シェル3は触媒担持体2ほど
高温にはならない。よって、触媒担持体2に接する面側
において特に高温耐久性が要求される。本実施形態では
この事実に鑑みて、結晶化率が相対的に大きい第2面側
S2、即ち耐熱性に優れた面側を触媒担持体2に接触さ
せている。一方、結晶化率が相対的に小さい第1面側S
1、即ち耐熱性には劣るが弾力性や伸縮性に優れた面側
を金属製シェル3に接触させている。それゆえ、触媒担
持体2に接している部位の繊維が脆弱化しにくくなり、
結果として初期面圧が高くて面圧の経時劣化を起こしに
くい保持シール材4となる。また、金属製シェル3に接
している部位には弾性力が作用することから、金属製シ
ェル3との間に隙間が生じにくくなり、結果としてシー
ル性に優れた保持シール材4となる。
(1) Normally, when the catalytic converter 1 is used, the temperature of the catalyst carrier 2 directly exposed to the high-temperature exhaust gas is higher, while the temperature of the metal shell 3 is not as high as that of the catalyst carrier 2. Therefore, high-temperature durability is particularly required on the surface in contact with the catalyst carrier 2. In the present embodiment, in view of this fact, the second surface side S2 having a relatively large crystallization rate, that is, the surface side having excellent heat resistance is brought into contact with the catalyst carrier 2. On the other hand, the first surface side S where the crystallization ratio is relatively small
1, that is, the surface side which is inferior in heat resistance but excellent in elasticity and elasticity is brought into contact with the metal shell 3. Therefore, the fibers at the portion in contact with the catalyst carrier 2 are less likely to be weakened,
As a result, the holding sealing material 4 having a high initial surface pressure and hardly causing deterioration with time of the surface pressure is obtained. Further, since an elastic force acts on a portion in contact with the metal shell 3, a gap is hardly generated between the shell 3 and the metal shell 3, and as a result, the holding sealing material 4 having excellent sealing properties is obtained.

【0073】以上のことから、触媒担持体2の保持性に
優れるとともに、排気ガスが漏れにくくて処理効率のよ
い触媒コンバータ1を実現することができる。 (2)本実施形態の保持シール材4は、1枚の繊維集合
体M1からなり、その繊維集合体M1の第1面側S1か
ら第2面側S2に行くに従って結晶化率が徐々に大きく
なっている。従って、結晶化率が異なる複数枚の繊維集
合体M1により構成されたものとは異なり、繊維集合体
M1同士を重ねて貼り合わせる等の作業が不要になり、
製造時の工数が少なくなる。ゆえに、製造しやすい保持
シール材4とすることができる。
As described above, it is possible to realize the catalytic converter 1 which is excellent in the holding performance of the catalyst carrier 2 and hardly leaks the exhaust gas and has high processing efficiency. (2) The holding sealing material 4 of the present embodiment is composed of one fiber assembly M1, and the crystallization rate gradually increases from the first surface side S1 to the second surface side S2 of the fiber assembly M1. Has become. Therefore, unlike the one constituted by a plurality of fiber aggregates M1 having different crystallization rates, there is no need to perform an operation such as overlapping and bonding the fiber aggregates M1.
Man-hours during manufacturing are reduced. Therefore, the holding sealing material 4 that can be easily manufactured can be obtained.

【0074】また、複数枚重ね構造のものに比べて肉薄
にすることが可能なため、狭いギャップに比較的容易に
配置することができる。ゆえに、キャニング時において
巻き締めのみならず圧入も容易に行うことができる。
Further, the thickness can be made thinner than that of the multi-layer structure, so that it can be relatively easily arranged in a narrow gap. Therefore, at the time of canning, not only tightening but also press-fitting can be easily performed.

【0075】さらに、複数枚重ね構造のものでは繊維集
合体M1同士の界面を排気ガスが通過する可能性があ
る。これに対し、この保持シール材4のような1枚構造
であれば、そもそも界面がないため、排気ガスの通過を
心配する必要がなくなる。よって、シール性に優れたも
のとなる。
Further, in the case of a multi-layer structure, the exhaust gas may pass through the interface between the fiber aggregates M1. On the other hand, in the case of a one-piece structure such as the holding sealing material 4, since there is no interface in the first place, there is no need to worry about the passage of the exhaust gas. Therefore, the sealing performance is excellent.

【0076】(3)この保持シール材4では、第1面側
S1部位の結晶化率及び第2面側S2部位の結晶化率が
上記好適範囲内にて設定されている。従って、面圧特性
及びシール性を確実に向上させることができ、高性能の
触媒コンバータ1を実現することができる。
(3) In the holding sealing material 4, the crystallization ratio of the first surface side S1 site and the crystallization ratio of the second surface side S2 site are set within the above preferred ranges. Therefore, the surface pressure characteristics and the sealing properties can be reliably improved, and a high-performance catalytic converter 1 can be realized.

【0077】(4)本実施形態の製造方法では、マット
状の繊維集合体M1の第1面側S1の焼成温度と第2面
側S2の焼成温度との間で差を設けるようにして焼成を
行っている。このため、表裏における結晶化率が異なる
保持シール材4を比較的簡単にかつ確実に製造すること
ができる。また、このような製造方法は、1枚の繊維集
合体M1において第1面側S1から第2面側S2に行く
に従って結晶化率が大きくなっている保持シール材4の
製造に極めて適している。しかも、この製造方法であれ
ば、特殊な焼成用装置を用いるまでもなく既存の焼成用
装置を流用することが可能である。よって、設備コスト
の増大を回避することができる。
(4) In the manufacturing method of the present embodiment, the firing is performed so as to provide a difference between the firing temperature of the first surface S1 and the firing temperature of the second surface S2 of the mat-like fiber assembly M1. It is carried out. For this reason, the holding sealing materials 4 having different crystallization ratios on the front and back sides can be relatively easily and reliably manufactured. In addition, such a manufacturing method is extremely suitable for manufacturing the holding sealing material 4 in which the crystallization rate increases from the first surface side S1 to the second surface side S2 in one fiber aggregate M1. . Moreover, according to this manufacturing method, it is possible to divert an existing firing apparatus without using a special firing apparatus. Therefore, an increase in equipment cost can be avoided.

【0078】(5)本実施形態では、第1面側S1及び
第2面側S2の焼成温度を上記好適範囲内にて設定して
焼成を行っている。従って、第1面側S1から第2面側
S2に行くに従って結晶化率が徐々に大きくなっている
本実施形態の保持シール材4を確実に製造することがで
きる。
(5) In the present embodiment, the sintering is performed while the sintering temperature of the first surface S1 and the second surface S2 is set within the above preferable range. Therefore, it is possible to reliably manufacture the holding sealing material 4 of the present embodiment in which the crystallization rate gradually increases from the first surface side S1 to the second surface side S2.

【0079】なお、本発明の実施形態は以下のように変
更してもよい。 ・ 図6に示される別例の触媒コンバータ1のように、
保持シール材4を結晶化率が異なる複数枚(ここでは2
枚)の繊維集合体M1により構成し、これら繊維集合体
M1同士を重ねて貼り合わせてもよい。この場合、結晶
化率の小さい繊維集合体M1を金属製シェル3に接触さ
せ、かつ結晶化率が大きい繊維集合体M1を触媒担持体
2に接触させるようにする必要がある。
Note that the embodiment of the present invention may be modified as follows. -Like another example of the catalytic converter 1 shown in FIG.
A plurality of holding sealing materials 4 having different crystallization rates (here, 2
), And these fiber assemblies M1 may be overlapped and bonded. In this case, it is necessary to bring the fiber aggregate M1 having a low crystallization rate into contact with the metal shell 3 and bring the fiber aggregate M1 having a high crystallization rate into contact with the catalyst carrier 2.

【0080】・ 実施形態にて例示した電気炉21以外
の焼成用装置を用いて焼成工程を実施してもよい。 ・ 実施形態にて例示した保持シール材4は、いわば厚
さ方向に沿って結晶化率が異なるものとなっていた。こ
れに対し、長さ方向に沿って結晶化率が異なる保持シー
ル材や、幅方向に結晶化率が異なる保持シール材として
もよい。例えば後者の保持シール材を触媒担持体2に巻
き付けた場合、触媒担持体2の一端部と他端側とで結晶
化率が異なったものとなる。言い換えると、一端部にて
耐熱性に優れ、他端部にて弾力性や伸縮性に優れたもの
となる。従って、結晶化率が大きくて耐熱性に優れた側
の端部を排気ガス流入側に向けて配置すれば、耐久性や
風蝕性に優れた触媒コンバータ1を実現することができ
る。
The firing step may be performed using a firing apparatus other than the electric furnace 21 exemplified in the embodiment. The holding sealing material 4 exemplified in the embodiment has a different crystallization ratio along the thickness direction, so to speak. On the other hand, a holding sealing material having a different crystallization ratio along the length direction or a holding sealing material having a different crystallization ratio along the width direction may be used. For example, when the latter holding sealing material is wound around the catalyst carrier 2, the crystallization ratio is different between one end and the other end of the catalyst carrier 2. In other words, one end has excellent heat resistance, and the other end has excellent elasticity and elasticity. Therefore, by arranging the end having a high crystallization ratio and excellent heat resistance toward the exhaust gas inflow side, it is possible to realize the catalytic converter 1 having excellent durability and wind erosion.

【0081】・ 保持シール材4の形状は任意に変更す
ることが可能である。例えば、凹凸状の位置合わせ部1
1,12を省略して、より単純な形状にしてもよい。 ・ 触媒担持体2の断面形状は真円状に限定されること
はなく、例えば楕円状または長円状等であってもよい。
この場合、金属製シェル3の断面形状も、それに合わせ
て楕円状または長円状等に変更してもよい。
The shape of the holding sealing material 4 can be arbitrarily changed. For example, the uneven positioning unit 1
A simpler shape may be omitted by omitting 1 and 12. The sectional shape of the catalyst carrier 2 is not limited to a perfect circle, but may be, for example, an ellipse or an ellipse.
In this case, the cross-sectional shape of the metal shell 3 may be changed to an elliptical shape or an elliptical shape according to the shape.

【0082】・ 触媒担持体2としては、実施形態のよ
うなハニカム状に成形したコージェライト担体が用いら
れるほか、例えば炭化珪素、窒化珪素等のハニカム多孔
質焼結体などが用いられてもよい。
As the catalyst carrier 2, a cordierite carrier formed into a honeycomb shape as in the embodiment is used, or a honeycomb porous sintered body such as silicon carbide or silicon nitride may be used. .

【0083】・ 実施形態では、本発明の保持シール材
4を排気ガス浄化装置用触媒コンバータ1に使用した例
を示した。勿論、本発明の保持シール材4は、排気ガス
浄化装置用触媒コンバータ1以外のもの、例えばディー
ゼルパティキュレートフィルタ(DPF)や、燃料電池
改質器用触媒コンバータ等に使用することも許容され
る。
In the embodiment, an example is shown in which the holding sealing material 4 of the present invention is used for the catalytic converter 1 for an exhaust gas purification device. Of course, the holding sealing material 4 of the present invention is also allowed to be used for a material other than the catalytic converter 1 for an exhaust gas purifying device, for example, a diesel particulate filter (DPF), a catalytic converter for a fuel cell reformer, and the like.

【0084】次に、特許請求の範囲に記載された技術的
思想のほかに、前述した実施形態によって把握される技
術的思想をその効果とともに以下に列挙する。 (1) マット状に集合したアルミナーシリカ系繊維を
構成要素とし、触媒担持体とその触媒担持体の外周を覆
う金属製シェルとのギャップに配置される保持シール材
であって、第1面側部位が非晶質でありかつ第2面側部
位が結晶質であることを特徴とする触媒コンバータ用保
持シール材。従って、この技術的思想1に記載の発明に
よれば、初期面圧が高くて面圧の経時劣化を起こしにく
いことに加え、シール性にも優れた触媒コンバータ用保
持シール材を提供できる。
Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the above-described embodiments are listed below together with their effects. (1) A holding seal material comprising alumina-silica fibers aggregated in a mat shape as a constituent element and disposed in a gap between a catalyst carrier and a metal shell covering an outer periphery of the catalyst carrier. A holding sealing material for a catalytic converter, wherein the side portion is amorphous and the second surface side portion is crystalline. Therefore, according to the invention described in the technical idea 1, it is possible to provide a holding seal material for a catalytic converter that has a high initial surface pressure, hardly causes deterioration of the surface pressure with time, and also has excellent sealing properties.

【0085】[0085]

【発明の効果】以上詳述したように、請求項1〜6に記
載の発明によれば、初期面圧が高くて面圧の経時劣化を
起こしにくいことに加え、シール性にも優れた触媒コン
バータ用保持シール材を提供することができる。
As described above in detail, according to the first to sixth aspects of the present invention, the catalyst which has a high initial surface pressure, hardly causes deterioration with time of the surface pressure, and has excellent sealing properties. A holding sealing material for a converter can be provided.

【0086】請求項7〜9に記載の発明によれば、上記
の保持シール材を得るうえで好適な製造方法を提供する
ことができる。請求項10に記載の発明によれば、初期
面圧が高くて面圧の経時劣化を起こしにくいことに加
え、シール性にも優れた触媒コンバータを提供すること
ができる。
According to the inventions described in claims 7 to 9, it is possible to provide a manufacturing method suitable for obtaining the above-mentioned holding sealing material. According to the tenth aspect of the present invention, it is possible to provide a catalytic converter that has a high initial surface pressure, is unlikely to cause deterioration with time of the surface pressure, and has excellent sealing properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を具体化した実施形態の触媒コンバータ
用保持シール材の斜視図。
FIG. 1 is a perspective view of a catalytic converter holding sealing material according to an embodiment of the present invention.

【図2】前記実施形態の触媒コンバータの製造工程を説
明するための斜視図。
FIG. 2 is a perspective view for explaining a manufacturing process of the catalytic converter of the embodiment.

【図3】前記実施形態の触媒コンバータの断面図。FIG. 3 is a sectional view of the catalytic converter of the embodiment.

【図4】実施形態においてマット状繊維集合体の焼成工
程を説明するための概略図。
FIG. 4 is a schematic view for explaining a firing step of a mat-like fiber assembly in the embodiment.

【図5】実施例及び比較例における面圧の経時劣化を示
すグラフ。
FIG. 5 is a graph showing time-dependent deterioration of surface pressure in Examples and Comparative Examples.

【図6】別例の触媒コンバータの断面図。FIG. 6 is a cross-sectional view of another example of a catalytic converter.

【符号の説明】[Explanation of symbols]

1…触媒コンバータ、2…触媒担持体、3…金属製シェ
ル、4…触媒コンバータ用保持シール材、6…アルミナ
ーシリカ系繊維、M1…繊維集合体、S1…第1面側、
S2…第2面側。
DESCRIPTION OF SYMBOLS 1 ... Catalytic converter, 2 ... Catalyst support, 3 ... Metal shell, 4 ... Catalytic converter holding sealing material, 6 ... Alumina-silica fiber, M1 ... Fiber assembly, S1: 1st surface side,
S2: Second surface side.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 35/06 D04H 1/42 D C04B 35/80 B01D 53/36 C D04H 1/42 C04B 35/80 K Fターム(参考) 3G091 AA12 AB01 GA06 GB06W GB10Z GB15X GB17X HA27 HA29 4D048 BA03X BA06X BA42X BB08 BB18 4G069 AA01 AA08 BA03A BA03B CA03 DA06 EA19 EC22X EC26 EC28 ED03 FB33 4L047 AA04 AB10 CB01 CC14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 35/06 D04H 1/42 D C04B 35/80 B01D 53/36 C D04H 1/42 C04B 35/80 K F term (reference) 3G091 AA12 AB01 GA06 GB06W GB10Z GB15X GB17X HA27 HA29 4D048 BA03X BA06X BA42X BB08 BB18 4G069 AA01 AA08 BA03A BA03B CA03 DA06 EA19 EC22X EC26 EC28 ED03 FB33 4L047 AA04 AB

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】マット状に集合したアルミナーシリカ系繊
維の繊維集合体を構成要素とし、触媒担持体とその触媒
担持体の外周を覆う金属製シェルとのギャップに配置さ
れる保持シール材であって、第1面側部位の結晶化率と
第2面側部位の結晶化率とが異なることを特徴とする触
媒コンバータ用保持シール材。
1. A holding sealing material which is composed of a fiber aggregate of alumina-silica fibers gathered in a mat shape and is disposed in a gap between a catalyst carrier and a metal shell covering the outer periphery of the catalyst carrier. A crystallization ratio of the first surface side portion and a crystallization ratio of the second surface side portion are different from each other.
【請求項2】マット状に集合したアルミナーシリカ系繊
維の繊維集合体を構成要素とし、触媒担持体とその触媒
担持体の外周を覆う金属製シェルとのギャップに配置さ
れる保持シール材であって、第1面側から第2面側に行
くに従って結晶化率が大きくなっていることを特徴とす
る触媒コンバータ用保持シール材。
2. A holding sealing material disposed in a gap between a catalyst carrier and a metal shell that covers an outer periphery of the catalyst carrier, wherein a fiber aggregate of alumina-silica fibers aggregated in a mat shape is a constituent element. A holding sealing material for a catalytic converter, wherein the crystallization ratio increases from the first surface side to the second surface side.
【請求項3】1枚の繊維集合体からなり、その繊維集合
体の第1面側から第2面側に行くに従って結晶化率が大
きくなっていることを特徴とする請求項2に記載の触媒
コンバータ用保持シール材。
3. The fiber assembly according to claim 2, wherein the fiber assembly comprises a single fiber assembly, and the crystallization rate increases from the first surface side to the second surface side of the fiber assembly. Holding seal material for catalytic converter.
【請求項4】第1面側部位の結晶化率と第2面側部位の
結晶化率との差は3重量%以上であることを特徴とする
請求項1乃至3のいずれか1項に記載の触媒コンバータ
用保持シール材。
4. The method according to claim 1, wherein a difference between a crystallization ratio of the first surface side portion and a crystallization ratio of the second surface side portion is 3% by weight or more. The holding sealing material for a catalytic converter according to the above.
【請求項5】第1面側部位の結晶化率は0重量%〜1重
量%、第2面側部位の結晶化率は1重量%〜10重量%
であることを特徴とする請求項1乃至3のいずれか1項
に記載の触媒コンバータ用保持シール材。
5. The crystallization ratio of the first side portion is 0% to 1% by weight, and the crystallization ratio of the second side portion is 1% to 10% by weight.
The holding sealing material for a catalytic converter according to any one of claims 1 to 3, wherein:
【請求項6】マット状に集合したアルミナーシリカ系繊
維を構成要素とし、触媒担持体とその触媒担持体の外周
を覆う金属製シェルとのギャップに配置される保持シー
ル材であって、結晶化率が部位により異なることを特徴
とする触媒コンバータ用保持シール材。
6. A holding sealing material comprising alumina-silica fibers aggregated in a mat shape as a constituent element and disposed in a gap between a catalyst carrier and a metal shell covering the outer periphery of the catalyst carrier, wherein A holding sealing material for a catalytic converter, characterized in that the conversion ratio varies depending on the part.
【請求項7】請求項1乃至5のいずれか1項に記載の保
持シール材の製造方法であって、セラミック繊維紡糸原
液を材料として前駆体繊維を得る紡糸工程と、前記前駆
体繊維を積層してマット状繊維集合体とする積層工程
と、第1面側の焼成温度と第2面側の焼成温度との間で
差を設けるようにして前記繊維集合体を焼結させる焼成
工程とを含むことを特徴とする触媒コンバータ用保持シ
ール材の製造方法。
7. The method for producing a holding sealing material according to claim 1, wherein a spinning step of obtaining a precursor fiber using a stock solution for spinning a ceramic fiber as a material, and laminating the precursor fiber. And a sintering step of sintering the fiber assembly by providing a difference between the sintering temperature on the first side and the sintering temperature on the second side. A method for producing a holding sealing material for a catalytic converter, comprising:
【請求項8】前記焼成温度の差を100℃以上に設定す
ることを特徴とする請求項7に記載の触媒コンバータ用
保持シール材の製造方法。
8. The method according to claim 7, wherein the difference between the firing temperatures is set to 100 ° C. or higher.
【請求項9】第1面側の焼成温度を800℃〜1100
℃に設定し、第2面側の焼成温度を1100℃〜140
0℃に設定することを特徴とする請求項7に記載の触媒
コンバータ用保持シール材の製造方法。
9. The sintering temperature of the first surface is set at 800 ° C. to 1100 ° C.
° C and the firing temperature on the second surface side is 1100 ° C to 140 ° C.
The method according to claim 7, wherein the temperature is set to 0 ° C.
【請求項10】触媒担持体と、その触媒担持体の外周を
覆う筒状の金属製シェルと、それらのギャップ間に配置
され、マット状に集合したアルミナーシリカ系繊維を構
成要素とする保持シール材とを備える触媒コンバータに
おいて、 前記保持シール材は、結晶化率が相対的に小さい第1面
側を前記金属製シェルに接触させ、かつ結晶化率が相対
的に大きい第2面側を前記触媒担持体に接触させた状態
で、前記ギャップ間に配置されていることを特徴とする
触媒コンバータ。
10. A catalyst carrier, a cylindrical metal shell covering the outer periphery of the catalyst carrier, and a holding member comprising alumina-silica fibers arranged in a gap between the gaps and having a mat shape. In a catalytic converter comprising a sealing material, the holding sealing material contacts a first surface side having a relatively small crystallization rate with the metal shell, and a second surface side having a relatively large crystallization rate. A catalytic converter, wherein the catalytic converter is arranged between the gaps while being in contact with the catalyst carrier.
JP2001157701A 2001-05-25 2001-05-25 Holding seal material for catalytic converter and method for manufacturing the same, catalytic converter Expired - Fee Related JP4730495B2 (en)

Priority Applications (28)

Application Number Priority Date Filing Date Title
JP2001157701A JP4730495B2 (en) 2001-05-25 2001-05-25 Holding seal material for catalytic converter and method for manufacturing the same, catalytic converter
CN2010102517743A CN101914366B (en) 2001-05-25 2002-05-27 Retaining seal material and production method thereof
US10/332,511 US20040234428A1 (en) 2001-05-25 2002-05-27 Alumina-silica-based fiber, ceramic fiber, ceramic fiber complex, retaining seal material, production method thereof, and alumina fiber complex production method
EP20080172697 EP2034153A3 (en) 2001-05-25 2002-05-27 Alumina-silica based fiber, ceramic fiber, ceramic fiber aggregation, holding seal material and manufacturing methods thereof, as well as manufacturing method of alumina fiber aggregation
CNB2005100735668A CN100400811C (en) 2001-05-25 2002-05-27 Retaining seal material and production method thereof
CN2010102517989A CN101935516B (en) 2001-05-25 2002-05-27 Retaining seal material
CNB2005100735653A CN1317239C (en) 2001-05-25 2002-05-27 Ceramic fiber, ceramic fiber complex and production method of aluminum oxide fiber complex
EP20100173381 EP2246537A3 (en) 2001-05-25 2002-05-27 Alumina-silica based fiber, ceramic fiber, ceramic fiber aggregation, holding seal material and manufacturing methods thereof, as well as manufacturing method of alumina fiber aggregation
EP20080172252 EP2037093A3 (en) 2001-05-25 2002-05-27 Alumnia-silica based fiber, ceramic fiber, ceramic fiber aggregation, holding seal material and manufacturing methods thereof, as well as manufacturing method of alumnia fiber aggregation
CN2006101371517A CN1940259B (en) 2001-05-25 2002-05-27 Ceramic fiber, ceramic fiber complex, and alumina fiber complex production method
CN2009102535255A CN101876266B (en) 2001-05-25 2002-05-27 Ceramic fiber, ceramic fiber complex and production method thereof
EP15150077.4A EP2878783B1 (en) 2001-05-25 2002-05-27 Catalyst converter containing a holding seal material
EP20020728161 EP1418317A4 (en) 2001-05-25 2002-05-27 Alumina-silica-based fiber, ceramic fiber, ceramic fiber complex, retaining sealmaterial, production method thereof, and alumina fiber complex production method
EP20080172756 EP2034154A3 (en) 2001-05-25 2002-05-27 Alumina-silica based fiber, ceramic fiber, ceramic fiber aggregation, holding seal material and manufacturing methods thereof, as well as manufacturing method of alumina fiber aggregation
EP20080172140 EP2034151B1 (en) 2001-05-25 2002-05-27 Holding seal material and manufacturing method thereof
PCT/JP2002/005124 WO2002103171A1 (en) 2001-05-25 2002-05-27 Alumina-silica-based fiber, ceramic fiber, ceramic fiber complex, retaining seal material, production method thereof, and alumina fiber complex production method
CN2007101098740A CN101054509B (en) 2001-05-25 2002-05-27 Fastening sealing material and manufacturing method thereof
EP20090150016 EP2037094A3 (en) 2001-05-25 2002-05-27 Alumina-silica based fiber, ceramic fiber, ceramic fiber aggregation, holding seal material and manufacturing methods thereof, as well as manufacturing method of alumina fiber aggregation
EP20100173388 EP2246538A3 (en) 2001-05-25 2002-05-27 Alumina-silica based fiber, ceramic fiber, ceramic fiber aggregation, holding seal material and manufacturing methods thereof, as well as manufacturing method of alumina fiber aggregation
EP20090150418 EP2042699A3 (en) 2001-05-25 2002-05-27 Alumina-silica based fiber, ceramic fiber, ceramic fiber aggregation, holding seal material and manufacturing methods thereof, as well as manufacturing method of alumina fiber aggregation
CNB02801846XA CN1272531C (en) 2001-05-25 2002-05-27 Alumina silica based fiber, ceramic fiber, ceramic fiber complex, retaining seal material, prodn. method thereof and alumina fiber complex prodn. method
KR1020037001153A KR100882071B1 (en) 2001-05-25 2002-05-27 Alumina-silica based fiber, ceramic fiber, ceramic fiber aggregation, holding seal material and manufacturing methods thereof, as well as manufacturing method of alumina fiber aggregation
CNB2005100735723A CN100353040C (en) 2001-05-25 2002-05-27 Catalytic cracking device
EP20080172246 EP2034152A3 (en) 2001-05-25 2002-05-27 Alumina-silica based fiber, ceramic fiber aggregation, holding seal material and manufacturing methods thereof, as well as manufacturing method of alumina fiber aggregation
US12/269,949 US7790121B2 (en) 2001-05-25 2008-11-13 Alumina-silica-based fiber, ceramic fiber, ceramic fiber complex, retaining seal material, production method thereof, and alumina fiber complex production method
US12/273,947 US8540941B2 (en) 2001-05-25 2008-11-19 Alumina-silica-based fiber, ceramic fiber, ceramic fiber complex, retaining seal material, production method thereof, and alumina fiber complex production method
US12/273,895 US8303901B2 (en) 2001-05-25 2008-11-19 Alumina-silica-based fiber, ceramic fiber, ceramic fiber complex, retaining seal material, production method thereof, and alumina fiber complex production method
US12/274,109 US8790581B2 (en) 2001-05-25 2008-11-19 Alumina-silica-based fiber, ceramic fiber, ceramic fiber complex, retaining seal material, production method thereof, and alumina fiber complex production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001157701A JP4730495B2 (en) 2001-05-25 2001-05-25 Holding seal material for catalytic converter and method for manufacturing the same, catalytic converter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011055718A Division JP5274607B2 (en) 2011-03-14 2011-03-14 Holding seal material for catalytic converter and catalytic converter

Publications (2)

Publication Number Publication Date
JP2002349255A true JP2002349255A (en) 2002-12-04
JP4730495B2 JP4730495B2 (en) 2011-07-20

Family

ID=19001526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001157701A Expired - Fee Related JP4730495B2 (en) 2001-05-25 2001-05-25 Holding seal material for catalytic converter and method for manufacturing the same, catalytic converter

Country Status (3)

Country Link
US (1) US20040234428A1 (en)
JP (1) JP4730495B2 (en)
CN (5) CN1940259B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356380A (en) * 2001-05-31 2002-12-13 Ibiden Co Ltd Method of manufacturing alumina fiber assembly
JP2007032372A (en) * 2005-07-25 2007-02-08 Ibiden Co Ltd Punching plate for holding sealant of exhaust gas treatment unit, and manufacturing method for holding sealant using the same
JP2007260656A (en) * 2006-03-27 2007-10-11 Sango Co Ltd Method for manufacturing exhaust gas treatment apparatus
JP7555753B2 (en) 2020-07-31 2024-09-25 イビデン株式会社 Spinning apparatus and method for producing inorganic fibers

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60121555T8 (en) * 2000-03-22 2007-10-31 Ibiden Co., Ltd., Ogaki Fixing and sealing mat material
JP2002129455A (en) * 2000-10-17 2002-05-09 Ibiden Co Ltd Sealing material for supporting catalyst converter, method of producing the same and catalyst converter
JP4652553B2 (en) * 2000-11-10 2011-03-16 イビデン株式会社 Catalytic converter and manufacturing method thereof
CN101935516B (en) * 2001-05-25 2012-10-17 揖斐电株式会社 Retaining seal material
US20040173969A1 (en) * 2001-10-25 2004-09-09 Smith Walter J. Turbine brush seal
WO2006092986A1 (en) * 2005-03-02 2006-09-08 Ibiden Co., Ltd. Inorganic fiber aggregate, method for producing inorganic fiber aggregate, honeycomb structure and method for producing honeycomb structure
JPWO2006103811A1 (en) * 2005-03-28 2008-09-04 イビデン株式会社 Honeycomb structure
WO2006112061A1 (en) * 2005-04-07 2006-10-26 Ibiden Co., Ltd. Honeycomb structure
US20060242951A1 (en) * 2005-04-29 2006-11-02 Caterpillar Inc. Refractory material retention device
JP4665618B2 (en) * 2005-06-10 2011-04-06 イビデン株式会社 Manufacturing method of holding sealing material
JP2007031867A (en) * 2005-07-25 2007-02-08 Ibiden Co Ltd Blanking plate for holding and sealing material of waste gas treating body and method for producing holding and sealing material using the same
JP2007031866A (en) * 2005-07-25 2007-02-08 Ibiden Co Ltd Blanking plate for holding and sealing material of waste gas treating body and method for producing holding and sealing material using the same
JP4885649B2 (en) * 2006-03-10 2012-02-29 イビデン株式会社 Sheet material and exhaust gas purification device
US7931715B2 (en) * 2007-02-12 2011-04-26 Gm Global Technology Operations, Inc. DPF heater attachment mechanisms
EP2119500B1 (en) * 2007-03-14 2016-11-30 Nissan Motor Co., Ltd. Fibrous structure
EP2173981B1 (en) * 2007-06-13 2018-07-18 3M Innovative Properties Company Securable mounting material and method of making and using the same
KR101595711B1 (en) * 2007-06-13 2016-02-18 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Erosion resistant mounting material and method of making and using the same
JP5046829B2 (en) * 2007-09-26 2012-10-10 イビデン株式会社 Holding sealing material and manufacturing method of holding sealing material
JP4959499B2 (en) * 2007-09-28 2012-06-20 イビデン株式会社 Mat material, exhaust gas treatment device and silencer
JP2009257422A (en) * 2008-04-15 2009-11-05 Ibiden Co Ltd Holding sealing material and exhaust emission control device
KR20090117970A (en) * 2008-04-30 2009-11-17 이비덴 가부시키가이샤 Mat materials, method for producing mat materials, silencer and method for producing silencer
CN101715508B (en) * 2008-07-10 2012-07-25 揖斐电株式会社 Holding sealing material, exhaust gas purifying apparatus and method for manufacturing exhaust gas purifying apparatus
US8691470B2 (en) * 2008-11-12 2014-04-08 Bloom Energy Corporation Seal compositions, methods, and structures for planar solid oxide fuel cells
US10087103B2 (en) 2008-11-12 2018-10-02 Bloom Energy Corporation Seal compositions, methods, and structures for planar solid oxide fuel cells
US20110160048A1 (en) * 2009-12-29 2011-06-30 Boumendjel Nariman Coating method for structured catalysts
CN101899725B (en) * 2010-03-31 2014-06-11 清华大学 Nano fiber of metal oxide and preparation method thereof
CN104884690B (en) 2012-10-31 2018-04-03 电化株式会社 Alumina fiber aggregate, method for producing same, and use thereof
CN103467116A (en) * 2013-08-29 2013-12-25 江苏高皓工业炉有限公司 Production method of high-temperature mixed fiber product
EP2848599B1 (en) * 2013-09-12 2019-07-10 Thomas Wamser Method for the production of an oxide ceramic composite material and fiber preform
CN108699761B (en) * 2016-02-16 2021-05-14 揖斐电株式会社 Mat material and exhaust system
US20170362740A1 (en) * 2016-06-16 2017-12-21 Eurekite Holding BV Flexible ceramic fibers and polymer composite and method of making the same
JP6486328B2 (en) * 2016-12-26 2019-03-20 ニチアス株式会社 Exhaust gas treatment device holding material and exhaust gas treatment device
WO2020074072A1 (en) * 2018-10-09 2020-04-16 Volvo Truck Corporation An exhaust aftertreatment arrangement for an exhaust system of an internal combustion engine
BR112021013428B1 (en) * 2019-08-06 2023-12-05 MAFTEC Co., Ltd ARTICLE MADE OF INORGANIC FIBER, BLANKET FOR A DISCHARGE GAS CLEANING APPARATUS AND DISCHARGE GAS CLEANING APPARATUS
CN114849602B (en) * 2022-05-13 2023-04-28 山东东珩国纤新材料有限公司 Alumina gel fiber preparation facilities

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286514A (en) * 1994-04-15 1995-10-31 Mitsubishi Chem Corp Gripping material for exhaust emission control device
JPH10288032A (en) * 1997-04-10 1998-10-27 Mitsubishi Chem Corp Inorganic fiber formed body and catalyzer converter

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982955A (en) * 1971-12-22 1976-09-28 Bayer Aktiengesellschaft Aluminum oxide fibers and their production
DE2163678C2 (en) * 1971-12-22 1981-10-15 Bayer Ag, 5090 Leverkusen Alumina fibers and processes for their manufacture
JPS4895409A (en) * 1972-03-22 1973-12-07
US4732878A (en) * 1986-09-26 1988-03-22 Minnesota Mining And Manufacturing Company Oxidation resistant carbon containing alumina-silica articles
US4798814A (en) * 1986-09-26 1989-01-17 Minnesota Mining And Manufacturing Company Oxidation resistant alumina-silica articles containing silicon carbide and carbon
FI83888C (en) * 1988-02-17 1991-09-10 Pargro Oy Ab Process and apparatus for producing a fiber product
JPH0264066A (en) * 1988-08-31 1990-03-05 Nkk Corp Ceramics-ceramics composite
CN1056312A (en) * 1990-05-08 1991-11-20 中国科学院大连化学物理研究所 A kind of sealing and insulating inorganic material
US5151253A (en) * 1991-04-18 1992-09-29 Minnesota Mining And Manufacturing Company Catalytic converter having a monolith mounting of which is comprised of partially dehydrated vermiculite flakes
JPH05306614A (en) * 1992-04-28 1993-11-19 Matsushita Electric Ind Co Ltd Exhaust gas filter and manufacture thereof
US5250269A (en) * 1992-05-21 1993-10-05 Minnesota Mining And Manufacturing Company Catalytic converter having a metallic monolith mounted by a heat-insulating mat of refractory ceramic fibers
JPH06226054A (en) * 1993-02-08 1994-08-16 Mitsubishi Heavy Ind Ltd Electrophoresis device for continuous treatment
US5472468A (en) * 1993-02-25 1995-12-05 Sumitomo Chemical Company, Limited Exhaust gas filter element
AU6710594A (en) * 1993-04-22 1994-11-08 Carborundum Company, The Mounting mat for fragile structures such as catalytic converters
JP3318822B2 (en) * 1996-05-29 2002-08-26 イビデン株式会社 Mounting method of heat-insulating sealing material for converter for purifying exhaust gas and mounting jig
US5882608A (en) * 1996-06-18 1999-03-16 Minnesota Mining And Manufacturing Company Hybrid mounting system for pollution control devices
DE69833136T2 (en) * 1997-02-06 2006-08-31 Minnesota Mining And Mfg. Co., St. Paul Multi-layered inflatable mat
JPH1182006A (en) * 1997-09-12 1999-03-26 Denki Kagaku Kogyo Kk Heat insulative sealant and its use
CN1183395A (en) * 1997-10-07 1998-06-03 秦建武 Thermal insulation shock-absorbing composite material
CN2319577Y (en) * 1997-12-10 1999-05-19 白克祥 Vehicle tail gas purifier with compounded layer carrier
ES2527662T3 (en) * 1998-03-11 2015-01-28 Unifrax I Llc Support element for fragile structures such as catalytic converters
JP2000032414A (en) * 1998-07-16 2000-01-28 Sony Corp Channel setting method and receiver thereof
US20020194260A1 (en) * 1999-01-22 2002-12-19 Kent Lawrence Headley Method and apparatus for creating multimedia playlists for audio-visual systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286514A (en) * 1994-04-15 1995-10-31 Mitsubishi Chem Corp Gripping material for exhaust emission control device
JPH10288032A (en) * 1997-04-10 1998-10-27 Mitsubishi Chem Corp Inorganic fiber formed body and catalyzer converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356380A (en) * 2001-05-31 2002-12-13 Ibiden Co Ltd Method of manufacturing alumina fiber assembly
JP2007032372A (en) * 2005-07-25 2007-02-08 Ibiden Co Ltd Punching plate for holding sealant of exhaust gas treatment unit, and manufacturing method for holding sealant using the same
JP2007260656A (en) * 2006-03-27 2007-10-11 Sango Co Ltd Method for manufacturing exhaust gas treatment apparatus
JP7555753B2 (en) 2020-07-31 2024-09-25 イビデン株式会社 Spinning apparatus and method for producing inorganic fibers

Also Published As

Publication number Publication date
CN100400811C (en) 2008-07-09
CN100353040C (en) 2007-12-05
US20040234428A1 (en) 2004-11-25
JP4730495B2 (en) 2011-07-20
CN1940259B (en) 2011-03-16
CN1940259A (en) 2007-04-04
CN1715248A (en) 2006-01-04
CN1317239C (en) 2007-05-23
CN1693683A (en) 2005-11-09
CN101054509B (en) 2010-11-17
CN101054509A (en) 2007-10-17
CN1690377A (en) 2005-11-02

Similar Documents

Publication Publication Date Title
JP2002349255A (en) Sealing material for holding catalyst converter, its manufacturing method and catalyst converter
EP1736644B1 (en) Holding and sealing material for catalytic converter and corresponding manufacturing method
KR100882071B1 (en) Alumina-silica based fiber, ceramic fiber, ceramic fiber aggregation, holding seal material and manufacturing methods thereof, as well as manufacturing method of alumina fiber aggregation
JP4511396B2 (en) Honeycomb structure and manufacturing method thereof
JP4932256B2 (en) Ceramic sintered body and ceramic filter
JPWO2003086579A1 (en) Ceramic filter and exhaust gas purification device
JP2002206421A (en) Holding-seal material for catalytic converter, ceramic fiber, and method of manufacturing the ceramic fiber
EP2143902B1 (en) Holding sealing material, exhaust gas purifying apparatus and method for manufacturing exhaust gas purifying apparatus
EP2352870B1 (en) Mounting mat and pollution control device with the same
JP2003265964A (en) Catalyst-supporting filter useful for cleaning exhaust gas
JP2012507643A (en) Mounting mat and antifouling device having mounting mat
JP4730497B2 (en) Holding seal material for catalytic converter and manufacturing method thereof
JP2011231774A (en) Method of manufacturing holding seal material for catalytic converter
JP4730496B2 (en) Holding seal material for catalytic converter and method for producing the same, ceramic fiber assembly, ceramic fiber
JP2013155750A (en) Holding seal material for catalytic converter
JP4382414B2 (en) Holding sealing material and exhaust gas purification device
JP5274607B2 (en) Holding seal material for catalytic converter and catalytic converter
JP4878699B2 (en) Method for producing alumina fiber assembly
JP4993816B2 (en) Alumina-silica fiber and method for producing the same, holding seal material for catalytic converter
JP2011169325A (en) Holding and sealing material for catalytic converters, method for producing the same, ceramic fiber assembly and ceramic fiber
JP2002221031A (en) Retaining seal material for catalytic converter and method for manufacturing the same, ceramic fiber collecting body
JP2002201933A (en) Holding seal material for catalytic converter, ceramic fiber aggregate, ceramic fiber, and method of manufacturing ceramic fiber
JP4663885B2 (en) Method for producing alumina-silica fiber
JP2002349253A (en) Sealing material for holding catalyst converter and its manufacturing method
JP2015078702A (en) Method for manufacturing holding seal material for catalytic converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080425

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4730495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees