[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002346351A - Gas dissolving device - Google Patents

Gas dissolving device

Info

Publication number
JP2002346351A
JP2002346351A JP2001158411A JP2001158411A JP2002346351A JP 2002346351 A JP2002346351 A JP 2002346351A JP 2001158411 A JP2001158411 A JP 2001158411A JP 2001158411 A JP2001158411 A JP 2001158411A JP 2002346351 A JP2002346351 A JP 2002346351A
Authority
JP
Japan
Prior art keywords
gas
liquid
closed tank
supply means
supplying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001158411A
Other languages
Japanese (ja)
Other versions
JP3819732B2 (en
Inventor
Masao Katsube
政男 勝部
Shinji Fukui
真司 福井
Koichi Ishii
浩市 石井
Satoru Nakamura
覚 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATSUE DOKEN KK
Yokogawa Electric Corp
Original Assignee
MATSUE DOKEN KK
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATSUE DOKEN KK, Yokogawa Electric Corp filed Critical MATSUE DOKEN KK
Priority to JP2001158411A priority Critical patent/JP3819732B2/en
Publication of JP2002346351A publication Critical patent/JP2002346351A/en
Application granted granted Critical
Publication of JP3819732B2 publication Critical patent/JP3819732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas dissolving device capable of dissolving a large amount of gas, easily adjusting a gas pressure for adjusting a water level and effectively cleaning a quality of water. SOLUTION: The gas dissolving device comprises a liquid feeding means for feeding a liquid to a closed tank; a gas feeding means for feeding a gas into the closed tank; and a baffle plate provided in the closed tank. The baffle plate is arranged so as to collide with the liquid fed from the liquid feeding means. The gas from the gas feeding means is fed into the closed tank and the gas at a space in the closed tank is conducted to a suction side or a discharge side of a pump or a line mixer to release it into the closed tank. A flocculant for aggregating a water quality contaminant or a microorganism capable of decomposing the contaminant is mixed and a means for decomposing/ disinfecting the contaminant is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は気体溶解装置に関
し、密閉タンクに連続的に液体を供給し、その液体を排
出しながら液体に気体を溶解させ、また、液体に含まれ
る汚濁物質の凝集や分解・殺菌を行なう気体溶解装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas dissolving apparatus, which continuously supplies a liquid to a closed tank, dissolves the gas in the liquid while discharging the liquid, and prevents aggregation of pollutants contained in the liquid. The present invention relates to a gas dissolving apparatus for performing decomposition and sterilization.

【0002】[0002]

【従来の技術】半導体プロセスではオゾンなどの気体を
水などの液体中に溶解させ、機能水として使用してい
る。また、排水処理施設や汚れた河川・湖沼等において
は、予め空気や酸素等の気体を溶解した水を水中に放出
することにより水中の溶存酸素量を増大させて、微生物
の活動を活発にして汚水の浄化を行う装置が知られてい
る。
2. Description of the Related Art In a semiconductor process, a gas such as ozone is dissolved in a liquid such as water and used as functional water. Also, in wastewater treatment facilities and dirty rivers, lakes and marshes, the amount of dissolved oxygen in water is increased by releasing water in which gas such as air or oxygen is dissolved into water in advance, thereby increasing the activity of microorganisms. Devices for purifying sewage are known.

【0003】図20は特開平11−207162号公報
に記載された従来例を示す概略構成図である。図におい
て、1は気密に加工された密閉タンクであり、気体を溶
解すべき水が例えば8分目程度注入されている。この密
閉タンクの近傍には図では省略するが空気や酸素などを
供給するためのポンプや気体ボンベ、ガス発生装置など
の気体供給手段が配置されている。2はノズルであり、
このノズルの先端は密閉タンク1の外周付近に設けられ
接線方向に沿って水面に対して斜め上方から水面に出射
するように配置されている。
FIG. 20 is a schematic configuration diagram showing a conventional example described in Japanese Patent Application Laid-Open No. 11-207162. In the figure, reference numeral 1 denotes a hermetically sealed airtight tank into which water for dissolving a gas is injected, for example, for about eight minutes. Although not shown, a gas supply means such as a pump for supplying air or oxygen, a gas cylinder, or a gas generator is arranged near the closed tank. 2 is a nozzle,
The tip of this nozzle is provided in the vicinity of the outer periphery of the closed tank 1 and is arranged so as to be emitted to the water surface from obliquely above the water surface along the tangential direction.

【0004】3は液体供給手段として機能するポンプで
あり、例えばストップ弁5を介して湖水や河川6等から
水を汲み上げて前述のノズル2から密閉タンク1内に水
を供給する。4は調節弁であり、通常は開とされて密閉
タンク内で気体が溶解された水を浄化すべき場所に放出
するが、密閉タンク1内の水が所定レベル位置以下にな
った場合は開閉度を調節して水位を調整したり、気体調
節弁4aを閉として気体の供給を停止させることによっ
て水位調整を行なう。5は水の供給を停止するためのス
トップ弁である。なお、図では省略するが密閉タンクに
は密閉タンク内の水量を測定するためのレベル計や密閉
タンク1内の圧力を測定するための圧力計が取付けられ
ている。
A pump 3 functions as a liquid supply means. The pump 3 pumps water from a lake or a river 6 through a stop valve 5 and supplies the water from the nozzle 2 to the closed tank 1. Reference numeral 4 denotes a control valve, which is normally opened and releases gas-dissolved water in a closed tank to a place to be purified, but is opened and closed when the water in the closed tank 1 becomes lower than a predetermined level position. The water level is adjusted by adjusting the degree to adjust the water level, or by closing the gas control valve 4a to stop the gas supply. 5 is a stop valve for stopping the supply of water. Although not shown in the drawings, a level gauge for measuring the amount of water in the closed tank and a pressure gauge for measuring the pressure in the closed tank 1 are attached to the closed tank.

【0005】上記の構成において密閉タンク1の上方に
所定の圧力に加圧された気体(例えば酸素)が導入され
る。気体の圧力が高いと水位が下降し、水は予め設定し
た水位以下になるが、その場合は所定の圧力レベルにな
るように気体調節弁4aで気体の圧力を調節したり、液
体調節弁4を調節して水位を制御する。
In the above configuration, a gas (eg, oxygen) pressurized to a predetermined pressure is introduced above the closed tank 1. If the pressure of the gas is high, the water level falls and the water falls below a preset water level. In this case, the gas pressure is adjusted by the gas control valve 4a so as to reach a predetermined pressure level, or the liquid control valve 4 To control the water level.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上述の図
20で示す従来例においては、ノズル2からの水が水面
に対して斜め方向に出射するため渦巻きが発生し、その
遠心力による気体の溶解が期待できるが水同士の衝突、
つまり、液体同士の衝突であることから衝突の圧力を気
体の溶解に充分に利用できておらず、また、水の飛沫の
量も少なく、水に対する気体の溶解度が充分に得られな
いという問題があった。
However, in the conventional example shown in FIG. 20, the water from the nozzle 2 is emitted obliquely to the water surface, so that a vortex is generated, and the gas is dissolved by the centrifugal force. Promising but collision between water,
In other words, there is a problem that the collision pressure is not sufficiently utilized for dissolving the gas due to the collision between the liquids, and the amount of water droplets is small, and the solubility of the gas in water is not sufficiently obtained. there were.

【0007】本発明は上記問題点を解決するためになさ
れたもので、液体を固体に衝突させることより、衝突の
圧力により気体を液体中に溶解させ、更に液体の飛沫の
量や泡を増大させることにより効果的に気体溶解量を増
加させることを目的とし、更に、未溶解のまま密閉タン
クに溜まった気体を密閉タンクの下方若しくはポンプの
前段や後段に導いて液体中に放出し、密閉タンク上方に
蓄積した気体を循環させることにより気体溶解効率の改
善を図るとともに気体溶解量の制御性を向上させ、合わ
せて液体の汚濁物質や汚濁成分を凝集・分解・殺菌する
ための手段を設けた気体溶解装置を実現することを目的
とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a liquid is made to collide with a solid, thereby dissolving a gas in the liquid by the pressure of the collision, and further increasing the amount of liquid droplets and bubbles. The purpose is to effectively increase the amount of dissolved gas by causing the gas accumulated in the unsealed closed tank to be released into the liquid by guiding it to the lower part of the closed tank or the upstream or downstream of the pump and into the liquid. By circulating gas accumulated above the tank, gas dissolution efficiency is improved and controllability of gas dissolution is improved, and means for coagulating, decomposing and sterilizing liquid pollutants and pollutants are provided. It is an object of the present invention to realize a gas dissolving apparatus.

【0008】[0008]

【課題を解決するための手段】このような問題点を解決
するために本発明は、請求項1においては、密閉タンク
に液体を供給する液体供給手段と、気体を供給する気体
供給手段と、前記密閉タンク内に設けられた邪魔板とか
らなり、前記邪魔板を前記液体供給手段から供給される
液体に衝突するように配置したことを特徴とする。
According to the present invention, there is provided a liquid supply device for supplying a liquid to a closed tank, a gas supply device for supplying a gas, And a baffle plate provided in the closed tank, wherein the baffle plate is arranged so as to collide with the liquid supplied from the liquid supply means.

【0009】請求項2においては、請求項1記載の気体
溶解装置において、前記液体は密閉タンクの上方から下
方に向って供給され、その落下点に邪魔板を配置したこ
とを特徴とする。
According to a second aspect of the present invention, in the gas dissolving apparatus according to the first aspect, the liquid is supplied downward from above the closed tank, and a baffle plate is disposed at a drop point of the liquid.

【0010】請求項3においては、請求項1または2記
載の気体溶解装置において、前記邪魔板に衝突する液体
の流速や衝突圧力を所定レベル以上に維持するように前
記密閉タンクの液面を所定の範囲で制御するようにした
ことを特徴とする。
According to a third aspect of the present invention, in the gas dissolving apparatus according to the first or second aspect, the liquid level of the closed tank is controlled so as to maintain the flow velocity and the collision pressure of the liquid colliding with the baffle plate at a predetermined level or more. Is controlled in the range of.

【0011】請求項4においては、請求項1乃至3いず
れかに記載の気体溶解装置において、前記邪魔板の表面
に複数の凹凸を設けたことを特徴とする。
According to a fourth aspect, in the gas dissolving apparatus according to any one of the first to third aspects, a plurality of irregularities are provided on a surface of the baffle plate.

【0012】請求項5においては、請求項1乃至4いず
れかに記載の気体溶解装置において、前記邪魔板の中央
部付近を高くして周縁に向って順次低くなるように傾斜
を設けたことを特徴とする。
According to a fifth aspect of the present invention, in the gas dissolving apparatus according to any one of the first to fourth aspects, an inclination is provided such that the vicinity of the central portion of the baffle plate is increased and gradually decreased toward the periphery. Features.

【0013】請求項6においては、請求項1乃至5いず
れかに記載の気体溶解装置において、前記邪魔板の中央
部付近を高くして周縁に向って順次低くなるように傾斜
を設けるとともに、この邪魔板の傾斜面に衝突した液体
が渦(旋回流)を発生するような溝若しくは突起を設け
たことを特徴とする。
According to a sixth aspect of the present invention, in the gas dissolving apparatus according to any one of the first to fifth aspects, an inclination is provided so that the vicinity of the central portion of the baffle plate is increased and gradually reduced toward the periphery. It is characterized in that grooves or projections are provided so that the liquid colliding with the inclined surface of the baffle plate generates a vortex (swirl flow).

【0014】請求項7においては、請求項1乃至6いず
れかに記載の気体溶解装置において、前記邪魔板を複数
枚とし、初段の邪魔板に衝突した液体が次段以降に配置
された邪魔板に衝突しながら落下するように配置したこ
とを特徴とする。
According to a seventh aspect of the present invention, in the gas dissolving apparatus according to any one of the first to sixth aspects, the baffle plate includes a plurality of baffle plates, and the liquid that has collided with the first baffle plate is disposed in a subsequent stage. Characterized in that they are arranged to fall while colliding with.

【0015】請求項8においては、密閉タンクに液体を
供給する液体供給手段と、気体を供給する気体供給手段
と、からなり、前記気体供給手段から前記密閉タンクに
前記気体を注入するとともに、前記液体供給手段の前段
または後段の少なくとも一方に前記気体供給手段から前
記気体を注入する配管を設けたことを特徴とする。
In a preferred embodiment, the gas supply means comprises a liquid supply means for supplying a liquid to the closed tank and a gas supply means for supplying a gas, wherein the gas is injected from the gas supply means into the closed tank, A pipe for injecting the gas from the gas supply means is provided in at least one of the front and rear stages of the liquid supply means.

【0016】請求項9においては、請求項1乃至7いず
れかに記載の気体溶解装置において、密閉タンクに液体
を供給する液体供給手段と、気体を供給する気体供給手
段と、からなり、前記気体供給手段から前記密閉タンク
に前記気体を注入するとともに、前記液体供給手段の前
段または後段の少なくとも一方に前記気体供給手段から
前記気体を注入する配管を設けたことを特徴とする。
According to a ninth aspect of the present invention, in the gas dissolving apparatus according to any one of the first to seventh aspects, the gas dissolving device comprises liquid supply means for supplying a liquid to a closed tank, and gas supply means for supplying a gas. A pipe for injecting the gas from the gas supply unit into the closed tank is provided at least one of a stage before and after the liquid supply unit.

【0017】請求項10においては、密閉タンクに液体
を供給する液体供給手段と、気体を供給する気体供給手
段と、からなり、前記液体供給手段の前段または後段の
少なくとも一方に前記密閉タンクから前記気体を注入す
る配管を設けたことを特徴とする。
According to a tenth aspect of the present invention, the apparatus further comprises a liquid supply means for supplying a liquid to the closed tank and a gas supply means for supplying a gas. A gas injection pipe is provided.

【0018】請求項11においては、請求項1乃至7い
ずれかに記載の気体溶解装置において、密閉タンクに液
体を供給する液体供給手段と、気体を供給する気体供給
手段と、からなり、前記液体供給手段の前段または後段
の少なくとも一方に前記密閉タンクから前記気体を注入
する配管を設けたことを特徴とする。
According to an eleventh aspect of the present invention, in the gas dissolving apparatus according to any one of the first to seventh aspects, the gas dissolving device comprises liquid supply means for supplying a liquid to a closed tank, and gas supply means for supplying a gas. A pipe for injecting the gas from the closed tank is provided in at least one of a preceding stage and a succeeding stage of the supply means.

【0019】請求項12においては、請求項8又は10
記載の気体溶解装置において、前記密閉タンクの上方か
らノズルを介して供給するようにしたことを特徴とす
る。
In claim 12, claim 8 or claim 10
In the gas dissolving apparatus described above, the gas is supplied from above the closed tank via a nozzle.

【0020】請求項13においては、請求項12に記載
の気体溶解装置において、ノズルの吹き出し口を密閉タ
ンクの接線方向に向うように配置したことを特徴とす
る。
According to a thirteenth aspect, in the gas dissolving apparatus according to the twelfth aspect, the outlet of the nozzle is arranged so as to face a tangential direction of the closed tank.

【0021】請求項14においては、密閉タンクに液体
を供給する液体供給手段と、気体を供給する気体供給手
段と、からなり、前記密閉タンクの空間の気体を加圧手
段により加圧して前記密閉タンクの液体中に放出するよ
うにしたことを特徴とする。
According to a fourteenth aspect of the present invention, the closed tank includes a liquid supply means for supplying a liquid to the closed tank and a gas supply means for supplying a gas. It is characterized in that it is released into the liquid in the tank.

【0022】請求項15においては、請求項1乃至7い
ずれかに記載の気体溶解装置において、密閉タンクに液
体を供給する液体供給手段と、気体を供給する気体供給
手段と、からなり、前記密閉タンクの空間の気体を加圧
手段により加圧して前記密閉タンクの液体中に放出する
ようにしたことを特徴とする。
According to a fifteenth aspect, in the gas dissolving apparatus according to any one of the first to seventh aspects, the gas dissolving device comprises a liquid supply means for supplying a liquid to a closed tank and a gas supply means for supplying a gas. The gas in the space of the tank is pressurized by pressurizing means and released into the liquid in the closed tank.

【0023】請求項16においては、複数段配置された
密閉タンクと、これらの密閉タンクの上方および下方同
士を気密に連結する連結管と、初段の密閉タンクに液体
を供給する液体供給手段と、何れかの密閉タンクに気体
を供給する気体供給手段と、からなり、前記気体を前記
液体供給手段の前段または後段の少なくとも一方に注入
する気体注入手段(配管)を設けたことを特徴とする。
In the sixteenth aspect, a plurality of hermetically sealed tanks, a connection pipe for airtightly connecting the upper and lower portions of these hermetically sealed tanks, a liquid supply means for supplying liquid to the first hermetic tank, Gas supply means for supplying gas to any of the closed tanks, wherein a gas injection means (pipe) for injecting the gas into at least one of a preceding stage and a subsequent stage of the liquid supplying means is provided.

【0024】請求項17においては、複数段配置された
密閉タンクと、これらの密閉タンクの上方および下方同
士を気密に連結する連結管と、初段の密閉タンクに液体
を供給する液体供給手段と、何れかの密閉タンクに気体
を供給する気体供給手段と、からなり、前記密閉タンク
の空間の気体を前記液体供給手段の前段または後段の少
なくとも一方に注入する気体注入手段(配管)を設けた
ことを特徴とする。
According to a seventeenth aspect, a plurality of hermetically sealed tanks, a connecting pipe for airtightly connecting the upper and lower portions of these hermetically sealed tanks, a liquid supply means for supplying liquid to the first-stage hermetically sealed tank, Gas supply means for supplying gas to any of the closed tanks, wherein a gas injection means (pipe) for injecting gas in the space of the closed tank into at least one of a former stage and a latter stage of the liquid supply means is provided. It is characterized by.

【0025】請求項18においては、請求項1乃至17
いずれかに記載の気体溶解装置において、密閉タンクに
液体を供給する配管、液体を排出する配管の両方若しく
は何れかの途中に液体に含まれる汚濁物質を凝集させる
凝集剤を混入させる凝集剤混入手段を設けたことを特徴
とする。
In claim 18, claims 1 to 17
In the gas dissolving apparatus according to any one of the above, a coagulant mixing unit that mixes a coagulant that coagulates a pollutant contained in the liquid into either or both of a pipe for supplying the liquid to the closed tank and a pipe for discharging the liquid. Is provided.

【0026】請求項19においては、請求項1乃至18
いずれかに記載の気体溶解装置において、密閉タンクに
液体を供給する配管、液体を排出する配管の両方若しく
は何れかの途中に液体に含まれる汚濁物質や汚濁成分を
分解する微生物を混入させる微生物混入手段を設けたこ
とを特徴とする。
In claim 19, claims 1 to 18
In any one of the gas dissolving apparatuses according to any one of the first to third aspects, a microbial contaminant containing microorganisms that decompose pollutants or pollutants contained in the liquid is contained in a pipe for supplying a liquid to the closed tank, a pipe for discharging the liquid, or any part of the pipe. Means are provided.

【0027】請求項20においては、請求項1乃至19
いずれかに記載の気体溶解装置において、気体溶解装置
を構成する密閉タンク、この密閉タンクに液体を供給す
る配管、若しくは液体を排出する配管の少なくとも一箇
所に液体に含まれる汚濁物質や微生物を分解・殺菌する
ための分解・殺菌手段を設けたことを特徴とする。
In claim 20, claims 1 to 19
In the gas dissolving device according to any one of the above, at least one portion of a sealed tank constituting the gas dissolving device, a pipe for supplying a liquid to the sealed tank, or a pipe for discharging the liquid decomposes pollutants and microorganisms contained in the liquid. -It is characterized by providing disintegration / sterilization means for sterilization.

【0028】[0028]

【発明の実施の形態】図1は、本発明の請求項1,2に
関する実施形態の一例を示す概略構成図である。図にお
いて、図20と同一要素には同一符号を付している。図
20とはノズル2の出射方向と邪魔板10を設けた点お
よびポンプ(給水手段)の前段と後段に気体注入手段を
設けた点が異なっている。この実施例ではノズル2は密
閉タンクの天井付近に水面に対して直角方向に設けら
れ、このノズル出射方向の真下に略水平に邪魔板10が
配置されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram showing an example of an embodiment according to claims 1 and 2 of the present invention. In the figure, the same elements as those in FIG. 20 are denoted by the same reference numerals. 20 is different from FIG. 20 in that the emission direction of the nozzle 2 and the baffle plate 10 are provided, and that the gas injection means is provided before and after the pump (water supply means). In this embodiment, the nozzle 2 is provided near the ceiling of the closed tank in a direction perpendicular to the water surface, and the baffle 10 is disposed substantially horizontally just below the nozzle emission direction.

【0029】上記の構成によれば、ノズルから出射した
水が邪魔板10に衝突して水と固体の衝突圧力と水の飛
沫が大量発生することにより密閉タンク1内に充満する
気体(例えば酸素,空気,オゾン等)を溶解して水面に
落下する。この過程で水は気体を取り込んで密閉タンク
に蓄積されることとなる。図2は邪魔板10を水面より
下方に設けた本発明の請求項3に関する実施形態の一例
を示すもので、ノズル2から噴き出す水の勢いにもよる
が噴き出す水が表面の水を押しのけて邪魔板に直接衝突
する程度の深さとなるように、また、水の飛沫や泡が大
量に発生するように制御する。
According to the above-described structure, the water discharged from the nozzle collides with the baffle plate 10 and the collision pressure between the water and the solid and a large amount of water droplets are generated. , Air, ozone, etc.) and fall to the water surface. In this process, water takes in gas and accumulates in the closed tank. FIG. 2 shows an example of an embodiment according to claim 3 of the present invention in which the baffle plate 10 is provided below the water surface. Depending on the force of the water spouting from the nozzle 2, the spouting water displaces the water on the surface and obstructs. Control is performed so that the depth is such that it directly collides with the plate, and a large amount of water splashes and bubbles are generated.

【0030】なお、図1,図2に示すように、ポンプ3
の前段に気体を注入したり。後段にラインミキサやイン
ジェクタを取付けて予め酸素を注入しておけば効率的に
気体を取り込むことが可能である。図3(a,b)は本
発明の請求項4に関する実施形態の一例を示すもので邪
魔板の表面に複数の凹凸を設けたものである。図3cは
本発明の請求項5に関する実施形態の一例を示すもので
邪魔板10の中央部付近を高くして円錐状となるように
形成し、邪魔板で360度に分散した水を密閉タンク1
の壁面に衝突させることにより効果的に水に気体を溶解
することができる。
As shown in FIGS. 1 and 2, the pump 3
Or inject gas before the stage. If a line mixer or an injector is attached to the latter stage and oxygen is injected in advance, gas can be efficiently taken in. FIGS. 3A and 3B show an example of an embodiment according to claim 4 of the present invention, in which a plurality of irregularities are provided on the surface of a baffle plate. FIG. 3c shows an example of an embodiment according to claim 5 of the present invention, in which a central portion of the baffle plate 10 is raised to form a conical shape, and water dispersed at 360 degrees by the baffle plate is sealed in a closed tank. 1
The gas can be effectively dissolved in the water by colliding with the wall surface.

【0031】図4(a,b)は本発明の請求項6に関す
る実施形態の一例を示すもので、(a)は平面図、
(b)は正面図である。この実施例は、邪魔板10の中
央部付近を高くして周縁に向って順次低くなるように傾
斜を設け、かつ、この邪魔板の傾斜面に衝突した液体が
渦(旋回流)を発生するような溝若しくは突起を設けた
もので、このような形状とすることにより邪魔板10に
衝突して発生する圧力と渦の遠心力による圧力により気
体の溶解度を向上させることができる。
FIGS. 4A and 4B show an example of an embodiment according to claim 6 of the present invention, wherein FIG.
(B) is a front view. In this embodiment, an inclination is provided so that the vicinity of the center of the baffle plate 10 is increased and gradually decreases toward the periphery, and the liquid that has collided with the inclined surface of the baffle plate generates a vortex (swirl flow). Such grooves or projections are provided. With such a shape, the solubility of gas can be improved by the pressure generated by colliding with the baffle plate 10 and the pressure due to the centrifugal force of the vortex.

【0032】図5は請求項7に関する実施形態の一例を
示すもので、邪魔板を複数枚とした要部構成図であり、
初段の邪魔板10aに衝突した水が次段以降に配置され
た邪魔板10bで更に衝突しながら落下するように配置
したもので、初段の邪魔板10aは所定の角度(例えば
45度)で配置され、次段の邪魔板10bは略垂直に配
置して邪魔板10aに衝突した水の大部分が邪魔板10
bに衝突するように配置されている。
FIG. 5 shows an example of the embodiment according to claim 7, and is a structural view of a main part having a plurality of baffles.
The first baffle plate 10a is arranged at a predetermined angle (for example, 45 degrees) so that water that has collided with the first baffle plate 10a falls while further colliding with the baffle plate 10b arranged in the next and subsequent stages. The baffle 10b of the next stage is arranged substantially vertically so that most of the water that has collided with the baffle 10a
b.

【0033】このように複数回水と邪魔板10を衝突さ
せることにより、更に効果的に水に気体を溶解すること
ができる。なお、このとき2回目の衝突には密閉タンク
の壁面を使用しても良い。
By colliding the baffle 10 with water a plurality of times as described above, the gas can be more effectively dissolved in the water. At this time, the wall surface of the closed tank may be used for the second collision.

【0034】図6は本発明の請求項8,10,12,1
3に関する実施形態の一例を示すもので、従来例の図2
0と同一要素には同一符号を付している。本実施例では
密閉タンク1の上部空間に図示しないガスボンベなどの
気体供給手段により所定の圧力の気体が注入され、液体
供給手段であるポンプ3から水が注入されている。な
お、図では省略するが密閉タンクにはレベルを測定する
ためのレベル計や圧力計などが取付けられている。
FIG. 6 is a block diagram of the present invention.
3 shows an example of an embodiment relating to FIG.
The same elements as those of 0 are denoted by the same reference numerals. In this embodiment, gas of a predetermined pressure is injected into the upper space of the closed tank 1 by a gas supply means such as a gas cylinder (not shown), and water is injected from a pump 3 which is a liquid supply means. Although not shown in the drawings, a level gauge, a pressure gauge, and the like for measuring the level are attached to the closed tank.

【0035】図6によれば、密閉タンク1に供給する気
体を分岐してパイプ12およびストップ弁5aを介して
ポンプ3の前段に注入するとともに,ストップ弁5bを
介してポンプの後段に配置された乱流発生部(ラインミ
キサ等)9に注入している。なお、ポンプ3の前段及び
乱流発生部に注入する気体は図中のBで示す配管部分を
除去し、密閉タンク1内の気体を点線Aで示す経路のよ
うに配管しても良い。また、図に示すようにノズル2の
先端を密閉タンク1の外周付近に設け接線方向に沿って
液面に対して斜め上方から水面に出射する構成としても
良い。
According to FIG. 6, the gas to be supplied to the closed tank 1 is branched and injected into the front stage of the pump 3 via the pipe 12 and the stop valve 5a, and is disposed downstream of the pump via the stop valve 5b. Into the turbulence generating section (line mixer or the like) 9. The gas to be injected into the upstream part of the pump 3 and the turbulence generating section may be removed by removing the piping portion indicated by B in the drawing, and piping the gas in the closed tank 1 as indicated by the dotted line A. Further, as shown in the drawing, the tip of the nozzle 2 may be provided in the vicinity of the outer periphery of the closed tank 1 and emitted to the water surface obliquely above the liquid surface along the tangential direction.

【0036】このような構成によれば、液位を調節する
ために調節弁4aを閉として気体供給手段から供給され
る気体を一時停止した場合、密閉タンク1内の気体がポ
ンプ3や乱流発生部9側に流入し、密閉タンク内の気体
が循環することとなる。その結果、気体溶解度の変動が
少なくなり、制御性の高い気体溶解が可能である。
According to such a configuration, when the control valve 4a is closed to adjust the liquid level and the gas supplied from the gas supply means is temporarily stopped, the gas in the closed tank 1 is removed by the pump 3 or the turbulent flow. The gas flows into the generator 9 and the gas in the closed tank is circulated. As a result, fluctuations in gas solubility are reduced, and gas dissolution with high controllability is possible.

【0037】図7はノズル2の下方に図3〜図5に示す
邪魔板を設けた請求項9,11に関する実施例を示すも
ので、水を邪魔板10に衝突させるとともに密閉タンク
1に気体を供給し、タンクの空間の気体をパイプ12を
介してポンプ3の前段に注入し、更に、ポンプ3の後段
に配置されたラインミキサ9に気体を注入するようにし
たものである。なお、気体供給手段からの気体は図6に
示すように密閉タンク1に供給する気体を分岐してパイ
プ12側に配管しても良い。このような構成によれば、
邪魔板10による溶解度の向上と液位を調節するために
密閉タンク1の上部空間の気体を連続的に循環させてい
るため、気体の供給を一時停止した場合でも気体溶解度
の変動が小さく効率的で、かつ、制御性の高い気体溶解
が可能である。
FIG. 7 shows an embodiment according to the ninth and eleventh aspects in which the baffles shown in FIGS. 3 to 5 are provided below the nozzle 2, wherein water impinges on the baffles 10 and gas is supplied to the closed tank 1. And the gas in the space of the tank is injected via a pipe 12 into the front stage of the pump 3, and the gas is injected into a line mixer 9 arranged downstream of the pump 3. The gas supplied from the gas supply means may be branched from the gas supplied to the closed tank 1 and connected to the pipe 12 as shown in FIG. According to such a configuration,
Since the gas in the upper space of the closed tank 1 is continuously circulated in order to improve the solubility by the baffle plate 10 and adjust the liquid level, even when the gas supply is temporarily stopped, the fluctuation of the gas solubility is small and efficient. And highly controllable gas dissolution is possible.

【0038】図8は本発明の請求項14,15に関する
実施例を示すもので、図20で示す従来例と同一要素に
は同一符号を付している。この例では密閉タンク1の上
方の空間の気体がパイプ12により密閉タンク1の下方
に導かれ、ポンプ3aにより加圧されて密閉タンク1内
の下方に配置された散気板8を介して放出される。上記
の構成によれば上部空間の気体を循環させているので未
溶解の気体を大気中に放出することがなく効率的な気体
溶解が可能である。なお、図8ではポンプ3からの液体
をタンク1内の液中に注入しているが、図7の場合と同
様にポンプ3からの液体はタンク1の上方から供給し、
その下方に邪魔板を配置しても良い。
FIG. 8 shows an embodiment according to the fourteenth and fifteenth aspects of the present invention. The same elements as those in the conventional example shown in FIG. In this example, the gas in the space above the closed tank 1 is guided below the closed tank 1 by a pipe 12, is pressurized by a pump 3a, and is discharged via a diffuser plate 8 arranged below the closed tank 1. Is done. According to the above configuration, since the gas in the upper space is circulated, undissolved gas is not released to the atmosphere, and efficient gas dissolution is possible. Although the liquid from the pump 3 is injected into the liquid in the tank 1 in FIG. 8, the liquid from the pump 3 is supplied from above the tank 1 as in the case of FIG.
A baffle may be arranged below it.

【0039】図9は請求項16,17に関する実施形態
の一例を示すものである。この例においては密閉タンク
を2つ用い、これらの密閉タンク1a,1bの上部空間
と下部を連結管13a,13bにより気密に連結してい
る。この状態で2つの密閉タンクの上部空間と密閉タン
ク内の水圧は同一となる。また、ポンプ3の前段と後段
の密閉タンク1bの上部空間とはパイプ12により接続
されていてポンプ3で注入される水に上部空間の気体を
注入するように構成されている。なお、気体供給手段か
らの気体は図6に示すものと同様に密閉タンク1に供給
する気体を分岐してパイプ12側に配管しても良い。
FIG. 9 shows an embodiment of the present invention. In this example, two closed tanks are used, and the upper space and the lower part of these closed tanks 1a, 1b are air-tightly connected by connecting pipes 13a, 13b. In this state, the upper space of the two closed tanks and the water pressure in the closed tanks are the same. Further, the upper space of the closed tank 1b at the former stage and the latter stage of the pump 3 is connected by a pipe 12, so that the gas in the upper space is injected into the water injected by the pump 3. The gas supplied from the gas supply means may branch the gas supplied to the closed tank 1 and pipe the gas to the pipe 12 in the same manner as shown in FIG.

【0040】そして一段目の密閉タンクにはノズル2か
らの水の落下点に邪魔板10が配置されている。このよ
うな構成においても未溶解の気体を循環させ、更に、邪
魔板と水との衝突圧力と大量の水飛沫の発生によって効
率的、かつ、制御性の高い気体溶解が可能となる。な
お、後段の密閉タンク1bは気体が溶解した水を密閉タ
ンク内に滞留させる時間を長くすることにより気体の溶
解度の向上を目的とするものである。
A baffle plate 10 is arranged at the point where water from the nozzle 2 falls in the first-stage closed tank. Even in such a configuration, the undissolved gas is circulated, and furthermore, the gas can be efficiently and highly controlled to be dissolved by the collision pressure between the baffle plate and the water and the generation of a large amount of water droplets. The latter closed tank 1b aims at improving the solubility of the gas by extending the time during which the gas-dissolved water stays in the closed tank.

【0041】ところで、水の浄化を行うときに、水中の
微細な汚濁物質を凝集剤に付着させ沈殿や加圧浮上させ
ることがある。加圧浮上とは、微細な気泡を発生させ、
これを凝集させた微粒子に付着させることにより、浮上
させることを言う。図10は請求項18,19に関する
一実施例を示すものである。この実施例は図20に示す
従来の装置のポンプ3の後段にラインミキサ9を設ける
とともにポンプ3の前段に注入弁16aを設けたもので
あり、この弁の一端の注入口から水質汚濁物質を凝集
させる凝集剤や汚濁物質を分解する微生物を混入させ
る。なお、図では省略するが注入弁16aの前段には凝
集剤や微生物を貯蔵するための密閉タンクが配置されて
いる。
By the way, when purifying water, fine contaminants in the water may be attached to the flocculant and settled or floated under pressure. Pressurized flotation generates fine bubbles,
It refers to floating by attaching this to the aggregated fine particles. FIG. 10 shows an embodiment relating to claims 18 and 19. In this embodiment, a line mixer 9 is provided at the subsequent stage of the pump 3 of the conventional device shown in FIG. 20, and an injection valve 16a is provided at the preceding stage of the pump 3. Water pollutants are supplied from an inlet at one end of the valve. A coagulant to coagulate and microorganisms that decompose pollutants are mixed. Although not shown in the figure, a closed tank for storing a flocculant and microorganisms is disposed in front of the injection valve 16a.

【0042】上述の構成によれば、既存の気体溶解装置
を利用して凝集剤や微生物を供給することができる。そ
してポンプ3やラインミキサ、密閉タンク1内で攪拌が
行われ、効率良く凝集・加圧浮上が行うことができる。
また、凝集剤を別に供給する場合とは異なり、攪拌手段
を設けなくとも良いので構成が簡単になる。凝集剤を注
入するときは、気体溶解装置で過剰の空気を水に溶解さ
せることにより、溶解していた空気が大気圧下では微細
気泡となるようにする。また、微生物を注入するときは
空気や酸素を気体溶解装置に供給することにより溶存酸
素濃度を上昇させ微生物を活発にさせるようにする。
According to the above configuration, the coagulant and the microorganism can be supplied using the existing gas dissolving device. Then, the stirring is performed in the pump 3, the line mixer, and the closed tank 1, so that the coagulation and the pressure floating can be performed efficiently.
Further, unlike the case where the coagulant is separately supplied, the structure is simplified because the stirring means need not be provided. When the coagulant is injected, excess air is dissolved in water by a gas dissolving device so that the dissolved air becomes fine bubbles at atmospheric pressure. When injecting microorganisms, the concentration of dissolved oxygen is increased by supplying air or oxygen to a gas dissolving device to activate the microorganisms.

【0043】なお、図ではポンプ3の吸引側に注入口
を設けた場合と密閉タンクからの吐出口(注入口)に
設けた場合を例示しているが、ポンプの吐出側や密閉タ
ンク内に直接供給しても良い。図11は図6に示す本発
明の気体溶解装置のポンプ3の前段に凝集剤又は微生物
を注入するための注入弁16aを設けたもの。図12は
図7に示す本発明の気体溶解装置のポンプ3の前段に凝
集剤若しくは微生物を注入するための注入弁16aを設
けたものである。この実施例においてもポンプの吐出側
や密閉タンク内、密閉タンクからの吐出口(注入口)
に直接供給しても良い。
In the drawing, the case where the inlet is provided on the suction side of the pump 3 and the case where the inlet is provided at the outlet (inlet) from the closed tank are illustrated. It may be supplied directly. FIG. 11 shows a gas dissolving apparatus of the present invention shown in FIG. 6 in which an injection valve 16a for injecting a flocculant or microorganisms is provided in a stage preceding the pump 3. FIG. 12 shows a gas dissolution apparatus of the present invention shown in FIG. 7 in which an injection valve 16a for injecting a flocculant or microorganisms is provided at a stage preceding the pump 3. Also in this embodiment, a discharge port (injection port) from the discharge side of the pump, the inside of the closed tank, or the closed tank.
It may be directly supplied to.

【0044】次に、水の浄化を行うときに、水中の汚濁
物質としてアオコや悪臭発生の原因となる有機物等を含
んでいる場合の対策について検討する。河川・湖沼など
に発生したアオコや水中の有機物・悪臭成分を分解除去
するには、 電気石/複合半導体/セラミックなど、電気分極を
利用したもの 光触媒であるチタニア(TiO2)などの触媒技術を使
用したもの 紫外線を照射するもの オゾンや塩素などを添加するもの 等がある。
Next, when water is purified, measures to be taken in the case where pollutants in the water include water moss and organic substances that cause the generation of offensive odors will be examined. In order to decompose and remove the blue-green algae generated in rivers, lakes and marshes, and the organic matter and odorous components in the water, we use electric polarization, such as tourmaline / composite semiconductor / ceramic. Catalyst technology such as titania (TiO 2 ) which is a photocatalyst Used ones Irradiated with ultraviolet rays Some of them add ozone or chlorine.

【0045】の電気石(トルマリン)は自然の状態で
も電気分極し、微弱な電流が流れているが、複合半導体
/セラミックと同様に圧力/温度/光により分極の度合
が大きくなる。の光触媒では、光により電気分極を生
じる。この分極により、前述のとも水酸基(ヒドロ
オキシル)ラジカルが発生し、これにより有機物等の分
解が行われる。(図13参照) では、波長が253.7nmの紫外線は、細菌やウィル
ス等のDNA(デオキシリボ核酸)に最も吸収され易く、
吸収された紫外線がDNAを破壊し、増殖を停止させて死
滅させる。(図14参照)
The tourmaline is electrically polarized even in a natural state, and a weak current flows, but the degree of polarization is increased by pressure / temperature / light similarly to the composite semiconductor / ceramic. In the photocatalyst described above, light causes electric polarization. Due to this polarization, a hydroxyl group (hydroxyl) radical is generated as described above, thereby decomposing organic substances and the like. (See FIG. 13), the ultraviolet light having a wavelength of 253.7 nm is most easily absorbed by DNA (deoxyribonucleic acid) such as bacteria and viruses.
Absorbed ultraviolet light destroys DNA, halting growth and killing it. (See Fig. 14)

【0046】では、細菌やウィルス等の細胞壁・細胞
膜を損傷させて死滅させる(図14参照)。しかしなが
ら塩素は、その残留時間が長く、また副次物の生成な
ど、環境への負荷が大きいことから使用されることは余
りない。一方、オゾンは、残留時間も短く、副次物の生
成も殆どなく、使用が可能であるが、気相中に0.1ppm以
上拡散しないように注意する必要がある。オゾンは分解
すると酸素になるため、オゾン曝気を行うと溶存酸素濃
度を増加させる効果がある。
Then, the cell wall and cell membrane of bacteria and viruses are damaged and killed (see FIG. 14). However, chlorine is rarely used because it has a long residence time and has a large burden on the environment such as generation of by-products. On the other hand, ozone has a short residence time and hardly produces any by-products, and can be used. However, care must be taken so that it does not diffuse more than 0.1 ppm into the gas phase. Since ozone is decomposed into oxygen, ozone aeration has the effect of increasing the concentration of dissolved oxygen.

【0047】アオコは、河川・湖沼などの上部に発生
し、昼間はその光合成により、溶存酸素濃度を増加させ
ているが、アオコの下部の水はアオコにより日光が遮ら
れて光合成を行えずに貧酸素水となっている。さらに、
アオコの死骸などの富栄養分を分解するために酸素が消
費され、アオコ層の下にある水は貧酸素濃度(殆ど零)
となっている(図15参照)。
Blue-green algae occur in the upper part of rivers, lakes and marshes, and the dissolved oxygen concentration is increased by the photosynthesis in the daytime. It is anoxic water. further,
Oxygen is consumed to decompose eutrophics such as carcasses, and the water under the water layer is poorly oxygenated (almost zero).
(See FIG. 15).

【0048】従って、アオコの除去を行うだけでは、水
質の改善が不十分であり、溶存酸素濃度を高める必要が
ある。こうした観点から見ると〜の方式は、アオコ
の除去を行って自然に溶存酸素濃度が向上することを期
待する方式である。の方式は、オゾンの分解により、
酸素濃度が向上することを期待しているが、積極的に溶
存酸素濃度を向上させているわけではない。また、オゾ
ンが水中から空気中に拡散する濃度に注意しながら曝気
するため大量のオゾンは使用できない。
Therefore, the improvement of water quality is not sufficient only by removing the blue water, and it is necessary to increase the dissolved oxygen concentration. From this point of view, the method (1) is a method in which it is expected that the concentration of dissolved oxygen will be naturally improved by removing water worms. In the method, the decomposition of ozone
It is hoped that the oxygen concentration will be improved, but it does not mean that the dissolved oxygen concentration is being positively improved. In addition, a large amount of ozone cannot be used because aeration is performed while paying attention to the concentration at which ozone diffuses from water into the air.

【0049】図16〜18は請求項20に関する一実施
例を示すもので、アオコなどの水質汚濁物質を除去する
場合に、アオコなどを分解する手段と溶存酸素濃度を向
上させる気体溶解装置を組み合わせることにより、アオ
コの除去と酸素供給を同時に行うようにしたものであ
る。
FIGS. 16 to 18 show an embodiment of the present invention. When water pollutants such as blue water are removed, a means for decomposing blue water and a gas dissolving device for improving the concentration of dissolved oxygen are combined. Thus, the removal of water and the supply of oxygen are performed at the same time.

【0050】図16は図20に示す従来の装置のポンプ
3の後段にラインミキサ9を設けるとともにポンプ3の
前段,密閉タンク1内および密閉タンクの後段に水質汚
濁物質を分解・殺菌するための分解・殺菌手段15を設
けたものである。なお、水質汚濁物質の分解・殺菌手段
15は実施例に限らず水が移動する1箇所以上に設けれ
ば良い。
FIG. 16 shows a conventional apparatus shown in FIG. 20 in which a line mixer 9 is provided downstream of the pump 3 and disposed upstream of the pump 3, in the closed tank 1 and downstream of the closed tank for decomposing and sterilizing water pollutants. The disassembly / sterilization means 15 is provided. The means 15 for decomposing and sterilizing water pollutants is not limited to the embodiment, but may be provided at one or more locations where water moves.

【0051】図17は図6に示す本発明の気体溶解装置
のポンプ3の前段,密閉タンク1内および密閉タンクの
後段に水質汚濁物質を分解・殺菌するための分解・殺菌
手段15を設けたもの。図18は図7に示す本発明の気
体溶解装置のポンプ3の前段,密閉タンク1内および密
閉タンクの後段に水質汚濁物質を分解・殺菌するための
分解・殺菌手段15を設けたものものであるが、前述し
たように水が移動する1箇所以上に設ければ良い。
FIG. 17 shows a dissolving and disinfecting means 15 for dissolving and disinfecting water pollutants provided before the pump 3 of the gas dissolving apparatus of the present invention shown in FIG. 6, inside the closed tank 1 and after the closed tank. thing. FIG. 18 shows a gas dissolving apparatus according to the present invention in which a dissolving / sterilizing means 15 for decomposing / sterilizing water pollutants is provided before the pump 3, in the closed tank 1, and after the closed tank of the gas dissolving apparatus of the present invention. However, it may be provided at one or more locations where water moves as described above.

【0052】なお、水質汚濁物質を分解・殺菌するため
の分解・殺菌手段15としては、 電気分極を生じるような素子(電気石/複合半導体
/セラミックなど) チタニア(TiO2)等の光触媒素子 紫外線照射装置 オゾン供給装置 等を用い、設置部位は、次の場所とする。
The decomposing / sterilizing means 15 for decomposing / sterilizing the water pollutant is an element (electric stone / composite semiconductor / ceramic, etc.) which causes electric polarization. Photocatalytic element such as titania (TiO 2 ) Irradiation equipment Use an ozone supply device, etc., and install the following places.

【0053】 の電気分極を生じるような素子は邪魔
板の部材として使用して水圧による分極を利用して有機
物などの分解を行なう。同様に、密閉タンク内及び密閉
タンク吐出部に設置して、水圧による分極を利用して分
解を行なわせてもよい。 の光触媒素子は図19に示
すように紫外線発生手段17の外管18の外側に光触媒
19を塗布し、紫外線を吸収させ、触媒機能の向上を図
る。従って、紫外線発生装置と同じ場所に設置する。な
お、図19では紫外線を発生させるための電源や配線は
省略して示している。 の紫外線照射装置は水の流れ
があればよいので、密閉タンク1内やポンプ吸引側又は
密閉タンク吐出口の少なくとも一箇所に設置する。
のオゾンの供給は、気体溶解装置の元々のガス供給口を
利用する。上記の構成によれば溶存酸素濃度の増大を図
るとともに、アオコの除去や有機物の分解・殺菌等効率
良く水環境の修復を行うことができる。
The element which generates the electric polarization is used as a member of a baffle plate to decompose an organic substance or the like by utilizing the polarization caused by water pressure. Similarly, it may be installed in the closed tank and in the closed tank discharge section, and may be decomposed by utilizing polarization by water pressure. As shown in FIG. 19, the photocatalyst element has a photocatalyst 19 applied to the outside of the outer tube 18 of the ultraviolet ray generating means 17 to absorb ultraviolet rays and improve the catalytic function. Therefore, it is installed in the same place as the ultraviolet ray generator. In FIG. 19, a power source and a wiring for generating ultraviolet rays are omitted. Since the ultraviolet irradiation device described above only needs to have a flow of water, the ultraviolet irradiation device is installed in the closed tank 1 or at least one location on the pump suction side or the closed tank discharge port.
Ozone is supplied using the original gas supply port of the gas dissolving apparatus. According to the above configuration, the concentration of dissolved oxygen can be increased, and the water environment can be efficiently restored, such as removal of blue water and decomposition and sterilization of organic matter.

【0054】本発明の以上の説明は、説明および例示を
目的として特定の好適な実施例を示したに過ぎない。本
実施例では溶解する気体を湖沼の浄化を目的とする酸素
として説明したが、水に溶解させる気体は例えばCO
であってもよく、目的に応じて種々の気体を用いること
ができる。また、液体は水に限らず他の液体であっても
良い。
The foregoing description of the present invention has been presented by way of illustration and example only, and is given of certain preferred embodiments. In this embodiment, the gas to be dissolved is described as oxygen for the purpose of purifying lakes, but the gas to be dissolved in water is, for example, CO 2.
And various gases can be used depending on the purpose. Further, the liquid is not limited to water but may be another liquid.

【0055】したがって本発明はその本質から逸脱せず
に多くの変更、変形をなし得ることは当業者に明らかで
ある。特許請求の範囲の欄の記載により定義される本発
明の範囲は、その範囲内の変更、変形を包含するものと
する。
Thus, it will be apparent to one skilled in the art that the present invention may have many changes and modifications without departing from its essentials. The scope of the present invention defined by the description in the claims section is intended to cover alterations and modifications within the scope.

【0056】[0056]

【発明の効果】以上説明したように、本発明の気体溶解
装置は、密閉タンクに液体を供給する液体供給手段と、
密閉タンクに気体を供給する気体供給手段と、密閉タン
ク内に設けられた邪魔板とからなり、邪魔板を液体供給
手段から供給される液体に衝突するように配置し、ま
た、気体供給手段からの気体を密閉タンクに供給すると
ともに、密閉タンク内の空間の気体をポンプの吸引側、
吐出側又はラインミキサ等に導いて密閉タンクに放出す
るように構成したので、高濃度の気体溶解液を得ること
ができ、更に、気体溶解度の変動が小さく制御性の高い
気体溶解装置を実現することができ、例えば半導体プロ
セスでオゾンなどの気体を水などの液体中に溶解させ機
能水として使用することができる。また、装置を大規模
化してより水質汚濁物質を凝集させる凝集剤や汚濁物質
を分解できる微生物を混入させたり水質汚濁物質を分解
・殺菌するための手段を設けたので、溶存酸素濃度の増
大を図るとともに、アオコの除去や有機物の分解・殺菌
等効率良く水環境の修復を行うことができる。
As described above, the gas dissolving apparatus of the present invention comprises a liquid supply means for supplying a liquid to a closed tank;
A gas supply means for supplying gas to the closed tank, and a baffle plate provided in the closed tank, the baffle plate is arranged to collide with the liquid supplied from the liquid supply means, and from the gas supply means Gas to the closed tank and the gas in the space inside the closed tank
Since it is configured to be guided to the discharge side or the line mixer and discharged to the closed tank, a high-concentration gas solution can be obtained. For example, in a semiconductor process, a gas such as ozone can be dissolved in a liquid such as water and used as functional water. In addition, since the scale of the equipment has been increased, a flocculant that aggregates water pollutants and microorganisms capable of decomposing pollutants are mixed in, and means for decomposing and sterilizing water pollutants are provided. At the same time, the water environment can be efficiently restored, such as the removal of blue water and the decomposition and sterilization of organic matter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の気体溶解装置の実施形態の一例を示す
構成図である。
FIG. 1 is a configuration diagram showing an example of an embodiment of a gas dissolving apparatus of the present invention.

【図2】気体溶解装置の他の実施形態を示す構成図であ
る。
FIG. 2 is a configuration diagram showing another embodiment of the gas dissolving device.

【図3】邪魔板の配置を工夫した実施形態の一例を示す
構成図である。
FIG. 3 is a configuration diagram showing an example of an embodiment in which the arrangement of baffle plates is devised.

【図4】邪魔板の表面形状の他の実施形態を示す構成図
である。
FIG. 4 is a configuration diagram showing another embodiment of the surface shape of the baffle plate.

【図5】邪魔板の表面形状の他の実施形態を構成図であ
る。
FIG. 5 is a configuration diagram showing another embodiment of the surface shape of the baffle plate.

【図6】気体溶解装置の他の実施形態を示す構成図であ
る。
FIG. 6 is a configuration diagram showing another embodiment of the gas dissolving device.

【図7】気体溶解装置の他の実施形態を示す構成図であ
る。
FIG. 7 is a configuration diagram showing another embodiment of the gas dissolving device.

【図8】気体溶解装置の他の実施形態を示す構成図であ
る。
FIG. 8 is a configuration diagram showing another embodiment of the gas dissolving apparatus.

【図9】気体溶解装置の他の実施形態を示す構成図であ
る。
FIG. 9 is a configuration diagram showing another embodiment of the gas dissolving device.

【図10】気体溶解装置の他の実施形態を示す構成図で
ある。
FIG. 10 is a configuration diagram showing another embodiment of the gas dissolving apparatus.

【図11】気体溶解装置の他の実施形態を示す構成図で
ある。
FIG. 11 is a configuration diagram showing another embodiment of the gas dissolving apparatus.

【図12】気体溶解装置の他の実施形態を示す構成図で
ある。
FIG. 12 is a configuration diagram showing another embodiment of the gas dissolving apparatus.

【図13】電気分極ラジカルが発生し、有機物等の分解
が行われている状態を示す説明図である。
FIG. 13 is an explanatory diagram showing a state in which an electric polarization radical is generated and an organic substance or the like is being decomposed.

【図14】紫外線がDNAを破壊し、増殖を停止させ、オ
ゾンが細菌やウィルス等の細胞壁・細胞膜を損傷させて
いる状態を示す説明図である。
FIG. 14 is an explanatory diagram showing a state in which ultraviolet rays destroy DNA, stop proliferation, and ozone damages cell walls and cell membranes of bacteria and viruses.

【図15】アオコ層の下にある水が貧酸素濃度となって
いる状態を示す説明図である。
FIG. 15 is an explanatory diagram showing a state in which water below the water lily layer has a low oxygen concentration.

【図16】気体溶解装置に分解・殺菌手段を設けた実施
形態を示す構成図である。
FIG. 16 is a configuration diagram showing an embodiment in which a dissolving / sterilizing means is provided in a gas dissolving apparatus.

【図17】気体溶解装置に分解・殺菌手段を設けた他の
実施形態を示す構成図である。
FIG. 17 is a configuration diagram showing another embodiment in which a dissolving / sterilizing means is provided in the gas dissolving apparatus.

【図18】気体溶解装置に分解・殺菌手段を設けたたの
実施形態を示す構成図である。
FIG. 18 is a configuration diagram showing an embodiment in which a dissolving / sterilizing means is provided in a gas dissolving apparatus.

【図19】紫外線発生装置の外管外側に光触媒素子を塗
布した分解・殺菌手段の実施形態を示す説明図である。
FIG. 19 is an explanatory view showing an embodiment of a disassembling / sterilizing means in which a photocatalytic element is applied to the outside of the outer tube of the ultraviolet ray generating device.

【図20】気体溶解装置の従来例を示す構成図である。FIG. 20 is a configuration diagram showing a conventional example of a gas dissolving apparatus.

【符号の説明】[Explanation of symbols]

1 密閉タンク 2 ノズル 3 ポンプ 4 調節弁 5 ストップ弁 8 散気板 9 乱流発生部(ラインミキサ) 10 邪魔板 11 3方弁 12 パイプ 15 分解・殺菌手段 16 注入弁 17 紫外線発生手段 18 外管 19 光触媒 DESCRIPTION OF SYMBOLS 1 Closed tank 2 Nozzle 3 Pump 4 Control valve 5 Stop valve 8 Aperture plate 9 Turbulence generation part (line mixer) 10 Baffle plate 11 Three-way valve 12 Pipe 15 Disassembly / sterilization means 16 Injection valve 17 Ultraviolet ray generation means 18 Outer tube 19 Photocatalyst

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年9月26日(2001.9.2
6)
[Submission date] September 26, 2001 (2001.9.2)
6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】[0008]

【課題を解決するための手段】このような問題点を解決
するために本発明は、請求項1においては、密閉タンク
に液体を供給する液体供給手段と、前記密閉タンクおよ
び/または前記液体に気体を供給する気体供給手段と、
前記密閉タンク内に設けられた邪魔板とからなり、前記
邪魔板を前記液体供給手段から供給される液体に衝突す
るように配置したことを特徴とする。
According to the present invention, there is provided a liquid supply device for supplying a liquid to a closed tank, the liquid supply device comprising:
Gas supply means for supplying gas to the liquid and / or
And a baffle plate provided in the closed tank, wherein the baffle plate is arranged so as to collide with the liquid supplied from the liquid supply means.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0021】請求項14においては、密閉タンクに液体
を供給する液体供給手段と、前記密閉タンクおよび/ま
たは前記液体に気体を供給する気体供給手段と、からな
り、前記、密閉タンクの空間の気体を加圧手段により加
圧して前記密閉タンクの液体中に放出するようにしたこ
とを特徴とする気体溶解装置。
In a fourteenth aspect, a liquid supply means for supplying a liquid to the closed tank , the closed tank and / or the liquid supply means.
Or a gas supply means for supplying gas to the liquid , wherein the gas in the space of the closed tank is pressurized by pressurizing means and released into the liquid in the closed tank. Gas dissolution equipment.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Correction target item name] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0022】請求項15においては、請求項1乃至13
いずれかに記載の気体溶解装置において、密閉タンクに
液体を供給する液体供給手段と、前記密閉タンクおよび
/または前記液体に気体を供給する気体供給手段と、か
らなり、前記、密閉タンクの空間の気体を加圧手段によ
り加圧して前記密閉タンクの液体中に放出するようにし
たことを特徴とする。
In claim 15, claims 1 to 13
In the gas dissolving apparatus according to any of the above, a liquid supply unit that supplies a liquid to a closed tank , the closed tank and
And / or gas supply means for supplying gas to the liquid , wherein gas in the space of the closed tank is pressurized by pressurizing means and released into the liquid in the closed tank. .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 531 C02F 1/50 531C 531R 540 540A 540B 550 550H 560 560C 560H 1/52 1/52 Z 3/00 3/00 D 3/24 3/24 B (72)発明者 石井 浩市 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 (72)発明者 中村 覚 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 Fターム(参考) 4D015 BA19 BA21 CA14 FA02 FA23 FA24 FA26 4D027 BA05 BA06 4D029 AA11 BB11 4G035 AA01 AB04 AC15 AC16 AC29 AC55 AE13 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/50 531 C02F 1/50 531C 531R 540 540A 540B 550 550H 560 560C 560H 1/52 1/52 Z 3 / 00 3/00 D 3/24 3/24 B (72) Inventor Hiroshi Ishii 2-9-132 Nakamachi, Musashino City, Tokyo Inside Yokogawa Electric Corporation (72) Inventor Satoru Nakamura 2 Nakamachi, Musashino City, Tokyo No. 9-32 F-term in Yokogawa Electric Corporation (reference) 4D015 BA19 BA21 CA14 FA02 FA23 FA24 FA26 4D027 BA05 BA06 4D029 AA11 BB11 4G035 AA01 AB04 AC15 AC16 AC29 AC55 AE13

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】密閉タンクに液体を供給する液体供給手段
と、気体を供給する気体供給手段と、前記密閉タンク内
に設けられた邪魔板とからなり、前記邪魔板を前記液体
供給手段から供給される液体に衝突するように配置した
ことを特徴とする気体溶解装置。
1. A liquid supply means for supplying a liquid to a sealed tank, a gas supply means for supplying a gas, and a baffle provided in the closed tank, wherein the baffle is supplied from the liquid supply means. A gas dissolving device arranged so as to collide with a liquid to be discharged.
【請求項2】前記液体は密閉タンクの上方から下方に向
って供給され、その落下点に邪魔板を配置したことを特
徴とする請求項1記載の気体溶解装置。
2. The gas dissolving apparatus according to claim 1, wherein the liquid is supplied downward from above the closed tank, and a baffle plate is disposed at a drop point of the liquid.
【請求項3】前記邪魔板に衝突する液体の流速や衝突圧
力を所定レベル以上に維持するように前記密閉タンクの
液面を所定の範囲に制御するようにしたことを特徴とす
る請求項1または2記載の気体溶解装置。
3. The liquid level of the closed tank is controlled within a predetermined range so as to maintain a flow velocity and a collision pressure of the liquid colliding with the baffle plate at a predetermined level or higher. Or the gas dissolving apparatus according to 2.
【請求項4】前記邪魔板の表面に複数の凹凸を設けたこ
とを特徴とする請求項1乃至3いずれかに記載の気体溶
解装置。
4. The gas dissolving apparatus according to claim 1, wherein a plurality of irregularities are provided on a surface of said baffle plate.
【請求項5】前記邪魔板の中央部付近を高くして周縁に
向って順次低くなるように傾斜を設けたことを特徴とす
る請求項1乃至4いずれかに記載の気体溶解装置。
5. The gas dissolving apparatus according to claim 1, wherein an inclination is provided so that the vicinity of the center of the baffle plate is increased and gradually reduced toward the periphery.
【請求項6】前記邪魔板の中央部付近を高くして周縁に
向って順次低くなるように傾斜を設けるとともに、この
邪魔板の傾斜面に衝突した液体が渦(旋回流)を発生す
るような溝若しくは突起を設けたことを特徴とする請求
項1乃至5いずれかに記載の気体溶解装置。
6. The baffle plate is provided with a slope so that its height is increased in the vicinity of its center and gradually decreases toward its periphery, and liquid impinging on the slope of the baffle plate generates a vortex (swirl flow). The gas dissolving apparatus according to any one of claims 1 to 5, further comprising a groove or a projection.
【請求項7】前記邪魔板を複数枚とし、初段の邪魔板に
衝突した液体が次段以降に配置された邪魔板に衝突しな
がら落下するように配置したことを特徴とする請求項1
乃至6いずれかに記載の気体溶解装置。
7. The apparatus according to claim 1, wherein a plurality of the baffles are provided, and the liquid colliding with the baffle at the first stage falls while colliding with the baffles arranged at the next and subsequent stages.
7. A gas dissolving apparatus according to any one of claims 6 to 6.
【請求項8】密閉タンクに液体を供給する液体供給手段
と、気体を供給する気体供給手段と、からなり、前記気
体供給手段から前記密閉タンクに前記気体を注入すると
ともに、前記液体供給手段の前段または後段の少なくと
も一方に前記気体供給手段から前記気体を注入する配管
を設けたことを特徴とする気体溶解装置。
8. A liquid supply means for supplying a liquid to a closed tank, and a gas supply means for supplying a gas, wherein the gas is injected from the gas supply means into the closed tank and the liquid supply means A gas dissolving apparatus, wherein a pipe for injecting the gas from the gas supply means is provided in at least one of a former stage and a latter stage.
【請求項9】密閉タンクに液体を供給する液体供給手段
と、気体を供給する気体供給手段と、からなり、前記気
体供給手段から前記密閉タンクに前記気体を注入すると
ともに、前記液体供給手段の前段または後段の少なくと
も一方に前記気体供給手段から前記気体を注入する配管
を設けたことを特徴とする請求項1乃至7いずれかに記
載の気体溶解装置。
9. A liquid supply means for supplying a liquid to a closed tank, and a gas supply means for supplying a gas, wherein the gas is injected from the gas supply means into the closed tank and the liquid supply means 8. The gas dissolving apparatus according to claim 1, wherein a pipe for injecting the gas from the gas supply unit is provided in at least one of a first stage and a second stage.
【請求項10】密閉タンクに液体を供給する液体供給手
段と、気体を供給する気体供給手段と、からなり、前記
液体供給手段の前段または後段の少なくとも一方に前記
密閉タンクから前記気体を注入する配管を設けたことを
特徴とする気体溶解装置。
10. A liquid supply means for supplying a liquid to a closed tank, and a gas supply means for supplying a gas, wherein the gas is injected from the closed tank into at least one of a stage before and after the liquid supply unit. A gas dissolving apparatus comprising a pipe.
【請求項11】密閉タンクに液体を供給する液体供給手
段と、気体を供給する気体供給手段と、からなり、前記
液体供給手段の前段または後段の少なくとも一方に前記
密閉タンクから前記気体を注入する配管を設けたことを
特徴とする請求項1乃至7いずれかに記載の気体溶解装
置。
11. A liquid supply means for supplying a liquid to a closed tank, and a gas supply means for supplying a gas, wherein the gas is injected from the closed tank into at least one of a stage before and after the liquid supply unit. The gas dissolving apparatus according to any one of claims 1 to 7, wherein a pipe is provided.
【請求項12】前記密閉タンクの上方からノズルを介し
て供給するようにしたことを特徴とする請求項8乃至1
0いずれかに記載の気体溶解装置。
12. The apparatus according to claim 8, wherein the liquid is supplied from above the closed tank via a nozzle.
0. A gas dissolving apparatus according to any one of the above.
【請求項13】前記ノズルの吹き出し口を密閉タンクの
接線方向に向うように配置したことを特徴とする請求項
12記載の気体溶解装置。
13. The gas dissolving apparatus according to claim 12, wherein the outlet of the nozzle is arranged so as to face a tangential direction of the closed tank.
【請求項14】密閉タンクに液体を供給する液体供給手
段と、気体を供給する気体供給手段と、からなり、 前記、密閉タンクの空間の気体を加圧手段により加圧し
て前記密閉タンクの液体中に放出するようにしたことを
特徴とする気体溶解装置。
14. A liquid supply means for supplying a liquid to the closed tank, and a gas supply means for supplying a gas, wherein the gas in the space of the closed tank is pressurized by a pressurizing means, and the liquid in the closed tank is pressurized. A gas dissolving apparatus characterized in that the gas is released into the apparatus.
【請求項15】密閉タンクに液体を供給する液体供給手
段と、気体を供給する気体供給手段と、からなり、 前記、密閉タンクの空間の気体を加圧手段により加圧し
て前記密閉タンクの液体中に放出するようにしたことを
特徴とする請求項1乃至13いずれかに記載の気体溶解
装置。
15. A liquid supply means for supplying a liquid to a closed tank, and a gas supply means for supplying a gas, wherein the gas in the space of the closed tank is pressurized by a pressurizing means and the liquid in the closed tank is pressurized. 14. The gas dissolving apparatus according to claim 1, wherein the gas is released into the apparatus.
【請求項16】複数段配置された密閉タンクと、これら
の密閉タンクの上方および下方同士を気密に連結する連
結管と、初段の密閉タンクに液体を供給する液体供給手
段と、何れかの密閉タンクに気体を供給する気体供給手
段と、からなり、 前記気体供給手段から前記密閉タンクに前記気体を注入
するとともに、前記気体を前記液体供給手段の前段また
は後段の少なくとも一方に注入する配管を設けたことを
特徴とする気体溶解装置。
16. A closed tank arranged in a plurality of stages, a connecting pipe for airtightly connecting the upper and lower portions of these closed tanks, a liquid supply means for supplying liquid to the first-stage closed tank, Gas supply means for supplying a gas to the tank, and a pipe for injecting the gas from the gas supply means into the closed tank and injecting the gas into at least one of a front stage and a rear stage of the liquid supply unit is provided. A gas dissolving apparatus.
【請求項17】複数段配置された密閉タンクと、これら
の密閉タンクの上方および下方同士を気密に連結する連
結管と、初段の密閉タンクに液体を供給する液体供給手
段と、何れかの密閉タンクに気体を供給する気体供給手
段と、からなり、 前記密閉タンクの空間の気体を前記液体供給手段の前段
または後段の少なくとも一方に注入する配管を設けたこ
とを特徴とする気体溶解装置。
17. A closed tank arranged in a plurality of stages, a connecting pipe for airtightly connecting the upper and lower parts of these closed tanks, a liquid supply means for supplying liquid to the first-stage closed tank, A gas supply means for supplying gas to the tank; and a pipe for injecting gas in the space of the closed tank into at least one of a preceding stage and a succeeding stage of the liquid supplying means.
【請求項18】密閉タンクに液体を供給する配管、液体
を排出する配管の両方若しくは何れかの途中に液体に含
まれる汚濁物質を凝集させる凝集剤を混入させる凝集剤
混入手段を設けたことを特徴とする請求項1乃至17い
ずれかに記載の気体溶解装置。
18. A coagulant mixing means for mixing a coagulant for coagulating a pollutant contained in a liquid is provided in a pipe for supplying a liquid to a closed tank and / or a pipe for discharging a liquid. The gas dissolving apparatus according to any one of claims 1 to 17, wherein
【請求項19】密閉タンクに液体を供給する配管、液体
を排出する配管の両方若しくは何れかの途中に液体に含
まれる汚濁物質や汚濁成分を分解する微生物を混入させ
る微生物混入手段を設けたことを特徴とする請求項1乃
至18いずれかに記載の気体溶解装置。
19. A microbial contaminating means for mixing a pollutant contained in a liquid or a microorganism for decomposing a contaminant component in at least one of a pipe for supplying a liquid to the closed tank and a pipe for discharging the liquid. The gas dissolving apparatus according to any one of claims 1 to 18, wherein:
【請求項20】気体溶解装置を構成する密閉タンク、こ
の密閉タンクに液体を供給する配管、若しくは液体を排
出する配管の少なくとも一箇所に液体に含まれる汚濁物
質や微生物を分解・殺菌するための分解・殺菌手段を設
けたことを特徴とする請求項1乃至19いずれかに記載
の気体溶解装置。
20. A closed tank constituting a gas dissolving apparatus, a pipe for supplying a liquid to the closed tank, or a pipe for discharging the liquid, for decomposing and sterilizing pollutants and microorganisms contained in the liquid in at least one place. The gas dissolving apparatus according to any one of claims 1 to 19, further comprising a decomposition / sterilization means.
JP2001158411A 2001-05-28 2001-05-28 Gas dissolving device Expired - Fee Related JP3819732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001158411A JP3819732B2 (en) 2001-05-28 2001-05-28 Gas dissolving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001158411A JP3819732B2 (en) 2001-05-28 2001-05-28 Gas dissolving device

Publications (2)

Publication Number Publication Date
JP2002346351A true JP2002346351A (en) 2002-12-03
JP3819732B2 JP3819732B2 (en) 2006-09-13

Family

ID=19002142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001158411A Expired - Fee Related JP3819732B2 (en) 2001-05-28 2001-05-28 Gas dissolving device

Country Status (1)

Country Link
JP (1) JP3819732B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075365A1 (en) 2004-02-03 2005-08-18 Matsuedoken Co., Ltd. Gas-liquid dissolution apparatus
JP2005279590A (en) * 2004-03-30 2005-10-13 Hiroshima Univ Manufacturing device of liquid-liquid emulsion and manufacturing method of liquid-liquid emulsion
JP2006263641A (en) * 2005-03-25 2006-10-05 Toyobo Engineering Kk Gas dissolution method and its apparatus
JP2007000844A (en) * 2005-06-27 2007-01-11 Matsushita Electric Works Ltd Apparatus for generating fine bubble
EP1776177A1 (en) * 2004-08-10 2007-04-25 Beng Lai Koh Mixing apparatus
JP2007175628A (en) * 2005-12-28 2007-07-12 Yamae:Kk Apparatus for cleaning liquid
JP2008194599A (en) * 2007-02-13 2008-08-28 Yokogawa Electric Corp Gas-dissolved water feeding system
JP2008246486A (en) * 2005-09-23 2008-10-16 Sadatoshi Watabe Nano fluid generator and cleaning apparatus
JP2008302054A (en) * 2007-06-08 2008-12-18 Rinnai Corp Microbubble generator
JP2009045564A (en) * 2007-08-21 2009-03-05 Yokogawa Electric Corp Oxygen dissolved water supply apparatus
JP2010234372A (en) * 2010-06-21 2010-10-21 Panasonic Electric Works Co Ltd Microbubble generator
JP2011072903A (en) * 2009-09-30 2011-04-14 Shibaura Mechatronics Corp Method and device of generating bubble, and treatment apparatus employing device
CN107993960A (en) * 2016-10-26 2018-05-04 细美事有限公司 Substrate board treatment, process fluid processing unit and ozone decomposed method
CN113045072A (en) * 2021-02-10 2021-06-29 深圳市彤石科技有限公司 Multistage filtration adsorption unit and waste water recovery water purification system
WO2024214996A1 (en) * 2023-04-10 2024-10-17 김영권 Nanobubble generation nozzle

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7571899B2 (en) 2004-02-03 2009-08-11 Matsuedoken Co., Ltd. Gas-liquid dissolving apparatus
WO2005075365A1 (en) 2004-02-03 2005-08-18 Matsuedoken Co., Ltd. Gas-liquid dissolution apparatus
JP2005279590A (en) * 2004-03-30 2005-10-13 Hiroshima Univ Manufacturing device of liquid-liquid emulsion and manufacturing method of liquid-liquid emulsion
JP4724825B2 (en) * 2004-03-30 2011-07-13 国立大学法人広島大学 Liquid-liquid emulsion production apparatus and liquid-liquid emulsion production method
EP1776177A1 (en) * 2004-08-10 2007-04-25 Beng Lai Koh Mixing apparatus
JP2008509803A (en) * 2004-08-10 2008-04-03 コー、ベン・ライ Mixing equipment
EP1776177A4 (en) * 2004-08-10 2011-05-18 Beng Lai Koh Mixing apparatus
JP2006263641A (en) * 2005-03-25 2006-10-05 Toyobo Engineering Kk Gas dissolution method and its apparatus
JP2007000844A (en) * 2005-06-27 2007-01-11 Matsushita Electric Works Ltd Apparatus for generating fine bubble
JP4715335B2 (en) * 2005-06-27 2011-07-06 パナソニック電工株式会社 Microbubble generator
JP2008246486A (en) * 2005-09-23 2008-10-16 Sadatoshi Watabe Nano fluid generator and cleaning apparatus
JP2007175628A (en) * 2005-12-28 2007-07-12 Yamae:Kk Apparatus for cleaning liquid
JP2008194599A (en) * 2007-02-13 2008-08-28 Yokogawa Electric Corp Gas-dissolved water feeding system
JP2008302054A (en) * 2007-06-08 2008-12-18 Rinnai Corp Microbubble generator
JP2009045564A (en) * 2007-08-21 2009-03-05 Yokogawa Electric Corp Oxygen dissolved water supply apparatus
JP2011072903A (en) * 2009-09-30 2011-04-14 Shibaura Mechatronics Corp Method and device of generating bubble, and treatment apparatus employing device
JP2010234372A (en) * 2010-06-21 2010-10-21 Panasonic Electric Works Co Ltd Microbubble generator
CN107993960A (en) * 2016-10-26 2018-05-04 细美事有限公司 Substrate board treatment, process fluid processing unit and ozone decomposed method
US20210114902A1 (en) * 2016-10-26 2021-04-22 Semes Co., Ltd. Substrate processing apparatus, process fluid treating apparatus, and ozone decomposition method
CN113045072A (en) * 2021-02-10 2021-06-29 深圳市彤石科技有限公司 Multistage filtration adsorption unit and waste water recovery water purification system
WO2024214996A1 (en) * 2023-04-10 2024-10-17 김영권 Nanobubble generation nozzle

Also Published As

Publication number Publication date
JP3819732B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
US5709799A (en) Super ozonating water purifier
JP2002346351A (en) Gas dissolving device
KR101697526B1 (en) high efficient ozone-water treatment system
CN104876375A (en) Deep oxidization water treatment method and deep oxidization water treatment device
KR20130069447A (en) Method and apparatus for treating 1,4-dioxane in waste water
JP2004267940A (en) Method and apparatus for mixing/reacting gas with liquid
RU97106781A (en) METHOD AND DEVICE FOR BIOLOGICAL DESTRUCTION OF HARMFUL SUBSTANCES IN WATER
JP4003231B2 (en) Ozone water treatment equipment
JP2007222810A (en) Waste gas and wastewater treatment method and apparatus
JP2004174325A (en) Water treatment apparatus and water treatment method
KR20050010143A (en) sequencing complexed ozone hydrogen peroxide and UV lights water treatment system and method thereby
JP3858734B2 (en) Water treatment equipment
KR102056071B1 (en) Apparatus and Method of Sewage Treatment
KR101050396B1 (en) Device for injecting ozone into ballast water for a ship
JPH10230285A (en) High speed ozone reaction system
KR100348413B1 (en) Uv and ozone producing aop chamber and water-cleaning apparatus using same
JP2003266088A (en) Ozone accelerated oxidation water treatment system together using ultraviolet rays
JP3949811B2 (en) Wastewater treatment equipment
JP2006272147A (en) Ballast water treatment apparatus
CN212833012U (en) Device for realizing gas-water mixing and activating through secondary hydrodynamic cavitation and ultrasonic cavitation
JPH04135694A (en) Water treating device
KR100473651B1 (en) Wastewater treatment apparatus and method using ultrasonic generator and photo-catalytic material
KR100330361B1 (en) An apparatus and method for the effective recycle and reuse of discharged ozone
JP2003334432A (en) Gas dissolving device and water treatment device and water treatment apparatus having these
JPH11267691A (en) Water area purifying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees