JP2002345188A - Dynamo-electric rotating machine - Google Patents
Dynamo-electric rotating machineInfo
- Publication number
- JP2002345188A JP2002345188A JP2001143114A JP2001143114A JP2002345188A JP 2002345188 A JP2002345188 A JP 2002345188A JP 2001143114 A JP2001143114 A JP 2001143114A JP 2001143114 A JP2001143114 A JP 2001143114A JP 2002345188 A JP2002345188 A JP 2002345188A
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- cooling passage
- permanent magnet
- electric machine
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Iron Core Of Rotating Electric Machines (AREA)
- Motor Or Generator Cooling System (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は永久磁石式の同期電
動機など、回転電機に関する。The present invention relates to a rotating electric machine such as a permanent magnet type synchronous motor.
【0002】[0002]
【従来の技術】永久磁石式同期電動機の回転子の冷却性
能を高めるものとして、特開平11−206063号公
報に示すような永久磁石式同期電動機がある。2. Description of the Related Art A permanent magnet synchronous motor as disclosed in Japanese Patent Application Laid-Open No. H11-206063 has been proposed to enhance the cooling performance of a rotor of a permanent magnet synchronous motor.
【0003】これは図7に示すように、同期電動機の回
転子1の回転子鉄心3に、回転軸4を中心とする、同一
円周上に複数の永久磁石2を等間隔で配置し、この永久
磁石2を挿入配置する磁石挿入孔5の断面を永久磁石2
の断面よりもわずかに大きく設定しておき、回転子1が
回転したときに働く遠心力により永久磁石2が回転外方
に移動したときにできる隙間5aに冷媒を流し、永久磁
石2を直接的に冷却するようにしたものである。As shown in FIG. 7, a plurality of permanent magnets 2 are arranged on a rotor core 3 of a rotor 1 of a synchronous motor at equal intervals on the same circumference around a rotating shaft 4, The section of the magnet insertion hole 5 into which the permanent magnet 2 is inserted is
Is set to be slightly larger than the cross section of, and the refrigerant flows through the gap 5a formed when the permanent magnet 2 moves outward by centrifugal force acting when the rotor 1 rotates, and the permanent magnet 2 is directly It is designed to cool down.
【0004】永久磁石2は内部の渦電流による自己発熱
と、固定子巻線の温度上昇に基づく熱伝達とにより温度
が上昇すると性能が低下するので、永久磁石2を直接的
に冷却することにより、このような問題を回避してい
る。Since the performance of the permanent magnet 2 decreases when its temperature rises due to self-heating due to an internal eddy current and heat transfer due to the temperature rise of the stator winding, the permanent magnet 2 is directly cooled. , To avoid such problems.
【0005】[0005]
【発明が解決しようとする課題】回転子1に配置される
永久磁石2の周囲に空隙があると、永久磁石2から固定
子に向かう磁束の流れに対して空隙が大きな抵抗とな
り、電動機の出力、トルクが低下するが、上記した冷媒
を流す隙間5aは永久磁石2の内周側にあり、固定子側
である永久磁石2の外周側には空隙が無いために、出力
やトルクの低下を阻止できる。If there is a gap around the permanent magnet 2 disposed on the rotor 1, the gap becomes a large resistance to the flow of magnetic flux from the permanent magnet 2 to the stator, and the output of the motor Although the torque decreases, the gap 5a through which the coolant flows is located on the inner peripheral side of the permanent magnet 2 and there is no air gap on the outer peripheral side of the permanent magnet 2 on the stator side. Can be blocked.
【0006】しかし反面、永久磁石2の全幅に沿って均
一な厚みをもつ内周側の隙間5aが回転子鉄心3の内部
の磁束流れを阻害する抵抗となり、永久磁石2の磁力が
弱められるため、上記外周側の空隙ほどではなくとも、
これによる電動機の出力、トルクの低下は否めない。However, on the other hand, the gap 5a on the inner peripheral side having a uniform thickness along the entire width of the permanent magnet 2 becomes a resistance to obstruct the flow of magnetic flux inside the rotor core 3, and the magnetic force of the permanent magnet 2 is weakened. , But not as much as the outer circumferential gap,
It is undeniable that the output and torque of the electric motor are reduced.
【0007】本発明はこのような問題を解決することを
目的とする。An object of the present invention is to solve such a problem.
【0008】[0008]
【課題を解決するための手段】第1の発明は、固定子の
内側に間隙をもって配置される回転子を備え、回転子の
回転子鉄心に設けた回転子軸方向に延びる磁石挿入孔に
永久磁石が挿入固定されている回転電機において、前記
回転子の回転中心に対して、前記永久磁石の外周側面が
前記磁石挿入孔に密着し、永久磁石の内周側面には磁石
挿入孔に沿って冷媒が導かれる冷却通路が形成され、か
つこの冷却通路の断面形状は前記回転中心に向けて頂点
をもつ凸形状となるように形成される。According to a first aspect of the present invention, there is provided a rotor provided with a gap inside a stator, and a permanent magnet inserted in a rotor core extending in a rotor axial direction provided in a rotor core of the rotor. In a rotating electric machine in which a magnet is inserted and fixed, an outer peripheral side surface of the permanent magnet is in close contact with the magnet insertion hole with respect to a rotation center of the rotor, and an inner peripheral side surface of the permanent magnet is along the magnet insertion hole. A cooling passage through which the refrigerant is guided is formed, and a cross-sectional shape of the cooling passage is formed to be a convex shape having an apex toward the rotation center.
【0009】第2の発明は、第1の発明において、前記
冷却通路は、その基部の最大幅が永久磁石の内周側面の
一部にある略三角形断面である。According to a second aspect of the present invention, in the first aspect, the cooling passage has a substantially triangular cross section in which a maximum width of a base is part of an inner peripheral side surface of the permanent magnet.
【0010】第3の発明は、第1の発明において、前記
冷却通路は、その基部の最大幅が永久磁石の内周側面と
同一である略三角形断面である。[0010] In a third aspect based on the first aspect, the cooling passage has a substantially triangular cross section in which the maximum width of the base is the same as the inner peripheral side surface of the permanent magnet.
【0011】第4の発明は、第1の発明において、前記
冷却通路は、前記磁石挿入孔から延びる複数の溝で形成
され、各溝の頂点を接続すると略三角形となるように構
成される。In a fourth aspect based on the first aspect, the cooling passage is formed by a plurality of grooves extending from the magnet insertion hole, and is configured to be substantially triangular when connecting the apexes of the grooves.
【0012】第5の発明は、第1の発明において、前記
冷却通路が回転子の端面に開口し、回転子の一部が、回
転電機のケースの内部空間に貯留した冷媒に浸されてい
る。In a fifth aspect based on the first aspect, the cooling passage is opened at an end face of the rotor, and a part of the rotor is immersed in a refrigerant stored in an internal space of a case of the rotating electric machine. .
【0013】第6の発明は、第5の発明において、前記
回転子の側面には前記冷却通路の開口部位の近傍に冷媒
を攪拌する部材が設けられている。In a sixth aspect based on the fifth aspect, a member for stirring the refrigerant is provided near the opening of the cooling passage on a side surface of the rotor.
【0014】第7の発明は、第1の発明において、前記
回転子の回転軸に冷媒を導く通路を貫通形成し、この通
路を前記冷却通路に接続し、外部からの冷媒を冷却通路
に導くようにする。According to a seventh aspect of the present invention, in the first aspect, a passage for guiding the refrigerant to the rotating shaft of the rotor is formed through the passage, the passage is connected to the cooling passage, and the refrigerant from the outside is guided to the cooling passage. To do.
【0015】第8の発明は、固定子と回転子を備え、回
転子の回転子鉄心に設けた回転子軸方向に延びる磁石挿
入孔に永久磁石が挿入固定されている回転電機におい
て、前記永久磁石の固定子側の面が前記磁石挿入孔に密
着し、反対側の面には磁石挿入孔に沿って冷媒が導かれ
る冷却通路が形成され、かつこの冷却通路の断面形状は
前記永久磁石から遠い側に頂点をもつ凸形状となるよう
に形成される。According to an eighth aspect of the present invention, there is provided a rotating electric machine comprising a stator and a rotor, wherein a permanent magnet is inserted and fixed in a magnet insertion hole extending in a rotor axial direction provided in a rotor core of the rotor. A surface of the magnet on the stator side is in close contact with the magnet insertion hole, and a cooling passage through which the refrigerant is guided along the magnet insertion hole is formed on the opposite surface, and a cross-sectional shape of the cooling passage is defined by the permanent magnet. It is formed so as to have a convex shape having a vertex on the far side.
【0016】[0016]
【作用・効果】第1の発明では、永久磁石の内周面側を
冷媒により直接的に冷却することができ、永久磁石の温
度上昇による性能低下を防ぐ一方、永久磁石の内周側面
に形成される冷却通路の断面形状が、回転中心に向けて
凸形状となっているため、Lq/Ld比を高めること
で、リラクタンストルクを増加させ、冷却通路を設けた
ことによる磁石トルクの減少分を補償し、回転電機とし
ての総合的な出力、トルクの減少を抑制できる。According to the first aspect of the present invention, the inner peripheral surface of the permanent magnet can be directly cooled by the refrigerant to prevent the performance from being degraded due to the temperature rise of the permanent magnet, while being formed on the inner peripheral side of the permanent magnet. Since the cross-sectional shape of the cooling passage to be formed is convex toward the center of rotation, increasing the Lq / Ld ratio increases reluctance torque and reduces the decrease in magnet torque due to the provision of the cooling passage. By compensating, it is possible to suppress a decrease in overall output and torque as a rotating electric machine.
【0017】第2の発明では、冷却通路の断面基部を永
久磁石の内周側面の一部とすることで、より一層Lq/
Ld比を高めることができ、それだけ出力、トルクの低
下抑制効果が高められる。According to the second aspect of the present invention, the base of the cross section of the cooling passage is formed as a part of the inner peripheral side surface of the permanent magnet, so that the ratio Lq /
The Ld ratio can be increased, and the effect of suppressing reduction in output and torque can be increased accordingly.
【0018】第3の発明では、冷却通路の断面基部を永
久磁石の全幅と一致させることにより、永久磁石の冷却
を効率よく行える。According to the third aspect of the present invention, the permanent magnet can be efficiently cooled by matching the cross-section base of the cooling passage with the entire width of the permanent magnet.
【0019】第4の発明では、冷却通路を複数の溝で形
成することにより、上記と同じくLq/Ld比を高める
ことができる。According to the fourth aspect of the invention, by forming the cooling passage with a plurality of grooves, the Lq / Ld ratio can be increased as described above.
【0020】第5の発明では、回転子が冷媒に浸ってい
るため、冷却通路に容易に冷媒を流すことができ、冷却
系の構成が簡略化できる。In the fifth aspect, since the rotor is immersed in the refrigerant, the refrigerant can easily flow through the cooling passage, and the configuration of the cooling system can be simplified.
【0021】第6の発明では、回転子の回転により冷媒
が攪拌され、効率よく冷却通路に冷媒を導くことができ
る。In the sixth aspect, the refrigerant is stirred by the rotation of the rotor, and the refrigerant can be efficiently guided to the cooling passage.
【0022】第7の発明では、回転子の内部を冷媒が流
れ、外部に漏れることがなく、このため効率のよい冷却
が可能となり、また回転子の回転抵抗とならず、機械効
率も低下することがない。According to the seventh aspect of the present invention, the refrigerant does not flow inside the rotor and does not leak to the outside. Therefore, efficient cooling is possible, and there is no rotational resistance of the rotor, and the mechanical efficiency is reduced. Nothing.
【0023】第8の発明では、固定子の外側に回転子が
配置されている回転電機であっても、第1の発明と同じ
ような作用、効果を生じる。According to the eighth aspect, the same function and effect as those of the first aspect are obtained even with a rotating electric machine in which a rotor is disposed outside the stator.
【0024】[0024]
【実施の形態】以下本発明の同期電動機に適用した実施
の形態について図面にしたがって説明する。Embodiments of the present invention applied to a synchronous motor will be described below with reference to the drawings.
【0025】図1に示す第1の実施形態において、この
図には電動機の回転子11のみが示され、回転子11の
外周側に配置される固定子は省略されている。In the first embodiment shown in FIG. 1, only the rotor 11 of the electric motor is shown in this figure, and the stator arranged on the outer peripheral side of the rotor 11 is omitted.
【0026】回転子11を構成する回転子鉄心13に
は、回転軸14を中心とする同一円周上に等間隔で複数
の永久磁石12が配設されている。この例では8個の永
久磁石12が、隣接する磁極が互いに相違するように配
置される。A plurality of permanent magnets 12 are arranged on a rotor core 13 constituting the rotor 11 at equal intervals on the same circumference around a rotation shaft 14. In this example, eight permanent magnets 12 are arranged such that adjacent magnetic poles are different from each other.
【0027】永久磁石12は回転子鉄心13に設けた、
回転子軸方向に延びる磁石挿入孔16に挿入固定され
る。The permanent magnet 12 is provided on the rotor core 13.
It is inserted and fixed in a magnet insertion hole 16 extending in the axial direction of the rotor.
【0028】ここで、磁石挿入孔16の断面形状は、回
転軸14を中心にして、永久磁石12の外周側では永久
磁石12に密着するようにその外面と同一な平面16a
に形成されるが、その内周側は冷媒を流す冷却通路15
となるように回転軸14に向けて凸となる略三角の山形
の傾斜面16bが形成される。Here, the cross-sectional shape of the magnet insertion hole 16 is the same as the outer surface of the permanent magnet 12 so as to be in close contact with the outer surface of the permanent magnet 12 around the rotary shaft 14.
The inner circumferential side of the cooling passage 15
A substantially triangular mountain-shaped inclined surface 16b protruding toward the rotating shaft 14 is formed such that
【0029】つまり、冷却通路15の断面は、その基部
が永久磁石12の円周方向の幅よりも小さく、かつ回転
軸14の軸心に向けて頂部をもつ三角形に形成される。That is, the cross section of the cooling passage 15 is formed in a triangular shape whose base is smaller than the circumferential width of the permanent magnet 12 and whose top is directed toward the axis of the rotating shaft 14.
【0030】このように冷却通路15を形成すること
で、回転子11のLq/Ld比、すなわち回転子q軸方
向のインダクタンス(Lq)と、d軸方向のインダクタ
ンス(Ld)との比を高めることができ、永久磁石12
の内周側に設けた冷却通路15による空隙のため、永久
磁石12によるトルクが減少しても、リラクタンストル
クが増加するため電動機としての出力、トルクの低下は
防止できる。By forming the cooling passage 15 in this manner, the Lq / Ld ratio of the rotor 11, that is, the ratio between the inductance (Lq) in the q-axis direction of the rotor and the inductance (Ld) in the d-axis direction is increased. Can be a permanent magnet 12
Due to the gap formed by the cooling passage 15 provided on the inner peripheral side of the motor, even if the torque by the permanent magnet 12 decreases, the reluctance torque increases, so that the output and torque of the electric motor can be prevented from lowering.
【0031】永久磁石12は接着剤を塗布した状態で磁
石挿入孔16に挿入することで固定されるが、このとき
冷却通路15の冷媒と接触する面には接着剤を塗布せ
ず、冷却効率の低下を防いでいる。The permanent magnet 12 is fixed by inserting it into the magnet insertion hole 16 with the adhesive applied, but at this time, the adhesive is not applied to the surface of the cooling passage 15 which contacts the refrigerant, and the cooling efficiency is reduced. To prevent the decline.
【0032】なおこの場合、永久磁石12の内周側に冷
却通路15があるため、接着剤を外周面側に塗布した永
久磁石12を磁石挿入孔16に挿入したのち、冷却通路
15に治具などを挿入して永久磁石12を外周側に向け
て強く押し付けることが可能で、その状態で接着剤を固
化させれば接着剤層を極めて薄くできる。この接着剤層
は磁気回路的には空隙と等価なため、とくに回転子11
の外周側に空隙があると、永久磁石2から固定子に向か
う磁束の流れに対して空隙が大きな抵抗となり、電動機
の出力、トルクを低下させる原因となるが、接着剤層が
薄くなることでこのような問題も極力回避できる。In this case, since the cooling passage 15 is provided on the inner peripheral side of the permanent magnet 12, the permanent magnet 12 coated with the adhesive on the outer peripheral surface side is inserted into the magnet insertion hole 16, and then the jig is inserted into the cooling passage 15. For example, the permanent magnet 12 can be strongly pressed toward the outer peripheral side by inserting the adhesive into the outer periphery, and if the adhesive is solidified in this state, the adhesive layer can be made extremely thin. Since this adhesive layer is equivalent to an air gap in terms of a magnetic circuit, the rotor 11
If there is a gap on the outer peripheral side of the magnet, the gap becomes a large resistance to the flow of the magnetic flux from the permanent magnet 2 to the stator, which causes a decrease in the output and torque of the electric motor. Such a problem can be avoided as much as possible.
【0033】電動機の回転により、回転子11の永久磁
石12は、永久磁石内を流れる渦電流による自己発熱
と、固定子巻線の発熱による熱伝達により温度上昇し、
この温度上昇により磁力が弱まり、電動機の出力、トル
クが減少したり、あるいは温度によっては永久減磁が起
こると初期性能を維持できないことがある。As the motor rotates, the temperature of the permanent magnet 12 of the rotor 11 rises due to self-heating caused by an eddy current flowing in the permanent magnet and heat transfer caused by heating of the stator winding.
If the temperature rise causes the magnetic force to weaken and the output and torque of the motor decrease, or if the temperature causes permanent demagnetization, the initial performance may not be maintained.
【0034】しかし、上記のように永久磁石12の内周
側には冷却通路15が形成され、ここに絶縁油などの冷
媒を流すことで、永久磁石12を効率よく冷却すること
ができ、その温度上昇を効果的に抑制することが可能と
なる。なお、冷却通路15への冷媒の供給は、具体的に
は、後で説明する図4、図6などの方法による。However, the cooling passage 15 is formed on the inner peripheral side of the permanent magnet 12 as described above, and the permanent magnet 12 can be efficiently cooled by flowing a coolant such as insulating oil through the cooling passage 15. The temperature rise can be effectively suppressed. Note that the supply of the refrigerant to the cooling passage 15 is specifically performed by a method described later with reference to FIGS.
【0035】次に図2の実施形態を説明する。Next, the embodiment shown in FIG. 2 will be described.
【0036】これは冷却通路15の基部を永久磁石12
の円周方向の幅と同一に拡幅し、冷媒の永久磁石12と
の接触面積を大きくして、永久磁石12の冷却効率をさ
らに高めるようにしたものである。This is because the base of the cooling passage 15 is
Of the refrigerant in the circumferential direction, the contact area of the refrigerant with the permanent magnet 12 is increased, and the cooling efficiency of the permanent magnet 12 is further increased.
【0037】なお、磁石挿入孔16の山形の傾斜面16
bについては、その傾斜角度が図1よりも小さく設定さ
れる。The angled slope 16 of the magnet insertion hole 16
For b, the inclination angle is set smaller than that in FIG.
【0038】図3の実施形態は、永久磁石12の内周側
において、磁石挿入孔16から互いに平行で奥行きの異
なる複数の溝16cを設け、かつ各溝16cの頂点を結
んでいくと山形の傾斜面となるようにし、これら溝16
cにより冷却通路15を形成したものである。In the embodiment shown in FIG. 3, a plurality of grooves 16c having different depths are provided parallel to each other from the magnet insertion hole 16 on the inner peripheral side of the permanent magnet 12, and the apex of each groove 16c is connected to form a mountain shape. The grooves 16
The cooling passage 15 is formed by c.
【0039】この場合には、複数の溝16cで冷却通路
15を形成することで、上記したLq/Ld比をさらに
高めることができ、その分だけ出力トルクの減少を抑制
することが可能となる。また、永久磁石12は磁石挿入
孔16の内周側でも支持されるので、永久磁石12の保
持がそれだけ確実になる。In this case, by forming the cooling passage 15 with the plurality of grooves 16c, the above-described Lq / Ld ratio can be further increased, and a decrease in the output torque can be suppressed accordingly. . Further, since the permanent magnet 12 is also supported on the inner peripheral side of the magnet insertion hole 16, the holding of the permanent magnet 12 becomes more reliable.
【0040】さらに図4の実施形態を説明する。Further, the embodiment shown in FIG. 4 will be described.
【0041】図4は電動機の全体的な断面図であり、回
転子11の軸方向両側にはエンドプレート21が配置さ
れ、エンドプレート21は回転軸14に溶接など固定さ
れ、回転子鉄心13を圧縮状態で挟み込んで保持し、回
転子11に発生する回転トルクを回転子鉄心13からエ
ンドプレート21へと互いの接触摩擦力により伝達し、
さらに回転軸14へと伝えるようになっている。FIG. 4 is an overall sectional view of the electric motor. End plates 21 are arranged on both sides of the rotor 11 in the axial direction. The end plates 21 are fixed to the rotating shaft 14 by welding or the like. In a state of being compressed and held, the rotating torque generated in the rotor 11 is transmitted from the rotor core 13 to the end plate 21 by mutual contact frictional force,
Further, the power is transmitted to the rotation shaft 14.
【0042】回転子11の回転軸14はケース20に対
して、その貫通部分に配置した軸受(図示せず)を介し
て回転自在に支持される。回転子11の外周側には所定
の間隙をもって固定子17が配置され、この固定子17
はコイル18が巻回された状態で、ケース20の内面に
固定支持される。The rotating shaft 14 of the rotor 11 is rotatably supported by the case 20 via a bearing (not shown) disposed at a penetrating portion thereof. A stator 17 is arranged on the outer peripheral side of the rotor 11 with a predetermined gap.
Is fixedly supported on the inner surface of the case 20 with the coil 18 wound.
【0043】ケース20の内部は、基本的には回転子1
1、固定子17を除いて、密閉された内部空間23が形
成され、この内部空間23にはケース20の一方の側面
上方に設けた導入口24aから冷媒が供給され、かつこ
の冷媒はケース20の他方の側面下方に設けた排出口2
4bから排出される。The interior of the case 20 basically includes the rotor 1
1. Except for the stator 17, a closed internal space 23 is formed, and a refrigerant is supplied to the internal space 23 from an inlet 24a provided above one side surface of the case 20. Outlet 2 provided below the other side of the
4b.
【0044】前記エンドプレート21には回転子11に
設けた永久磁石12の冷却通路15と対応する位置に貫
通孔22が設けられ、これにより冷却通路15は回転子
11の外部と接続している。The end plate 21 is provided with a through hole 22 at a position corresponding to the cooling passage 15 of the permanent magnet 12 provided in the rotor 11, whereby the cooling passage 15 is connected to the outside of the rotor 11. .
【0045】ケース20の内部空間23には、常時所定
量の冷媒が溜められるように、冷媒の供給量が調整さ
れ、これにより回転子11の回転に伴い各冷却通路15
にはこの貯留冷媒がエンドプレート21の貫通孔22を
介して導かれ、永久磁石12の冷却を行うようになって
いる。In the internal space 23 of the case 20, the supply amount of the refrigerant is adjusted so that a predetermined amount of the refrigerant is always stored.
The stored refrigerant is guided through the through-hole 22 of the end plate 21 to cool the permanent magnet 12.
【0046】とくにこの場合には、回転子11の一部が
冷媒に浸されているので、永久磁石12とともに回転子
鉄心13の冷却も効果的に行える。In this case, in particular, since a part of the rotor 11 is immersed in the refrigerant, the cooling of the rotor core 13 together with the permanent magnet 12 can be performed effectively.
【0047】また、図5の実施形態は、図4の実施形態
において、回転子11の側面のエンドプレート21に、
貫通孔22の外側近傍でかつ回転方向の後側にフィン2
5を設け、回転子11が回転したときにフィン25によ
り内部空間23に貯留した冷媒を積極的に掻き込み、冷
却通路15への冷媒の流れを向上させるようにしたもの
である。The embodiment shown in FIG. 5 differs from the embodiment shown in FIG.
The fin 2 is provided near the outside of the through hole 22 and on the rear side in the rotational direction.
5 is provided so that the refrigerant stored in the internal space 23 is actively scraped by the fins 25 when the rotor 11 rotates, so that the flow of the refrigerant to the cooling passage 15 is improved.
【0048】このようにすると、さらに効率よく永久磁
石12の冷却を行うことができる。This makes it possible to cool the permanent magnet 12 more efficiently.
【0049】なお、エンドプレート21にフィン25を
設ける代わりにエンドプレート21の一部を削って同等
の攪拌効果をもたらすこともできる。また、この他のポ
ンプ、スクリュウ、インペラなどの手段により冷媒を冷
却通路15に循環させるようにしてもよい。[0049] Instead of providing the fins 25 on the end plate 21, a part of the end plate 21 may be shaved to provide an equivalent stirring effect. Further, the refrigerant may be circulated through the cooling passage 15 by other means such as a pump, a screw, and an impeller.
【0050】次に図6の実施形態を説明すると、これは
冷媒を冷却通路15に導くための通路を回転軸14の内
部に形成し、ケース20の内部空間23は冷媒が流れる
ことのない単なる空間にしてある。Next, the embodiment shown in FIG. 6 will be described. In this embodiment, a passage for guiding the refrigerant to the cooling passage 15 is formed inside the rotary shaft 14, and the internal space 23 of the case 20 is simply a passage through which the refrigerant does not flow. It is a space.
【0051】このため、回転軸14の軸心には上流側通
路26aと、下流側通路26bが形成され、これらと冷
却通路15の両端部を連通するようにエンドプレート2
1には半径方向に延びる分岐通路26cがそれぞれ形成
される。For this reason, an upstream passage 26 a and a downstream passage 26 b are formed in the axis of the rotary shaft 14, and the end plate 2 is connected to these two ends of the cooling passage 15.
1 are each formed with a branch passage 26c extending in the radial direction.
【0052】上流側通路26aから導入された冷媒は、
分岐通路26cにより冷却通路15の一方端に流入し、
その下流側へと永久磁石12を冷却しながら流れ、さら
に分岐通路26cより下流側通路26bへと流れ出る。The refrigerant introduced from the upstream passage 26a is
It flows into one end of the cooling passage 15 through the branch passage 26c,
It flows to the downstream side while cooling the permanent magnet 12, and then flows out from the branch passage 26c to the downstream passage 26b.
【0053】この場合には、内部空間23に冷媒が無
く、回転子11と固定子17の間の冷媒によるフリクシ
ョントルクが発生しないため、回転子11の機械損失が
それだけ小さくなる。また、冷却通路15を含めて冷却
系が閉回路となるので、永久磁石12の冷却のための設
計が容易となる。In this case, since there is no refrigerant in the internal space 23 and no friction torque is generated by the refrigerant between the rotor 11 and the stator 17, the mechanical loss of the rotor 11 is reduced accordingly. Further, since the cooling system including the cooling passage 15 has a closed circuit, the design for cooling the permanent magnet 12 is facilitated.
【0054】上記実施の形態では本発明を電動機に適用
した例を示したが、発電機についても同様に適用できる
ことは明白である。また、永久磁石の断面は長方形に限
らず、円弧型、蒲鉾型などの形状が採用可能である。In the above embodiment, an example in which the present invention is applied to a motor is shown. However, it is apparent that the present invention can be similarly applied to a generator. Further, the cross section of the permanent magnet is not limited to a rectangle, but may be an arc shape, a kamaboko shape, or the like.
【0055】また、固定子の外側に円筒状の回転子が同
心的に配置される回転電機にも本発明を適用することが
できる。The present invention is also applicable to a rotating electric machine in which a cylindrical rotor is concentrically arranged outside the stator.
【0056】本発明は上記実施の形態に限定されるもの
ではなく、本発明の技術的思想の範囲内で当業者がなし
うる、さまざまな変更、改良が含まれるものである。The present invention is not limited to the above-described embodiment, but includes various changes and improvements that can be made by those skilled in the art within the scope of the technical idea of the present invention.
【図1】本発明の第1の実施形態の回転子の断面図であ
る。FIG. 1 is a sectional view of a rotor according to a first embodiment of the present invention.
【図2】第2の実施形態の回転子の一部を示す断面図で
ある。FIG. 2 is a cross-sectional view illustrating a part of a rotor according to a second embodiment.
【図3】第3の実施形態の回転子の一部を示す断面図で
ある。FIG. 3 is a sectional view showing a part of a rotor according to a third embodiment.
【図4】第4の実施形態を示す電動機の断面図である。FIG. 4 is a cross-sectional view of an electric motor according to a fourth embodiment.
【図5】第5の実施形態の回転子側面図である。FIG. 5 is a rotor side view of a fifth embodiment.
【図6】第6の実施形態の電動機の断面図である。FIG. 6 is a sectional view of an electric motor according to a sixth embodiment.
【図7】従来例の一部の断面図である。FIG. 7 is a partial cross-sectional view of a conventional example.
11 回転子 12 永久磁石 13 回転子鉄心 14 回転軸 15 冷却通路 16 磁石挿入孔 16a 平面 16b 傾斜面 DESCRIPTION OF SYMBOLS 11 Rotor 12 Permanent magnet 13 Rotor iron core 14 Rotation axis 15 Cooling passage 16 Magnet insertion hole 16a Plane 16b Inclined surface
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // H02K 1/32 H02K 1/32 Z (72)発明者 菊池 俊雄 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 恒吉 孝 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 5H002 AA10 AB08 AD04 AE00 5H609 BB03 BB19 BB21 PP07 QQ14 RR06 RR36 RR42 RR69 RR73 5H621 BB07 HH01 JK11 5H622 AA06 CA02 CA07 CA10 CB01 PP10 PP19 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) // H02K 1/32 H02K 1/32 Z (72) Inventor Toshio Kikuchi 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Automobile Stock In-house (72) Inventor Takashi Tsuneyoshi 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa F-term (reference) 5H002 AA10 AB08 AD04 AE00 5H609 BB03 BB19 BB21 PP07 QQ14 RR06 RR36 RR42 RR69 RR73 5H621 BB07 HH01 AK11 5H CA02 CA07 CA10 CB01 PP10 PP19
Claims (8)
転子を備え、回転子の回転子鉄心に設けた回転子軸方向
に延びる磁石挿入孔に永久磁石が挿入固定されている回
転電機において、 前記回転子の回転中心に対して、前記永久磁石の外周側
面が前記磁石挿入孔に密着し、永久磁石の内周側面には
磁石挿入孔に沿って冷媒が導かれる冷却通路が形成さ
れ、かつこの冷却通路の断面形状は前記回転中心に向け
て頂点をもつ凸形状となるように形成されることを特徴
とする回転電機。1. A rotating electric machine comprising a rotor arranged inside a stator with a gap, and a permanent magnet inserted and fixed in a magnet insertion hole extending in a rotor axial direction provided in a rotor core of the rotor. An outer peripheral side surface of the permanent magnet is in close contact with the magnet insertion hole with respect to a rotation center of the rotor, and a cooling passage through which a refrigerant is guided along the magnet insertion hole is formed on an inner peripheral side surface of the permanent magnet. The rotating electric machine is characterized in that the cross-sectional shape of the cooling passage is formed to be a convex shape having an apex toward the rotation center.
磁石の内周側面の一部にある略三角形断面である請求項
1に記載の回転電機。2. The rotating electric machine according to claim 1, wherein said cooling passage has a substantially triangular cross section in which a maximum width of a base portion is part of an inner peripheral side surface of the permanent magnet.
磁石の内周側面と同一である略三角形断面である請求項
1に記載の回転電機。3. The rotating electric machine according to claim 1, wherein the cooling passage has a substantially triangular cross section in which a maximum width of a base is the same as an inner peripheral side surface of the permanent magnet.
る複数の溝で形成され、各溝の頂点を接続すると略三角
形となるように構成される請求項1に記載の回転電機。4. The rotating electric machine according to claim 1, wherein the cooling passage is formed by a plurality of grooves extending from the magnet insertion holes, and is configured to be substantially triangular when connecting the vertexes of the grooves.
転子の一部が、回転電機のケースの内部空間に貯留した
冷媒に浸されている請求項1に記載の回転電機。5. The rotating electric machine according to claim 1, wherein the cooling passage is opened at an end face of the rotor, and a part of the rotor is immersed in a refrigerant stored in an internal space of a case of the rotating electric machine.
部位の近傍に冷媒を攪拌する部材が設けられている請求
項5に記載の回転電機。6. The rotating electric machine according to claim 5, wherein a member for stirring the refrigerant is provided on a side surface of the rotor near an opening of the cooling passage.
通形成し、この通路を前記冷却通路に接続し、外部から
の冷媒を冷却通路に導くようにした請求項1に記載の回
転電機。7. The rotation according to claim 1, wherein a passage for guiding the refrigerant to the rotating shaft of the rotor is formed through the passage, and this passage is connected to the cooling passage, and the refrigerant from the outside is guided to the cooling passage. Electric machine.
心に設けた回転子軸方向に延びる磁石挿入孔に永久磁石
が挿入固定されている回転電機において、 前記永久磁石の固定子側の面が前記磁石挿入孔に密着
し、反対側の面には磁石挿入孔に沿って冷媒が導かれる
冷却通路が形成され、かつこの冷却通路の断面形状は前
記永久磁石から遠い側に頂点をもつ凸形状となるように
形成されることを特徴とする回転電機。8. A rotary electric machine comprising a stator and a rotor, wherein a permanent magnet is inserted and fixed in a magnet insertion hole extending in a rotor axial direction provided in a rotor core of the rotor. The surface on the side is in close contact with the magnet insertion hole, and a cooling passage through which the refrigerant is guided along the magnet insertion hole is formed on the opposite surface, and the cross-sectional shape of the cooling passage is apex far away from the permanent magnet. A rotating electric machine formed to have a convex shape having
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001143114A JP4715028B2 (en) | 2001-05-14 | 2001-05-14 | Rotating electric machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001143114A JP4715028B2 (en) | 2001-05-14 | 2001-05-14 | Rotating electric machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002345188A true JP2002345188A (en) | 2002-11-29 |
JP4715028B2 JP4715028B2 (en) | 2011-07-06 |
Family
ID=18989303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001143114A Expired - Lifetime JP4715028B2 (en) | 2001-05-14 | 2001-05-14 | Rotating electric machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4715028B2 (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006067777A (en) * | 2004-07-30 | 2006-03-09 | Honda Motor Co Ltd | Cooling structure for rotary electric machine |
JP2008086130A (en) * | 2006-09-28 | 2008-04-10 | Honda Motor Co Ltd | Motor |
JP2008219960A (en) * | 2007-02-28 | 2008-09-18 | Toyota Central R&D Labs Inc | Rotary electric machine |
WO2009014197A1 (en) * | 2007-07-20 | 2009-01-29 | Toyota Jidosha Kabushiki Kaisha | Rotary machine |
WO2009014172A1 (en) * | 2007-07-26 | 2009-01-29 | Meidensha Corporation | Wide range constant output permanent magnet motor |
JP2009050148A (en) * | 2007-07-26 | 2009-03-05 | Meidensha Corp | Permanent-magnet electric motor with constant output in wide range |
EP1763121A3 (en) * | 2005-09-07 | 2009-08-12 | Kabushi Kaisha Toshiba | Rotating electrical machine |
JP2009278838A (en) * | 2008-05-19 | 2009-11-26 | Meidensha Corp | Outer rotor type permanent magnet type motor |
JP2009303293A (en) * | 2008-06-10 | 2009-12-24 | Toyota Motor Corp | Rotor of rotating electric machine |
DE112008000535T5 (en) | 2007-07-13 | 2009-12-24 | Aisin AW Co., Ltd., Anjo-shi | Cooling structure and cooling method of a rotary electric machine |
DE112008002978T5 (en) | 2007-11-09 | 2010-11-04 | Toyota Jidosha Kabushiki Kaisha, Toyota-shi | Electric motor and drive device |
JP2010252598A (en) * | 2009-04-20 | 2010-11-04 | Honda Motor Co Ltd | Motor |
US8080908B2 (en) | 2005-11-09 | 2011-12-20 | Kabushiki Kaisha Toshiba | Cooling structure for rotor core in electric rotating machine |
JP2012105465A (en) * | 2010-11-11 | 2012-05-31 | Toyota Motor Corp | Rotating electric machine |
WO2012086228A1 (en) | 2010-12-22 | 2012-06-28 | 株式会社Ihi | Rotary machine |
JP2013093956A (en) * | 2011-10-25 | 2013-05-16 | Mitsubishi Electric Corp | Sealed compressor, refrigeration cycle device incorporating sealed compressor, and air conditioner incorporating refrigeration cycle device |
JP2013099050A (en) * | 2011-10-31 | 2013-05-20 | Toyota Industries Corp | Rotor of permanent magnet rotary electric machine and permanent magnet rotary electric machine |
US8928195B2 (en) | 2010-04-23 | 2015-01-06 | Ihi Corporation | Rotary machine |
WO2015019402A1 (en) * | 2013-08-05 | 2015-02-12 | 三菱電機株式会社 | Permanent magnet embedded type rotating electric machine |
US9030062B2 (en) | 2009-10-16 | 2015-05-12 | Toyota Jidosha Kabushiki Kaisha | Cooling structure of rotating electric machine |
WO2016148294A1 (en) * | 2015-03-18 | 2016-09-22 | アイシン・エィ・ダブリュ株式会社 | Rotor for dynamo-electric machine and manufacturing method |
JP2017089766A (en) * | 2015-11-11 | 2017-05-25 | 国立大学法人北海道大学 | Three-axis active control type magnetic bearing and its assembly method |
WO2017163383A1 (en) * | 2016-03-24 | 2017-09-28 | 三菱電機株式会社 | Permanent-magnet electric motor, compressor, and air-conditioner |
DE102017201390A1 (en) | 2017-01-30 | 2018-08-02 | Audi Ag | Rotor for an electric machine, electric machine, in particular asynchronous machine, for a motor vehicle and motor vehicle |
JP2020014355A (en) * | 2018-07-20 | 2020-01-23 | 現代自動車株式会社Hyundai Motor Company | motor |
US10658895B2 (en) | 2015-05-15 | 2020-05-19 | Mitsubishi Electric Corporation | Rotary electric machine |
DE102018222469A1 (en) | 2018-12-20 | 2020-06-25 | Audi Ag | Rotor for an electric motor |
CN111384803A (en) * | 2018-12-27 | 2020-07-07 | 本田技研工业株式会社 | Rotor of rotating electric machine |
EP3703227A1 (en) * | 2019-02-27 | 2020-09-02 | Kabushiki Kaisha Toshiba | Rotary electric device |
CN113424398A (en) * | 2019-03-27 | 2021-09-21 | 大金工业株式会社 | Electric motor |
CN113519107A (en) * | 2019-02-25 | 2021-10-19 | Lg电子株式会社 | Rotor and motor provided with the same |
US11509194B2 (en) | 2017-03-21 | 2022-11-22 | Mitsubishi Electric Corporation | Motor with rotor and endplates with blade parts and cooling hole |
CN115441681A (en) * | 2022-09-23 | 2022-12-06 | 重庆通环新能源科技有限公司 | Power generation system with stacked structure |
US12149124B2 (en) | 2018-03-22 | 2024-11-19 | Fujitsu General Limited | Compressor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111371221A (en) * | 2018-12-25 | 2020-07-03 | 珠海格力电器股份有限公司 | Motor rotor, compressor, refrigerant circulation system and refrigeration equipment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58186776U (en) * | 1982-06-07 | 1983-12-12 | 三菱電機株式会社 | liquid cooled rotating electric machine |
JPH08242567A (en) * | 1995-03-02 | 1996-09-17 | Daido Steel Co Ltd | Synchronous motor |
JPH08251891A (en) * | 1995-02-21 | 1996-09-27 | Siemens Ag | Hybrid exciting electric rotary machine |
JPH11275784A (en) * | 1999-02-17 | 1999-10-08 | Hitachi Ltd | Electric vehicle |
JP2000213490A (en) * | 1999-01-26 | 2000-08-02 | Aisin Seiki Co Ltd | Electrically-driven water pump |
-
2001
- 2001-05-14 JP JP2001143114A patent/JP4715028B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58186776U (en) * | 1982-06-07 | 1983-12-12 | 三菱電機株式会社 | liquid cooled rotating electric machine |
JPH08251891A (en) * | 1995-02-21 | 1996-09-27 | Siemens Ag | Hybrid exciting electric rotary machine |
JPH08242567A (en) * | 1995-03-02 | 1996-09-17 | Daido Steel Co Ltd | Synchronous motor |
JP2000213490A (en) * | 1999-01-26 | 2000-08-02 | Aisin Seiki Co Ltd | Electrically-driven water pump |
JPH11275784A (en) * | 1999-02-17 | 1999-10-08 | Hitachi Ltd | Electric vehicle |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006067777A (en) * | 2004-07-30 | 2006-03-09 | Honda Motor Co Ltd | Cooling structure for rotary electric machine |
JP4664737B2 (en) * | 2004-07-30 | 2011-04-06 | 本田技研工業株式会社 | Cooling structure of rotating electric machine |
US7705503B2 (en) | 2005-09-07 | 2010-04-27 | Kabushiki Kaisha Toshiba | Rotating electrical machine |
EP1763121A3 (en) * | 2005-09-07 | 2009-08-12 | Kabushi Kaisha Toshiba | Rotating electrical machine |
US8080908B2 (en) | 2005-11-09 | 2011-12-20 | Kabushiki Kaisha Toshiba | Cooling structure for rotor core in electric rotating machine |
JP2008086130A (en) * | 2006-09-28 | 2008-04-10 | Honda Motor Co Ltd | Motor |
JP2008219960A (en) * | 2007-02-28 | 2008-09-18 | Toyota Central R&D Labs Inc | Rotary electric machine |
DE112008000535T5 (en) | 2007-07-13 | 2009-12-24 | Aisin AW Co., Ltd., Anjo-shi | Cooling structure and cooling method of a rotary electric machine |
US7911091B2 (en) | 2007-07-13 | 2011-03-22 | Aisin Aw Co., Ltd. | Cooling structure and cooling method of rotating electrical machine |
WO2009014197A1 (en) * | 2007-07-20 | 2009-01-29 | Toyota Jidosha Kabushiki Kaisha | Rotary machine |
JP2009050148A (en) * | 2007-07-26 | 2009-03-05 | Meidensha Corp | Permanent-magnet electric motor with constant output in wide range |
WO2009014172A1 (en) * | 2007-07-26 | 2009-01-29 | Meidensha Corporation | Wide range constant output permanent magnet motor |
US8242646B2 (en) | 2007-11-09 | 2012-08-14 | Toyota Jidosha Kabushiki Kaisha | Rotating electric machine and drive device |
DE112008002978T5 (en) | 2007-11-09 | 2010-11-04 | Toyota Jidosha Kabushiki Kaisha, Toyota-shi | Electric motor and drive device |
JP2009278838A (en) * | 2008-05-19 | 2009-11-26 | Meidensha Corp | Outer rotor type permanent magnet type motor |
JP2009303293A (en) * | 2008-06-10 | 2009-12-24 | Toyota Motor Corp | Rotor of rotating electric machine |
JP2010252598A (en) * | 2009-04-20 | 2010-11-04 | Honda Motor Co Ltd | Motor |
US9030062B2 (en) | 2009-10-16 | 2015-05-12 | Toyota Jidosha Kabushiki Kaisha | Cooling structure of rotating electric machine |
US8928195B2 (en) | 2010-04-23 | 2015-01-06 | Ihi Corporation | Rotary machine |
EP2562914A4 (en) * | 2010-04-23 | 2016-06-22 | Ihi Corp | Rotating machine |
JP2012105465A (en) * | 2010-11-11 | 2012-05-31 | Toyota Motor Corp | Rotating electric machine |
WO2012086228A1 (en) | 2010-12-22 | 2012-06-28 | 株式会社Ihi | Rotary machine |
US10673306B2 (en) | 2010-12-22 | 2020-06-02 | Ihi Corporation | Rotary machine |
JP2013093956A (en) * | 2011-10-25 | 2013-05-16 | Mitsubishi Electric Corp | Sealed compressor, refrigeration cycle device incorporating sealed compressor, and air conditioner incorporating refrigeration cycle device |
JP2013099050A (en) * | 2011-10-31 | 2013-05-20 | Toyota Industries Corp | Rotor of permanent magnet rotary electric machine and permanent magnet rotary electric machine |
WO2015019402A1 (en) * | 2013-08-05 | 2015-02-12 | 三菱電機株式会社 | Permanent magnet embedded type rotating electric machine |
JPWO2015019402A1 (en) * | 2013-08-05 | 2017-03-02 | 三菱電機株式会社 | Permanent magnet embedded rotary electric machine |
EP3032709A4 (en) * | 2013-08-05 | 2017-04-26 | Mitsubishi Electric Corporation | Permanent magnet embedded type rotating electric machine |
US9991754B2 (en) | 2013-08-05 | 2018-06-05 | Mitsubishi Electric Corporation | Embedded permanent magnet rotary electric machine |
CN107408851A (en) * | 2015-03-18 | 2017-11-28 | 爱信艾达株式会社 | Rotor for dynamo-electric machine and manufacture method |
JPWO2016148294A1 (en) * | 2015-03-18 | 2017-08-31 | アイシン・エィ・ダブリュ株式会社 | Rotor for rotating electrical machine and manufacturing method |
US20170353067A1 (en) * | 2015-03-18 | 2017-12-07 | Aisin Aw Co., Ltd. | Rotor for rotory electric machine and manufacturing method |
CN107408851B (en) * | 2015-03-18 | 2020-01-03 | 爱信艾达株式会社 | Rotor for rotating electric machine and manufacturing method |
US10714995B2 (en) | 2015-03-18 | 2020-07-14 | Aisin Aw Co., Ltd. | Rotor for rotary electric machine and manufacturing method |
WO2016148294A1 (en) * | 2015-03-18 | 2016-09-22 | アイシン・エィ・ダブリュ株式会社 | Rotor for dynamo-electric machine and manufacturing method |
US10658895B2 (en) | 2015-05-15 | 2020-05-19 | Mitsubishi Electric Corporation | Rotary electric machine |
JP2017089766A (en) * | 2015-11-11 | 2017-05-25 | 国立大学法人北海道大学 | Three-axis active control type magnetic bearing and its assembly method |
JPWO2017163383A1 (en) * | 2016-03-24 | 2018-07-26 | 三菱電機株式会社 | Permanent magnet motor, compressor, and air conditioner |
WO2017163383A1 (en) * | 2016-03-24 | 2017-09-28 | 三菱電機株式会社 | Permanent-magnet electric motor, compressor, and air-conditioner |
US10601272B2 (en) | 2017-01-30 | 2020-03-24 | Audi Ag | Rotor for an electrical machine, electrical machine, in particular an asynchronous machine for a motor vehicle, and motor vehicle |
DE102017201390A1 (en) | 2017-01-30 | 2018-08-02 | Audi Ag | Rotor for an electric machine, electric machine, in particular asynchronous machine, for a motor vehicle and motor vehicle |
US11509194B2 (en) | 2017-03-21 | 2022-11-22 | Mitsubishi Electric Corporation | Motor with rotor and endplates with blade parts and cooling hole |
US12149124B2 (en) | 2018-03-22 | 2024-11-19 | Fujitsu General Limited | Compressor |
JP2020014355A (en) * | 2018-07-20 | 2020-01-23 | 現代自動車株式会社Hyundai Motor Company | motor |
DE102018222469A1 (en) | 2018-12-20 | 2020-06-25 | Audi Ag | Rotor for an electric motor |
DE102018222469B4 (en) | 2018-12-20 | 2024-07-25 | Audi Ag | Rotor for an electric motor |
US11309757B2 (en) | 2018-12-27 | 2022-04-19 | Honda Motor Co., Ltd. | Rotor of rotating electrical machine |
CN111384803A (en) * | 2018-12-27 | 2020-07-07 | 本田技研工业株式会社 | Rotor of rotating electric machine |
CN111384803B (en) * | 2018-12-27 | 2022-06-03 | 本田技研工业株式会社 | Rotor of rotating electric machine |
EP3934065A4 (en) * | 2019-02-25 | 2022-10-19 | LG Magna e-Powertrain Co., Ltd. | Rotor and electric motor including same |
US20210384801A1 (en) * | 2019-02-25 | 2021-12-09 | Lg Electronics Inc. | Rotor and electric motor including same |
CN113519107A (en) * | 2019-02-25 | 2021-10-19 | Lg电子株式会社 | Rotor and motor provided with the same |
CN113519107B (en) * | 2019-02-25 | 2023-12-26 | Lg麦格纳电子动力总成有限公司 | Rotor and motor provided with same |
KR102286885B1 (en) * | 2019-02-27 | 2021-08-09 | 가부시끼가이샤 도시바 | Rotary electrical machine |
KR20200104781A (en) * | 2019-02-27 | 2020-09-04 | 가부시끼가이샤 도시바 | Rotary electrical machine |
CN111628589B (en) * | 2019-02-27 | 2023-11-28 | 株式会社东芝 | Rotary electric machine |
CN111628589A (en) * | 2019-02-27 | 2020-09-04 | 株式会社东芝 | Rotating electrical machine |
EP3703227A1 (en) * | 2019-02-27 | 2020-09-02 | Kabushiki Kaisha Toshiba | Rotary electric device |
EP3907859A4 (en) * | 2019-03-27 | 2022-03-02 | Daikin Industries, Ltd. | Electric motor |
CN113424398A (en) * | 2019-03-27 | 2021-09-21 | 大金工业株式会社 | Electric motor |
CN113424398B (en) * | 2019-03-27 | 2024-06-21 | 大金工业株式会社 | Motor with a motor housing having a motor housing with a motor housing |
CN115441681A (en) * | 2022-09-23 | 2022-12-06 | 重庆通环新能源科技有限公司 | Power generation system with stacked structure |
Also Published As
Publication number | Publication date |
---|---|
JP4715028B2 (en) | 2011-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002345188A (en) | Dynamo-electric rotating machine | |
EP1953896B1 (en) | Rotor for electric rotating machine and electric rotating machine | |
JP5288698B2 (en) | Permanent magnet type reluctance type rotating electrical machine | |
JP4389918B2 (en) | Rotating electric machine and AC generator | |
US7705503B2 (en) | Rotating electrical machine | |
JP3752770B2 (en) | Landel core type rotary electric machine | |
JP2000333409A (en) | Induction motor | |
JP2007104888A (en) | Rotary electric machine | |
JP2014220901A (en) | Permanent magnet built-in type rotary electric machine | |
JPWO2015087445A1 (en) | Permanent magnet embedded rotary electric machine | |
JP5168472B2 (en) | Rotating electric machine | |
JP2002051503A (en) | Permanent magnet reluctance type rotary electric machine | |
JP5120538B2 (en) | Motor cooling structure | |
JP6072199B1 (en) | Rotating electric machine | |
JP2006033965A (en) | Stator cooling structure of disk-type dynamo-electric machine | |
JP2006014399A (en) | Cooling structure of axial gap rotary electric machine | |
JP2003061282A (en) | Structure of rotor of dynamo-electric machine | |
JP6101550B2 (en) | Superconducting rotating machine | |
JP3594007B2 (en) | Rotating electric machine | |
CN110176822B (en) | Cooling structure of rotating electrical machine and rotating electrical machine | |
JP2006050752A (en) | Stator cooling structure of disk rotary electric machine | |
JP2002136013A (en) | Magnet motor | |
JPH08298736A (en) | Rotor with permanent magnet of magnet synchronous rotating machine | |
JP2017050913A (en) | Rotary electric machine | |
JP3832187B2 (en) | Electric motor for compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080325 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101026 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110301 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110314 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4715028 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140408 Year of fee payment: 3 |