JP2002236117A - Method of measuring noncondensing gas in geothermal steam, and gas component analysis device - Google Patents
Method of measuring noncondensing gas in geothermal steam, and gas component analysis deviceInfo
- Publication number
- JP2002236117A JP2002236117A JP2001031683A JP2001031683A JP2002236117A JP 2002236117 A JP2002236117 A JP 2002236117A JP 2001031683 A JP2001031683 A JP 2001031683A JP 2001031683 A JP2001031683 A JP 2001031683A JP 2002236117 A JP2002236117 A JP 2002236117A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- hydrogen sulfide
- steam
- carbon dioxide
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Devices For Use In Laboratory Experiments (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、地熱蒸気中の不凝
縮ガス測定方法およびガス成分分析装置に関し、特に、
地熱発電プラントにおいて好適に用いられる不凝縮ガス
のガス成分分析装置および測定方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring non-condensable gas in geothermal steam and an apparatus for analyzing gas components.
The present invention relates to a gas component analyzer and a measurement method for non-condensable gas which are suitably used in a geothermal power plant.
【0002】[0002]
【従来の技術】地熱発電プラントでは、地下500m〜400
0mから取り出した蒸気を使用してタービンを回し発電
機で、例えば1〜50MW程度の発電量を得ることができ
る。地熱発電に使用するガスは、通常、温度が100〜
250℃程度、圧力が4〜18kg/cm2程度であり、
低圧力である。よって、タービンに入ってくる蒸気で効
率よく発電しようとすると、タービンの後流側の背圧を
低下させておくことが効果的である。これによりタービ
ンの前後で生じる差圧分だけ、タービンが回しやすい状
況になるからである。よって、入口側から導入される蒸
気を復水器で冷却し凝縮させて、容積を減少させ、その
体積減少分だけ圧力も低下させる。このように地熱発電
プラントでは、タービン前後で圧力差を設けてタービン
を回転し易くしている。2. Description of the Related Art In a geothermal power plant, underground 500m to 400m
By using a steam taken from 0 m to rotate a turbine, a power generator can produce a power generation of, for example, about 1 to 50 MW. The gas used for geothermal power generation usually has a temperature of 100-
About 250 ° C, the pressure is about 4-18 kg / cm 2 ,
Low pressure. Therefore, in order to efficiently generate power using steam entering the turbine, it is effective to reduce the back pressure on the downstream side of the turbine. This is because the turbine is easily turned by the differential pressure generated before and after the turbine. Therefore, the steam introduced from the inlet side is cooled and condensed by the condenser to reduce the volume, and the pressure is reduced by the reduced volume. As described above, in the geothermal power plant, a pressure difference is provided between the front and rear of the turbine to make it easier to rotate the turbine.
【0003】しかしながら、生産井地下からの蒸気中に
は、復水器等で冷却しても凝縮しない不凝縮ガスが含ま
れている。すなわち、蒸気中には地層からの溶解成分
(硫化物、鉄化合物、シリカ、塩化ナトリウム、炭酸塩
など)、および、腐食性のガス成分(硫化水素、塩化水
素、フッ化物、炭酸ガスなど)が多く含まれている。こ
れらの中で、炭酸ガスや腐食性の硫化水素ガスが不凝縮
ガスとなるため、ガスタービンの背圧を十分に低下させ
ることができず、タービンの性能に悪影響を与えたり、
あるいはタービン内部のスケーリングの原因物質の1つ
になっている。[0003] However, the steam from the basement of the production well contains non-condensable gas that does not condense even when cooled by a condenser or the like. That is, dissolved components (sulfides, iron compounds, silica, sodium chloride, carbonates, etc.) from the formation and corrosive gas components (hydrogen sulfide, hydrogen chloride, fluorides, carbon dioxide gas, etc.) are contained in the steam. Many are included. Among these, carbon dioxide gas and corrosive hydrogen sulfide gas become non-condensable gas, so the back pressure of the gas turbine cannot be sufficiently reduced, adversely affecting the performance of the turbine,
Or it is one of the causative substances of scaling inside the turbine.
【0004】したがって、これらの不凝縮ガスの成分を
分析することは、地熱蒸気をタービンの運転に利用する
上で重要である。ところが、市販の分析装置(オルザッ
トガス分析計)は、測定対象が大気やボイラなどの燃焼
排ガス測定用に製造されているために、地熱関連のガス
測定には全く使用できないという問題を有している。つ
まり、第一に地熱ガス特有の硫化水素の測定ができな
い。第二に、ガスの組成で炭酸ガスの濃度が地熱の場
合、80〜95%存在しているが、上記市販の分析装置
内臓のガスビューレットを用いる分析装置では、構造上
読み取り部位の目盛りが非常に粗く、ガスの測定値を精
度良く読み取ることが不可能であった。Therefore, it is important to analyze the components of these non-condensable gases in using geothermal steam for turbine operation. However, commercially available analyzers (Olzat gas analyzers) have a problem that they cannot be used for measurement of geothermal-related gases at all because the measurement target is manufactured for measuring exhaust gas such as air and boilers. . That is, first, it is impossible to measure hydrogen sulfide peculiar to geothermal gas. Second, when the concentration of carbon dioxide in the gas composition is geothermal, 80 to 95% of the gas is present. However, in the analyzer using the gas burette built in the above-mentioned commercially available analyzer, the scale of the reading part is structurally limited. It was very coarse and it was impossible to read the measured value of the gas with high accuracy.
【0005】一方、ガスクロマトグラフのような精密分
析装置を用いれば、正確な組成分析が可能である。しか
し、このような大型の分析装置を、地熱蒸気の発生する
場所に設置することは容易でない反面、地熱蒸気を分析
器のある研究所等に運搬するのでは時間的、コスト的に
ロスがあると同時に、運搬中に組成を保つことが困難で
あり、却って再現性のあるデータが得られないという不
都合が生じる。On the other hand, if a precision analyzer such as a gas chromatograph is used, accurate composition analysis is possible. However, it is not easy to install such a large-sized analyzer in a place where geothermal steam is generated. However, transporting geothermal steam to a laboratory having an analyzer involves time and cost. At the same time, it is difficult to maintain the composition during transportation, which causes a disadvantage that reproducible data cannot be obtained.
【0006】[0006]
【発明が解決しようとする課題】本発明者らは、上記問
題点に鑑み、硫化水素の測定と炭酸ガス、酸素の正確な
読み取りが可能であって、現場での分析に適した簡易な
測定方法もしくは装置を開発すべく、鋭意検討した。そ
の結果、本発明者らは、硫化水素の捕集に際して開放型
硫化水素吸収ビンを用いること、および、高濃度二酸化
炭素に対応して逆ビューレット構造を採用することによ
って、かかる問題点が解決されることを見い出した。本
発明は、かかる見地より完成されたものである。SUMMARY OF THE INVENTION In view of the above problems, the present inventors have made it possible to measure hydrogen sulfide and accurately read carbon dioxide gas and oxygen, and to carry out simple measurement suitable for on-site analysis. Intensive study was made to develop a method or device. As a result, the present inventors have solved this problem by using an open-type hydrogen sulfide absorption bottle for collecting hydrogen sulfide and adopting an inverted burette structure corresponding to high-concentration carbon dioxide. I found something to be done. The present invention has been completed from such a viewpoint.
【0007】[0007]
【課題を解決するための手段】すなわち、本発明は、硫
化水素ガスを含む地熱蒸気中の不凝縮ガスを分析する測
定方法であって、地熱蒸気中の水蒸気分を冷却して凝縮
水とし、不凝縮ガスと分離した後、該不凝縮ガスの成分
分析にて、硫化水素吸収液によって硫化物の沈殿を生じ
させて硫化水素の測定を行う工程、を含むことを特徴と
する地熱蒸気中の不凝縮ガス測定方法を提供するもので
ある。ここで、硫化水素吸収液には、酢酸カドニウムや
硫酸カドニウム等を含む溶液が好ましく用いられる。That is, the present invention is a measuring method for analyzing non-condensable gas in geothermal steam containing hydrogen sulfide gas, wherein the steam in the geothermal steam is cooled to form condensed water, After separating from the non-condensable gas, in the component analysis of the non-condensable gas, the step of generating sulfide precipitates with the hydrogen sulfide absorbing liquid to measure hydrogen sulfide, The present invention provides a method for measuring non-condensable gas. Here, a solution containing cadmium acetate, cadmium sulfate, or the like is preferably used as the hydrogen sulfide absorbing liquid.
【0008】また、本発明は、地熱蒸気から分離された
不凝縮ガスのガス成分分析装置であって、二酸化炭素吸
収液を含んでいる二酸化炭素吸収ビンと、硫化水素吸収
液を含んでいて且つ開放型の硫化水素吸収ビンと、目盛
りを有する細管部を上部に配置して太管部を下部に配置
したビューレットと、を備えていることを特徴とする不
凝縮ガスのガス成分分析装置を提供するものである。こ
の分析装置によれば、地熱特有の高濃度の二酸化炭素を
含んでいる地熱ガスの測定が可能となり、また、開放型
硫化水素吸収ビンと滴定分析により、硫化水素の測定が
可能となる。なお、上記ガス成分分析装置は不凝縮ガス
を対象としているが、地熱蒸気からは先ず不凝縮ガス以
外の水蒸気等を凝縮水として分離して、不凝縮ガスを捕
集する。[0008] The present invention is also a gas component analyzer for non-condensable gas separated from geothermal steam, comprising: a carbon dioxide absorption bottle containing a carbon dioxide absorption liquid; and a hydrogen sulfide absorption liquid. A gas component analyzer for non-condensable gas, comprising: an open-type hydrogen sulfide absorption bottle; and a burette in which a thin tube portion having a scale is arranged at an upper portion and a thick tube portion is arranged at a lower portion. To provide. According to this analyzer, it is possible to measure a geothermal gas containing a high concentration of carbon dioxide which is peculiar to geothermal, and it is possible to measure hydrogen sulfide by an open hydrogen sulfide absorption bottle and titration analysis. Although the above-mentioned gas component analyzer targets non-condensable gas, first, water vapor and the like other than non-condensable gas are separated as condensed water from geothermal steam to collect non-condensable gas.
【0009】ここで、本発明が対象とする不凝縮ガスに
は、硫化水素(H2S)ガスや二酸化炭素(CO2)の他、酸素(O
2)、窒素(N2)などが含まれている。また、場所によって
はメタン(CH4)や水素(H2)等も含まれている。地熱蒸気
を発電プラントに用いるような場合には、この不凝縮ガ
スが、蒸気中に どの程度の割合を占めるのかを測定す
ることが必要であり、また、不凝縮ガス中の成分はどの
ような組成なのかを調べることも必要になる。本発明の
測定法や装置は、これらの不凝縮ガスの分析を簡易な方
法によって正確に行うものである。本発明の測定法で
は、二酸化炭素、酸素、窒素の濃度が0.1%以上、硫化水
素の濃度が0.05%以上のガスに適用できる。The non-condensable gas to which the present invention is applied includes hydrogen sulfide (H 2 S) gas, carbon dioxide (CO 2 ), and oxygen (O 2 ).
2 ), nitrogen (N 2 ) and the like. In some places, methane (CH 4 ) and hydrogen (H 2 ) are also contained. When geothermal steam is used in a power plant, it is necessary to measure how much of this non-condensable gas occupies in the steam. It is also necessary to find out whether it is a composition. The measuring method and apparatus of the present invention accurately analyze these non-condensable gases by a simple method. The measurement method of the present invention can be applied to a gas having a concentration of carbon dioxide, oxygen and nitrogen of 0.1% or more and a concentration of hydrogen sulfide of 0.05% or more.
【0010】地熱ガスの分析において、一般にはガス分
析に広く用いられるオルザット分析法(JIS K 0301)
を採用することが考えられるが、基本的に酸素と二酸化
炭素を測定する方法であり、硫化水素を測定する手法で
はない。また、このオルザット分析法では、燃焼排ガス
の場合にはある程度精度良く成分分析できても、地熱ガ
ス中の酸素と二酸化炭素の量について精度良く測定する
ことが困難である。そこで、本発明者らは、硫化水素を
測定できると同時に、精度良く酸素や二酸化炭素も測定
できる方法として、上記測定方法および不凝縮ガスのガ
ス成分分析装置を開発したものである。In the analysis of geothermal gas, an Orsat analysis method generally used widely for gas analysis (JIS K0301)
However, it is basically a method of measuring oxygen and carbon dioxide, not a method of measuring hydrogen sulfide. Further, in this Orsat analysis method, it is difficult to accurately measure the amounts of oxygen and carbon dioxide in the geothermal gas even if the component analysis can be performed to a certain degree in the case of combustion exhaust gas. Therefore, the present inventors have developed the above-described measurement method and a gas component analyzer of non-condensable gas as a method capable of accurately measuring oxygen and carbon dioxide while being able to measure hydrogen sulfide.
【0011】[0011]
【発明の実施の形態】本発明に係る方法を実施するため
の具体的な形態について、添付図を参照しながら説明す
る。なお、本発明は以下の実施の形態に限定されるもの
ではない。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific embodiment for carrying out the method according to the present invention will be described with reference to the accompanying drawings. Note that the present invention is not limited to the following embodiments.
【0012】一般に地熱発電プラントでは、生産井(蒸
気井)から、不凝縮ガスを含む蒸気と熱水が取り出さ
れ、気水分離器(サイクロン)に送られる。該気水分離
機では、蒸気と熱水とを分離して、蒸気成分のみを蒸気
溜めに送る。該蒸気溜めにおいて、さらに気液分離され
た蒸気は、スケールセパレータに送られて、錆等の異物
が取り除かれる。その蒸気が蒸気タービンに送られて、
タービンを回転させて、発電機で発電する。この際、タ
ービン後流では(コンデンサー)により蒸気を液化(腹
水)することによって、タービンの背圧が低下するの
で、入口と出口の差圧が生じて、効率よくタービンを回
転させることができる。本発明の測定法によって、不凝
縮ガスの量やそのガス組成を明らかにすることで、最終
的にはタービン自体の性能を評価することなどができ
る。Generally, in a geothermal power plant, steam and hot water containing non-condensable gas are taken out of a production well (steam well) and sent to a steam separator (cyclone). In the steam separator, steam and hot water are separated, and only the steam component is sent to the steam reservoir. In the vapor reservoir, the vapor further separated into gas and liquid is sent to a scale separator to remove foreign substances such as rust. The steam is sent to a steam turbine,
The turbine is rotated to generate power using a generator. At this time, in the downstream side of the turbine, the steam is liquefied (ascites) by the (condenser), so that the back pressure of the turbine is reduced. Therefore, a differential pressure between the inlet and the outlet is generated, and the turbine can be rotated efficiently. By clarifying the amount of non-condensable gas and its gas composition by the measurement method of the present invention, it is possible to finally evaluate the performance of the turbine itself and the like.
【0013】生産井からのガス成分は、約99.0〜99.9%
が不凝縮ガス以外の蒸気であり、残りの0.1〜1.0%が不
凝縮ガスである。この不凝縮ガスの成分を分析すると、
一般には、二酸化炭素、硫化水素、メタン、水素などか
ら構成されており、それ以外にはアンモニアや酸素、窒
素などが含まれることもある。これらの成分の中で、生
産井の現場で測定する必要が多く生じるのは二酸化炭素
と硫化水素である。そして成分の組成(%)を分析する
と、生産井の国、地域による差はあるが二酸化炭素が最
も多く存在しており約70%〜97%を占めており、続いて多
いのが硫化水素であり約1〜20%含有する。[0013] The gas component from the production well is about 99.0-99.9%
Is the vapor other than the non-condensable gas, and the remaining 0.1 to 1.0% is the non-condensable gas. When analyzing the components of this non-condensable gas,
Generally, it is composed of carbon dioxide, hydrogen sulfide, methane, hydrogen, and the like, and may further contain ammonia, oxygen, nitrogen, and the like. Of these components, carbon dioxide and hydrogen sulfide are the ones that often need to be measured at production well sites. Analysis of the composition (%) of the components reveals that, depending on the country and region of the production well, carbon dioxide is the most abundant, accounting for about 70% to 97%, followed by hydrogen sulfide. There is about 1-20%.
【0014】図1に、地熱ガスから不凝縮ガスを採取し
て濃度を測定する装置の概略構成を示す。以下、この装
置に基づいて説明する。蒸気は蒸気管10を流通してお
り、その流路に設けられたサンプリングノズル1から蒸
気の一部が採取される。サンプリングノズル1は、例え
ば蒸気管10内の同じ高さ(位置)に2以上設けられて
いてもよい。サンプリングノズルとしては、例えば図2
に示すような形態のものが好適に用いられ、複数のノズ
ル口11が蒸気の流れてくる上流側に向いていて、蒸気
がサンプリングされる。この際、ノズル口11のサンプ
リングポートは必ず上流側に向けるとともに、上流側に
少なくとも蒸気配管径の約10倍以上の直線部分を有す
ることが好ましい。また、サンプリングノズル1取り付
け位置からサンプリングクーラー5までの配管は、出来
るだけ短い方が望ましい。FIG. 1 shows a schematic configuration of an apparatus for collecting non-condensable gas from geothermal gas and measuring the concentration. Hereinafter, description will be made based on this device. The steam flows through the steam pipe 10, and a part of the steam is collected from the sampling nozzle 1 provided in the flow path. For example, two or more sampling nozzles 1 may be provided at the same height (position) in the steam pipe 10. As the sampling nozzle, for example, FIG.
Is preferably used, and the plurality of nozzle ports 11 face the upstream side where the steam flows, and the steam is sampled. At this time, it is preferable that the sampling port of the nozzle port 11 always be directed to the upstream side and that the upstream side has a linear portion at least about 10 times or more the diameter of the steam pipe. Further, it is desirable that the piping from the mounting position of the sampling nozzle 1 to the sampling cooler 5 is as short as possible.
【0015】サンプリングノズルの形状は特に限定され
るものではなく、蒸気の流量・流速等を考慮して適宜定
められるが、蒸気を主とする試料を採取するため、通
常、試料採取速度は等速吸引とする。したがって、サン
プリングノズル11については、等速吸引可能な開孔面
積(穴の面積×個数)を有するものであれば良い。一般
的には、ノズル口11の径aは通常1〜5mm、好まし
くは2〜4mm程度である。ノズル口の個数は通常2〜
5つ程度設けられ、例えば図2のように4つ設ける態様
が挙げられる。The shape of the sampling nozzle is not particularly limited, and is appropriately determined in consideration of the flow rate and flow velocity of the steam. However, since a sample mainly containing steam is taken, the sampling speed is usually constant. Suction. Therefore, the sampling nozzle 11 only needs to have an opening area (area of the hole × number of holes) that can be suctioned at a constant speed. Generally, the diameter a of the nozzle port 11 is usually about 1 to 5 mm, preferably about 2 to 4 mm. The number of nozzle ports is usually 2
About five are provided, for example, an embodiment in which four are provided as shown in FIG.
【0016】サンプリングされた蒸気は、ライン12か
らサンプリングクーラー5に送られて、冷却される。サ
ンプリングクーラー5によって冷却された蒸気は、クー
ラー後流では気液混合の状態になり、冷却による凝縮水
と不凝縮ガスとの混合流体が不凝縮ガス採取装置20に
送られる。不凝縮ガス採取装置20は予め凝縮水で満た
されており、不凝縮ガス成分16は、ガス採取ビン17
に採取される。そして、不凝縮ガスと凝縮水に相当する
体積の水が装置20外に、排出水として排出され、水準
ビン19に送って容積を測定する。このように採取され
た不凝縮ガスについて、図3に示すような本発明のガス
成分分析装置を用いて測定する。The sampled steam is sent from line 12 to sampling cooler 5 where it is cooled. The steam cooled by the sampling cooler 5 enters a gas-liquid mixed state downstream of the cooler, and a mixed fluid of condensed water and non-condensable gas due to cooling is sent to the non-condensable gas sampling device 20. The non-condensable gas sampling device 20 is previously filled with condensed water, and the non-condensable gas component 16 is
Collected in. Then, water having a volume corresponding to the non-condensable gas and the condensed water is discharged out of the apparatus 20 as discharge water, and sent to the level bin 19 to measure the volume. The uncondensed gas thus collected is measured using the gas component analyzer of the present invention as shown in FIG.
【0017】不凝縮ガスのガス成分分析装置には、酸素
の吸収液、二酸化炭素の吸収液、硫化水素の吸収液、を
含んでいる各吸収ビンが設けられている。測定では先
ず、飽和の食塩水で満たされたガスビュレット中に50
cm3〜100cm3の試料ガスをサンプリングして採る。次
いで、H2S吸収液によりH2Sを吸収する。CO2吸収液によ
りCO2とH2Sの一部を吸収した後、O2吸収によりO2量を測
定する。ここで、残りのガスはN2等である。ここで、上
述したように地下からの蒸気を凝縮水として分離した不
凝縮ガスは一般のガスと異なり、硫化水素や二酸化炭素
が多い。下記表1に、大気、重油等の燃焼排ガス、およ
び地熱不凝縮ガスの各組成を例として示す。The non-condensable gas component analyzer is provided with respective absorption bottles containing an oxygen absorbing solution, a carbon dioxide absorbing solution, and a hydrogen sulfide absorbing solution. In the measurement, first, 50 g in a gas burette filled with saturated saline
taken by sampling the gas sample cm 3 100 cm 3. Then, absorbs H 2 S by H 2 S absorption liquid. After absorbing part of the CO 2 and H 2 S by CO 2 absorbing solution, to measure the amount of O 2 by O 2 absorption. Here, the remaining gas is N 2 or the like. Here, as described above, the non-condensable gas obtained by separating steam from underground as condensed water is different from a general gas, and contains a large amount of hydrogen sulfide and carbon dioxide. Table 1 below shows, by way of example, the compositions of the atmosphere, combustion exhaust gas such as heavy oil, and geothermal non-condensable gas.
【0018】[0018]
【表1】 なお、残部は便宜上窒素ガスまたは、その他として表示
する。[Table 1] The remainder is indicated as nitrogen gas or others for convenience.
【0019】したがって、従来のような太管部が上部に
ある形状を有するガスビュレットでは、不凝縮ガスを各
吸収液と接触させながら装置に導入すると、不凝縮ガス
は二酸化炭素等を吸収液に吸収され、ガス容積が著しく
減少するので、直径の太い目盛りのない部分に液面が達
してしまい、測定不能となってしまう。そこで、図3に
示すように、目盛りを有する細管部を上部に配置して、
太管部を下部に配置したガスビュレット25(通常のオ
ルザット分析装置のビュレットを逆の形状で配置させた
逆ビュレット構造)を用いる。これによって、地熱不凝
縮ガスであっても、二酸化炭素や酸素等のガスについて
は測定可能となる。Therefore, in a conventional gas burette having a shape in which a thick pipe portion is located at the upper portion, when the non-condensable gas is introduced into the apparatus while being brought into contact with each absorbent, the non-condensable gas converts carbon dioxide and the like into the absorbent. Since the gas volume is absorbed and the gas volume is remarkably reduced, the liquid level reaches a portion without a large scale with a large diameter, and the measurement becomes impossible. Therefore, as shown in FIG.
A gas buret 25 having a thick tube portion arranged at the lower portion (an inverted burette structure in which burettes of a normal Orzat analyzer are arranged in an inverted shape) is used. Thereby, even if it is a geothermal non-condensable gas, it becomes possible to measure gases such as carbon dioxide and oxygen.
【0020】そして本発明の装置では、硫化水素も測定
できるようにするため、酢酸カドニウムや硫酸カドニウ
ム等を含む硫化水素吸収液22が使用される。具体的に
は、例えば約4〜6gの酢酸カドニウムと約2〜4mlの酢酸
を水に溶解して100mlの溶液としたもの、あるいは、約4
〜6gの硫酸カドニウムと約2〜4mlの硫酸を水に溶解して
100mlの溶液としたもの、などを好適に用いることがで
きる。このような吸収液22を、開放型の硫化水素吸収
ビン28に入れてガスを吸収させる。これによって、吸
収ビン22中では、地熱不凝縮ガスの流通によって硫化
水素と酢酸カドニウムとの反応により、硫化カドニウム
(CdS)の沈殿を生成する。開放型硫化水素用吸収ビ
ン28は、出し入れ可能な構造を有しており、外部の形
状と内部のガス導入管部分とは切り離しが可能となって
いる。よって、内部に沈殿した物については、取り出す
ことが可能であり、さらに分析することができる。硫化
水素濃度の測定においては、ヨウ素溶液(例えば0.05mo
l/l)によって溶解してから、澱粉溶液(例えば約1%)
を指示薬として、チオ硫酸ナトリウム溶液(例えば0.1mol/
l)によって滴定することによって分析することができ
る。In the apparatus of the present invention, a hydrogen sulfide absorbing liquid 22 containing cadmium acetate, cadmium sulfate or the like is used so that hydrogen sulfide can be measured. Specifically, for example, about 4 to 6 g of cadmium acetate and about 2 to 4 ml of acetic acid are dissolved in water to form a 100 ml solution, or
Dissolve ~ 6g cadmium sulfate and about 2-4ml sulfuric acid in water
A solution prepared as a 100 ml solution can be suitably used. Such an absorbing liquid 22 is put into an open-type hydrogen sulfide absorbing bottle 28 to absorb the gas. As a result, in the absorption bottle 22, a reaction between hydrogen sulfide and cadmium acetate is caused by the flow of the geothermal non-condensable gas, thereby generating a precipitate of cadmium sulfide (CdS). The open-type hydrogen sulfide absorption bottle 28 has a structure that can be taken in and out, and can be separated from the external shape and the internal gas introduction pipe portion. Therefore, the substance precipitated inside can be taken out and further analyzed. In measuring the hydrogen sulfide concentration, an iodine solution (for example, 0.05 mol
l / l) and then dissolved in a starch solution (eg about 1%)
Using sodium thiosulfate solution (for example, 0.1 mol /
It can be analyzed by titration according to l).
【0021】硫化水素吸収液22の吸収ビン28以外に
は、通常、酸素吸収液23を入れた酸素吸収ビン29、
および、二酸化炭素吸収液24を入れた二酸化炭素吸収
ビン30が設けられている。これらの吸収ビンは、通常
外部の形状と内部の導入管とが一体になった構造であ
る。酸素吸収液23には、水に水酸化カリウムを溶解さ
せた溶液と、水にピロガロールを溶かした溶液と、を等
体積ずつ混合したものを用いることができる。具体的に
は、例えば水100mlに水酸化カリウム約50〜70gを溶解
した溶液と、水100mlにピロガロール約10〜14gを溶解
した溶液とを、混合した溶液を好適に用いることができ
る。二酸化炭素吸収液24には、通常、水に水酸化カリ
ウムを溶かした溶液を用いる。具体的には、例えば水10
0mlに水酸化カリウム約20〜40gを溶解した溶液を好適
に用いることができる。二酸化炭素の濃度については、
ガス成分分析装置に試料ガスを導入し、二酸化炭素吸収
液で吸収させて、試料ガスの体積減少量から求めること
ができる。また、二酸化炭素吸収後のガスビューレット
内の試料ガスを、酸素吸収液で吸収させて、試料ガスの
体積減少量から酸素濃度を求めることができる。以上、
本発明を実施の形態に基づき詳細に説明してきたが、本
発明の範囲はこれらの実施の形態によって何ら限定され
るものではない。In addition to the absorption bottle 28 for the hydrogen sulfide absorption liquid 22, an oxygen absorption bottle 29 containing the oxygen absorption liquid 23,
Further, a carbon dioxide absorbing bottle 30 containing the carbon dioxide absorbing liquid 24 is provided. These absorption bottles usually have a structure in which an external shape and an internal introduction pipe are integrated. As the oxygen absorbing solution 23, a solution obtained by mixing equal volumes of a solution in which potassium hydroxide is dissolved in water and a solution in which pyrogallol is dissolved in water can be used. Specifically, for example, a solution obtained by mixing a solution in which about 50 to 70 g of potassium hydroxide is dissolved in 100 ml of water and a solution in which about 10 to 14 g of pyrogallol is dissolved in 100 ml of water can be suitably used. As the carbon dioxide absorbing liquid 24, a solution obtained by dissolving potassium hydroxide in water is usually used. Specifically, for example, water 10
A solution in which about 20 to 40 g of potassium hydroxide is dissolved in 0 ml can be suitably used. Regarding the concentration of carbon dioxide,
A sample gas can be introduced into a gas component analyzer, absorbed by a carbon dioxide absorbing liquid, and determined from the volume reduction of the sample gas. Further, the sample gas in the gas burette after absorbing carbon dioxide is absorbed by the oxygen absorbing liquid, and the oxygen concentration can be obtained from the volume reduction of the sample gas. that's all,
Although the present invention has been described in detail based on the embodiments, the scope of the present invention is not limited by these embodiments.
【0022】[0022]
【発明の効果】本発明によれば、従来のオルザットガス
分析装置では測定できなかった硫化水素の測定が可能に
なると同時に、炭酸ガスや酸素の正確な濃度測定が可能
になる。また、本発明によれば、地熱発電プラント等の
現場において、大型の装置を使用しなくても分析に適し
た簡易な測定方法もしくは装置を提供できる。According to the present invention, it is possible to measure hydrogen sulfide, which cannot be measured by the conventional Orzat gas analyzer, and at the same time, it becomes possible to measure the concentration of carbon dioxide and oxygen accurately. Further, according to the present invention, it is possible to provide a simple measuring method or device suitable for analysis at a site such as a geothermal power plant without using a large-sized device.
【図1】地熱蒸気から不凝縮ガスを採取して濃度を測定
する装置の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an apparatus for collecting an uncondensable gas from geothermal steam and measuring the concentration.
【図2】本発明の測定方法で用いるのに好適なサンプリ
ングノズルの構造を示す断面図である。FIG. 2 is a sectional view showing a structure of a sampling nozzle suitable for use in the measuring method of the present invention.
【図3】本実施の形態における不凝縮ガスのガス成分分
析装置の構成を示す図である。FIG. 3 is a diagram showing a configuration of a non-condensable gas component analyzer in the present embodiment.
1 サンプリングノズル 5 サンプリングクーラー 10 蒸発管 11 ノズル口 12 サンプリングライン 13、27 ゴム管 14 T字管 15 ストッパー弁 16 不凝縮ガス 17 ガス採取ビン 18 温度計 19 水準びん 20 不凝縮ガス採取装置 21 ゴム容器 22 H2S吸収液 23 O2吸収液 24 CO2吸収液 25 ガスビュレット 28 H2S吸収ビン 29 O2吸収ビン 30 CO2吸収ビンDESCRIPTION OF SYMBOLS 1 Sampling nozzle 5 Sampling cooler 10 Evaporation tube 11 Nozzle port 12 Sampling line 13, 27 Rubber tube 14 T-tube 15 Stopper valve 16 Non-condensable gas 17 Gas sampling bottle 18 Thermometer 19 Level bottle 20 Non-condensable gas sampling device 21 Rubber container 22 H 2 S absorption solution 23 O 2 absorption solution 24 CO 2 absorption solution 25 Gas burette 28 H 2 S absorption bottle 29 O 2 absorption bottle 30 CO 2 absorption bottle
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 1/22 G01N 1/22 E 31/02 31/02 // G01N 31/12 31/12 Z (72)発明者 馬場 恵吾 長崎県長崎市深堀町五丁目717番地1 長 菱エンジニアリング株式会社内 (72)発明者 高野 武 長崎県長崎市深堀町五丁目717番地1 長 菱エンジニアリング株式会社内 Fターム(参考) 2G042 AA01 BA08 BB14 CA10 CB01 DA01 HA04 2G052 AA00 AB06 AB08 AC04 AD03 AD23 AD43 BA14 CA11 DA02 EB04 EB06 ED09 ED11 GA28 4G057 AB11 AB32 AB38 AC03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01N 1/22 G01N 1/22 E 31/02 31/02 // G01N 31/12 31/12 Z (72 ) Inventor Keigo Baba 5-717-1, Fukahori-cho, Nagasaki-city, Nagasaki Pref., In Nagacho Engineering Co., Ltd. (72) Inventor Takeshi Takano 5-717-1, Fukahori-cho, Nagasaki-shi, Nagasaki pref. 2G042 AA01 BA08 BB14 CA10 CB01 DA01 HA04 2G052 AA00 AB06 AB08 AC04 AD03 AD23 AD43 BA14 CA11 DA02 EB04 EB06 ED09 ED11 GA28 4G057 AB11 AB32 AB38 AC03
Claims (2)
測定方法であって、地熱蒸気中の水蒸気成分を冷却して
凝縮水とし、不凝縮ガスと分離した後、 該不凝縮ガスの成分分析にて、硫化水素吸収液によって
硫化物の沈殿を生じさせて硫化水素の測定を行う工程、
を含むことを特徴とする地熱蒸気中の不凝縮ガス測定方
法。1. A method for analyzing geothermal steam containing hydrogen sulfide gas, comprising the steps of: cooling a steam component in the geothermal steam into condensed water; separating the condensed water from the non-condensable gas; In the step of measuring the hydrogen sulfide by causing the precipitation of sulfide by the hydrogen sulfide absorption liquid,
A method for measuring non-condensable gas in geothermal steam, comprising:
ス成分分析装置であって、二酸化炭素吸収液を含んでい
る二酸化炭素吸収ビンと、硫化水素吸収液を含んでいて
且つ開放型の硫化水素吸収ビンと、目盛りを有する細管
部を上部に配置して太管部を下部に配置したビューレッ
トと、を備えていることを特徴とする不凝縮ガスのガス
成分分析装置。2. An apparatus for analyzing a gas component of an uncondensable gas separated from geothermal steam, comprising: a carbon dioxide absorption bottle containing a carbon dioxide absorption liquid; and an open sulfide containing a hydrogen sulfide absorption liquid. A gas component analyzer for non-condensable gas, comprising: a hydrogen absorption bottle; and a burette in which a thin tube portion having a scale is arranged at an upper portion and a thick tube portion is arranged at a lower portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001031683A JP4256594B2 (en) | 2001-02-08 | 2001-02-08 | Method for measuring noncondensable gas in geothermal steam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001031683A JP4256594B2 (en) | 2001-02-08 | 2001-02-08 | Method for measuring noncondensable gas in geothermal steam |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002236117A true JP2002236117A (en) | 2002-08-23 |
JP4256594B2 JP4256594B2 (en) | 2009-04-22 |
Family
ID=18895733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001031683A Expired - Lifetime JP4256594B2 (en) | 2001-02-08 | 2001-02-08 | Method for measuring noncondensable gas in geothermal steam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4256594B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011185801A (en) * | 2010-03-10 | 2011-09-22 | Chugoku Electric Power Co Inc:The | Sampling nozzle mounting method to steel tower support type exhaust stack |
KR101157357B1 (en) * | 2010-09-10 | 2012-06-15 | 한국남동발전 주식회사 | Orsat analyzer |
CN107824036A (en) * | 2017-12-07 | 2018-03-23 | 南京高正农用化工有限公司 | A kind of decomposition absorption plant of improved measure dyson fungicides |
CN111350501A (en) * | 2020-03-26 | 2020-06-30 | 中国科学院地质与地球物理研究所 | Geothermal well full-flow sampling system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109633072A (en) * | 2018-12-14 | 2019-04-16 | 中国大冢制药有限公司 | A kind of Molotov cocktail |
-
2001
- 2001-02-08 JP JP2001031683A patent/JP4256594B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011185801A (en) * | 2010-03-10 | 2011-09-22 | Chugoku Electric Power Co Inc:The | Sampling nozzle mounting method to steel tower support type exhaust stack |
KR101157357B1 (en) * | 2010-09-10 | 2012-06-15 | 한국남동발전 주식회사 | Orsat analyzer |
CN107824036A (en) * | 2017-12-07 | 2018-03-23 | 南京高正农用化工有限公司 | A kind of decomposition absorption plant of improved measure dyson fungicides |
CN107824036B (en) * | 2017-12-07 | 2023-10-13 | 南京高正农用化工有限公司 | Improved decomposing and absorbing device for measuring metiram bactericides |
CN111350501A (en) * | 2020-03-26 | 2020-06-30 | 中国科学院地质与地球物理研究所 | Geothermal well full-flow sampling system |
Also Published As
Publication number | Publication date |
---|---|
JP4256594B2 (en) | 2009-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Smith et al. | Measurement of aerosol transport efficiency in atomic spectrometry | |
CN1926423B (en) | Method for sampling flue gas for analysis containing gas component having high susceptibility to adsorption | |
Perrino et al. | Criteria for the choice of a denuder sampling technique devoted to the measurement of atmospheric nirous and nitric acids | |
Stratton et al. | Use of a refluxing mist chamber for measurement of gas-phase mercury (II) species in the atmosphere | |
CN105181614B (en) | Sulfur trioxide analytical instrument and method | |
JPS62222140A (en) | Continuous gas and vapor monitor | |
CN103616484B (en) | Monitoring method of persistent organic pollutants in atmospheric particulates based on particulate continuous monitor | |
Peng et al. | Prediction of SO 2 removal efficiency for ammonia-based wet flue gas desulfurization in a packed tower | |
JP4256594B2 (en) | Method for measuring noncondensable gas in geothermal steam | |
Fahlquist et al. | Procedures for collecting and analyzing gas samples from geothermal systems | |
Buttini et al. | Coupling of denuder and ion chromatographic techniques for NO2 trace level determination in air | |
US3895915A (en) | Gas analyzing | |
CN205003004U (en) | Automatic calibration device of coal fired power plant flue gas mercury measuring apparatu | |
CN110687062B (en) | System and method for detecting content of sulfur trioxide in flue gas | |
Caivano et al. | N 2 O and CO 2 Emissions from Secondary Settlers in WWTPs: Experimental Results on Full and Pilot Scale Plants | |
CN208224004U (en) | A kind of portable exhaust gas water capacity gravimetric detemination instrument | |
CN103894116B (en) | The large gas generating system of a kind of single mercury isotope | |
CN111537631A (en) | Anti-oxidation sulfur dioxide ion chromatographic detection method | |
Talbot et al. | Measurements of sulfur dioxide during GASIE with the mist chamber technique | |
CN108444857A (en) | A kind of portable exhaust gas water capacity gravimetric detemination instrument | |
CN209784284U (en) | Sampling device for detecting components of coke oven flue gas | |
RU2181882C1 (en) | Device determining concentration of gas in liquid | |
CN105301188A (en) | Automatic calibration device of coal-fired power plant flue gas mercury measuring instrument and control method | |
Gallagher et al. | Performance of the HPLC/fluorescence SO2 detector during the GASIE instrument intercomparison experiment | |
JP2001305056A (en) | Measurement method for trace metal carbonyl compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050711 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061002 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061031 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080624 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090116 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090130 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4256594 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130206 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140206 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |