JP2002234365A - Dc electromotive system and operating method thereof - Google Patents
Dc electromotive system and operating method thereofInfo
- Publication number
- JP2002234365A JP2002234365A JP2001031754A JP2001031754A JP2002234365A JP 2002234365 A JP2002234365 A JP 2002234365A JP 2001031754 A JP2001031754 A JP 2001031754A JP 2001031754 A JP2001031754 A JP 2001031754A JP 2002234365 A JP2002234365 A JP 2002234365A
- Authority
- JP
- Japan
- Prior art keywords
- substation
- current
- output
- voltage
- output voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Rectifiers (AREA)
- Direct Current Feeding And Distribution (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、直流電鉄変電所に
おいて交流電力を直流電力に変換して電気鉄道に供給す
る直流き電システムおよびその運用方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC feeding system for converting AC power into DC power at a DC railway substation and supplying the DC power to an electric railway, and a method of operating the same.
【0002】[0002]
【従来の技術】直流電鉄変電所において交流電力を直流
電力に変換する電力変換装置として古くからシリコン整
流器が使用されてきた。さらにはサイリスタを用いたサ
イリスタ整流器も導入されている。近年は電力用半導体
の進歩により自励式変換器を適用できるようになった。
自励式変換器を用いると直流電圧を力行、回生とも一定
電圧にすることができ、交流入力電力の力率を1.0にす
ることができるなど多くの利点がある。2. Description of the Related Art Silicon rectifiers have long been used as power converters for converting AC power into DC power at DC railway substations. Further, a thyristor rectifier using a thyristor has been introduced. In recent years, advances in power semiconductors have made it possible to apply self-excited converters.
The use of the self-excited converter has a number of advantages such as a constant DC voltage for both power running and regeneration, and a power factor of 1.0 for the AC input power.
【0003】図6は自励式変換器を用いた従来の直流電
鉄変電所の構成図である。21は交流電圧を所定の電圧に
変圧する変換器用変圧器、22は自励式変換器、23は自励
式変換器の直流コンデンサ、24はき電線短絡時の短絡電
流を限流する直流リアクトル、25、26はき電線短絡時の
短絡電流を遮断する直流遮断器である。31〜36は隣接の
変電所の同一の機器である。このような構成によって、
商用交流系統20の交流電力を直流電力に変換してき電線
40に供給している。FIG. 6 is a block diagram of a conventional DC railway substation using a self-excited converter. Reference numeral 21 denotes a transformer for converting an AC voltage to a predetermined voltage, 22 denotes a self-excited converter, 23 denotes a DC capacitor of the self-excited converter, 24 denotes a DC reactor that limits a short-circuit current when a feeder circuit is short-circuited, , 26 are DC breakers that cut off the short-circuit current when the electric wire is short-circuited. 31 to 36 are the same equipment in the adjacent substation. With such a configuration,
AC power from the commercial AC system 20 is converted to DC power.
Supply to 40.
【0004】このような構成において自励式変換器22は
直流コンデンサ23の電圧が一定になるように制御され
る。き電区間に力行車があると直流コンデンサ23から力
行車に電流が流れ、直流コンデンサ23の電圧は減少する
ので、自励式変換器22は交流から直流に電力を変換し直
流コンデンサ23の電圧を一定に保つように動作する。In such a configuration, the self-excited converter 22 is controlled so that the voltage of the DC capacitor 23 becomes constant. When there is a power running vehicle in the feeder section, current flows from the DC capacitor 23 to the power running vehicle, and the voltage of the DC capacitor 23 decreases. It works to keep it constant.
【0005】逆にき電区間に回生車がある場合には車両
から直流コンデンサ23に電流が流れ込み、直流コンデン
サ23の電圧が上昇するので自励式変換器22は直流コンデ
ンサ23の電圧を一定に保つように直流から交流に電力を
回生する。このようにして自励式変換器22は直流コンデ
ンサ23の電圧を一定に保つように制御され、き電方向お
よび回生方向とも同じ一定電圧に保たれる。変換器用変
圧器31から直流遮断器36までからなる隣接の変電所の動
作も同様である。Conversely, when there is a regenerative vehicle in the feeding section, a current flows from the vehicle into the DC capacitor 23, and the voltage of the DC capacitor 23 rises. Therefore, the self-excited converter 22 keeps the voltage of the DC capacitor 23 constant. To regenerate power from DC to AC. In this manner, the self-excited converter 22 is controlled so as to keep the voltage of the DC capacitor 23 constant, and is kept at the same constant voltage in both the feeding direction and the regenerative direction. The same applies to the operation of the adjacent substation including the converter transformer 31 to the DC breaker 36.
【0006】[0006]
【発明が解決しようとする課題】上記のような従来の直
流電鉄変電所において、自励式変換器22の一定に制御す
る直流電圧と隣接変電所の自励式変換器32の制御する直
流電圧に差がある場合、たとえば自励式変換器22の直流
電圧が自励式変換器32の直流電圧より高い場合には、き
電区間に列車がない場合でも常に自励式変換器22から自
励式変換器32に電流が流れる。この電流は各自励式変換
器22,32の直流電圧の差とき電線40の抵抗値により決ま
る。直流電圧の差を定格1500Vの3%である45V、き電
線40の抵抗値を150mΩとすると、自励式変換器22は常
に300Aの電流を供給し、自励式変換器32は常に300Aの
電流を回生することになる。In the conventional DC railway substation as described above, the difference between the DC voltage controlled by the self-excited converter 22 and the DC voltage controlled by the self-excited converter 32 of the adjacent substation is different. For example, if the DC voltage of the self-excited converter 22 is higher than the DC voltage of the self-excited converter 32, the self-excited converter 22 Electric current flows. This current is determined by the resistance of the electric wire 40 when the DC voltage between the self-excited converters 22 and 32 is different. Assuming that the difference in DC voltage is 45 V, which is 3% of the rated 1500 V, and the resistance value of the feeder line 40 is 150 mΩ, the self-excited converter 22 always supplies a current of 300 A, and the self-excited converter 32 always supplies a current of 300 A. It will regenerate.
【0007】このため、自励式変換器22,32の容量はこ
の電流分の定格電流の増加を考慮する必要があり、4500
kWの変換器であれば定格電流は3000Aであるから10%
の容量増加となる。また、き電線40もこの電流と抵抗分
により損失が発生するから直流き電システムとして効率
が低下する。For this reason, the capacity of the self-excited converters 22 and 32 needs to take into account the increase in the rated current for this current.
If the converter is kW, the rated current is 3000A, so 10%
This leads to an increase in capacity. In addition, the feeder line 40 also suffers loss due to the current and the resistance, so that the efficiency of the DC feeder system is reduced.
【0008】以上のように、従来の直流電鉄変電所にお
いては自励式変換器の定格容量が増加するため大型化し
価格の上昇があるうえ、き電線の損失が増加することに
より効率が低下するという問題がある。As described above, in the conventional DC railway substation, the rated capacity of the self-excited converter is increased to increase the size and cost, and the efficiency is reduced due to an increase in feeder line loss. There's a problem.
【0009】そこで本発明は、変電所間の横流が少な
く、設備の定格容量が必要最小限に抑えられ、電力損失
の少ない直流き電システムおよびその運用方法を提供す
ることを目的とする。Accordingly, an object of the present invention is to provide a DC feeding system in which the cross current between substations is small, the rated capacity of equipment is kept to a necessary minimum, and the power loss is small, and an operation method thereof.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、直流電気鉄道のき電線に並列接
続された複数の変電所を備え、前記変電所は、交流を直
流に交換する電力変換器と、前記き電線に流れる前記変
電所の出力電流を検出する電流検出器と、前記電流検出
器の検出電流値にもとづいて前記電力変換器の出力電圧
を制御する電圧制御器とを備えた直流き電システムの運
用方法において、所定の変電所を基準としてき電区間に
列車のない無負荷状態のときに、前記基準とする変電所
に隣接する変電所から前記基準とする変電所へ流れる電
流が零または零に近い値になるように前記隣接する変電
所の出力電圧を調整し、さらに前記隣接する変電所の隣
の変電所の出力電圧を前記隣接する変電所を基準として
調整し、順次出力電圧を調整する運用方法とする。To achieve the above object, the invention of claim 1 comprises a plurality of substations connected in parallel to a feeder of a DC electric railway, wherein the substation converts an alternating current into a direct current. A power converter that replaces the power supply, a current detector that detects an output current of the substation flowing through the feeder line, and a voltage control that controls an output voltage of the power converter based on a detected current value of the current detector. In a method of operating a DC feeder system including a transformer, in a no-load state where there is no train in the feeder section based on a predetermined substation, the substation adjacent to the reference substation and the reference The output voltage of the adjacent substation is adjusted so that the current flowing to the substation becomes zero or a value close to zero, and the output voltage of the substation adjacent to the adjacent substation is further adjusted to the adjacent substation. Adjust as a reference and output sequentially And operation method to adjust the pressure.
【0011】この発明によれば、変電所間の横流を小さ
くすることができ、電力変換器の容量の不要な増加を防
止して必要最小限の容量の電力変換器を適用することが
できる。また横流とき電線の抵抗による電力損失を防止
することができ、直流き電システムの効率を向上させる
ことができる。According to the present invention, the cross current between the substations can be reduced, and an unnecessary increase in the capacity of the power converter can be prevented, so that a power converter having a minimum necessary capacity can be applied. Further, it is possible to prevent power loss due to the resistance of the electric wire at the time of cross current, and it is possible to improve the efficiency of the DC feeding system.
【0012】請求項2の発明は、請求項1の直流き電シ
ステムの運用方法において、まず所定の変電所を基準と
して起動し、前記基準とする変電所に隣接する変電所を
次に起動して、起動後に前記基準とする変電所へ流れる
横流が零または零に近い値になるように前記隣接する変
電所の出力電圧を調整し、さらに前記隣接する変電所の
隣の変電所を次に起動して、前記隣接する変電所を基準
として出力電圧を調整し、変電所を順次起動して出力電
圧を調整する運用方法とする。この発明によれば、他の
変電所に与える影響を少なくして変電所の出力電圧を調
整し横流を低減することができる。According to a second aspect of the present invention, in the method for operating a DC feed system according to the first aspect, first, a predetermined substation is activated as a reference, and a substation adjacent to the reference substation is subsequently activated. Adjusting the output voltage of the adjacent substation so that the cross current flowing to the reference substation after starting is zero or a value close to zero, and further changing the substation next to the adjacent substation to the next substation. The operation method is to start up, adjust the output voltage based on the adjacent substation, and sequentially start the substations to adjust the output voltage. According to the present invention, it is possible to reduce the influence on other substations, adjust the output voltage of the substation, and reduce the cross current.
【0013】請求項3の発明は、請求項1の直流き電シ
ステムの運用方法において、変電所の出力電流に対して
零近傍の第1のレベルと前記第1のレベルより大きい第
2のレベルを設け、前記第1のレベルと前記第2のレベ
ルの間に出力電流が所定の時間滞留したときに前記変電
所の出力電圧を調整する運用方法とする。この発明によ
れば、各変電所を起動後、運転期間中に変電所間の調整
をおこなうことができる。According to a third aspect of the present invention, in the operation method of the DC feeding system according to the first aspect, a first level near zero and a second level larger than the first level with respect to the output current of the substation. And an operation method for adjusting the output voltage of the substation when the output current stays for a predetermined time between the first level and the second level. According to the present invention, adjustment between substations can be performed during the operation period after each substation is started.
【0014】請求項4の発明は、直流電気鉄道のき電線
に並列接続された複数の変電所を備え、前記変電所は、
交流を直流に交換する電力変換器と、前記き電線に流れ
る前記変電所の出力電流を検出する電流検出器と、前記
電流検出器の検出電流値にもとづいて前記電力変換器の
出力電圧を制御する電圧制御器とを備えた直流き電シス
テムにおいて、前記き電線に設けられ隣接する変電所と
の横流を検出し電圧制御器へ横流に関する信号を出力す
る小電流検出器と、前記小電流検出器を短絡する短絡器
とを備えた構成とする。この発明によれば、一層精度よ
く変電所間の調整をおこない横流を低減することができ
る。According to a fourth aspect of the present invention, there are provided a plurality of substations connected in parallel to a feeder of a DC electric railway, wherein the substation comprises:
A power converter for exchanging AC to DC, a current detector for detecting an output current of the substation flowing through the feeder line, and controlling an output voltage of the power converter based on a detected current value of the current detector. And a small current detector for detecting a cross current with an adjacent substation provided on the feeder line and outputting a signal related to the cross current to the voltage controller. And a short-circuit device for short-circuiting the device. ADVANTAGE OF THE INVENTION According to this invention, adjustment between substations can be performed more accurately and cross current can be reduced.
【0015】請求項5の発明は、請求項1の直流き電シ
ステムの運用方法において、き電線に設けられ隣接する
変電所との横流を検出し電圧制御器へ横流に関する信号
を出力する小電流検出器と、前記小電流検出器を短絡す
る短絡器とを備え、前記小電流検出器の検出電流値にも
とづいて変電所の出力電圧を調整し、その後、前記短絡
器によって小電流検出器を短絡する運用方法とする。こ
の発明によれば、一層精度よく変電所間の調整をおこな
い横流を低減することができる。According to a fifth aspect of the present invention, in the method for operating a DC feeding system according to the first aspect, a small current which is provided on the feeder line and detects a cross current with an adjacent substation and outputs a signal related to the cross current to a voltage controller. A detector and a short circuit for short-circuiting the small current detector, and adjusting the output voltage of the substation based on the detected current value of the small current detector. The operation method will be short-circuited. ADVANTAGE OF THE INVENTION According to this invention, adjustment between substations can be performed more accurately and cross current can be reduced.
【0016】請求項6の発明は、直流電気鉄道のき電線
に並列接続された複数の変電所を備え、前記変電所は、
交流を直流に交換する電力変換器と、前記き電線に流れ
る前記変電所の出力電流を検出する電流検出器と、前記
電流検出器の検出電流値にもとづいて前記電力変換器の
出力電圧を制御する電圧制御器とを備えた直流き電シス
テムにおいて、前記各変電所の直流出力端を並列接続す
る接続線と、この接続線に流れる電流を検出し電圧制御
器に対して前記電流に関する信号を出力する電流検出器
とを備えた構成とする。この発明によれば、検出電流値
を小さくすることができ、小さい電流検出器によって精
度よく変電所間の調整をおこなうことができる。According to a sixth aspect of the present invention, there is provided a plurality of substations connected in parallel to a feeder of a DC electric railway, wherein the substation comprises:
A power converter for exchanging AC to DC, a current detector for detecting an output current of the substation flowing through the feeder line, and controlling an output voltage of the power converter based on a detected current value of the current detector. In a DC feeding system including a voltage controller, a connection line that connects the DC output terminals of the respective substations in parallel, and a current flowing through the connection line is detected, and a signal related to the current is sent to the voltage controller. And an output current detector. ADVANTAGE OF THE INVENTION According to this invention, a detection current value can be made small and adjustment between substations can be performed accurately by a small current detector.
【0017】請求項7の発明は、請求項1の直流き電シ
ステムの運用方法において、各変電所の直流出力端を並
列接続する接続線と、この接続線に流れる電流を検出し
電圧制御器に対して前記電流に関する信号を出力する電
流検出器とを備え、前記接続線に流れる電流が零または
零に近い値になるように変電所の出力電圧を調整する運
用方法とする。この発明によれば、検出電流値を小さく
することができ、小さい電流検出器によって精度よく変
電所間の調整をおこなうことができる。According to a seventh aspect of the present invention, in the operation method of the DC feeding system of the first aspect, a connection line for connecting the DC output terminals of the respective substations in parallel, and a voltage controller which detects a current flowing through the connection line And a current detector that outputs a signal related to the current, and adjusts the output voltage of the substation so that the current flowing through the connection line becomes zero or a value close to zero. ADVANTAGE OF THE INVENTION According to this invention, a detection current value can be made small and adjustment between substations can be performed accurately by a small current detector.
【0018】請求項8の発明は、請求項1の直流き電シ
ステムの運用方法において、変電所の出力電流と前記変
電所に隣接した変電所の出力電流を比較し、電流がほぼ
等しいときに、前記出力電流が零または零に近くなるよ
うに前記変電所の出力電圧を調整する運用方法とする。
この発明によれば、き電線に電車があるときも含めて常
時、変電所の出力電圧を調整することができる。According to an eighth aspect of the present invention, in the operation method of the DC feeding system according to the first aspect, the output current of the substation is compared with the output current of a substation adjacent to the substation, and when the currents are substantially equal to each other. The operation method is to adjust the output voltage of the substation so that the output current is zero or close to zero.
According to the present invention, it is possible to adjust the output voltage of the substation at all times, even when there is a train on the feeder line.
【0019】[0019]
【発明の実施の形態】本発明の第1の実施の形態の直流
き電システムおよびその運用方法を図1を参照して説明
する。図1において、1aは第1の変電所の電力変換
器、1bは前記第1の変電所に隣接する第2の変電所の
電力変換器、1cは前記第2の変電所に隣接する第3の
変電所の電力変換器、1dは前記第3の変電所に隣接す
る第4の変電所の電力変換器、2bは前記第2の変電所
の前記第1の変電所側に流れる電流を検出する電流検出
器、2cは前記第3の変電所の前記第2の変電所側に流
れる電流を検出する電流検出器、2dは前記第4の変電
所の前記第3の変電所側に流れる電流を検出する電流検
出器、3a,3b,3c,3dは電力変換器1a,1
b,1c,1dの電圧制御回路である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A DC feeding system according to a first embodiment of the present invention and a method for operating the same will be described with reference to FIG. In FIG. 1, reference numeral 1a denotes a power converter of a first substation, 1b denotes a power converter of a second substation adjacent to the first substation, and 1c denotes a power converter of a third substation adjacent to the second substation. The sub-station power converter, 1d detects the power converter of the fourth sub-station adjacent to the third sub-station, and 2b detects the current flowing to the first sub-station side of the second sub-station. Current detector 2c is a current detector that detects a current flowing on the second substation side of the third substation, and 2d is a current detector that detects a current flowing on the third substation side of the fourth substation. Current detectors 3a, 3b, 3c, and 3d detect power converters 1a, 1
b, 1c and 1d.
【0020】このような構成の直流き電システムの運用
は、まず第1の変電所の電力変換器1aの出力電圧を基
準とする。第2の変電所の電力変換器1bの出力直流電
圧は、第1の変電所と第2の変電所の間に列車がなく力
行電流や回生電流がない状態で、電流検出器2bの電流
が零に近くなるように調整する。具体的には第2の変電
所から第1の変電所に電流が流れている場合には、第2
の変電所の電力変換器1bの直流電圧を下げるよう電圧
制御回路3bで調整し、逆に第1の変電所から第2の変
電所に電流が流れている場合には、第2の変電所の電力
変換器1bの直流電圧を上げるように電圧制御回路3b
で調整する。このようにして第1の変電所と第2の変電
所の電圧を等しくし、第1の変電所と第2の変電所間に
電流が流れないように調整する。The operation of the DC feeding system having such a configuration is first based on the output voltage of the power converter 1a of the first substation. The output DC voltage of the power converter 1b of the second substation is such that when there is no train between the first substation and the second substation and there is no power running current or regenerative current, the current of the current detector 2b is Adjust so that it is close to zero. Specifically, when current is flowing from the second substation to the first substation, the second
Is adjusted by the voltage control circuit 3b so as to reduce the DC voltage of the power converter 1b of the substation, and conversely, if a current flows from the first substation to the second substation, the second substation Voltage control circuit 3b so as to increase the DC voltage of power converter 1b
Adjust with. In this way, the voltages of the first substation and the second substation are made equal, and adjustment is made so that no current flows between the first substation and the second substation.
【0021】次に第2の変電所の電力変換器1bの出力
直流電圧を基準として同じように第3の変電所の電力変
換器1cの出力直流電圧を調整する。この場合は電流検
出器2cの電流によって前記と同様に調整する。さらに
第4の変電所の電力変換器1dは第3の変電所の電力変
換器1cを基準として、電流検出器2dの電流により調
整を行う。以上により変電所間の差電圧がなくなり、各
変電所間の横流は順に零に近くなるように調整されてい
く。Next, the output DC voltage of the power converter 1c of the third substation is similarly adjusted with reference to the output DC voltage of the power converter 1b of the second substation. In this case, adjustment is made in the same manner as described above by the current of the current detector 2c. Further, the power converter 1d of the fourth substation performs adjustment with the current of the current detector 2d based on the power converter 1c of the third substation. As described above, the difference voltage between the substations is eliminated, and the cross current between the substations is adjusted so as to be close to zero in order.
【0022】この例では第1の変電所の電力変換器1a
を基準にしたが、基準とするのは末端の変電所である必
要はなく、例えば第3の変電所の電力変換器1cを基準
にしてもよい。その場合は第3の変電所の電力変換器1
cの出力直流電圧を基準にして第2と第4の電力変換器
1bと1dを調整する。この場合、第2の変電所の電力
変換器1bは第2の変電所から第3の変電所に流れる電
流により調整する。In this example, the power converter 1a of the first substation
However, the reference need not be the terminal substation, and may be, for example, the power converter 1c of the third substation. In that case, the power converter 1 of the third substation
The second and fourth power converters 1b and 1d are adjusted with reference to the output DC voltage of c. In this case, the power converter 1b of the second substation is adjusted by the current flowing from the second substation to the third substation.
【0023】このようにして、この第1の実施の形態の
直流き電システムおよびその運用方法によれば変電所間
の横流を小さくすることができ、電力変換器の容量の不
要な増加を防ぎ、安価な電力変換器を適用することがで
きる。また横流とき電線の抵抗による電力損失を防止す
ることができ、直流き電システムの効率を向上させるこ
とができる。As described above, according to the DC feeding system and the operation method of the first embodiment, the cross current between the substations can be reduced, and the unnecessary increase in the capacity of the power converter can be prevented. Inexpensive power converters can be applied. Further, it is possible to prevent power loss due to the resistance of the electric wire at the time of cross current, and it is possible to improve the efficiency of the DC feeding system.
【0024】本発明の第2の実施の形態は、前記第1の
実施の形態と同じ構成の直流き電システム(図1)によ
って異なる運用方法を取るものである。すなわち、本実
施の形態では、まず第1の変電所の電力変換器1aを起
動し直流電圧を確立させる。直流電圧確立後または直流
電圧が確立するに十分な時間経過後に第2の変電所の電
力変換器1bを起動する。電力変換器1bの直流電圧が
確立後、電流検出器2bの検出電流が零に近くなるよう
に電力変換器1bの直流電圧を電圧制御回路3bで調整
する。この調整は、前記第1の実施の形態と同じように
電流の方向により電力変換器1bの直流電圧を上げまた
は下げることによっておこなう。次に第3の変電所の電
力変換器1cを起動し同様に第2の変電所との間に流れ
る電流により電力変換器1cの直流電圧を調整する。以
下順に第4の変電所、第5の変電所と起動と調整を行
う。この運用方法においても変電所間の横流電流を零に
近くなるように調整することができる。The second embodiment of the present invention employs a different operation method depending on the DC feeding system (FIG. 1) having the same configuration as the first embodiment. That is, in the present embodiment, first, the power converter 1a of the first substation is started to establish a DC voltage. The power converter 1b of the second substation is activated after the establishment of the DC voltage or after a lapse of time sufficient for the establishment of the DC voltage. After the DC voltage of the power converter 1b is established, the DC voltage of the power converter 1b is adjusted by the voltage control circuit 3b so that the detection current of the current detector 2b approaches zero. This adjustment is performed by increasing or decreasing the DC voltage of the power converter 1b according to the direction of the current, as in the first embodiment. Next, the power converter 1c of the third substation is activated, and the DC voltage of the power converter 1c is similarly adjusted by the current flowing between the third substation and the second substation. Starting and adjusting the fourth substation and the fifth substation in this order. In this operation method as well, the cross current between the substations can be adjusted to be close to zero.
【0025】この第2の実施の形態の効果は基本的に第
1の実施の形態と同様である。但し、第2の実施の形態
では、隣り合う変電所の電力変換器1a,1b,1c,
1dを順に起動するので、他の変電所の電力変換器に与
える影響が少ない。つまり、第1の実施の形態では、第
1、第2の電力変換器1a,1b間で調整を行うと、第
2の電力変換器1bの直流電圧の変動が第3の電力変換
器1cに影響を与える可能性があるが、第2の実施の形
態においては直流電圧の確立後、調整を行い、その後、
後段の電力変換器を起動するので後段の電力変換器に影
響を及ぼすことが少ない。The effect of the second embodiment is basically the same as that of the first embodiment. However, in the second embodiment, the power converters 1a, 1b, 1c,
Since 1d is sequentially activated, the influence on the power converters of other substations is small. That is, in the first embodiment, when the adjustment is performed between the first and second power converters 1a and 1b, the fluctuation of the DC voltage of the second power converter 1b is applied to the third power converter 1c. Although it may have an effect, in the second embodiment, adjustment is performed after the DC voltage is established, and thereafter,
Since the power converter at the subsequent stage is started, the power converter at the subsequent stage is less affected.
【0026】次に本発明の第3の実施の形態を説明す
る。本実施の形態は前記第1および第2の実施の形態と
同じ構成(図1)の直流き電システムによって異なる運
用方法をとるものである。図2はこの実施の形態の運用
方法における動作説明図である。この実施の形態におい
ては、き電線の電流を電流検出器2bにより検出し、こ
の電流の絶対値が零に近い第1のレベルと前記第1のレ
ベルより大きい第2のレベルの間に所定の時間滞留した
時に、その電流が自変電所に流れる方向の場合は自変電
所の電力変換器1bの直流電圧を上昇させ、自変電所か
ら流れ出す方向の場合は電力変換器1bの直流電圧を下
げる。第3の変電所以降も同様に調整し横流電流を小さ
くする。Next, a third embodiment of the present invention will be described. This embodiment employs a different operation method depending on the DC feeding system having the same configuration (FIG. 1) as the first and second embodiments. FIG. 2 is an explanatory diagram of the operation in the operation method according to this embodiment. In this embodiment, the current of the feeder is detected by a current detector 2b, and a predetermined value is set between a first level whose absolute value is close to zero and a second level larger than the first level. When the current is flowing, the DC voltage of the power converter 1b of the substation is raised when the current flows in the substation, and the DC voltage of the power converter 1b is lowered when the current flows out of the substation. . The same is applied to the third and subsequent substations to reduce the cross current.
【0027】すなわち、図2に示すように負荷がかかっ
ているときは直流電流に大きな変動があるので、その期
間は直流電圧の調整を行わないようにする。無負荷期間
に入り、直流電流が所定期間継続して一定レベル間にな
った場合にのみ、直流電圧の調整を行う。この第3の実
施の形態の効果も基本的に第1の実施の形態と同様であ
るが、起動後運転中においても変電所間の調整を行うこ
とができるという効果がある。That is, when a load is applied as shown in FIG. 2, there is a large fluctuation in the DC current, so that the DC voltage is not adjusted during that period. The DC voltage is adjusted only when the no-load period starts and the DC current continues to be at a certain level for a predetermined period. The effect of the third embodiment is basically the same as that of the first embodiment, but has an effect that adjustment between substations can be performed even during operation after startup.
【0028】次に本発明の第4の実施の形態を図3を参
照して説明する。図1と同じ構成要素には同じ符号を附
し説明を省略する。4b,4c,4dは横流を検出する
ための小電流用の電流検出器であり、5b,5c,5d
は電流検出器4b,4c,4dを短絡する短絡器であ
る。電流検出器2b,2c,2dがき電システムで一般
的に用いられている電流検出器とすると、電流検出器4
b,4c,4dはそれより小電流用の電流検出器であ
る。本実施の形態の直流き電システムで検出しようとす
る横流はほぼゼロに近い小さな電流であるので、このよ
うなことが可能である。Next, a fourth embodiment of the present invention will be described with reference to FIG. The same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. Reference numerals 4b, 4c, and 4d denote current detectors for detecting small cross currents, and 5b, 5c, and 5d.
Is a short-circuit device for short-circuiting the current detectors 4b, 4c, 4d. If the current detectors 2b, 2c and 2d are current detectors generally used in the feeding system, the current detector 4
b, 4c and 4d are current detectors for smaller currents. This is possible because the cross current to be detected by the DC feeding system according to the present embodiment is a small current near zero.
【0029】本実施の形態では、電流検出器2b,2
c,2dとともに電流検出器4b,4c,4dの電流信
号を用いて電圧制御回路3b,3c,3dで調整する。
調整完了後は短絡器5b,5c,5dにより電流検出器
4b,4c,4dを短絡する。電流検出器4b,4c,
4dは電流検出器2b,2c,2dよりも小さい電流を
検出できるように選定し、より零に近い電流に調整する
ことができる。このようにして変電所間の横流電流を小
さくする。In this embodiment, the current detectors 2b, 2
Using the current signals of the current detectors 4b, 4c, and 4d together with c and 2d, the voltage is adjusted by the voltage control circuits 3b, 3c, and 3d.
After the adjustment is completed, the current detectors 4b, 4c, 4d are short-circuited by the short-circuit devices 5b, 5c, 5d. The current detectors 4b, 4c,
4d is selected so that a current smaller than the current detectors 2b, 2c and 2d can be detected, and can be adjusted to a current closer to zero. Thus, the cross current between the substations is reduced.
【0030】この第4の実施の形態の効果も基本的に第
1の実施の形態と同様である。但しこの実施の形態で
は、小電流用の電流検出器5b,5c,5dを備えてい
るので、精度よく調整を行うことができる。The effects of the fourth embodiment are basically the same as those of the first embodiment. However, in this embodiment, since the current detectors 5b, 5c, and 5d for small current are provided, the adjustment can be performed with high accuracy.
【0031】次に図4は本発明の第5の実施の形態の直
流き電システムの構成図である。図1と同じ構成要素に
は同じ符号を附して説明を省略する。6は変電所間を接
続する接続線であり、列車に電力を供給するき電線とは
別に設ける。接続線6の抵抗値はき電線より高い値に選
定する。7b,7c,7dは接続線6に流れる電流を検
出する電流検出器である。このような構成によって、接
続線6に流れる電流を電流検出器7b,7c,7dで検
出し、この電流が零に近くなるように電力変換器1b,
1c,1dの直流電圧を調整する。このようにして変電
所間の横流電流を小さくする。Next, FIG. 4 is a configuration diagram of a DC feeding system according to a fifth embodiment of the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. Reference numeral 6 denotes a connection line for connecting the substations, which is provided separately from the feeder line for supplying power to the train. The resistance value of the connection line 6 is selected to be higher than that of the feeder wire. Reference numerals 7b, 7c and 7d are current detectors for detecting a current flowing through the connection line 6. With such a configuration, the current flowing through the connection line 6 is detected by the current detectors 7b, 7c, 7d, and the power converters 1b,
The DC voltages 1c and 1d are adjusted. Thus, the cross current between the substations is reduced.
【0032】この第5の実施の形態においては、変電所
間の接続線の抵抗値が大きいので電流が流れにくい。し
たがって、電流値が小さくなり、変電所間の横流を精度
よく調整することができる。In the fifth embodiment, the current hardly flows because the resistance value of the connection line between the substations is large. Therefore, the current value is reduced, and the cross current between the substations can be adjusted accurately.
【0033】次に本発明の第6の実施の形態の直流き電
システムおよびその運用方法を図5を参照して説明す
る。図5において、8aは第1の変電所から第2の変電
所方向へのき電線の電流を検出する電流検出器である。
電流検出器2bの電流と電流検出器8aの電流を比較
し、ほぼ等しい場合に、その電流方向により第2の変電
所の電力変換器1bの直流電圧を調整する。その電流が
自変電所に流れる方向の場合は自変電所の電力変換器1
bの直流電圧を上昇させ、自変電所から流れ出す方向の
場合は電力変換器1bの直流電圧を下げる。第3の変電
所以降も同様に調整し横流電流を小さくする。Next, a DC feeding system according to a sixth embodiment of the present invention and an operation method thereof will be described with reference to FIG. In FIG. 5, reference numeral 8a denotes a current detector for detecting a feeder current flowing from the first substation to the second substation.
The current of the current detector 2b and the current of the current detector 8a are compared, and when they are substantially equal, the DC voltage of the power converter 1b of the second substation is adjusted according to the current direction. When the current flows in the substation, the power converter 1 of the substation is used.
The DC voltage of the power converter 1b is decreased in the case where the DC voltage of the power converter 1b is flowing out of the substation. The same is applied to the third and subsequent substations to reduce the cross current.
【0034】この第6の実施の形態では、電流検出器2
bと電流検出器8aはそれぞれ第1,第2の変電所の近
辺に設けられている。き電区間に列車がある場合は、第
1,第2の変電所から電力を受けるが、その列車の位置
により変電所から列車までのき電線の長さ、つまり抵抗
が変化するため、供給バランスが変化する。このバラン
スの変化を電流検出器2b,8aの比較により検出し、
差がある場合にはき電区間に列車があると判断して調整
は行わない。In the sixth embodiment, the current detector 2
b and the current detector 8a are provided near the first and second substations, respectively. When there is a train in the feeder section, power is received from the first and second substations. However, the length of the feeder line from the substation to the train, that is, the resistance changes depending on the position of the train, so the supply balance Changes. This change in balance is detected by comparing the current detectors 2b and 8a,
If there is a difference, it is determined that there is a train in the feeder section and no adjustment is performed.
【0035】[0035]
【発明の効果】本発明によれば変電所間の横流を小さく
することができ、電力変換器の容量の不要な増加を防止
して必要最小限の容量の電力変換器を適用することがで
きる。また横流とき電線の抵抗による電力損失を防止す
ることができ、直流き電システムの効率を向上させるこ
とができる。According to the present invention, the cross current between the substations can be reduced, the unnecessary increase of the capacity of the power converter can be prevented, and the power converter having the minimum necessary capacity can be applied. . Further, it is possible to prevent power loss due to the resistance of the electric wire at the time of cross current, and it is possible to improve the efficiency of the DC feeding system.
【図1】本発明の第1,第2および第3の実施の形態の
直流き電システムの構成を示す回路図。FIG. 1 is a circuit diagram showing a configuration of a DC feeding system according to first, second, and third embodiments of the present invention.
【図2】本発明の第3の実施の形態の直流き電システム
の運用方法を説明する図。FIG. 2 is a view for explaining an operation method of a DC feeding system according to a third embodiment of the present invention.
【図3】本発明の第4の実施の形態の直流き電システム
の構成を示す回路図。FIG. 3 is a circuit diagram showing a configuration of a DC feeding system according to a fourth embodiment of the present invention.
【図4】本発明の第5の実施の形態の直流き電システム
の構成を示す回路図。FIG. 4 is a circuit diagram showing a configuration of a DC feeding system according to a fifth embodiment of the present invention.
【図5】本発明の第6の実施の形態の直流き電システム
の構成を示す回路図。FIG. 5 is a circuit diagram showing a configuration of a DC feeding system according to a sixth embodiment of the present invention.
【図6】従来の直流き電システムの構成を示す回路図。FIG. 6 is a circuit diagram showing a configuration of a conventional DC feeding system.
1a…第1の変電所の電力変換器、1b…第2の変電所
の電力変換器、1c…第3の変電所の電力変換器、1d
…第4の変電所の電力変換器、2b…第2の変電所の電
流検出器、2c…第3の変電所の電流検出器、2d…第
4の変電所の電流検出器、3a,3b,3c,3d…電
圧制御回路、4b,4c,4d…電流検出器、5b,5
c,5d…短絡器、6…接続線、7b,7c,7d…電
流検出器、8a,8b,8c…電流検出器、20…商用交
流系統、21,31…変換器用変圧器、22,32…自励式変換
器、23,33…直流コンデンサ、24,34…直流リアクト
ル、25,26,35,36…直流遮断器、40…き電線。1a: power converter of the first substation, 1b: power converter of the second substation, 1c: power converter of the third substation, 1d
... power converter of the fourth substation, 2b ... current detector of the second substation, 2c ... current detector of the third substation, 2d ... current detector of the fourth substation, 3a, 3b , 3c, 3d: voltage control circuit, 4b, 4c, 4d: current detector, 5b, 5
c, 5d: short circuit, 6: connection line, 7b, 7c, 7d: current detector, 8a, 8b, 8c: current detector, 20: commercial AC system, 21, 31: transformer for converter, 22, 32 ... Self-excited converter, 23,33 ... DC capacitor, 24,34 ... DC reactor, 25,26,35,36 ... DC circuit breaker, 40 ... Feed line.
フロントページの続き (72)発明者 伊藤 健治 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 Fターム(参考) 5G065 CA01 DA06 GA03 HA01 JA01 LA02 5H006 BB05 CA01 CC04 DA04 DC02Continuation of the front page (72) Inventor Kenji Ito 1-1-1, Shibaura, Minato-ku, Tokyo F-term in the head office of Toshiba Corporation (reference) 5G065 CA01 DA06 GA03 HA01 JA01 LA02 5H006 BB05 CA01 CC04 DA04 DC02 DC02
Claims (8)
複数の変電所を備え、前記変電所は、交流を直流に交換
する電力変換器と、前記き電線に流れる前記変電所の出
力電流を検出する電流検出器と、前記電流検出器の検出
電流値にもとづいて前記電力変換器の出力電圧を制御す
る電圧制御器とを備えた直流き電システムの運用方法に
おいて、所定の変電所を基準としてき電区間に列車のな
い無負荷状態のときに、前記基準とする変電所に隣接す
る変電所から前記基準とする変電所へ流れる電流が零ま
たは零に近い値になるように前記隣接する変電所の出力
電圧を調整し、さらに前記隣接する変電所の隣の変電所
の出力電圧を前記隣接する変電所を基準として調整し、
順次出力電圧を調整することを特徴とする直流き電シス
テムの運用方法。1. A substation connected in parallel to a feeder of a DC electric railway, wherein the substation comprises a power converter for converting AC to DC, and an output current of the substation flowing through the feeder. In a method for operating a DC feeding system, comprising: a current detector that detects a current and a voltage controller that controls an output voltage of the power converter based on a detected current value of the current detector. In the no-load state where there is no train in the feeder section as a reference, the current flowing from the substation adjacent to the reference substation to the reference substation is set to zero or a value close to zero so that the current flowing to the reference substation becomes zero. Adjusting the output voltage of the substation to further adjust the output voltage of the substation next to the adjacent substation with reference to the adjacent substation,
A method for operating a DC feeding system, comprising sequentially adjusting an output voltage.
前記基準とする変電所に隣接する変電所を次に起動し
て、起動後に前記基準とする変電所へ流れる横流が零ま
たは零に近い値になるように前記隣接する変電所の出力
電圧を調整し、さらに前記隣接する変電所の隣の変電所
を次に起動して、前記隣接する変電所を基準として出力
電圧を調整し、変電所を順次起動して出力電圧を調整す
ることを特徴とする請求項1記載の直流き電システムの
運用方法。2. Start up based on a predetermined substation,
Next, start the substation adjacent to the reference substation, and adjust the output voltage of the adjacent substation so that the cross current flowing to the reference substation after starting is zero or a value close to zero. And further starting the substation next to the adjacent substation, adjusting the output voltage based on the adjacent substation, and sequentially starting the substations to adjust the output voltage. The operation method of the DC feeding system according to claim 1.
のレベルと前記第1のレベルより大きい第2のレベルを
設け、前記第1のレベルと前記第2のレベルの間に出力
電流が所定の時間滞留したときに前記変電所の出力電圧
を調整することを特徴とする請求項1記載の直流き電シ
ステムの運用方法。3. An output current of a substation having a first current near zero.
And a second level larger than the first level are provided, and the output voltage of the substation is adjusted when the output current stays for a predetermined time between the first level and the second level. The method for operating a DC feeding system according to claim 1, wherein:
複数の変電所を備え、前記変電所は、交流を直流に交換
する電力変換器と、前記き電線に流れる前記変電所の出
力電流を検出する電流検出器と、前記電流検出器の検出
電流値にもとづいて前記電力変換器の出力電圧を制御す
る電圧制御器とを備えた直流き電システムにおいて、前
記き電線に設けられ隣接する変電所との横流を検出し電
圧制御器へ横流に関する信号を出力する小電流検出器
と、前記小電流検出器を短絡する短絡器とを備えたこと
を特徴とする直流き電システム。4. A substation connected in parallel to a feeder of a DC electric railway, wherein the substation comprises a power converter for converting AC to DC, and an output current of the substation flowing through the feeder. And a voltage controller that controls the output voltage of the power converter based on the detected current value of the current detector. A direct current feeding system comprising: a small current detector that detects a cross current with a substation and outputs a signal related to the cross current to a voltage controller; and a short-circuit device that short-circuits the small current detector.
流を検出し電圧制御器へ横流に関する信号を出力する小
電流検出器と、前記小電流検出器を短絡する短絡器とを
備え、前記小電流検出器の検出電流値にもとづいて変電
所の出力電圧を調整し、その後、前記短絡器によって小
電流検出器を短絡することを特徴とする請求項1記載の
直流き電システムの運用方法。5. A small current detector provided on a feeder line for detecting a cross current with an adjacent substation and outputting a signal related to the cross current to a voltage controller, and a short-circuit device for short-circuiting the small current detector. 2. The operation of the DC feeding system according to claim 1, wherein the output voltage of the substation is adjusted based on the detected current value of the small current detector, and then the small current detector is short-circuited by the short-circuit device. Method.
複数の変電所を備え、前記変電所は、交流を直流に交換
する電力変換器と、前記き電線に流れる前記変電所の出
力電流を検出する電流検出器と、前記電流検出器の検出
電流値にもとづいて前記電力変換器の出力電圧を制御す
る電圧制御器とを備えた直流き電システムにおいて、前
記各変電所の直流出力端を並列接続する接続線と、この
接続線に流れる電流を検出し電圧制御器に対して前記電
流に関する信号を出力する電流検出器とを備えたことを
特徴とする直流き電システム。6. A substation connected in parallel to a feeder of a DC electric railway, wherein the substation includes a power converter for converting AC to DC, and an output current of the substation flowing through the feeder. And a voltage controller for controlling the output voltage of the power converter based on the detected current value of the current detector, wherein the DC output terminal of each of the substations And a current detector that detects a current flowing through the connection line and outputs a signal related to the current to a voltage controller.
続線と、この接続線に流れる電流を検出し電圧制御器に
対して前記電流に関する信号を出力する電流検出器とを
備え、前記接続線に流れる電流が零または零に近い値に
なるように変電所の出力電圧を調整することを特徴とす
る請求項1記載の直流き電システムの運用方法。7. A connection line for connecting DC output terminals of each substation in parallel, and a current detector for detecting a current flowing through the connection line and outputting a signal related to the current to a voltage controller, The method according to claim 1, wherein the output voltage of the substation is adjusted so that the current flowing through the connection line becomes zero or a value close to zero.
る変電所の出力電流を比較し、電流がほぼ等しいとき
に、前記出力電流が零または零に近くなるように前記変
電所の出力電圧を調整することを特徴とする請求項1記
載の直流き電システムの運用方法。8. An output current of the substation is compared with an output current of a substation adjacent to the substation and an output current of the substation is set such that when the currents are substantially equal, the output current becomes zero or close to zero. The method for operating a DC feeding system according to claim 1, wherein the voltage is adjusted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001031754A JP2002234365A (en) | 2001-02-08 | 2001-02-08 | Dc electromotive system and operating method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001031754A JP2002234365A (en) | 2001-02-08 | 2001-02-08 | Dc electromotive system and operating method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002234365A true JP2002234365A (en) | 2002-08-20 |
Family
ID=18895790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001031754A Pending JP2002234365A (en) | 2001-02-08 | 2001-02-08 | Dc electromotive system and operating method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002234365A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009177012A (en) * | 2008-01-25 | 2009-08-06 | West Japan Railway Co | Dc reactor |
JP2013093922A (en) * | 2011-10-24 | 2013-05-16 | Mitsubishi Electric Corp | Dc power supply system |
WO2013125130A1 (en) * | 2012-02-22 | 2013-08-29 | 三菱電機株式会社 | Dc feeding voltage control device and dc feeding voltage control system |
JP7116581B2 (en) | 2018-04-24 | 2022-08-10 | 株式会社東芝 | Feeder device and feeder system |
-
2001
- 2001-02-08 JP JP2001031754A patent/JP2002234365A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009177012A (en) * | 2008-01-25 | 2009-08-06 | West Japan Railway Co | Dc reactor |
JP2013093922A (en) * | 2011-10-24 | 2013-05-16 | Mitsubishi Electric Corp | Dc power supply system |
WO2013125130A1 (en) * | 2012-02-22 | 2013-08-29 | 三菱電機株式会社 | Dc feeding voltage control device and dc feeding voltage control system |
JP5705370B2 (en) * | 2012-02-22 | 2015-04-22 | 三菱電機株式会社 | DC feeding voltage control device and DC feeding voltage control system |
JPWO2013125130A1 (en) * | 2012-02-22 | 2015-07-30 | 三菱電機株式会社 | DC feeding voltage control device and DC feeding voltage control system |
US9180790B2 (en) | 2012-02-22 | 2015-11-10 | Mitsubishi Electric Corporation | DC feeder voltage control apparatus and DC feeder voltage control system |
JP7116581B2 (en) | 2018-04-24 | 2022-08-10 | 株式会社東芝 | Feeder device and feeder system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11218084B2 (en) | Power supply device for electric vehicle | |
JPH11514836A (en) | AC-DC power supply | |
KR20090100655A (en) | Multi level inverter | |
CN104753402B (en) | Generator brake system and its control method | |
JP7124297B2 (en) | power converter | |
US20200153335A1 (en) | Bidirectional power converter, electric vehicle, and control method for bidirectional power converter | |
CN101179255A (en) | H-bridge inverter of AC motor | |
US20040105280A1 (en) | Method and apparatus for controlling a DC-DC converter | |
WO2012049818A1 (en) | Ac/dc converter | |
JP3345249B2 (en) | Electric car control device | |
KR101883708B1 (en) | Constant on-time(cot) control in isolated converter | |
JP2002234365A (en) | Dc electromotive system and operating method thereof | |
JP2002335688A (en) | Power supply circuit | |
JP3351631B2 (en) | Electric car control device | |
KR101901576B1 (en) | Constant on-time(cot) control in isolated converter | |
JP4196245B2 (en) | Vehicle charging device | |
JP2723372B2 (en) | AC electric vehicle control device | |
JP2002084676A (en) | Power conversion device for accumulator | |
JPH08308096A (en) | Self-excitation type inverter control circuit for adjusting effective and reactive power | |
JP2002320390A (en) | Power storage apparatus | |
CN112448584A (en) | Power supply device for electric vehicle | |
JP2005130589A (en) | Inverter controller | |
KR20200069577A (en) | Power converting method | |
JP2006020394A (en) | Auxiliary power supply for vehicle | |
JP2004297900A (en) | Ac voltage adjuster |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060817 |