[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002231731A - Method for fabricating compound semiconductor device - Google Patents

Method for fabricating compound semiconductor device

Info

Publication number
JP2002231731A
JP2002231731A JP2001023675A JP2001023675A JP2002231731A JP 2002231731 A JP2002231731 A JP 2002231731A JP 2001023675 A JP2001023675 A JP 2001023675A JP 2001023675 A JP2001023675 A JP 2001023675A JP 2002231731 A JP2002231731 A JP 2002231731A
Authority
JP
Japan
Prior art keywords
substrate
metal material
groove
wafer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001023675A
Other languages
Japanese (ja)
Inventor
Masaharu Kondo
雅陽 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001023675A priority Critical patent/JP2002231731A/en
Publication of JP2002231731A publication Critical patent/JP2002231731A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Dicing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for fabricating a compound semiconductor device having such a structure as elements fabricated on a GaAs substrate are isolated by making a trench and the state of a wafer is sustained by a metal layer of PHS structure in which the wafer is prevented from being warped. SOLUTION: A trench 15 is made along a dicing line on the surface of a substrate 1 on which elements are fabricated and the bottom of the trench 15 is exposed by back lapping thus isolating each chip. A PHS structure is formed and a metal layer 10 for interlinking the isolated chips is formed by copper plating. Finally, a flash plating 13 of gold is formed on the entire surface of copper plating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高出力GaAsM
ESFETの製造方法に関し、特にウェハ状態で取扱い
が容易なGaAsMESFETの製造方法に関する。
The present invention relates to a high-power GaAsM.
The present invention relates to a method for manufacturing an ESFET, and particularly to a method for manufacturing a GaAs MESFET which is easy to handle in a wafer state.

【0002】[0002]

【従来の技術】半導体装置の一例であるGaAsパワー
MESFETは、例えば図6(A)(B)に示す構造で
ある。
2. Description of the Related Art A GaAs power MESFET as an example of a semiconductor device has a structure shown in FIGS. 6A and 6B, for example.

【0003】同図において、1は半絶縁性基板、2、
3、4は基板1上に形成されたそれぞれソース、ゲー
ト、ドレインの電極、5、6、7はソース、ゲート、ド
レインのボンディングパッド、8は基板1表面に形成し
たN型の活性層、9は基板1の裏面に形成した金メッキ
などの金属層で、放熱電極および薄肉化した基板1の機
械的強度向上のために設けられたプレートヒートシンク
(Plated Heat Sink 以下PHSと略する)である。
In FIG. 1, reference numeral 1 denotes a semi-insulating substrate;
Reference numerals 3 and 4 denote source, gate, and drain electrodes formed on the substrate 1, respectively, 5, 6, and 7 denote bonding pads for the source, gate, and drain, 8 denotes an N-type active layer formed on the surface of the substrate 1, Reference numeral denotes a metal layer formed of gold plating or the like formed on the back surface of the substrate 1, which is a heat sink electrode and a plate heat sink (hereinafter, abbreviated as PHS) provided for improving the mechanical strength of the thinned substrate 1.

【0004】通常、半導体装置の製造においては、ウェ
ハに多数の素子を形成した後ウェハをダイシングするこ
とにより個々のチップに分離する。ところがGaAsウ
ェハは材質的に脆く、特にPHS構造を採用するGaA
sMESFETでは、熱抵抗を下げるために基板1の厚
みを10〜30μと極めて薄く形成するため、ダイシン
グ時にウェハの割れ、欠けが多発するという欠点があ
る。
Usually, in the manufacture of a semiconductor device, a large number of elements are formed on a wafer, and then the wafer is diced into individual chips. However, GaAs wafers are brittle in material, and in particular, GaAs employing a PHS structure.
In the sMESFET, the thickness of the substrate 1 is formed as extremely thin as 10 to 30 μm in order to lower the thermal resistance, and thus there is a disadvantage that the wafer is frequently cracked or chipped during dicing.

【0005】そこで、図7に示すような製造方法が考案
された。即ち、図7(A)に示すように基板1表面のN
型活性層8に素子を形成した後、ダイシングライン上に
最終基板厚みに5〜10μを加算した深さの溝15を形
成する。図7(B)に示すように基板1表面にワックス
12で支持板11を張り付けた状態で、溝15が露出す
るまで基板1の裏面を研摩した後、裏面全面にメッキ用
電極18を形成し、金メッキを施してPHS構造の金属
層9を形成する。図7(C)に示すように基板1を支持
板11から剥離し、ワックス12を除去する。各基板1
は既に分離されているが、金属層9によりウェハ状態を
保っているので、ウェハとして素子の良否判定(ウェハ
チェック)を行った後、ダイシングブレードにより溝1
5を通して金属層9を切断することにより基板1毎にチ
ップを分離する。
Therefore, a manufacturing method as shown in FIG. 7 has been devised. That is, as shown in FIG.
After forming the element in the mold active layer 8, a groove 15 having a depth obtained by adding 5 to 10 μ to the final substrate thickness is formed on the dicing line. As shown in FIG. 7B, the back surface of the substrate 1 is polished until the groove 15 is exposed in a state where the support plate 11 is adhered to the surface of the substrate 1 with the wax 12, and then the plating electrode 18 is formed on the entire back surface. Then, a metal layer 9 having a PHS structure is formed by performing gold plating. As shown in FIG. 7C, the substrate 1 is peeled from the support plate 11, and the wax 12 is removed. Each board 1
Are already separated, but since the wafer state is maintained by the metal layer 9, the quality of the device as a wafer is determined (wafer check), and then the groove 1 is formed by a dicing blade.
The chips are separated for each substrate 1 by cutting the metal layer 9 through 5.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記製
造方法は、PHS構造の金属層9を金メッキにより形成
しており、金メッキ生成工程が高温(70℃前後)であ
るためメッキ工程完成後、常温(25℃前後)では基板
1と金の熱膨張係数の違いで金の収縮率が大きく、図8
に示すようなウェハのそりが発生する。そのため、各ボ
ンディングパッド5、6、7に探針を接触させて素子の
電気特性を測定するウェハチェック工程で、ウェハ中心
部と周辺部では探針の接触位置にずれを生じてしまう。
またダイシングブレードで個々のチップに切断すると
き、ウェハ中心部と周辺部では切断位置がずれてしま
う。
However, in the above manufacturing method, the metal layer 9 having the PHS structure is formed by gold plating, and the gold plating generation process is at a high temperature (around 70 ° C.). (About 25 ° C.), the contraction rate of gold is large due to the difference in the coefficient of thermal expansion between the substrate 1 and gold.
The warpage of the wafer occurs as shown in FIG. For this reason, in the wafer checking step in which the probe is brought into contact with each of the bonding pads 5, 6, and 7 to measure the electrical characteristics of the device, the contact positions of the probe are shifted between the central portion and the peripheral portion of the wafer.
Also, when cutting into individual chips with a dicing blade, the cutting position is shifted between the central part and the peripheral part of the wafer.

【0007】またPHS構造の金属層9を金メッキによ
り形成しているが、金は貴金属で製造コストが高くつ
く。
Although the metal layer 9 having the PHS structure is formed by gold plating, gold is a noble metal and the production cost is high.

【0008】[0008]

【課題を解決するための手段】本発明は上述した欠点に
鑑み成されたもので、基板1表面に素子を形成した後ダ
イシングライン上に溝15を形成する工程と、基板1表
面に支持板を張りつけた状態で前記溝15が露出するま
で基板1裏面を研磨する工程と、基板1全面にPHS構
造の金属層9を銅メッキにより形成する工程と、銅メッ
キの表面に薄い金のフラッシュメッキ13を形成する工
程と、支持板11から基板1を剥がし、溝15を通して
銅メッキ金属層10をダイシングすることにより個々の
チップに分離する工程と、を具備することにより装置製
造の最終段階まで、そりの発生の無いウェハとして扱う
ことの可能な化合物半導体装置の製造方法を提供するも
のである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks, and comprises a step of forming a groove 15 on a dicing line after forming an element on the surface of a substrate 1; Polishing the back surface of the substrate 1 until the groove 15 is exposed, forming a metal layer 9 having a PHS structure on the entire surface of the substrate 1 by copper plating, and flash plating of thin gold on the surface of the copper plating 13 and a step of peeling the substrate 1 from the support plate 11 and dicing the copper-plated metal layer 10 through the grooves 15 to separate the chips into individual chips. An object of the present invention is to provide a method of manufacturing a compound semiconductor device that can be handled as a wafer without warpage.

【0009】[0009]

【発明の実施の形態】以下に本発明の一実施例を図面を
参照しながら詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the drawings.

【0010】図1〜図4は本発明のGaAsMESFE
Tの製造方法を段階的に説明するための断面図である。
FIGS. 1 to 4 show a GaAs MESFE of the present invention.
It is sectional drawing for demonstrating the manufacturing method of T step by step.

【0011】まず図1(A)を参照して、GaAs基板
1表面にソース・ゲート・ドレインを形成してMESF
ET素子を形成する。8はMESFETの能動領域とな
る拡散により形成したN型の活性層である。この段階で
基板1は400〜500μの厚みを有し、これだけの厚
みを有していればウェハとして製造ライン内で取り扱う
ことが可能である。また、素子の表面はファイナルパッ
シベーション被膜で被覆され、各ボンディングパッド
5、6、7の表面には探針接触およぴワイヤ接続用の開
口が設けられている。
First, referring to FIG. 1A, a source, a gate and a drain are formed on the surface of a GaAs substrate 1 to form a MESF.
An ET element is formed. Reference numeral 8 denotes an N-type active layer formed by diffusion to be an active region of the MESFET. At this stage, the substrate 1 has a thickness of 400 to 500 μ, and if it has such a thickness, it can be handled as a wafer in a production line. The surface of the element is covered with a final passivation film, and the surface of each of the bonding pads 5, 6, 7 is provided with an opening for probe contact and wire connection.

【0012】図1(B)を参照して、基板1表面にレジ
ストマスク14を形成し、ウエットエッチングを施すこ
とにより基板1表面のダイシングラインとなる部分に最
終基板厚みに5〜10μを加算した深さの溝15を形成
する。
Referring to FIG. 1B, a resist mask 14 is formed on the surface of the substrate 1 and wet etching is performed to add 5 to 10 μm to the final substrate thickness at a portion to be a dicing line on the surface of the substrate 1. A groove 15 having a depth is formed.

【0013】図1(C)を参照して、基板1表面にワッ
クス12を塗布し、基板1の表面を支持板11に張りつ
ける。支持板11は工程内において薄肉加工した基板1
の機械的強度を保ってハンドリング等の処理を容易にす
る役割を果たす。
Referring to FIG. 1C, wax 12 is applied to the surface of substrate 1 and the surface of substrate 1 is adhered to support plate 11. The support plate 11 is a substrate 1 that has been thinned in the process.
And plays a role of facilitating processing such as handling while maintaining the mechanical strength.

【0014】図2(A)を参照して、基板1の厚みが1
0〜30μになるように基板1の裏面を研摩する。溝1
5の深さを基板1の厚みより大としておけば、この加工
により溝15の底面が露出するので、基板1は素子毎に
チップに分離される。各チップは支持板11で保持され
ていることとなる。溝15の内部はワックス12で充填
されているので、研摩によってワックス12の表面が露
出する。
Referring to FIG. 2A, the thickness of substrate 1 is 1
The back surface of the substrate 1 is polished so as to have a thickness of 0 to 30 μm. Groove 1
If the depth of 5 is larger than the thickness of substrate 1, the bottom of groove 15 is exposed by this processing, and substrate 1 is separated into chips for each element. Each chip is held by the support plate 11. Since the inside of the groove 15 is filled with the wax 12, the surface of the wax 12 is exposed by polishing.

【0015】図2(B)を参照して、基板1の裏面側に
レジストマスク16を形成し、ウエットエッチングによ
り活性層8の下の基板1を5〜25μ程エッチングして
凹部17を形成する。この加工は、活性層からPHSま
での距離を更に縮めて放熱効率を向上させるものであ
る。また、基板1を貫通してPHSとソース電極とを直
接接続するためのバイアホールを形成する場合は、本工
程と前後してエッチング加工を行う。
Referring to FIG. 2B, a resist mask 16 is formed on the back side of the substrate 1, and the substrate 1 under the active layer 8 is etched by about 5 to 25 μ by wet etching to form a concave portion 17. . This processing is to further reduce the distance from the active layer to the PHS to improve the heat radiation efficiency. When a via hole for penetrating the substrate 1 to directly connect the PHS and the source electrode is formed, an etching process is performed before and after this step.

【0016】図2(C)を参照して、レジストマスク1
6を除去した後、スパッタ法により基板1の裏面全面に
厚さ数百〜数千ÅのTi/Au電極18を形成する。
Referring to FIG. 2C, resist mask 1
After removing 6, a Ti / Au electrode 18 having a thickness of several hundreds to several thousand degrees is formed on the entire back surface of the substrate 1 by a sputtering method.

【0017】図3(A)を参照して、Ti/Au電極1
8の表面に再びレジストマスク19を形成し、先の工程
で形成した凹部17にのみ選択的に銅20をメッキす
る。このメッキは、凹部17の銅20が凹部17を埋没
させる程度の厚みになるまで行う。
Referring to FIG. 3A, Ti / Au electrode 1
Then, a resist mask 19 is formed on the surface of the substrate 8 again, and copper 20 is selectively plated only on the concave portions 17 formed in the previous step. This plating is performed until the copper 20 in the concave portion 17 has a thickness enough to bury the concave portion 17.

【0018】図3(B)を参照して、レジストマスク1
9を除去し、再度銅メッキを行うことにより基板1の裏
面全面にPHS構造となる銅メッキ金属層10を形成す
る。銅メッキ金属層10と凹部17内部の銅20とは一
体化する。すでにチップが個々に分断されているので、
銅メッキ金属層10の膜厚は、それ自体で個々のチップ
を連結し、ウェハ状態を保つことの可能な厚みとする。
10〜30μの膜厚があれば、ウェハとして取り扱うこ
とが可能である。但しダイシングが可能な厚みであるこ
とも条件の−つである。
Referring to FIG. 3B, resist mask 1
9 is removed and copper plating is performed again to form a copper plated metal layer 10 having a PHS structure on the entire back surface of the substrate 1. The copper plating metal layer 10 and the copper 20 inside the recess 17 are integrated. Since the chips are already separated individually,
The thickness of the copper-plated metal layer 10 is set to a thickness capable of connecting individual chips by itself and maintaining a wafer state.
If it has a film thickness of 10 to 30 μm, it can be handled as a wafer. However, one of the conditions is that the thickness is such that dicing is possible.

【0019】また銅メッキは常温(25℃前後)で行う
ので、銅メッキ中と銅メッキ後で温度差が発生しないの
で、熱膨張係数の違いによるウェハのそりも発生しな
い。
Further, since copper plating is performed at room temperature (about 25 ° C.), no temperature difference occurs during and after copper plating, so that warpage of the wafer due to a difference in thermal expansion coefficient does not occur.

【0020】次に銅メッキ金属層10を形成している銅
は酸化され易く、これを防ぐために銅メッキ金属層10
の表面全面に厚さ数百〜数千Åの薄い金のフラッシュメ
ッキ13を行う。この金のフラッシュメッキ13は基板
1および銅メッキ金属層10の厚さに比べて極めて薄い
ので実用上問題となるウェハのそりを発生させることは
無い。
Next, the copper forming the copper plated metal layer 10 is easily oxidized.
Is subjected to flash plating 13 of thin gold having a thickness of several hundreds to several thousand Å on the entire surface of the substrate. Since the gold flash plating 13 is extremely thin compared to the thickness of the substrate 1 and the copper plating metal layer 10, it does not cause warpage of the wafer which is a practical problem.

【0021】図3(C)を参照して、支持板11から各
チップに分断された基板1を剥離し、ワックス12を除
去する。各基板1は銅メッキ金属層10によりウェハ状
態を保っている。
Referring to FIG. 3C, the substrate 1 divided into chips is peeled from the support plate 11, and the wax 12 is removed. Each substrate 1 is kept in a wafer state by a copper plating metal layer 10.

【0022】図4を参照して、基板1表面のボンディン
グパッド5、6、7を使用して素子の良否判定(ウェハ
チェック)を行った後、銅メッキ金属層10の表面の金
のフラッシュメッキ13にダイシングシート21を張り
つけ、ダイシングブレードにより溝15を通して銅メッ
キ金属層10と金のフラッシュメッキ13を切断するこ
とにより、基板1毎にチップを分離する。
Referring to FIG. 4, after the quality of the device is determined (wafer check) using bonding pads 5, 6, 7 on the surface of substrate 1, gold flash plating on the surface of copper plating metal layer 10 is performed. A dicing sheet 21 is attached to the substrate 13, and the copper plating metal layer 10 and the gold flash plating 13 are cut through the grooves 15 by a dicing blade, so that chips are separated for each substrate 1.

【0023】係る本発明の製造方法によれば、GaAs
基板1上に形成した素子を溝15を形成することによっ
て分離し、且つPHS構造の銅メッキ金属層10によっ
てウェハ状態を保つ構造において、ウェハにそりが発生
することは無い。そのためウェハチェック工程およびダ
イシング工程において取り扱いが容易になる。
According to the manufacturing method of the present invention, GaAs
In a structure in which the elements formed on the substrate 1 are separated by forming the grooves 15 and the state of the wafer is maintained by the copper plated metal layer 10 having the PHS structure, no warpage occurs in the wafer. Therefore, handling is facilitated in the wafer check process and the dicing process.

【0024】図5に本発明の製造方法により製造したウ
ェハの断面図を示す。
FIG. 5 is a sectional view of a wafer manufactured by the manufacturing method of the present invention.

【0025】尚、本実施例はGaAsMESFETを例
に説明したが、GaAs基板を用いるダイオード、MI
C、MMICなどにも適用が可能である。
Although this embodiment has been described by taking a GaAs MESFET as an example, a diode using a GaAs substrate
It is also applicable to C, MMIC, and the like.

【0026】[0026]

【発明の効果】以上に説明したとおり、本発明によれ
ば、PHS構造の銅メッキ金属層を形成する銅メッキ工
程は常温(25℃前後)で行われるので、その後のウェ
ハチェック工程およびダイシング工程の作業環境と温度
差が無く、ウェハのそりの発生は無い。また銅メッキの
弱点である酸化を防止するために、銅メッキの表面に厚
さ数百〜数千Åの薄い金のフラッシュメッキを行うが、
その厚さが薄いため、そりを発生させることは無い。
As described above, according to the present invention, the copper plating process for forming the copper plating metal layer having the PHS structure is performed at room temperature (around 25 ° C.), and the subsequent wafer check process and dicing process are performed. There is no temperature difference from the working environment of the above, and no warping of the wafer occurs. In order to prevent oxidation, which is the weak point of copper plating, flash plating of thin gold with a thickness of several hundred to several thousand square meters is performed on the surface of copper plating,
Due to its small thickness, no warping occurs.

【0027】上記の通りウェハにそりの発生が無いの
で、各ボンディングパッドに探針を接触させて素子の電
気特性を測定するウェハチェック工程で、ウェハ中心部
と周辺部で探針の接触位置にずれの発生が無く、良品を
不良品と誤判定することが無くなる。また探針の接触位
置のずれによるキズ不良等の発生を防ぐことができる。
またダイシングブレードで個々のチップに切断するダイ
シング工程において、ウェハ中心部と周辺部で切断位置
のずれが無くなり、切断位置のずれによる新たな不良の
発生が無くなる。
As described above, since there is no warp in the wafer, in the wafer check step of measuring the electrical characteristics of the device by bringing the probe into contact with each bonding pad, the probe is located at the contact position of the probe at the central portion and the peripheral portion of the wafer. There is no deviation, and a non-defective product is not erroneously determined as a defective product. In addition, it is possible to prevent the occurrence of a scratch defect or the like due to a shift in the contact position of the probe.
Further, in the dicing step of cutting into individual chips by the dicing blade, the displacement of the cutting position between the central portion and the peripheral portion of the wafer is eliminated, and the occurrence of a new defect due to the displacement of the cutting position is eliminated.

【0028】またPHS構造の銅メッキ金属層を形成す
る銅は金に比べて熱伝導率が良く放熱という本来の機能
を充分に満たし且つ金に比べて安価であり製造コスト低
減になる。
Copper forming the PHS-structured copper plating metal layer has a higher thermal conductivity than gold and sufficiently satisfies the original function of heat dissipation, and is inexpensive and lower in manufacturing cost than gold.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法を説明するための断面図であ
る。
FIG. 1 is a cross-sectional view for explaining a manufacturing method of the present invention.

【図2】本発明の製造方法を説明するための断面図であ
る。
FIG. 2 is a cross-sectional view for explaining the manufacturing method of the present invention.

【図3】本発明の製造方法を説明するための断面図であ
る。
FIG. 3 is a cross-sectional view for explaining the manufacturing method of the present invention.

【図4】本発明の製造方法を説明するための断面図であ
る。
FIG. 4 is a cross-sectional view for explaining the manufacturing method of the present invention.

【図5】本発明の製造方法により製造したウェハの断面
図である。
FIG. 5 is a cross-sectional view of a wafer manufactured by the manufacturing method of the present invention.

【図6】GaAsパワーMESFETを示す、(A)平
面図、(B)断面図である。
6A is a plan view and FIG. 6B is a cross-sectional view showing a GaAs power MESFET.

【図7】 従来の製造方法を説明するための断面図であ
る。
FIG. 7 is a cross-sectional view for explaining a conventional manufacturing method.

【図8】 従来の製造方法により製造したウェハの断面
図である。
FIG. 8 is a cross-sectional view of a wafer manufactured by a conventional manufacturing method.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半絶縁性基板の主面に複数の回路素子を
形成する工程、 前記複数の回路素子を個々のチップに分割するダイシン
グライン上の基板表面をエッチングして溝を形成する工
程、 前記基板の主面を保持板に接着する工程、 前記基板の裏面を前記溝が露出するまで削る工程、 前記基板の裏面の全面に前記複数のチップを保持できる
だけの厚みの熱伝導率の良好な金属材料を付着させる工
程、 前記金属材料の表面に貴金属を付着させる工程、前記基
板を前記支持板から剥離し、前記溝に位置する前記金属
材料をダイシングすることにより個々のチップに分割す
る工程とを具備することを特徴とする化合物半導体装置
の製造方法。
A step of forming a plurality of circuit elements on a main surface of a semi-insulating substrate; a step of forming a groove by etching a substrate surface on a dicing line for dividing the plurality of circuit elements into individual chips; A step of bonding the main surface of the substrate to a holding plate, a step of shaving the back surface of the substrate until the groove is exposed, and a good thermal conductivity having a thickness sufficient to hold the plurality of chips on the entire back surface of the substrate. A step of attaching a metal material, a step of attaching a noble metal to the surface of the metal material, a step of separating the substrate from the support plate, and dicing the metal material located in the groove into individual chips. A method for manufacturing a compound semiconductor device, comprising:
【請求項2】 前記金属材料として銅を主材とした金属
材料を用いることを特徴とした請求項1記載の化合物半
導体装置の製造方法。
2. The method for manufacturing a compound semiconductor device according to claim 1, wherein a metal material mainly composed of copper is used as said metal material.
【請求項3】 半絶縁性基板の主面に複数の回路素子を
形成する工程、 前記複数の回路素子を個々のチップに分割するダイシン
グライン上の基板表面をエッチングして溝を形成する工
程、 前記基板の主面を保持板に接着する工程、 前記基板の裏面を前記溝が露出するまで削る工程、 前記回路素子の活性領域に対応する前記基板の裏面を部
分的にエッチングして凹部を形成する工程、 選択的に熱伝導率の良好な金属材料を被着させて前記凹
部を前記金属材料で埋没させる工程、 前記基板の裏面の全面に前記複数のチップを保持できる
だけの厚みの熱伝導率の良好な同一の金属材料を付着さ
せ前記凹部の金属材料と一体化させる工程、 前記金属材料の表面に貴金属を付着させる工程、前記基
板を前記支持板から剥離し、前記溝に位置する前記金属
材料をダイシングすることにより個々のチップに分割す
る工程とを具備することを特徴とする化合物半導体装置
の製造方法。
A step of forming a plurality of circuit elements on a main surface of the semi-insulating substrate; a step of forming a groove by etching a substrate surface on a dicing line for dividing the plurality of circuit elements into individual chips; Bonding the main surface of the substrate to a holding plate; shaving the back surface of the substrate until the groove is exposed; forming a concave portion by partially etching the back surface of the substrate corresponding to the active region of the circuit element Performing a step of selectively depositing a metal material having good thermal conductivity and burying the concave portion with the metal material; a thermal conductivity having a thickness sufficient to hold the plurality of chips on the entire back surface of the substrate. Attaching the same metal material and integrating the metal material with the metal material in the concave portion, attaching a noble metal to the surface of the metal material, separating the substrate from the support plate, and positioning the substrate in the groove. Method for producing a compound semiconductor device characterized by comprising a step of dividing into individual chips by dicing the metal material.
【請求項4】 前記金属材料として銅を主材とした金属
材料を用いることを特徴とした請求項3記載の化合物半
導体装置の製造方法。
4. The method for manufacturing a compound semiconductor device according to claim 3, wherein a metal material mainly composed of copper is used as said metal material.
JP2001023675A 2001-01-31 2001-01-31 Method for fabricating compound semiconductor device Pending JP2002231731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001023675A JP2002231731A (en) 2001-01-31 2001-01-31 Method for fabricating compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001023675A JP2002231731A (en) 2001-01-31 2001-01-31 Method for fabricating compound semiconductor device

Publications (1)

Publication Number Publication Date
JP2002231731A true JP2002231731A (en) 2002-08-16

Family

ID=18888929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001023675A Pending JP2002231731A (en) 2001-01-31 2001-01-31 Method for fabricating compound semiconductor device

Country Status (1)

Country Link
JP (1) JP2002231731A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165278A (en) * 2004-12-08 2006-06-22 Canon Inc Wafer dicing method and liquid delivery head
JP2008227284A (en) * 2007-03-14 2008-09-25 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof
US7709353B2 (en) 2006-08-22 2010-05-04 Sony Corporation Method for producing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165278A (en) * 2004-12-08 2006-06-22 Canon Inc Wafer dicing method and liquid delivery head
JP4560391B2 (en) * 2004-12-08 2010-10-13 キヤノン株式会社 Method for manufacturing liquid discharge head
US7709353B2 (en) 2006-08-22 2010-05-04 Sony Corporation Method for producing semiconductor device
JP2008227284A (en) * 2007-03-14 2008-09-25 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2763441B2 (en) Method for manufacturing semiconductor device
US6040235A (en) Methods and apparatus for producing integrated circuit devices
US6117707A (en) Methods of producing integrated circuit devices
US5547906A (en) Methods for producing integrated circuit devices
JP4856328B2 (en) Manufacturing method of semiconductor device
US7339279B2 (en) Chip-size package structure and method of the same
US7642629B2 (en) Methods and apparatus for packaging integrated circuit devices
JP4049035B2 (en) Manufacturing method of semiconductor device
JP2007521635A (en) Semiconductor device manufacturing
JPH02271558A (en) Semiconductor device and its manufacture
US20240087877A1 (en) Backside metallized compound semiconductor device and method for manufacturing the same
EP0129915B1 (en) A method of manufacturing an integrated circuit device
JP2013058707A (en) Semiconductor light-emitting element manufacturing method
JP2000173952A (en) Semiconductor device and its manufacture
JP2002231731A (en) Method for fabricating compound semiconductor device
JP3395747B2 (en) Manufacturing method of semiconductor integrated circuit
JPH0758112A (en) Semiconductor device
JP2004158739A (en) Resin sealed semiconductor device and manufacturing method therefor
JP2943950B2 (en) Semiconductor device and manufacturing method thereof
JPH06338522A (en) Manufacture of compound semiconductor device
JPH07176760A (en) Wafer having phs structure and its manufacture
JPH07120642B2 (en) Semiconductor device and manufacturing method thereof
JPS6177369A (en) Manufacture of semiconductor device
JP2823046B2 (en) Semiconductor device and manufacturing method thereof
JPH04258150A (en) Manufacture of semiconductor device