JP2002231248A - Molded article for paraffin-containing nickel-metal hydride battery and method for producing the same - Google Patents
Molded article for paraffin-containing nickel-metal hydride battery and method for producing the sameInfo
- Publication number
- JP2002231248A JP2002231248A JP2001018469A JP2001018469A JP2002231248A JP 2002231248 A JP2002231248 A JP 2002231248A JP 2001018469 A JP2001018469 A JP 2001018469A JP 2001018469 A JP2001018469 A JP 2001018469A JP 2002231248 A JP2002231248 A JP 2002231248A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- paraffin
- hydrogen storage
- electrode
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Powder Metallurgy (AREA)
Abstract
(57)【要約】
【課題】 集電支持体(導電性芯材)を含有しない成形
体を電極として用いた場合でも、充放電による成形体電
極の崩壊を防止することができ、かつ所定の放電容量を
得ることができ、長期に渡り充放電を繰り返しても容量
低下が少なく、数十μmの粒径の合金粉末を用いて成形
する際の作製歩留まりの高いアルカリ二次電池負極用水
素吸蔵合金成形体及びニッケル−水素電池用成形体電極
を開発する。
【解決手段】 水素吸蔵合金粉末とパラフィンを混合造
粒し、その造粒粉を加圧成形後、バインダー溶液に含浸
し、乾燥させてニッケル−水素電池用成形体電極を得
る。水素吸蔵合金粉末とバインダーを混合造粒し、その
造粒粉を加圧成形後、溶解パラフィンに含浸し、乾燥さ
せてニッケル−水素電池用成形体を得る。(57) [Summary] [Problem] To prevent collapse of a molded product electrode due to charge and discharge even when a molded product containing no current collecting support (conductive core material) is used as an electrode, Hydrogen storage for negative electrodes of alkaline secondary batteries with high discharge yield, high production yield when molding using alloy powder with a particle size of several tens of μm, with a small capacity reduction even if charging and discharging are repeated over a long period of time. Develop alloy compacts and compacted electrodes for nickel-hydrogen batteries. SOLUTION: A hydrogen storage alloy powder and paraffin are mixed and granulated, and the granulated powder is subjected to pressure molding, impregnated with a binder solution, and dried to obtain a molded electrode for a nickel-hydrogen battery. The hydrogen storage alloy powder and the binder are mixed and granulated, and the granulated powder is subjected to pressure molding, impregnated with dissolved paraffin, and dried to obtain a molded body for a nickel-hydrogen battery.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、成形体電極及びそ
の製造方法に関し、さらに詳しくは長期間充放電を繰り
返しても崩壊、変形が起こらず、また、強アルカリの電
解質中でも合金腐食が進行しづらく、なお且つ放電特性
の優れた水素吸蔵合金とバインダーとしてのパラフィン
を含む成形体電極とその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molded product electrode and a method for producing the same, and more particularly, it does not collapse or deform even after repeated charging and discharging for a long period of time, and alloy corrosion proceeds even in a strong alkaline electrolyte. TECHNICAL FIELD The present invention relates to a molded electrode containing a hydrogen storage alloy which is difficult and has excellent discharge characteristics and contains paraffin as a binder, and a method for producing the same.
【0002】[0002]
【従来の技術】水素吸蔵合金は、電気化学的に水素を吸
蔵・放出させることができる金属間化合物であり、主に
アルカリ蓄電池の負極用電極材料として利用されてい
る。この合金は、電極の充電の際に水素化され、放電の
際に脱水素化されるため、充放電時に体積の変動を伴
う。そのため合金単独では合金破壊に伴う電極破壊が生
じて、電極としての利用ができなかった。したがって、
一般的には、水素吸蔵合金塊を機械粉砕等により一定粒
径の粉末にし、発泡ニッケルやパンチングメタルなどの
集電支持体に塗布した電極が利用されている。2. Description of the Related Art A hydrogen storage alloy is an intermetallic compound capable of storing and releasing hydrogen electrochemically, and is mainly used as an electrode material for a negative electrode of an alkaline storage battery. This alloy is hydrogenated when the electrode is charged and dehydrogenated when the electrode is discharged, so that the volume of the alloy varies during charging and discharging. For this reason, the alloy alone caused electrode destruction accompanying the alloy destruction, and could not be used as an electrode. Therefore,
Generally, an electrode is used in which a mass of the hydrogen storage alloy is made into a powder having a constant particle size by mechanical pulverization or the like and applied to a current collecting support such as foamed nickel or punching metal.
【0003】このような従来型の電極構造を図1に示
す。従来型の電極では、集電支持体1からの水素吸蔵合
金粉末4の脱落防止のためにバインダー3を使用してい
る。また、水素吸蔵合金粉末4と集電支持体1との導電
性を確保するためにカーボンやニッケル粉などの導電材
料2を添加している。このような従来型の電極は、水素
吸蔵合金粉末を水溶液中でバインダー及び導電材料と共
によく混練してスラリー化し、集電支持体に塗布・充填
した後、成形加工することによって作製されている。FIG. 1 shows such a conventional electrode structure. In the conventional electrode, the binder 3 is used to prevent the hydrogen storage alloy powder 4 from falling off the current collecting support 1. Further, a conductive material 2 such as carbon or nickel powder is added in order to secure conductivity between the hydrogen storage alloy powder 4 and the current collecting support 1. Such a conventional electrode is manufactured by well kneading a hydrogen storage alloy powder together with a binder and a conductive material in an aqueous solution to form a slurry, coating and filling the current collecting support, and then forming.
【0004】一方、負極の電極容量を高めるためには、
電極全体に対する水素吸蔵合金の占める割合を増加させ
ることが効果的である。最善の方法としては、水素吸蔵
合金のみで電極を作製することができれば、高容量のニ
ッケル水素蓄電池が作製可能となる。本発明者らは、そ
の方法として、集電支持体やバインダーなしで、特定の
粒径(水素吸蔵合金に水素化、脱水素化に伴う微粉化が
進行しない程度の粒子径)の水素吸蔵合金粉末を用いて
成形、焼結した多孔質体を作製した。この多孔質の焼結
体は、集電支持体やバインダー等の水素吸蔵放出に寄与
しない材料を含まないため、合金充填量が高く、高電極
容量密度を有する。しかし、このような焼結体電極を製
造する際には、焼結による寸法変化が伴う。このため寸
法精度の必要な電極等では、機械加工を施さなければな
らず、加工しろ分の合金が無駄になる。したがって、加
工によって合金を無駄にしない、寸法変化のない成形体
を電極に使用することが要望されている。On the other hand, to increase the electrode capacity of the negative electrode,
It is effective to increase the ratio of the hydrogen storage alloy to the entire electrode. As the best method, if an electrode can be manufactured only with a hydrogen storage alloy, a high-capacity nickel-metal hydride storage battery can be manufactured. The present inventors have proposed a method in which a hydrogen storage alloy having a specific particle size (a particle size such that hydrogenation and dehydrogenation of the hydrogen storage alloy do not proceed with fine powdering) is performed without a current collecting support or a binder. A porous body formed and sintered using the powder was produced. Since this porous sintered body does not include a material that does not contribute to hydrogen storage and release, such as a current collecting support and a binder, it has a high alloy filling amount and a high electrode capacity density. However, when manufacturing such a sintered body electrode, a dimensional change due to sintering accompanies. For this reason, electrodes or the like that require dimensional accuracy must be machined, and the alloy for the working margin is wasted. Therefore, it is desired to use a compact having no dimensional change, which does not waste alloy by processing, for the electrode.
【0005】寸法変化のない成形体では、所定の電極を
寸法精度良く作製することも要望されて、合金粉末のみ
からなる成形体が考えられている。この方法では加工を
ほとんど施さなくてもよいため、合金ロスもほとんど発
生しない。しかし、合金粉末を成形加工したのみの成形
体電極は、電極として用いた場合、成形体の嵩密度が焼
結体の嵩密度より低くなるため、その分だけ電極の電極
容量密度が低下する。ここで、嵩密度とは、焼結体成形
体の気孔部を含めた体積密度を示す。但し、成形体の電
極容量密度を高める手段として、単位重量あたりの合金
容量(mAh/g)の高い合金を用いることや、粒度配
合法、成形圧力を高めて充填密度を上げることなどの対
応策が挙げられる。[0005] In the case of a compact having no dimensional change, it is also required to produce a predetermined electrode with high dimensional accuracy, and a compact comprising only an alloy powder has been considered. In this method, almost no machining is required, so that almost no alloy loss occurs. However, when a compact electrode formed only by molding an alloy powder is used as an electrode, the bulk density of the compact is lower than the bulk density of the sintered body, and the electrode capacity density of the electrode is reduced accordingly. Here, the bulk density indicates the volume density including the pores of the sintered compact. However, countermeasures such as using an alloy having a high alloy capacity per unit weight (mAh / g) as a means of increasing the electrode capacity density of the compact, increasing the packing density by increasing the compaction pressure, and using a high alloy capacity per unit weight (mAh / g) Is mentioned.
【0006】また、バインダーを含有しない成形体は、
機械的強度が弱く、必要最小限の加工(たとえば高さ方
向の微調整加工など)ができない。また、電極として用
いた際、充放電に伴う電極崩壊が発生し、成形体電極を
構成する合金粉が脱落し、電極としての機能が果たせな
くなる。水素吸蔵合金粉末とバインダーを含有する加圧
成形体については、特開平1−119501号公報、特
開平8−7891号公報、特開平9−31502号公
報、特開平4−181655号公報、特開昭59−14
7032号公報にあるように、水素貯蔵用やアルカリ二
次電池負極用について種々の検討がなされている。しか
し、粒径を数十μmに微粉砕した水素吸蔵合金粉末を成
形する際、バインダーなしでは成形性が悪く、安定して
作製することが困難であり、又、強アルカリ中での合金
成分溶出による容量低下が問題であった。[0006] A molded article containing no binder is:
The mechanical strength is weak, and the necessary minimum processing (for example, fine adjustment processing in the height direction) cannot be performed. In addition, when used as an electrode, the electrode collapses due to charging and discharging, the alloy powder constituting the molded electrode falls off, and the function as the electrode cannot be fulfilled. With respect to the press-formed body containing the hydrogen storage alloy powder and the binder, JP-A-1-119501, JP-A-8-7891, JP-A-9-31502, JP-A-4-181655, 1959-14
As described in Japanese Patent No. 7032, various studies have been made on hydrogen storage and alkaline secondary battery negative electrodes. However, when molding hydrogen-absorbing alloy powder finely pulverized to a particle size of several tens of μm, the moldability is poor without a binder, making it difficult to stably produce the alloy. The problem was that the capacity was reduced due to this.
【0007】[0007]
【発明が解決しようとする課題】本発明は、集電支持体
(導電性芯材)を含有しない成形体を電極として用いた
場合でも、充放電による成形体電極の崩壊を防止するこ
とができ、かつ所定の放電容量を得ることができ、長期
に渡り充放電を繰り返しても容量低下が少なく、数十μ
mの粒径の合金粉末を用いて成形する際の作製歩留まり
の高いアルカリ二次電池負極用水素吸蔵合金成形体を開
発することを目的とする。According to the present invention, even when a molded body containing no current collecting support (conductive core material) is used as an electrode, collapse of the molded body electrode due to charging and discharging can be prevented. , And a predetermined discharge capacity can be obtained.
An object of the present invention is to develop a molded article of a hydrogen storage alloy for an anode of an alkaline secondary battery having a high production yield when molding using an alloy powder having a particle diameter of m.
【0008】[0008]
【課題を解決するための手段】本発明者らは、上記問題
点に鑑み鋭意研究を行った結果、水素吸蔵合金粉末にバ
インダーとしてパラフィンを混練して得られる造粒粉を
用いることによりに所定の嵩密度を有する多孔質体を成
形し、上記水素吸蔵合金粉末同士が接触して形成される
空隙及び合金表面にバインダーを分散して含有させる
か、もしくは水素吸蔵合金粉末にバインダーを混練して
得られる造粒粉を用いることによりに所定の嵩密度を有
す多孔質体を成形し、上記水素吸蔵合金粉末同士が接触
して形成される空隙及び合金表面に溶融パラフィンを分
散して含有させることによって、かかる問題点が解決さ
れることを見い出した。Means for Solving the Problems The inventors of the present invention have conducted intensive studies in view of the above problems, and as a result, have been determined to use a granulated powder obtained by kneading paraffin as a binder with a hydrogen storage alloy powder. Molded into a porous body having a bulk density, the binder is dispersed and contained in the voids and the alloy surface formed by contacting the hydrogen storage alloy powder, or the binder is kneaded with the hydrogen storage alloy powder By using the obtained granulated powder, a porous body having a predetermined bulk density is formed, and molten paraffin is dispersed and contained in voids and alloy surfaces formed by contacting the hydrogen storage alloy powders. It has been found that this problem can be solved.
【0009】本発明のアルカリ二次電池負極用水素吸蔵
合金成形体は、水素吸蔵合金粉末表面にバインダーを付
着させた水素吸蔵合金造粒粉が接触して形成される空隙
及び合金表面にバインダーを分散して含有し、好ましく
は、嵩密度が3.5〜6.0g/cm3であることを特
徴とする。その結果、成形性歩留まりが良く、充放電に
よる成形体電極の崩壊を防止でき、かつ所定の放電容量
が得られ、なお且つ過充電時の内圧上昇を抑制可能な成
形体電極及びその作製方法を見出した。また、パラフィ
ンの存在により強アルカリの電解質中での合金成分の溶
出を抑制できることからサイクル寿命の向上も認められ
た。The molded article of the hydrogen storage alloy for a negative electrode of an alkaline secondary battery according to the present invention is characterized in that the binder is formed in the voids formed by the contact of the hydrogen storage alloy granulated powder with the binder attached to the surface of the hydrogen storage alloy powder and the alloy surface. It is dispersed and contained, and preferably has a bulk density of 3.5 to 6.0 g / cm 3 . As a result, a molded product electrode having a good moldability yield, preventing the molded product electrode from collapsing due to charge and discharge, obtaining a predetermined discharge capacity, and suppressing an increase in internal pressure at the time of overcharging, and a method for manufacturing the same. I found it. In addition, an improvement in cycle life was also recognized because the elution of alloy components in a strong alkaline electrolyte can be suppressed by the presence of paraffin.
【0010】[0010]
【発明の実施の形態】先ず、本発明で用いる水素吸蔵合
金粉末について説明する。水素吸蔵合金粉末に用いる水
素吸蔵合金塊の組成および製造方法については、特に限
定されるものではなく、ABn(nは0.5〜6の正
数)の構造やBCC−ラーベス構造を有する水素吸蔵合
金やを使用することができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the hydrogen storage alloy powder used in the present invention will be described. The composition and production method of the hydrogen storage alloy mass used for the hydrogen storage alloy powder are not particularly limited, and hydrogen having a structure of AB n (n is a positive number of 0.5 to 6) or a BCC-Laves structure A storage alloy or the like can be used.
【0011】ここでは例として、AB5系水素吸蔵合金
組成の場合について詳細に説明する。AB5系におい
て、A側元素は、La単独、または一種以上の希土類元
素とLaとの混合物である。具体的には、La、Mm
(Mmは、ミッシュメタルを表し、Laの一部をCe、
Pr、Nd又はその他の希土類元素で置換したものであ
る。)、Lm(Lmは、LaリッチMmを表す。)、又
はこれらの混合物に他の希土類元素を添加した混合物が
挙げられる。また、希土類元素混合物中にLaを20モ
ル%以上含むことが好ましい。B側元素としては、(N
i)a(Co)b(Al)c(Mn)d(M)eからなる組成が好まし
い。ここでaは1.8〜6.0の正数であり、bは0ま
たは1.0以下の正数、cは0または1.0以下の正
数、dは0または1.0以下の正数、eは0または0.
5以下の正数である。Mは、Si、Fe、Pb、Ti、
Ca、Mg、Cu、In、Zn、Cr及びZrからなる
一群から選ばれた少なくとも一種の元素である。[0011] Examples here, for the case of AB 5 hydrogen storage alloy composition is described in detail. In AB 5 type, A side element, a mixture of La alone or one or more rare earth elements and La,. Specifically, La, Mm
(Mm represents misch metal, part of La is Ce,
It is substituted with Pr, Nd or other rare earth elements. ), Lm (Lm represents La-rich Mm), or a mixture obtained by adding another rare earth element to a mixture thereof. Further, it is preferable that the rare earth element mixture contains La in an amount of 20 mol% or more. As the B-side element, (N
i) A composition consisting of a (Co) b (Al) c (Mn) d (M) e is preferred. Here, a is a positive number of 1.8 to 6.0, b is a positive number of 0 or 1.0 or less, c is a positive number of 0 or 1.0 or less, and d is 0 or 1.0 or less. A positive number, e is 0 or 0.
It is a positive number of 5 or less. M is Si, Fe, Pb, Ti,
At least one element selected from the group consisting of Ca, Mg, Cu, In, Zn, Cr and Zr.
【0012】上記組成の各金属元素を混合した後、アル
ゴン等の不活性ガスの雰囲気中、1300〜1600℃
の温度で高周波溶解炉やアーク溶解炉等を用いて合金を
溶湯化させた後、冷却することによって水素吸蔵合金塊
を作製する。この場合、ロール急冷法等の急冷法により
得られた水素吸蔵合金薄帯、ディスクアトマイズ法によ
り得られた水素吸蔵合金球状粉を用いてもよい。また必
要に応じてAr等の不活性雰囲気中、1000℃前後の
温度で熱処理を行っても良い。After mixing each metal element having the above composition, the mixture is heated to 1300 to 1600 ° C. in an atmosphere of an inert gas such as argon.
After the alloy is melted by using a high-frequency melting furnace or an arc melting furnace at the temperature described above, a hydrogen storage alloy lump is produced by cooling. In this case, a hydrogen storage alloy ribbon obtained by a quenching method such as a roll quenching method, or a spherical hydrogen storage alloy powder obtained by a disk atomization method may be used. If necessary, the heat treatment may be performed at a temperature of about 1000 ° C. in an inert atmosphere such as Ar.
【0013】さらに、水素吸蔵合金塊を粉砕して水素吸
蔵合金粉末を作製する。粉砕方法としては、ジェットミ
ル又はアトライター、ジョークラッシャー、ローラーミ
ル、ボールミル、ブラウンミル等を用いてアルゴンや窒
素ガス等の不活性ガス雰囲気中で平均粒径100μm以
下に粉砕することが好ましい。あるいは、水素化粉砕に
より粉砕してもよい。また、ディスクアトマイズ法によ
り得られた水素吸蔵合金球状粉の場合は球状粉の状態で
使用しても良いし、さらに平均粒径20μm以下に粉砕
して使用しても良い。また、粉砕した後に表面処理を施
して使用してもよい。この場合の水素吸蔵合金粉末の平
均粒径については100μmを超えると充放電に伴う微
粉化が著しく成形体が崩壊してしまう場合があるため1
00μm以下が好ましい。また、強アルカリ電解液によ
る合金表面の腐食・容量低下を抑制するため5μm以上
が好ましい。Further, the hydrogen storage alloy mass is pulverized to produce a hydrogen storage alloy powder. As a pulverizing method, it is preferable to use a jet mill or an attritor, a jaw crusher, a roller mill, a ball mill, a brown mill, or the like to pulverize the particles to an average particle diameter of 100 μm or less in an inert gas atmosphere such as argon or nitrogen gas. Alternatively, pulverization may be performed by hydrogenation pulverization. In the case of a hydrogen storage alloy spherical powder obtained by a disk atomizing method, the powder may be used in the form of a spherical powder, or may be further pulverized to an average particle diameter of 20 μm or less. Further, after pulverization, surface treatment may be performed before use. If the average particle size of the hydrogen-absorbing alloy powder in this case exceeds 100 μm, pulverization accompanying charging and discharging is remarkable, and the compact may be collapsed.
It is preferably not more than 00 μm. Further, the thickness is preferably 5 μm or more in order to suppress corrosion and a decrease in capacity of the alloy surface due to the strong alkaline electrolyte.
【0014】こうして得られた水素吸蔵合金粉を、パラ
フィンをバインダーとして成形して水素吸蔵合金成形体
を得る。ここでのパラフィンは炭素原子数が16〜40
の炭化水素化物で、融点が、好ましくは50℃以上、更
に好ましくは55〜70℃である。融点が50℃未満の
パラフィンの場合充放電時の発熱によってパラフィンが
溶解し結着力が低下してしまい電極の崩壊に至る可能性
がある。The hydrogen storage alloy powder thus obtained is molded using paraffin as a binder to obtain a hydrogen storage alloy compact. The paraffin here has 16 to 40 carbon atoms.
Having a melting point of preferably at least 50 ° C, more preferably 55 to 70 ° C. In the case of paraffin having a melting point of less than 50 ° C., heat generated during charging and discharging dissolves the paraffin, lowers the binding force, and may lead to collapse of the electrode.
【0015】先ず、水素吸蔵合金粉末を半乾式あるいは
湿式造粒法にてバインダー付着の造粒粉を調製する。そ
の結果、粉体の流れ性が向上し成形金型への粉体の均一
充填が可能になる。そのため成形体内部の密度が均一に
なり成形時の成形体の製造歩留まりを向上させることが
出来る。この場合の造粒粉の形状は球形でも非球形でも
よい。また、造粒粉の平均粒径は作製する成形体の形状
や大きさによってコントロールするが、成形体金型への
充填密度を考慮すると、好ましくは1mm以下、更に好
ましくは100〜500μmである。First, a hydrogen storage alloy powder is prepared by a semi-dry or wet granulation method to prepare a granulated powder having a binder attached thereto. As a result, the flowability of the powder is improved, and the uniform filling of the powder into the molding die becomes possible. Therefore, the density inside the molded body becomes uniform, and the production yield of the molded body at the time of molding can be improved. In this case, the shape of the granulated powder may be spherical or non-spherical. The average particle size of the granulated powder is controlled by the shape and size of the molded product to be produced, but is preferably 1 mm or less, and more preferably 100 to 500 μm, in consideration of the packing density in a molded product mold.
【0016】また、造粒粉の調製法については、パラフ
ィンを、例えば、ヘキサン等の脂肪族炭化水素、又は、
ベンゼン、トルエン等の芳香族炭化水素の溶媒に溶解し
て所定の濃度になるように調整した溶液をスプレーしな
がら合金粉末表面に付着させて合金同士を造粒粉に仕上
げる方法やバインダー溶液と合金粉末を混練した後、溶
媒を蒸発させ造粒粉に仕上げる方法、またはパラフィン
粉末と合金粉末を混合しながら加熱してバインダーであ
るパラフィンを溶解させ合金粉末表面に付着させながら
造粒粉を得る方法などが挙げられる。さらにはスプレー
ドライヤー等の装置を用いて噴霧造粒して造粒粉に仕上
げる方法などがある。この際、バインダーのパラフィン
添加量が、最終成形体中に5重量%より多いと、合金粒
子同士の導電コンタクト不良によって充放電機能が損な
われる場合があるため好ましくない。このような導電不
良の場合には、造粒粉作製時もしくは造粒粉作製後に導
電剤を添加しなければならず、導電剤としては金属Ni
粉末やカーボン粉末などが挙げられる。反対にバインダ
ーのパラフィンの添加量が、最終成形体中に0.5重量
%より少ないと、造粒粉の成形性が悪くなり成形体製造
歩留まりが低下してしまいパラフィン添加の効果が十分
ではない場合がある。そのため0.5〜5重量%程度の
添加量が好ましい。[0016] Regarding the method of preparing the granulated powder, paraffin is added to an aliphatic hydrocarbon such as hexane or the like.
A method of dissolving in a solvent of an aromatic hydrocarbon such as benzene or toluene to adjust to a predetermined concentration, spraying the solution and attaching it to the surface of the alloy powder to finish the alloys into granulated powder or a binder solution and alloy After kneading the powder, a method of evaporating the solvent to finish the granulated powder, or a method of heating while mixing the paraffin powder and the alloy powder to dissolve the paraffin as the binder and obtaining the granulated powder while adhering to the surface of the alloy powder And the like. Further, there is a method of finishing the granulated powder by spray granulation using a device such as a spray dryer. At this time, if the amount of paraffin added to the binder is more than 5% by weight in the final molded product, the charge / discharge function may be impaired due to poor conductive contact between the alloy particles, which is not preferable. In the case of such poor conductivity, a conductive agent must be added at the time of preparing the granulated powder or after preparing the granulated powder.
Powder and carbon powder. Conversely, if the amount of paraffin added as the binder is less than 0.5% by weight in the final molded product, the compactability of the granulated powder is deteriorated, the production yield of the molded product is reduced, and the effect of the paraffin addition is not sufficient. There are cases. Therefore, the addition amount is preferably about 0.5 to 5% by weight.
【0017】また、パラフィンと併用してもよいバイン
ダーとしては、水溶性バインダーが好ましく、例えば、
ポリビニルアルコール、カルボキシメチルセルロース、
メチルセルロース、ヒドロキシプロピルセルロース等の
セルロース類、ゼラチン、ポリエチレングリコール、ポ
リビニルピロリドン等の1種以上を用いることができ、
溶媒としては水、アルコール等を使用することができ
る。The binder which may be used in combination with paraffin is preferably a water-soluble binder.
Polyvinyl alcohol, carboxymethyl cellulose,
Methyl cellulose, cellulose such as hydroxypropyl cellulose, gelatin, polyethylene glycol, one or more of polyvinylpyrrolidone and the like can be used,
Water, alcohol, and the like can be used as the solvent.
【0018】上記のような造粒粉を所望の形状になるよ
うに成形機に充填し、好ましくは、成形圧力0.8〜1
5ton/cm2で加圧成形する。本発明の成形体は円柱、角
柱、筒型等の形状を自由に成形することができる。The above-mentioned granulated powder is filled in a molding machine so as to have a desired shape.
Press molding at 5 ton / cm 2 . The molded article of the present invention can be freely formed into a shape such as a cylinder, a prism, and a cylinder.
【0019】以上の方法で得られた成形体は、上述した
ように製造歩留まりは向上するものの強度は比較的弱い
ため指定の寸法に加工したり実際に電池缶に装填する際
に破損する可能性があるため、バインダー溶液の含浸工
程、乾燥工程を必要とする。さらに、該成形体を充放電
による崩壊を防止するために、溶融パラフィンまたはバ
インダーに0.1〜24時間浸漬して、成形体中にバイ
ンダーを全体量で0.5〜5重量%になるように含浸さ
せ、室温又は室温〜80℃で加熱乾燥させることによ
り、成形体の気孔部にバインダーが付着、または充填さ
れ成形体強度向上といった効果が得られるものである。As described above, the molded article obtained by the above-described method has an improved production yield, but has a relatively low strength, and thus may be damaged when processed into a specified size or actually loaded into a battery can. Therefore, a binder solution impregnation step and a drying step are required. Furthermore, in order to prevent the molded article from collapsing due to charge and discharge, it is immersed in molten paraffin or a binder for 0.1 to 24 hours so that the total amount of the binder in the molded article is 0.5 to 5% by weight. By heating and drying at room temperature or at room temperature to 80 ° C., a binder is attached to or filled in the pores of the molded body, and the effect of improving the strength of the molded body can be obtained.
【0020】この含浸工程は、造粒粉を用いて成形体を
成形後、毛細管現象を利用して成形体中の開気孔部にバ
インダー水溶液(溶液)を充分に染み込ませ、その後に
水分(溶媒)のみを蒸発させて成形体内部の気孔部に面
する合金粒子表面部にバインダー(溶質)を付着させる
方法である。この方法により合金粒子間の電気的コンタ
クトが損なわれることなく、バインダーによって強固に
なるため成形体強度を高めることが出来る。In this impregnation step, after forming a molded body using the granulated powder, a binder aqueous solution (solution) is sufficiently impregnated into the open pores in the molded body by utilizing the capillary phenomenon, and then the water (solvent) is formed. ) Is evaporated to adhere a binder (solute) to the surface of the alloy particles facing the pores inside the compact. According to this method, the electrical contact between the alloy particles is not impaired and the strength is increased by the binder, so that the strength of the compact can be increased.
【0021】また、造粒粉を調製する際のバインダーし
て、また成形後の成形体に含浸するバインダーとしてパ
ラフィンを用いることにより電解液中での合金成分の溶
出を抑え電解液との接触が極めて多い平均粒径が20μ
m以下の表面積の大きい合金粉末を用いた成形体電極の
腐食を抑えることができる。また、パラフィンは撥水効
果があり成形体電極表面において急速充電時に発生する
酸素ガスを水に戻す反応が迅速に行われるとされている
三相界面が容易に形成され、電池の内部圧力の上昇を抑
制することが出来ると考えられる。これらのことによっ
て比較的急速充填を行なってもサイクル寿命特性が優れ
たアルカリ二次電池を作製可能になると考えられる。Also, by using paraffin as a binder for preparing the granulated powder and as a binder for impregnating the compact after molding, elution of alloy components in the electrolyte is suppressed and contact with the electrolyte is suppressed. Extremely large average particle size of 20μ
It is possible to suppress corrosion of a molded electrode using an alloy powder having a large surface area of less than m. In addition, paraffin has a water-repellent effect, and a three-phase interface, which is said to rapidly perform a reaction to return oxygen gas generated during rapid charging to water on the surface of the molded electrode, is easily formed, and the internal pressure of the battery increases. Is considered to be able to be suppressed. It is considered that these facts make it possible to produce an alkaline secondary battery having excellent cycle life characteristics even when relatively quick filling is performed.
【0022】[0022]
【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はこれに限定されるものではない。 1.パラフィン含有Ni−水素電池用成形体電極の作製 実施例1 高周波溶解炉にて製造された水素吸蔵合金インゴット
(La34重量%、Ce45重量%、Pr6重量%、N
d15重量%を原子比1.0に対し、Niを3.75、
Coを0.75、Mnを0.20、Alを0.30)を
アルゴン中で熱処理し、均一な水素吸蔵合金インゴット
を準備した。その合金インゴットを窒素雰囲気中で粗粉
砕した。更に、ブラウンミルで平均粒径500μmにな
るように粉砕し、ジェットミル用の原料を得た。更に本
発明では、ジェットミルによりガス圧5.8kgf/cm2、
窒素ガス雰囲気下で水素吸蔵合金を乾式粉砕し、平均粒
径15μm、粒度分布幅1〜100μmの水素吸蔵合金
微粉末を得た。次に粉砕された微粉末を加熱した7N−
KOH中で表面処理し水素吸蔵合金粉末原料を作製し
た。次に、和光純薬製のパラフィン(mp58〜60
℃)をヘキサンで溶解させ所定の割合で前記水素吸蔵合
金粉末と混合しながら溶媒のヘキサンを蒸発させた。そ
の後、目開き300μmの篩に通し造粒粉を得た。この
場合のパラフィンの付着量は造粒粉重量の約0.5重量
%である。次に、この造粒粉1.85gを直径20mm
の金型に充填し成形圧力6ton/cm 2で厚さ1mmの成形
体を得た。この水素吸蔵合金多孔質成形体をポリビニル
アルコール(商品名C−25GP:信越化学工業社製)
5重量%水溶液の中に浸漬させ、一定時間脱泡した後約
1日放置し取り出して真空乾燥しNi−水素電池電極用
成形体を得た。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples.
However, the present invention is not limited to this. 1. Preparation of molded electrode for paraffin-containing Ni-hydrogen battery Example 1 Hydrogen storage alloy ingot manufactured in high-frequency melting furnace
(La 34% by weight, Ce 45% by weight, Pr 6% by weight, N
d15% by weight with respect to atomic ratio 1.0, Ni 3.75,
0.75 Co, 0.20 Mn, 0.30 Al)
Heat-treated in argon, uniform hydrogen storage alloy ingot
Was prepared. The alloy ingot is coarsely powdered in a nitrogen atmosphere.
Crushed. Furthermore, the average particle size was reduced to 500 μm using a brown mill.
To obtain a raw material for a jet mill. More books
In the invention, the gas pressure is 5.8 kgf / cm by the jet mill.Two,
Dry crush the hydrogen storage alloy under nitrogen gas atmosphere,
Hydrogen storage alloy having a diameter of 15 μm and a particle size distribution width of 1 to 100 μm
A fine powder was obtained. Next, 7N-
Surface treatment in KOH to produce hydrogen storage alloy powder raw material
Was. Next, paraffin (mp58-60) made by Wako Pure Chemical
℃) dissolved in hexane and hydrogen storage
The solvent hexane was evaporated while mixing with the gold powder. So
Thereafter, the mixture was passed through a sieve having an opening of 300 μm to obtain granulated powder. this
In this case, the amount of paraffin attached is about 0.5% by weight of the granulated powder.
%. Next, 1.85 g of this granulated powder was weighed 20 mm.
And filling pressure of 6 ton / cm Two1mm thick molding
I got a body. This hydrogen storage alloy porous compact is polyvinyl
Alcohol (trade name C-25GP: manufactured by Shin-Etsu Chemical Co., Ltd.)
After immersing in a 5% by weight aqueous solution and defoaming for a certain period of time,
Leave for 1 day, take out, vacuum dry and use for Ni-hydrogen battery electrode
A molded article was obtained.
【0023】実施例2 実施例1と同様にして作製した水素吸蔵合金粉末を所定
の割合でパラフィン(mp58〜60℃)のヘキサン溶
液と混合しながら溶媒のヘキサンを蒸発させた。その
後、目開き300μmの篩に通し造粒粉を得た。この場
合のパラフィンの付着量は造粒粉重量の約5重量%であ
る。次に、この造粒粉1.85gを直径20mmの金型
に充填し成形圧力6ton/cm 2で厚さ1mmの成形体を得
た。この水素吸蔵合金多孔質成形体をポリビニルアルコ
ール(商品名C−25GP:信越化学工業社製)5重量
%水溶液の中に浸漬させ、一定時間脱泡した後約1日放
置し取り出して真空乾燥しNi−水素電池電極用成形体
を得た。Example 2 A hydrogen-absorbing alloy powder produced in the same manner as in Example 1 was
Hexane solution of paraffin (mp 58-60 ° C)
The solvent hexane was evaporated while mixing with the liquid. That
Thereafter, the mixture was passed through a sieve having an opening of 300 μm to obtain granulated powder. This place
The amount of paraffin attached is about 5% by weight of the granulated powder.
You. Next, 1.85 g of the granulated powder was added to a mold having a diameter of 20 mm.
And molding pressure 6ton / cm TwoTo obtain a 1mm thick compact
Was. This hydrogen-absorbing alloy porous compact was
(C-25GP: Shin-Etsu Chemical Co., Ltd.) 5 weight
% Water solution, degassing for a certain period of time, then release for about 1 day
Place and take out and vacuum dry to form a molded body for Ni-hydrogen battery electrode
I got
【0024】実施例3 実施例1と同様にして作製した水素吸蔵合金粉末を所定
の割合でメチルセルロース(商品名 SM−4000:
信越化学工業社製)水溶液と混合し、加熱しながら溶媒
の水を蒸発させた。その後、解砕して目開き300μm
の篩に通し造粒粉を得た。この場合のメチルセルロース
の付着量は造粒粉重量の約0.5重量%である。次に、
この造粒粉1.85gを直径20mmの金型に充填し成
形圧力6ton/cm 2で厚さ1mmの成形体を得た。この水
素吸蔵合金多孔質成形体を加熱し溶解させたパラフィン
(mp58〜60℃)中に浸漬させ、一定時間浸漬させ
取り出してNi−水素電池電極用成形体を得た。Example 3 A hydrogen-absorbing alloy powder produced in the same manner as in Example 1 was
Methyl cellulose (trade name: SM-4000:
Shin-Etsu Chemical Co., Ltd.)
Water was evaporated. After that, it is crushed and the opening is 300μm
To obtain a granulated powder. Methyl cellulose in this case
Is about 0.5% by weight of the weight of the granulated powder. next,
1.85 g of this granulated powder is filled in a mold having a diameter of 20 mm and formed.
Form pressure 6ton / cm TwoThus, a molded product having a thickness of 1 mm was obtained. This water
Paraffin obtained by heating and melting porous storage alloy porous compacts
(Mp 58-60 ° C) and dipped for a certain time
It was taken out to obtain a molded body for a Ni-hydrogen battery electrode.
【0025】比較例1 実施例1と同様にして作製した水素吸蔵合金粉末1.8
5gを直径20mmの金型に充填し成形圧力6ton/cm2
で厚さ1mmの成形体を得た。この水素吸蔵合金多孔質
成形体をポリビニルアルコール(商品名C−25GP:
信越化学工業社製)5重量%水溶液の中に浸漬させ、一
定時間脱泡した後約1日放置し取り出して真空乾燥しN
i−水素電池電極用成形体を得た。Comparative Example 1 Hydrogen storage alloy powder 1.8 produced in the same manner as in Example 1
5 g is filled in a mold having a diameter of 20 mm and the molding pressure is 6 ton / cm 2.
Thus, a molded product having a thickness of 1 mm was obtained. This hydrogen-absorbing alloy porous molded body was treated with polyvinyl alcohol (trade name: C-25GP:
(Shin-Etsu Chemical Co., Ltd.), immersed in a 5% by weight aqueous solution, degassed for a certain period of time, left for about 1 day, taken out and dried in vacuum
A molded article for an i-hydrogen battery electrode was obtained.
【0026】比較例2 実施例1と同様にして作製した水素吸蔵合金粉末を所定
の割合でポリビニールアルコール水溶液と混合し、加熱
しながら溶媒の水を蒸発させた。その後、解砕して目開
き300μmの篩に通し造粒粉を得た。この場合のポリ
ビニールアルコールの付着量は造粒粉重量の約0.5重
量%である。次に、この造粒粉1.85gを直径20m
mの金型に充填し成形圧力6ton/cm 2で厚さ1mmの成
形体を得た。この水素吸蔵合金多孔質成形体をポリビニ
ルアルコール(商品名C−25GP:信越化学工業社
製)5重量%水溶液の中に浸漬させ、一定時間脱泡した
後約1日放置し取り出して真空乾燥しNi−水素電池電
極用成形体を得た。Comparative Example 2 A hydrogen storage alloy powder produced in the same manner as in Example 1 was
Mix with polyvinyl alcohol aqueous solution at the ratio of
The solvent water was evaporated. Then crush and open
Through a 300 μm sieve to obtain granulated powder. Poly in this case
The amount of vinyl alcohol attached is about 0.5 weight of the granulated powder.
%. Next, 1.85 g of this granulated powder was 20 m in diameter.
m and filling pressure 6ton / cm TwoWith a thickness of 1mm
Obtained the form. This hydrogen storage alloy porous compact is
Alcohol (trade name: C-25GP: Shin-Etsu Chemical Co., Ltd.)
Immersed in a 5% by weight aqueous solution and defoamed for a certain period of time
After leaving it for about one day, take it out and dry it in a vacuum.
An electrode compact was obtained.
【0027】比較例3 実施例1と同様にして作製した水素吸蔵合金粉末を所定
の割合でポリビニールアルコール水溶液と混合し、加熱
しながら溶媒の水を蒸発させた。その後、解砕して目開
き300μmの篩に通し造粒粉を得た。この場合のポリ
ビニールアルコールの付着量は造粒粉重量の約3重量%
である。次に、この造粒粉1.85gを直径20mmの
金型に充填し成形圧力6ton/cm 2で厚さ1mmの成形体
を得た。この水素吸蔵合金多孔質成形体をポリビニルア
ルコール(商品名C−25GP:信越化学工業社製)5
重量%水溶液の中に浸漬させ、一定時間脱泡した後約1
日放置し取り出して真空乾燥しNi−水素電池電極用成
形体を得た。Comparative Example 3 A hydrogen-absorbing alloy powder produced in the same manner as in Example 1 was
Mix with polyvinyl alcohol aqueous solution at the ratio of
The solvent water was evaporated. Then crush and open
Through a 300 μm sieve to obtain granulated powder. Poly in this case
The amount of vinyl alcohol attached is about 3% by weight of the granulated powder.
It is. Next, 1.85 g of the granulated powder having a diameter of 20 mm was used.
Filling mold and forming pressure 6ton / cm Two1mm thick molded body
I got This porous article of hydrogen storage alloy is
Lucor (trade name: C-25GP: manufactured by Shin-Etsu Chemical Co., Ltd.) 5
Immersed in a 1% by weight aqueous solution and degassed for a certain period of time.
Leave it for a day, take it out, dry it in vacuum, and form it for Ni-hydrogen battery electrodes.
Obtained the form.
【0028】比較例4 実施例1と同様にして作製した水素吸蔵合金粉末を所定
の割合でメチルセルロース(商品名 SM−4000:
信越化学工業社製)水溶液と混合し、加熱しながら溶媒
の水を蒸発させた。その後、解砕して目開き300μm
の篩に通し造粒粉を得た。この場合のメチルセルロース
の付着量は造粒粉重量の約0.5重量%である。次に、
この造粒粉1.85gを直径20mmの金型に充填し成
形圧力6ton/cm 2で厚さ1mmの成形体を得た。この水
素吸蔵合金多孔質成形体をポリビニルアルコール(商品
名C−25GP:信越化学工業社製)5重量%水溶液の
中に浸漬させ、一定時間脱泡した後約1日放置し取り出
して真空乾燥しNi−水素電池電極用成形体を得た。Comparative Example 4 A hydrogen-absorbing alloy powder produced in the same manner as in Example 1 was
Methyl cellulose (trade name: SM-4000:
Shin-Etsu Chemical Co., Ltd.)
Water was evaporated. After that, it is crushed and the opening is 300μm
To obtain a granulated powder. Methyl cellulose in this case
Is about 0.5% by weight of the weight of the granulated powder. next,
1.85 g of this granulated powder is filled in a mold having a diameter of 20 mm and formed.
Form pressure 6ton / cm TwoThus, a molded product having a thickness of 1 mm was obtained. This water
Polyvinyl alcohol (product)
Name C-25GP: manufactured by Shin-Etsu Chemical Co., Ltd.)
Immersed in air, degassed for a certain period of time, then left for about 1 day to take out
And dried under vacuum to obtain a molded body for a Ni-hydrogen battery electrode.
【0029】実施例4 実施例1と同様にして作製した水素吸蔵合金粉末を所定
の割合でパラフィン(mp58〜60℃)のヘキサン溶
液と混合しながら溶媒のヘキサンを蒸発させた。その
後、目開き300μmの篩に通し造粒粉を得た。この場
合のパラフィンの付着量は造粒粉重量の約10重量%で
ある。次に、この造粒粉1.85gを直径20mmの金
型に充填し成形圧力6ton/cm 2で厚さ1mmの成形体を
得た。この水素吸蔵合金多孔質成形体をポリビニルアル
コール(商品名C−25GP:信越化学工業社製)5重
量%水溶液の中に浸漬させ、一定時間脱泡した後約1日
放置し取り出して真空乾燥しNi−水素電池電極用成形
体を得た。Example 4 A hydrogen storage alloy powder produced in the same manner as in Example 1 was
Hexane solution of paraffin (mp 58-60 ° C)
The solvent hexane was evaporated while mixing with the liquid. That
Thereafter, the mixture was passed through a sieve having an opening of 300 μm to obtain granulated powder. This place
The amount of attached paraffin is about 10% by weight of the granulated powder.
is there. Next, 1.85 g of the granulated powder was added to a 20 mm diameter gold.
Filling mold and forming pressure 6ton / cm TwoA 1mm thick compact
Obtained. This hydrogen storage alloy porous compact is
Coal (trade name: C-25GP: manufactured by Shin-Etsu Chemical Co., Ltd.)
About 1 day after immersion in a volume% aqueous solution
Leave it out, dry it in a vacuum and mold it for Ni-hydrogen battery electrodes
I got a body.
【0030】2.見かけ密度の測定 実施例1、2、比較例1〜4で得られたNi−水素電池
電極用成形体の寸法、重量を測定し、水素吸蔵合金当た
りの見かけ密度を算出した。2. Measurement of Apparent Density The dimensions and weight of the molded bodies for Ni-hydrogen battery electrodes obtained in Examples 1 and 2 and Comparative Examples 1 to 4 were measured, and the apparent density per hydrogen storage alloy was calculated.
【0031】3.成形歩留まりの比較 実施例1、2、比較例1〜4において20個作製時の成
形歩留まりを比較する。3. Comparison of Molding Yield In Examples 1 and 2 and Comparative Examples 1 to 4, the molding yields when manufacturing 20 pieces are compared.
【0032】[0032]
【表1】 [Table 1]
【0033】表1に成形工程における厚み1mmの薄型
成形体のクラックによる成形歩留を示す。比較例1に対
しバインダーを用いて造粒粉を調整し成形した成形体の
成形歩留が向上しており、特に実施例2のパラフィン5
重量%造粒粉を充填して成形した成形体は特に成形歩留
が高いことがわかる。これは、造粒粉にすることによっ
て成形金型への均一充填が計られた事およびパラフィン
の結着効果によるものである。Table 1 shows the molding yield by cracking of a thin molded article having a thickness of 1 mm in the molding step. Compared with Comparative Example 1, the molding yield of a molded article formed by adjusting granulated powder using a binder was improved, and in particular, paraffin 5 of Example 2 was used.
It can be seen that the molded body formed by filling with the weight% granulated powder has a particularly high molding yield. This is due to the fact that the uniform filling into the molding die was measured by using granulated powder and the binding effect of paraffin.
【0034】4.負極規制開放型電池による充放電特性
測定 実施例1、2、4、比較例1〜4において(10×1
0)cm2の寸法に切り出し集電体としてNi製のフェ
ルトで挟み込み、その後Ni製の網(目開100メッシ
ュ)で包み込みNiリードを溶接し、その後ポリプロピ
レン製の不織布で包み込み負極とした。この場合の合金
重量は約0.5gで容量は約150mAh/gに相当す
る。一方、正極は公知の手法で作製された焼結式水酸化
ニッケル極(50×50)cm2を2枚用いた。電解液
は6N−KOHを用い参照極としてHg/HgO極を用
い充放電試験を行なった。充放電条件は25℃の一定温
度下で合金重量当り60mAで7.5時間充電しその後
30分放置した後、合金重量当り60mAでHg/Hg
O極に対し0.65Vとなるまで放電させる。この条件
で100サイクル充放電を繰り返し、1サイクル目の放
電容量、10サイクル目の放電容量、そして100サイ
クル目の容量を測定した。その結果を表2に示す。4. Measurement of Charge / Discharge Characteristics Using Negative-Regulated Open Battery In Examples 1, 2, and 4 and Comparative Examples 1 to 4, (10 × 1
0) It was cut out to a size of cm 2 , sandwiched by a Ni-made felt as a current collector, wrapped with a Ni-made net (opening 100 mesh), welded with a Ni lead, and wrapped with a polypropylene non-woven fabric to form a negative electrode. In this case, the alloy weight is about 0.5 g and the capacity is about 150 mAh / g. On the other hand, as the positive electrode, two sintered nickel hydroxide electrodes (50 × 50) cm 2 produced by a known method were used. A charge / discharge test was performed using an electrolyte of 6N-KOH and an Hg / HgO electrode as a reference electrode. The charge and discharge conditions were as follows: at a constant temperature of 25 ° C., the battery was charged at 60 mA per alloy weight for 7.5 hours, and then allowed to stand for 30 minutes, then Hg / Hg at 60 mA per alloy weight.
Discharge is performed until the voltage reaches 0.65 V with respect to the O electrode. Under these conditions, charge and discharge were repeated for 100 cycles, and the discharge capacity at the first cycle, the discharge capacity at the 10th cycle, and the capacity at the 100th cycle were measured. Table 2 shows the results.
【0035】[0035]
【表2】 [Table 2]
【0036】5.溶出試験による成形体の合金成分溶出
比較 実施例1、実施例3、比較例1、比較例2、比較例4に
おいて10×10cmに切り出し溶出試験を以下の条件
で行なった。8N−KOH 1ccに25℃で3日間浸
漬した後、10×10cmの成形体を取り出し、KOH
中に溶出及び析出した溶出物を全量酸分解により溶液と
し、ICP分析により溶出物の定量を行なった。その結
果を表3に示す。5. Comparison of Elution of Alloy Components of Molded Article by Elution Test In Examples 1, Example 3, Comparative Example 1, Comparative Example 2 and Comparative Example 4, 10 × 10 cm was cut out and an elution test was performed under the following conditions. After immersion in 1 cc of 8N-KOH at 25 ° C. for 3 days, a 10 × 10 cm compact was taken out and
The eluted substance eluted and precipitated therein was converted into a solution by total acid decomposition, and the eluted substance was quantified by ICP analysis. Table 3 shows the results.
【0037】[0037]
【表3】 [Table 3]
【0038】充放電試験の結果から、パラフィンを用い
た実施例1、2の成形体は比較例2、3のPVA造粒粉
成形体に比べ初期活性を損なわず、ほぼ所定の放電容量
が得られている。又、溶出試験の結果より造粒の際にパ
ラフィンを用いた実施例1、含浸にパラフィンを用いた
実施例3は合金成分の溶出を比較例に対し抑制している
ことから電解質に強アルカリを用いるNi−水素電池に
おいて腐食の進行を防止できることがわかる。これらの
ことから長期間充放電を繰り返しても崩壊、変形が起こ
らずまた、強アルカリの電解質中でも合金腐食が進行し
づらい長寿命成形体であるといえる。From the results of the charge / discharge test, the molded articles of Examples 1 and 2 using paraffin did not impair the initial activity as compared with the molded articles of PVA granulated powder of Comparative Examples 2 and 3, and a substantially predetermined discharge capacity was obtained. Have been. In addition, according to the results of the dissolution test, Example 1 using paraffin during granulation and Example 3 using paraffin for impregnation suppressed the dissolution of alloy components from the comparative example. It can be seen that the progress of corrosion can be prevented in the used Ni-hydrogen battery. From these facts, it can be said that the molded article is a long-life molded article that does not collapse or deform even after repeated charging and discharging for a long period of time, and that alloy corrosion hardly progresses even in a strongly alkaline electrolyte.
【0039】[0039]
【発明の効果】以上のように本発明によりバインダー付
着造粒粉を成形する際の作製歩留りの向上が計られ、長
期間充放電を繰り返しても崩壊、変形が起こらずまた、
強アルカリの電解質中でも合金腐食が進行しずらい長寿
命なNi−水素電池用成形体を提供できる。また、パラ
フィンの撥水効果による過充電時の電池内圧上昇抑制が
期待できる。As described above, according to the present invention, the production yield when molding the binder-attached granulated powder is improved, and even if charge and discharge are repeated for a long time, collapse and deformation do not occur.
It is possible to provide a long-life molded body for a Ni-hydrogen battery in which alloy corrosion hardly progresses even in a strong alkaline electrolyte. In addition, the increase in battery internal pressure during overcharge due to the water-repellent effect of paraffin can be expected.
【図1】従来型の電極構造を示す。FIG. 1 shows a conventional electrode structure.
1 集電支持体(導電芯体) 2 導電剤 3 バインダー及び空孔 4 水素吸蔵合金粉末 DESCRIPTION OF SYMBOLS 1 Current collection support (conductive core) 2 Conductive agent 3 Binder and hole 4 Hydrogen storage alloy powder
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/30 H01M 10/30 Z (72)発明者 島 聡 福井県武生市北府二丁目1番5号 信越化 学工業株式会社磁性材料研究所内 Fターム(参考) 4K018 CA08 CA09 DA03 KA38 5H028 BB03 BB04 BB05 BB06 EE01 EE06 EE08 HH01 5H050 AA07 AA19 BA14 CA03 CB16 CB17 DA03 DA11 EA23 GA02 GA03 GA06 GA08 GA10 GA23 HA01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 10/30 H01M 10/30 Z (72) Inventor Satoshi Shima 2-5-1 Kitafu, Takefu City, Fukui Prefecture F-term in Shin-Etsu Kagaku Kogyo Co., Ltd. Magnetic Materials Research Laboratories (reference)
Claims (5)
なるニッケル−水素電池用成形体。1. A molded article for a nickel-hydrogen battery comprising a hydrogen storage alloy and paraffin.
有される請求項1に記載のニッケル−水素電池用成形
体。2. The molded article for a nickel-metal hydride battery according to claim 1, wherein the paraffin is contained in an amount of 0.5 to 5% by weight.
−水素電池用成形体を用いてなるニッケル−水素電池。3. A nickel-hydrogen battery using the molded product for a nickel-hydrogen battery according to claim 1.
粒し、その造粒粉を加圧成形後、バインダー溶液に含浸
し、乾燥させることを含むニッケル−水素電池用成形体
の製造方法。4. A method for producing a molded body for a nickel-hydrogen battery, comprising mixing and granulating a hydrogen storage alloy powder and paraffin, press-molding the granulated powder, impregnating in a binder solution, and drying.
粒し、その造粒粉を加圧成形後、溶解パラフィンに含浸
し、乾燥させることを含むニッケル−水素電池用成形体
の製造方法。5. A method for producing a molded body for a nickel-hydrogen battery, comprising mixing and granulating a hydrogen storage alloy powder and a binder, press-molding the granulated powder, impregnating with melted paraffin, and drying.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001018469A JP2002231248A (en) | 2001-01-26 | 2001-01-26 | Molded article for paraffin-containing nickel-metal hydride battery and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001018469A JP2002231248A (en) | 2001-01-26 | 2001-01-26 | Molded article for paraffin-containing nickel-metal hydride battery and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002231248A true JP2002231248A (en) | 2002-08-16 |
Family
ID=18884492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001018469A Pending JP2002231248A (en) | 2001-01-26 | 2001-01-26 | Molded article for paraffin-containing nickel-metal hydride battery and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002231248A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115650157A (en) * | 2022-11-18 | 2023-01-31 | 四川大学 | A high thermal conductivity, high stability hydrogen storage alloy bed for hydrogen storage tanks and its preparation process |
-
2001
- 2001-01-26 JP JP2001018469A patent/JP2002231248A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115650157A (en) * | 2022-11-18 | 2023-01-31 | 四川大学 | A high thermal conductivity, high stability hydrogen storage alloy bed for hydrogen storage tanks and its preparation process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5278411B2 (en) | Hydrogen storage alloy powder and nickel metal hydride storage battery using the same. | |
US5529857A (en) | Hydrogen-absorbing alloy electrode and process for producing the same | |
EP1073134B1 (en) | Hydrogen absorbing alloy compact for use as the negative electrode of an alkaline rechargeable battery and method of making same | |
JP2002231235A (en) | Molded product for nickel-hydrogen battery containing carbon powder and method for producing the same | |
JP2002231248A (en) | Molded article for paraffin-containing nickel-metal hydride battery and method for producing the same | |
US6824571B2 (en) | Hydrogen absorbing alloy electrode, manufacturing method thereof, and alkaline storage battery equipped with the hydrogen absorbing alloy electrode | |
JP3279994B2 (en) | Hydrogen storage alloy powder and negative electrode for alkaline storage battery | |
JP2719542B2 (en) | Hydrogen storage alloy powder for battery electrode and method for producing hydrogen storage electrode | |
JP2972919B2 (en) | Method for producing hydrogen storage alloy powder for storage battery and hydrogen storage electrode | |
JP2001126724A (en) | Method for producing hydrogen storage alloy powder | |
JP2000017302A (en) | Hydrogen storage alloy sintered body and hydrogen storage alloy sintered body porous negative electrode | |
JP3373989B2 (en) | Hydrogen storage alloy powder and manufacturing method | |
JP2002216750A (en) | Hydrogen storage alloy molded article, hydrogen storage alloy molded article porous negative electrode, and nickel-hydrogen storage battery | |
JPH10265875A (en) | Hydrogen storage alloy, its production and nickel-hydrogen secondary battery | |
JPS6215769A (en) | Nickel-hydrogen alkaline battery | |
JP2001236953A (en) | Hydrogen storage alloy negative electrode and method for producing the same | |
JP2002069511A (en) | Method for producing hydrogen storage alloy and hydrogen storage alloy electrode | |
JP2000345253A (en) | Method for producing hydrogen storage alloy and hydrogen storage alloy electrode | |
JP2001148246A (en) | Hydrogen storage alloy powder for negative electrode of alkaline secondary battery and method for producing the same | |
JP2001351618A (en) | Molded hydrogen storage alloy for negative electrode of alkaline secondary battery and method for producing the same | |
JPH0554883A (en) | Manufacture of hydrogen storage electrode for alkaline storage battery | |
JP2002158003A (en) | Hydrogen storage alloy compact and method for producing the same | |
JP3113892B2 (en) | Method for producing hydrogen storage electrode | |
JP2001216960A (en) | Hydrogen storage alloy and nickel hydrogen secondary battery | |
JP2000021396A (en) | Hydrogen storage alloy porous powder and negative electrode for nickel-hydrogen storage battery |