JP2002226915A - Manufacturing method of rail with high wear resistance and high toughness - Google Patents
Manufacturing method of rail with high wear resistance and high toughnessInfo
- Publication number
- JP2002226915A JP2002226915A JP2001025417A JP2001025417A JP2002226915A JP 2002226915 A JP2002226915 A JP 2002226915A JP 2001025417 A JP2001025417 A JP 2001025417A JP 2001025417 A JP2001025417 A JP 2001025417A JP 2002226915 A JP2002226915 A JP 2002226915A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- rail
- toughness
- pearlite
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鉄道その他産業機
械用として使用される強度と耐摩耗性に優れた高炭素の
パーライト組織を呈した鋼に靭性を付与した高靭性レー
ルの製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high toughness rail which is used for railways and other industrial machines and which has high toughness and high toughness and has a high carbon pearlite structure. It is.
【0002】[0002]
【従来の技術】高炭素でパーライトの金属組織を呈した
鋼は強度が高く、耐摩耗性が良好なことから構造材料と
して使用され、中でも鉄道車両の重量増加に伴う高軸荷
重化や高速輸送化に対応してレールが特に多く使用され
ている。2. Description of the Related Art High carbon steel having a pearlitic metal structure is used as a structural material because of its high strength and good wear resistance. Rails are particularly frequently used in response to the trend.
【0003】このような鋼材の製造法としては、例えば
特開昭55−276号公報には「パーライト組織を呈し
やすい特定成分の鋼をAc3 点以上の加熱温度から冷却
して450〜600℃の温度で恒温変態させて、微細パ
ーライト組織を生成させる硬質レールの製造法」、また
特開昭58−221229号公報には、「C:0.65
〜0.85%、Mn:0.5〜2.5%を含有して高温
度の熱を保有したMn鋼レールを急冷し、レールまたは
レールヘッドの組織を微細なパーライトとして耐摩耗性
を改善したレールの熱処理法」、さらに特開昭59−1
33322号公報には、「安定してパーライト組織が得
られる特定成分の圧延レールを、Ar3点以上の温度か
ら特定温度の溶融塩浴中に浸漬して、レール頭頂部表面
下約10mmまでにHv>350の硬さをもつ微細なパー
ライト組織を呈するレールの熱処理方法」が開示されて
いるごとく、多くの技術が知られている。[0003] As a method for producing such a steel material, for example, Japanese Patent Application Laid-Open No. 55-276 discloses that "steel of a specific component which easily exhibits a pearlite structure is cooled from a heating temperature of the Ac3 point or higher to 450-600 ° C. A method for producing a hard rail which is subjected to isothermal transformation at a temperature to generate a fine pearlite structure "and JP-A-58-221229," C: 0.65
-0.85%, Mn: 0.5-2.5%, quenched Mn steel rail with high temperature heat and improved wear resistance by making the structure of rail or rail head fine pearlite. Heat treatment method for rails "
No. 33322 discloses that a rolling rail of a specific component capable of stably obtaining a pearlite structure is immersed in a molten salt bath at a specific temperature from a temperature of not less than the Ar3 point, and Hv is reduced to about 10 mm below the surface of the rail top. Many techniques are known, as disclosed in "Method of heat treatment of rail exhibiting fine pearlite structure having hardness of>350".
【0004】しかしながら、パーライト鋼の強度や耐摩
耗性は合金元素の添加によって所要の規格品が容易に得
られるとは言え、靭性はフェライト組織を主体とした鋼
に比較して著しく低く、例えばパーライトレール鋼では
JIS3号 Uノッチシャルピー試験での常温試験値で
10〜20N・m程度である。このように靭性の低い鋼
を繰り返し荷重や振動の掛かる分野で構造部材として使
用した場合、微小な初期欠陥や疲労き裂から低応力脆性
破壊を引き起こす問題があった。However, although the strength and wear resistance of pearlite steel can be easily obtained as required standard products by the addition of alloying elements, the toughness is remarkably lower than that of steel mainly composed of ferrite. In the case of rail steel, a room temperature test value in a JIS No. 3 U-notch Charpy test is about 10 to 20 N · m. When such a low toughness steel is used as a structural member in a field where a repeated load or vibration is applied, there is a problem that low stress brittle fracture is caused from minute initial defects and fatigue cracks.
【0005】一般に鋼の靭性を向上させるには、金属組
織の微細化、すなわちオーステナイト組織の細粒化や粒
内変態によって達成されるものと言われている。オース
テナイト組織の細粒化は、例えば圧延時の低温加熱ある
いは特開昭63−277721号公報に開示されている
ように制御圧延と加熱処理の組合わせ、また圧延後の低
温再加熱処理などが利用されている。しかし、レールの
製造法においては、成形性確保の観点から圧延時の低温
加熱や制御圧延における低温圧延、大圧下圧延の適用が
困難なため、今日においても従来からの低温再加熱処理
による靭性の向上が図られている。ところがこの方法
も、近来の各鋼製品における省力化・生産性向上技術の
開発が進められる中で、製造コストが高く生産性も低い
などの問題があり、これらの早期開発が望まれている。It is generally said that the improvement of the toughness of steel is achieved by refining the metal structure, that is, by reducing the austenite structure and transgranular transformation. The grain refinement of the austenite structure is achieved by, for example, low-temperature heating during rolling, a combination of controlled rolling and heat treatment as disclosed in JP-A-63-277721, or low-temperature reheating after rolling. Have been. However, in the rail manufacturing method, it is difficult to apply low-temperature heating during rolling, low-temperature rolling in controlled rolling, and large rolling under reduced pressure from the viewpoint of ensuring formability. Improvements are being made. However, this method also has problems such as high production cost and low productivity in the course of recent development of labor-saving and productivity-improving technologies for steel products, and early development of these methods is desired.
【0006】[0006]
【発明が解決しようとする課題】本発明は上記した問題
点を解消しようとするものであり、レール成形上、低温
あるいは大圧下に依っていた制御圧延の問題を克服し、
共析鋼特有の制御圧延を行い、レール鋼等のような共析
炭素鋼の靭性を向上させる方法を提供することを目的と
する。SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and overcomes the problem of controlled rolling that has been dependent on low temperatures or large pressures in forming rails.
An object of the present invention is to provide a method for performing controlled rolling specific to eutectoid steel to improve the toughness of eutectoid carbon steel such as rail steel.
【0007】[0007]
【課題を解決するための手段】本発明者らは、細粒のパ
ーライト組織を得て靭性を向上させた鋼を製造するため
に、鋼成分とその製造法から多くの実験を試みた結果、
共析炭素鋼に近い高炭素の鋼はそのオーステナイト状態
での加工において、比較的低温で、かつ小さい圧下量で
も圧延直後に再結晶することを見いだし、小圧下の連続
圧延によって整粒の微細オーステナイト粒を得、その結
果、細粒のパーライト組織が得られることを知見した。
しかしながら、圧延直後の微細再結晶オーステナイト粒
は圧延パス間の粒成長が大きく、各パスでの圧延の効果
を相殺するほどの影響があることも知見した。Means for Solving the Problems The inventors of the present invention have conducted a number of experiments on steel components and their production methods in order to obtain a fine-grained pearlite structure and produce steel with improved toughness.
High-carbon steel, which is close to eutectoid carbon steel, was found to recrystallize immediately after rolling at a relatively low temperature and with a small rolling reduction during processing in the austenitic state. It was found that granules were obtained, and as a result, a fine-grained pearlite structure was obtained.
However, it has also been found that the finely recrystallized austenite grains immediately after rolling have a large grain growth between rolling passes and have an effect that offsets the effect of rolling in each pass.
【0008】本発明はこのような知見に基づいて構成し
たものであって、その要旨とするところは、以下の通り
である。 (1)質量でC:0.6〜1.20%を含む鋼片を粗圧
延した後、リバース圧延機による中間圧延を表面温度が
1000〜1150℃の間で行い、かつ前記中間圧延の
各パスの圧延直後にレール頭部表面と底部中心表面の温
度が50〜100℃低下する冷却を施し、続いて連続圧
延機による仕上げ圧延を表面温度が850〜1000℃
の間で、1パス当たり断面減少率が5〜30%の圧延を
2パス以上でかつ圧延パス間を10秒以下として施し、
圧延後、レール表面での冷却速度0.5〜50℃/sで
800〜950℃まで冷却し、その後、放冷することを
特徴とするパーライト金属組織を呈した高耐摩耗・高靭
性レールの製造方法。 (2)鋼片の成分が質量%で、C :0.6〜1.20
%、 Si:0.10〜1.20%、Mn:0.40
〜1.50%を含み、残部がFeおよび不可避的不純物
からなることを特徴とする前記(1)記載のパーライト
金属組織を呈した高耐摩耗・高靭性レールの製造方法。 (3)鋼片の成分が質量%でさらに、Cr:0.05〜
2.00%、 Mo:0.01〜0.30%、Co:
0.10〜2.00%の1種または2種以上を含有する
ことを特徴とする前記(2)記載のパーライト金属組織
を呈した高耐摩耗・高靭性レールの製造方法。 (4)鋼片の成分が質量%でさらに、Cu:0.05〜
2.00%、 Ni:0.05〜2.00%の1種また
は2種を含有することを特徴とする前記(2)または
(3)に記載のパーライト金属組織を呈した高耐摩耗・
高靭性レールの製造方法。 (5)鋼片の成分が質量%でさらに、V :0.01〜
0.30%、 Nb:0,002〜0.050%、T
i:0.005〜0.100%、Ca:0.0005〜
0.0100%、Mg:0.0005〜0.0100%
の1種または2種以上を含有することを特徴とする前記
(2)ないし(4)のいずれか1項に記載のパーライト
金属組織を呈した高耐摩耗・高靭性レールの製造方法。 (6)レール表面を800〜950℃まで冷却した後
に、引き続き700℃以上の温度から500℃までの間
を2〜15℃/sで冷却し、その後放冷することを特徴
とする前記(1)ないし(5)のいずれか1項に記載の
パーライト金属組織を呈した高耐摩耗・高靭性レールの
製造方法。The present invention has been made based on such knowledge, and the gist thereof is as follows. (1) After roughly rolling a slab containing C: 0.6 to 1.20% by mass, intermediate rolling by a reverse rolling mill is performed at a surface temperature of 1000 to 1150 ° C, and each of the intermediate rolling is performed. Immediately after the rolling of the pass, cooling is performed so that the temperature of the rail head surface and the bottom central surface decreases by 50 to 100 ° C, and then the finish rolling by a continuous rolling mill is performed to a surface temperature of 850 to 1000 ° C.
Between two or more passes with a cross-sectional reduction rate of 5 to 30% per pass and a rolling pass of 10 seconds or less,
After rolling, the rail is cooled to 800 to 950 ° C. at a cooling rate of 0.5 to 50 ° C./s, and then left to cool. Production method. (2) The composition of the billet is% by mass, and C: 0.6 to 1.20.
%, Si: 0.10 to 1.20%, Mn: 0.40
(1) The method for producing a high wear-resistant and high-toughness rail exhibiting a pearlite metal structure according to the above (1), characterized in that the rail contains up to 1.50%, with the balance being Fe and inevitable impurities. (3) The composition of the billet is mass%, and Cr: 0.05 to
2.00%, Mo: 0.01 to 0.30%, Co:
The method for producing a high abrasion-resistant and high-toughness rail exhibiting a pearlite metal structure according to the above (2), which comprises 0.10 to 2.00% of one or more kinds. (4) The composition of the billet is mass%, and Cu: 0.05 to
2.00%, Ni: 0.05 to 2.00%, one or two kinds of which are high in wear resistance and exhibit a pearlite metal structure according to the above (2) or (3).
Manufacturing method of high toughness rail. (5) The composition of the billet is expressed by mass% and V: 0.01 to
0.30%, Nb: 0.002 to 0.050%, T
i: 0.005 to 0.100%, Ca: 0.0005 to
0.0100%, Mg: 0.0005 to 0.0100%
The method for producing a high wear-resistant and high-toughness rail exhibiting a pearlite metal structure according to any one of the above (2) to (4), characterized by containing one or more of the following. (6) After cooling the rail surface to 800 to 950 ° C., continuously cool from 700 ° C. or higher to 500 ° C. at 2 to 15 ° C./s, and then allow to cool. A method for producing a high wear-resistant and high-toughness rail exhibiting a pearlite metal structure according to any one of (1) to (5).
【0009】[0009]
【発明の実施の形態】以下、本発明について詳細に説明
する。先ず、本発明において鋼成分を上記のように限定
した理由について説明する。Cはパーライト組織を生成
させて耐摩耗性を確保する有効な成分として0.60%
以上の含有が必要である。しかし、1.20%を超える
高い含有量ではセメンタイト組織を多く析出して硬さは
増加するが、延性は低下し、本発明の目的である靭性を
著しく低下させる。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. First, the reason why the steel components are limited as described above in the present invention will be described. C is 0.60% as an effective component for forming a pearlite structure and ensuring abrasion resistance.
The above content is necessary. However, when the content is higher than 1.20%, a large amount of cementite structure is precipitated to increase the hardness, but the ductility is reduced, and the toughness which is the object of the present invention is significantly reduced.
【0010】本発明は、少なくとも上記のような共析点
近傍の炭素を含有する鋼に特有のオーステナイト再結晶
挙動の知見に基づいているため、必要に応じて各種合金
を添加しても金属組織がパーライトを呈する範囲では何
ら差し障りはない。このため、強度や延性、靭性を向上
させることを目的として、以下の合金元素を適宜添加す
ることができる。The present invention is based on the knowledge of the austenite recrystallization behavior peculiar to steel containing at least the carbon near the eutectoid point as described above. There is no hindrance in the range in which pearlite is exhibited. For this reason, the following alloy elements can be appropriately added for the purpose of improving strength, ductility, and toughness.
【0011】Siは、パーライト組織中のフェライト相
への固溶体硬化によりレール頭部の硬度(強度)を上昇
させる元素であるが、0.10%未満ではその効果が十
分に期待できず、また1.20%を超えると、熱間圧延
時に表面疵が多く生成することや、酸化物の生成により
溶接性が低下するため、Si量を0.10〜1.20%
に限定した。Si is an element which increases the hardness (strength) of the rail head by solid solution hardening into the ferrite phase in the pearlite structure, but if its content is less than 0.10%, its effect cannot be expected sufficiently. If it exceeds .20%, a large number of surface flaws are generated during hot rolling, and the weldability is reduced due to the formation of oxides.
Limited to.
【0012】Mnは、パーライト変態温度を低下させ、
焼入れ性を高めることによって高強度化に寄与し、さら
に、初析セメンタイト組織の生成を抑制する元素である
が、0.40%未満の含有量ではその効果が小さく、レ
ール頭部に必要とされる硬さの確保が困難となる。また
1.50%を超えると焼入れ性が著しく増加し、マルテ
ンサイト組織が生成し易くなることや、偏析が助長さ
れ、偏析部にレールの靭性に有害な初析セメンタイト組
織が生成し易くなるため、Mn量を0.40〜1.50
%に限定した。Mn lowers the pearlite transformation temperature,
It is an element that contributes to high strength by enhancing hardenability and further suppresses the formation of a pro-eutectoid cementite structure. However, if its content is less than 0.40%, its effect is small, and it is required for the rail head. It is difficult to secure sufficient hardness. If the content exceeds 1.50%, the hardenability is remarkably increased, and a martensite structure is easily generated, and segregation is promoted, and a pro-eutectoid cementite structure harmful to rail toughness is easily generated in the segregated portion. , Mn amount is 0.40 to 1.50
%.
【0013】Crは、パーライトの平衡変態点を上昇さ
せ、結果としてパーライト組織を微細にして高強度化に
寄与すると同時に、パーライト組織中のセメンタイト相
を強化することによって耐摩耗性を向上させる元素であ
るが、0.05%未満ではその効果が小さく、2.00
%を超える過剰な添加を行うと、マルテンサイト組織が
多量に生成してレールの靭性を低下させるため、Cr量
を0.05〜2.00%に限定した。[0013] Cr is an element that raises the equilibrium transformation point of pearlite and consequently makes the pearlite structure finer and contributes to higher strength, and at the same time, improves the wear resistance by strengthening the cementite phase in the pearlite structure. However, when the content is less than 0.05%, the effect is small.
%, A large amount of martensite structure is generated to lower the toughness of the rail. Therefore, the Cr content is limited to 0.05 to 2.00%.
【0014】Moは、Cr同様パーライトの平衡変態点
を上昇させ、結果としてパーライト組織を微細にするこ
とにより高強度化に寄与し、耐摩耗性を向上させる元素
であるが、0.01%未満ではその効果が小さく、また
0.30%を超える過剰な添加を行うと偏析が助長さ
れ、さらにパーライト変態速度が低下し、偏析部にマル
テンサイト組織が生成してレールの靭性が低下するた
め、Mo量を0.01〜0.30%に限定した。Mo is an element that, like Cr, raises the equilibrium transformation point of pearlite and consequently refines the pearlite structure, thereby contributing to higher strength and improving wear resistance, but less than 0.01%. In addition, the effect is small, and excessive addition exceeding 0.30% promotes segregation, further reduces the pearlite transformation speed, generates a martensite structure in the segregated portion, and reduces the toughness of the rail. The amount of Mo was limited to 0.01 to 0.30%.
【0015】Coは、パーライトの変態エネルギーを増
加させて、パーライト組織を微細にすることにより強度
を向上させる元素であるが、0.10%未満ではその効
果が期待できず、また2.00%を超える過剰な添加を
行ってもその効果が飽和域に達してしまうため、Co量
を0.10〜2.00%に限定した。Co is an element that increases the transformation energy of pearlite to improve the strength by making the pearlite structure finer, but its effect cannot be expected if it is less than 0.10%, and 2.00%. However, the effect reaches the saturation range even if an excessive amount of addition is performed, so the Co content is limited to 0.10 to 2.00%.
【0016】Cuは、パーライト鋼の靭性を損なわず強
度を向上させる元素であり、その効果は0.05〜2.
00%の範囲で最も大きく、また2.00%を超えると
赤熱脆化を生じやすくなることから、Cu量を0.05
〜2.00%に限定した。Cu is an element which improves the strength without impairing the toughness of the pearlite steel, and its effect is 0.05 to 2.0.
The largest amount is in the range of 00%, and if it exceeds 2.00%, red heat embrittlement is likely to occur.
To 2.00%.
【0017】Niは、パーライト鋼の延性と靭性を向上
させ、同時に固溶強化によりパーライト鋼の高強度化を
図る元素であるが、0.05%未満ではその効果が著し
く小さく、また2.00%を超える過剰な添加を行って
もそれ以上の効果が期待できない。したがってNi量を
0.05〜2.00%に限定した。Ni is an element that improves the ductility and toughness of the pearlite steel and at the same time increases the strength of the pearlite steel by solid solution strengthening. %, No further effect can be expected. Therefore, the amount of Ni was limited to 0.05 to 2.00%.
【0018】Vはレール頭部の熱処理において、レール
頭表部と比較して冷却速度の遅いレール頭部内部で炭化
物や窒化物を形成し、パーライト組織中のフェライト地
に析出することにより、頭部内部の硬度を向上させる元
素であるが、0.01%未満では、炭化物や窒化物の形
成が困難となり、レール頭部内部のパーライト組織の析
出硬化が困難となる。また、0.30%を超えて添加し
てもそれ以上の効果が期待できないため、V量を0.0
1〜0.30%に限定した。In the heat treatment of the rail head, V forms carbides and nitrides in the inside of the rail head, which has a lower cooling rate than the surface of the rail head, and precipitates on the ferrite ground in the pearlite structure. Although it is an element for improving the hardness inside the portion, if it is less than 0.01%, it becomes difficult to form carbides and nitrides, and it becomes difficult to precipitate and harden the pearlite structure inside the rail head. Further, if more than 0.30% is added, no further effect can be expected.
Limited to 1 to 0.30%.
【0019】Nbは、Vと同様にNb炭化物、Nb窒化
物による析出硬化で強度を高め、さらに、高温度に加熱
する熱処理が行われる際に結晶粒の成長を抑制する作用
によりオーステナイト粒を微細化させ、そのオーステナ
イト粒成長抑制効果はVよりも高温度域(1200℃近
傍)まで作用し、パーライト組織の延性と靭性を改善す
る。その効果は0.002%未満では期待できず、また
0.050%を超える過剰な添加を行ってもそれ以上の
効果が期待できない。したがってNb量を0.002〜
0.050%に限定した。Nb, like V, increases the strength by precipitation hardening with Nb carbide and Nb nitride, and further suppresses the growth of crystal grains during heat treatment at a high temperature to reduce austenite grains. The effect of suppressing austenite grain growth acts up to a temperature range higher than V (around 1200 ° C.), and improves the ductility and toughness of the pearlite structure. The effect cannot be expected if it is less than 0.002%, and no further effect can be expected even if it is added in excess of 0.050%. Therefore, the amount of Nb is 0.002-
Limited to 0.050%.
【0020】Tiは、レール圧延時の再加熱において、
析出したTi炭化物、Ti窒化物が溶解しないことを利
用して、圧延加熱時のオーステナイト結晶粒の微細化を
図り、パーライト組織の延性や靭性を向上させるのに有
効な成分である。しかし、0.005%未満ではその効
果が少なく、0.100%を超えて添加すると、粗大な
Ti炭化物、Ti窒化物が生成してレール使用中の疲労
損傷の起点となり、き裂を発生させるため、Ti量を
0.005〜0.100%に限定した。In the reheating at the time of rail rolling, Ti
Utilizing the fact that precipitated Ti carbides and Ti nitrides do not dissolve, it is an effective component for refining austenite crystal grains during rolling and heating and improving ductility and toughness of pearlite structure. However, if the content is less than 0.005%, the effect is small, and if it is added more than 0.100%, coarse Ti carbides and Ti nitrides are formed and become a starting point of fatigue damage during use of the rail, and cracks are generated. Therefore, the amount of Ti is limited to 0.005 to 0.100%.
【0021】Caは、不可避的不純物であるSとの結合
力が強く、CaSとして硫化物を形成し、さらに、Ca
SがMnSを微細に分散させ、MnSの周囲にMnの希
薄帯を形成し、パーライト変態の生成に寄与し、その結
果、パーライトブロックサイズを微細化することによ
り、パーライト組織の延性や靭性を向上させるのに有効
な元素である。しかし、0.0005%未満ではその効
果は弱く、0.0100%を超えて添加するとCaの粗
大酸化物が生成してレール延性や靭性を劣化させるた
め、Ca量を0.0005〜0.0100%に限定し
た。Ca has a strong binding force with S, which is an unavoidable impurity, and forms a sulfide as CaS.
S finely disperses MnS, forms a rare band of Mn around MnS, and contributes to the generation of pearlite transformation, thereby improving the ductility and toughness of the pearlite structure by reducing the pearlite block size. It is an effective element to make it. However, if it is less than 0.0005%, the effect is weak, and if it exceeds 0.0100%, a coarse oxide of Ca is generated to deteriorate rail ductility and toughness. %.
【0022】Mgは、OまたはSやAl等と結合して微
細な酸化物を形成し、レール圧延時の再加熱において結
晶粒の粒成長を抑制し、オーステナイト粒の微細化を図
り、パーライト組織の延性や靭性を向上させるのに有効
な元素である。さらに、MgO,MgSがMnSを微細
に分散させ、MnSの周囲にMnの希薄帯を形成し、パ
ーライト変態の生成に寄与し、その結果、パーライトブ
ロックサイズを微細化することにより、パーライト組織
の延性や靭性を向上させるのに有効な元素である。しか
し、0.0005%未満ではその効果は弱く、0.01
00%を超えて添加すると、Mgの粗大酸化物が生成し
てレール延性や靭性を劣化させるため、Mg量を0.0
005〜0.0100%に限定した。Mg combines with O or S or Al to form a fine oxide, suppresses the growth of crystal grains during reheating during rail rolling, refines austenite grains, and achieves a pearlite structure. It is an element effective for improving the ductility and toughness of steel. Further, MgO and MgS finely disperse MnS, form a thin band of Mn around MnS, and contribute to the generation of pearlite transformation. As a result, the pearlite block size is reduced, thereby improving the ductility of the pearlite structure. And an element effective for improving toughness. However, if less than 0.0005%, the effect is weak, and 0.01%.
If added in excess of 00%, a coarse oxide of Mg is formed to deteriorate the ductility and toughness of the rail.
005 to 0.0100%.
【0023】次に、本発明の各工程条件について説明す
る。レール鋼の圧延において、鋳片の粗形圧延を行った
後の中間圧延段階、仕上げ圧延段階の1パス当たりの圧
下量は、レールの成形性確保の観点から断面減少率にし
て通常5〜30%の比較的小さい範囲であり、また仕上
げ温度はおよそ1000℃程度である。これに対して、
最近はより低温で圧延し、延性や靭性の改善を目的とし
た制御圧延も行われている。一般にフェライトを主体に
した鋼の制御圧延の場合はオーステナイトの未再結晶領
域まで圧延温度を低下させ、加工オーステナイト中への
ひずみの導入により、フェライト核の増大を図り、細粒
フェライトを得る制御圧延法が採られている。Next, each process condition of the present invention will be described. In the rolling of rail steel, the rolling reduction per pass in the intermediate rolling stage and the finish rolling stage after performing the rough rolling of the slab is usually 5 to 30 in terms of cross-sectional reduction rate from the viewpoint of ensuring the formability of the rail. % And the finishing temperature is on the order of 1000 ° C. On the contrary,
Recently, controlled rolling for the purpose of improving ductility and toughness has been performed at a lower temperature. In general, in the case of controlled rolling of steel mainly composed of ferrite, the rolling temperature is lowered to the unrecrystallized region of austenite, and the strain is introduced into the processed austenite to increase the ferrite nucleus and control rolling to obtain fine-grained ferrite. The law has been adopted.
【0024】しかしながらパーライト鋼の場合は共析変
態のため、パーライトの成長速度が大きく、オーステナ
イト粒内変態核が有効に作用せず、実質的に細粒パーラ
イトが得られ難いことがわかった。したがって、整粒の
細粒オーステナイトを得ることがパーライト細粒化に必
要なことがわかった。However, in the case of pearlite steel, it was found that due to eutectoid transformation, the growth rate of pearlite was large, the austenite intragranular transformation nuclei did not work effectively, and it was difficult to obtain substantially fine pearlite. Therefore, it was found that obtaining fine-grained austenite was necessary for reducing pearlite.
【0025】かかる観点から、高炭素鋼のオーステナイ
トの再結晶挙動を詳細に検討した結果、 1)低炭素鋼に比較して低い温度まで、かつ低加工度で
再結晶すること、 2)加工後、完全再結晶に要する時間が非常に小さい、
すなわち圧延直後に再結晶を完了すること、 3)小さな圧下でも連続的に(およそ10秒以下)加工
を加えると、その都度再結晶を繰り返し、次の加工まで
の粒成長が抑制される、あるいは10秒以上のパス間で
も圧延後温度を低下させると粒成長が抑制されるため、
整細粒の再結晶オーステナイト粒が得られること、 を知見した。From this point of view, a detailed study of the recrystallization behavior of austenite of a high carbon steel revealed that: 1) recrystallization to a lower temperature and a lower workability than a low carbon steel; The time required for complete recrystallization is very small,
That is, recrystallization is completed immediately after rolling. 3) When processing is continuously performed (about 10 seconds or less) even under a small pressure, recrystallization is repeated each time, and grain growth until the next processing is suppressed, or If the temperature after rolling is lowered even between passes of 10 seconds or more, grain growth is suppressed,
It was found that fine-grained recrystallized austenite grains were obtained.
【0026】これらの知見をもとに、その最適な加工条
件範囲を見出した。以下に条件の限定理由を述べる。1
000〜1150℃間でのリバース圧延機による中間圧
延の際は、各圧延パス後に減面率に応じた再結晶により
細粒のオーステナイトが得られるが、リバース圧延のた
め、パス間の時間は具体的には20〜60秒となり、そ
の間の粒成長が著しい。そこで各パスの圧延直後にレー
ル頭部表面と底部中心表面の温度が50〜100℃低下
する冷却を施すことにより粒成長を抑制でき、各パスで
の微細オーステナイト粒の累積が得られ、仕上げ圧延前
のオーステナイト粒の細粒化が図れる。なおパス回数は
特に規定しないが、パス毎に必要な断面減少率からして
2〜3パスで行うのが通常である。また冷却方法につい
ても特に限定しないが、必要な冷却速度を確保するため
には、水などの液体もしくはミストを含む混合気体を吹
き付ける方法が好ましい。Based on these findings, the optimum processing condition range was found. The reasons for limiting the conditions are described below. 1
In the case of intermediate rolling using a reverse rolling mill at a temperature of 000 to 1150 ° C., fine-grained austenite is obtained by recrystallization according to the reduction in area after each rolling pass. Specifically, it takes 20 to 60 seconds, during which the grain growth is remarkable. Therefore, the grain growth can be suppressed by performing cooling such that the temperature of the rail head surface and the bottom central surface decreases by 50 to 100 ° C. immediately after rolling in each pass, and the accumulation of fine austenite grains in each pass can be obtained. The previous austenite grains can be refined. Although the number of passes is not particularly specified, the pass is usually performed in two to three passes in view of the required area reduction rate for each pass. The cooling method is not particularly limited, but a method of spraying a liquid such as water or a mixed gas containing a mist is preferable in order to secure a required cooling rate.
【0027】仕上げ圧延温度については850〜100
0℃の範囲が最適で、850℃未満ではオーステナイト
が未再結晶状態となり、先に述べたようにパーライトの
微細化に有効でない。一方、1000℃を超える場合は
圧延後のオーステナイト粒の成長が大きく、パーライト
変態時に混粒の粗粒オーステナイトとなり、パーライト
の微細化に有効でない。なお通常は、中間圧延後仕上げ
圧延までの間に、レール内部からの復熱により表面温度
が上昇するので、適宜冷却もしくは放冷により仕上げ温
度を調整するのが好ましい。The final rolling temperature is 850-100.
The range of 0 ° C. is optimal, and if it is lower than 850 ° C., austenite is in an unrecrystallized state, and as described above, it is not effective for miniaturization of pearlite. On the other hand, when the temperature exceeds 1000 ° C., the growth of austenite grains after rolling is large and becomes coarse austenite of mixed grains at the time of pearlite transformation, which is not effective in refining pearlite. Normally, the surface temperature rises due to reheating from the inside of the rail between the intermediate rolling and the finish rolling. Therefore, it is preferable to appropriately adjust the finishing temperature by cooling or cooling.
【0028】1パスあたりの圧下率については5〜30
%の範囲が最適で、5%未満の場合は再結晶を発現させ
るのに有効なひずみの導入ができず、また30%を超え
る場合は再結晶には有効であるが、レール圧延工程での
全断面減少量から圧延パス回数が十分に採れなくなるこ
と、およびレール成形が困難になることから有効でな
い。The rolling reduction per pass is 5 to 30.
% Is optimal. If it is less than 5%, it is not possible to introduce a strain effective for causing recrystallization, and if it exceeds 30%, it is effective for recrystallization. It is not effective because the number of rolling passes cannot be sufficiently taken from the total cross-sectional reduction amount and rail forming becomes difficult.
【0029】パス間時間については10秒以下であるこ
とが必要である。高温におけるオーステナイト粒は隣接
粒同士の合体による結晶粒の粗大化、混粒化、いわゆる
粒成長が起こりやすい。通常のリバース圧延や連続圧延
でも圧延機間の距離が大きい場合、パス間時間は20〜
60秒程度と長くなり、この間に圧延されたオーステナ
イト粒のひずみの回復、再結晶、さらには粒成長が起こ
る。本発明の高炭素成分系では圧延直後に再結晶を完了
するため、先に示したようなパス間時間の間に粒成長が
生じ、再結晶により細粒となった効果が減じられる。即
ちパス間時間が10秒を超えると、このパス間での粒成
長の影響が看過できなくなる程に大きくなり、圧延再結
晶によるオーステナイト粒の細粒化効果が減じ、目的を
達成できない。また、先に述べたように再結晶の繰り返
しによる細粒化の観点から、少なくとも2パス以上の連
続圧延が必要である。The time between passes must be 10 seconds or less. Austenite grains at high temperatures are liable to cause coarsening and mixing of crystal grains due to coalescence of adjacent grains, so-called grain growth. When the distance between rolling mills is large even in normal reverse rolling or continuous rolling, the time between passes is 20 to
It becomes as long as about 60 seconds, during which recovery of strain, recrystallization and further grain growth of the rolled austenite grains occur. In the high carbon component system of the present invention, recrystallization is completed immediately after rolling, so that grain growth occurs during the inter-pass time as described above, and the effect of recrystallization to reduce fine grains is reduced. That is, if the time between passes exceeds 10 seconds, the effect of grain growth between passes becomes so large that it cannot be overlooked, the effect of austenite grain refinement by rolling recrystallization is reduced, and the object cannot be achieved. Further, as described above, continuous rolling of at least two passes or more is necessary from the viewpoint of grain refinement by repetition of recrystallization.
【0030】以上の圧延を完了後、続いてレール表面で
の冷却速度が0.5〜50℃/sで800〜950℃ま
で冷却を行うことの理由について述べる。先に圧延パス
間のオーステナイトの粒成長は圧延後10秒を超えると
その影響が看過できなくなることを述べたが、圧延終了
後のオーステナイトの粒成長もまた同様な挙動をとる。
この時、先に述べたリバース中間圧延と同様にオーステ
ナイトの温度を低下させることで、粒成長の抑制が可能
となる。したがって、レール表面での冷却速度が0.5
〜50℃/sで800〜950℃まで冷却することで、
粒成長への温度の影響を回避する必要がある。この場合
の冷却方法もまた特に限定しないが、必要な冷却速度を
確保するためには、水などの液体もしくはミストを含む
混合気体を吹き付ける方法が好ましい。After the completion of the above rolling, the reason for cooling to 800 to 950 ° C. at a cooling rate of 0.5 to 50 ° C./s on the rail surface will be described. Although it has been described earlier that the effect of austenite grain growth between rolling passes exceeds 10 seconds after rolling, the effect cannot be overlooked, but austenite grain growth after the completion of rolling also takes a similar behavior.
At this time, the grain growth can be suppressed by lowering the temperature of austenite as in the case of the reverse intermediate rolling described above. Therefore, the cooling rate on the rail surface is 0.5
By cooling to 800 to 950 ° C at ~ 50 ° C / s,
It is necessary to avoid the effect of temperature on grain growth. The cooling method in this case is also not particularly limited, but a method of spraying a liquid such as water or a mixed gas containing a mist is preferable in order to secure a required cooling rate.
【0031】放冷または強度をさらに向上させる場合は
加速冷却を行う。加速冷却の限定理由について述べる。
冷却開始温度は鋼のオーステナイト域、少なくとも70
0℃以上が必要で、これを下回る場合では有効な変態強
化ができない。また、冷却速度は鋼の変態にかかわる温
度範囲、すなわち700以上の温度から500℃までの
間で2〜15℃/sが必要で、2℃/s未満では放冷と
比較して差が顕著でない変態強化しか得られない。また
15℃/sを超えるとベイナイトあるいはマルテンサイ
トなどの異常組織の混入を招き、耐摩耗性や靭性を著し
く阻害する。この場合の冷却方法もまた特に限定しない
が、冷却速度の制御性の観点から、エアーなどの気体も
しくはミストを含む混合気体を吹き付ける方法が好まし
い。When the cooling or the strength is to be further improved, accelerated cooling is performed. The reason for limiting accelerated cooling will be described.
Cooling start temperature is in the austenitic region of steel, at least 70
The temperature is required to be 0 ° C. or higher. If the temperature is lower than 0 ° C., effective transformation strengthening cannot be performed. Further, the cooling rate is required to be 2 to 15 ° C./s in a temperature range related to the transformation of the steel, that is, from a temperature of 700 or more to 500 ° C .; You can only get the transformation enhancement that is not. On the other hand, when the temperature exceeds 15 ° C./s, an abnormal structure such as bainite or martensite is mixed, and wear resistance and toughness are significantly impaired. The cooling method in this case is also not particularly limited, but from the viewpoint of controllability of the cooling rate, a method of blowing a gas such as air or a mixed gas containing mist is preferable.
【0032】[0032]
【実施例】表1に示す化学成分からなる供試鋼を粗圧延
後、表2に示す条件で3パスからなる中間圧延、および
仕上げ圧延を施し、表3に示す条件で圧延直後の冷却を
行い、放冷もしくは表4に示す条件で高強度化のための
熱処理・冷却を行った。なお、表2に示す中間圧延中の
冷却および表3に示す圧延後の冷却は水を吹き付ける方
法を用い、表4に示す熱処理・冷却はエアーを吹き付け
る方法を用いた。EXAMPLE After a test steel consisting of the chemical components shown in Table 1 was rough-rolled, it was subjected to three-pass intermediate rolling and finish rolling under the conditions shown in Table 2, and was cooled immediately after rolling under the conditions shown in Table 3. Then, it was allowed to cool or heat-treated and cooled to increase the strength under the conditions shown in Table 4. The cooling during the intermediate rolling shown in Table 2 and the cooling after the rolling shown in Table 3 were performed by a method of spraying water, and the heat treatment and cooling shown in Table 4 were performed by a method of blowing air.
【0033】表5に、表1から表4に示した鋼成分、圧
延条件、圧延直後の冷却条件および高強度化のための熱
処理冷却条件を組み合わせてレールを製造した場合の、
本発明法および比較法でのレール鋼の機械的性質を示
す。本発明法では、鋼成分および冷却条件によりレール
の強度は変化するが、延性値、靭性値は比較法のそれに
比較して著しく高い値を示すことがわかる。Table 5 shows the case where rails were manufactured by combining the steel components, rolling conditions, cooling conditions immediately after rolling, and heat treatment cooling conditions for increasing the strength shown in Tables 1 to 4.
3 shows the mechanical properties of the rail steel according to the method of the present invention and the comparative method. In the method of the present invention, the strength of the rail changes depending on the steel composition and the cooling conditions, but the ductility value and the toughness value are significantly higher than those of the comparative method.
【0034】[0034]
【表1】 [Table 1]
【0035】[0035]
【表2】 [Table 2]
【0036】[0036]
【表3】 [Table 3]
【0037】[0037]
【表4】 [Table 4]
【0038】[0038]
【表5】 [Table 5]
【0039】[0039]
【発明の効果】上記のように本発明法によれば、細粒の
パーライト組織を得、耐摩耗性に加え、靭性を向上させ
たレールを製造することができる。As described above, according to the method of the present invention, a fine pearlite structure can be obtained, and a rail having improved toughness in addition to wear resistance can be manufactured.
フロントページの続き Fターム(参考) 4K032 AA06 AA07 AA08 AA09 AA10 AA11 AA12 AA14 AA15 AA16 AA19 AA22 AA23 AA24 AA31 AA32 AA35 AA36 BA00 CC04 CD01 CD02 CD03 Continued on the front page F term (reference) 4K032 AA06 AA07 AA08 AA09 AA10 AA11 AA12 AA14 AA15 AA16 AA19 AA22 AA23 AA24 AA31 AA32 AA35 AA36 BA00 CC04 CD01 CD02 CD03
Claims (6)
片を粗圧延した後、リバース圧延機による中間圧延を表
面温度が1000〜1150℃の間で行い、かつ前記中
間圧延の各パスの圧延直後にレール頭部表面と底部中心
表面の温度が50〜100℃低下する冷却を施し、続い
て連続圧延機による仕上げ圧延を表面温度が850〜1
000℃の間で、1パス当たり断面減少率が5〜30%
の圧延を2パス以上でかつ圧延パス間を10秒以下とし
て施し、圧延後、レール表面での冷却速度0.5〜50
℃/sで800〜950℃まで冷却し、その後、放冷す
ることを特徴とするパーライト金属組織を呈した高耐摩
耗・高靭性レールの製造方法。1. After roughly rolling a slab containing C: 0.6 to 1.20% by mass, intermediate rolling by a reverse rolling mill is performed at a surface temperature of 1000 to 1150 ° C., and said intermediate rolling is performed. Immediately after rolling in each pass, cooling is performed so that the temperature of the rail head surface and the bottom central surface decreases by 50 to 100 ° C., and then the finish rolling by a continuous rolling mill is performed to a surface temperature of 850 to 1
Cross section reduction rate of 5-30% per pass between 000 ° C
Rolling is performed in two or more passes and the interval between the rolling passes is 10 seconds or less, and after rolling, the cooling rate on the rail surface is 0.5 to 50.
A method for producing a high wear-resistant and high-toughness rail exhibiting a pearlite metal structure, characterized in that the rail is cooled to 800 to 950 ° C. at a temperature of 800 ° C./s and then left to cool.
を特徴とする請求項1記載のパーライト金属組織を呈し
た高耐摩耗・高靭性レールの製造方法。2. The composition of a steel slab is in mass%, containing: C: 0.6 to 1.20%, Si: 0.10 to 1.20%, Mn: 0.40 to 1.50%, and the balance 2. The method for producing a highly wear-resistant and high-toughness rail exhibiting a pearlite metal structure according to claim 1, wherein the steel comprises Fe and unavoidable impurities.
項2記載のパーライト金属組織を呈した高耐摩耗・高靭
性レールの製造方法。3. The steel slab is further composed of one of the following components in mass%: Cr: 0.05 to 2.00%, Mo: 0.01 to 0.30%, Co: 0.10 to 2.00%. 3. The method for producing a high wear-resistant and high-toughness rail exhibiting a pearlite metal structure according to claim 2, comprising two or more types.
または3に記載のパーライト金属組織を呈した高耐摩耗
・高靭性レールの製造方法。4. The steel slab is characterized in that the slab further contains one or two of Cu: 0.05 to 2.00% and Ni: 0.05 to 2.00% by mass. Claim 2
Or a method for producing a highly wear-resistant and high-toughness rail exhibiting the pearlite metal structure according to 3.
項2ないし4のいずれか1項に記載のパーライト金属組
織を呈した高耐摩耗・高靭性レールの製造方法。5. The composition of a billet in mass%, V: 0.01 to 0.30%, Nb: 0.002 to 0.050%, Ti: 0.005 to 0.100%, Ca: The pearlite metallographic structure according to any one of claims 2 to 4, comprising one or more of 0.0005 to 0.0100% and Mg: 0.0005 to 0.0100%. A method for manufacturing a high wear-resistant and high-toughness rail exhibiting.
した後に、引き続き700℃以上の温度から500℃ま
での間を2〜15℃/sで冷却し、その後放冷すること
を特徴とする請求項1ないし5のいずれか1項に記載の
パーライト金属組織を呈した高耐摩耗・高靭性レールの
製造方法。6. The method according to claim 1, wherein after cooling the rail surface to 800 to 950.degree. C., cooling is continued at a temperature of from 700.degree. C. or more to 500.degree. C. at 2 to 15.degree. Item 6. A method for producing a highly wear-resistant and high-toughness rail exhibiting a pearlite metal structure according to any one of Items 1 to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001025417A JP2002226915A (en) | 2001-02-01 | 2001-02-01 | Manufacturing method of rail with high wear resistance and high toughness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001025417A JP2002226915A (en) | 2001-02-01 | 2001-02-01 | Manufacturing method of rail with high wear resistance and high toughness |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002226915A true JP2002226915A (en) | 2002-08-14 |
Family
ID=18890409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001025417A Pending JP2002226915A (en) | 2001-02-01 | 2001-02-01 | Manufacturing method of rail with high wear resistance and high toughness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002226915A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003085149A1 (en) * | 2002-04-05 | 2003-10-16 | Nippon Steel Corporation | Pealite based rail excellent in wear resistance and ductility and method for production thereof |
WO2005085481A1 (en) * | 2004-03-09 | 2005-09-15 | Nippon Steel Corporation | A method for producing high-carbon steel rails excellent in wear resistance and ductility |
WO2008013300A1 (en) | 2006-07-24 | 2008-01-31 | Nippon Steel Corporation | Process for producing pearlitic rail excellent in wearing resistance and ductility |
WO2010050238A1 (en) | 2008-10-31 | 2010-05-06 | 新日本製鐵株式会社 | Pearlite rail having superior abrasion resistance and excellent toughness |
WO2010095354A1 (en) | 2009-02-18 | 2010-08-26 | 新日本製鐵株式会社 | Pearlitic rail with excellent wear resistance and toughness |
JP2013014847A (en) * | 2006-07-24 | 2013-01-24 | Nippon Steel & Sumitomo Metal Corp | Method for producing pearlitic rail excellent in wear resistance and ductility |
US8747576B2 (en) * | 2009-06-26 | 2014-06-10 | Nippon Steel & Sumitomo Metal Corporation | Pearlite-based high carbon steel rail having excellent ductility and process for production thereof |
CN104032222A (en) * | 2014-06-24 | 2014-09-10 | 燕山大学 | Preparation method of nano pearlite steel rail |
US8980019B2 (en) | 2010-06-07 | 2015-03-17 | Nippon Steel & Sumitomo Metal Corporation | Steel rail and method of manufacturing the same |
CN106714990A (en) * | 2014-09-22 | 2017-05-24 | 杰富意钢铁株式会社 | Rail manufacturing method and rail manufacturing apparatus |
WO2020054339A1 (en) | 2018-09-10 | 2020-03-19 | 日本製鉄株式会社 | Rail, and method for manufacturing rail |
WO2020189232A1 (en) | 2019-03-15 | 2020-09-24 | 日本製鉄株式会社 | Rail |
US10995396B2 (en) | 2016-05-19 | 2021-05-04 | Nippon Steel Corporation | Rail |
-
2001
- 2001-02-01 JP JP2001025417A patent/JP2002226915A/en active Pending
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7972451B2 (en) | 2002-04-05 | 2011-07-05 | Nippon Steel Corporation | Pearlitic steel rail excellent in wear resistance and ductility and method for producing same |
WO2003085149A1 (en) * | 2002-04-05 | 2003-10-16 | Nippon Steel Corporation | Pealite based rail excellent in wear resistance and ductility and method for production thereof |
EP2071044A1 (en) | 2004-03-09 | 2009-06-17 | Nippon Steel Corporation | A method for producing high-carbon steel rails excellent in wear resistance and ductility |
WO2005085481A1 (en) * | 2004-03-09 | 2005-09-15 | Nippon Steel Corporation | A method for producing high-carbon steel rails excellent in wear resistance and ductility |
AU2007277640B2 (en) * | 2006-07-24 | 2010-07-22 | Nippon Steel Corporation | Process for producing pearlitic rail excellent in wearing resistance and ductility |
JP2008050687A (en) * | 2006-07-24 | 2008-03-06 | Nippon Steel Corp | Method for manufacturing pearlite-based rail having superior abrasion resistance and ductility |
WO2008013300A1 (en) | 2006-07-24 | 2008-01-31 | Nippon Steel Corporation | Process for producing pearlitic rail excellent in wearing resistance and ductility |
KR101100941B1 (en) * | 2006-07-24 | 2011-12-29 | 신닛뽄세이테쯔 카부시키카이샤 | Process for producing pearlitic rail excellent in wearing resistance and ductility |
US8210019B2 (en) | 2006-07-24 | 2012-07-03 | Nippon Steel Corporation | Method for producing pearlitic rail excellent in wear resistance and ductility |
AU2007277640C1 (en) * | 2006-07-24 | 2012-08-02 | Nippon Steel Corporation | Process for producing pearlitic rail excellent in wearing resistance and ductility |
JP2013014847A (en) * | 2006-07-24 | 2013-01-24 | Nippon Steel & Sumitomo Metal Corp | Method for producing pearlitic rail excellent in wear resistance and ductility |
WO2010050238A1 (en) | 2008-10-31 | 2010-05-06 | 新日本製鐵株式会社 | Pearlite rail having superior abrasion resistance and excellent toughness |
WO2010095354A1 (en) | 2009-02-18 | 2010-08-26 | 新日本製鐵株式会社 | Pearlitic rail with excellent wear resistance and toughness |
US8469284B2 (en) | 2009-02-18 | 2013-06-25 | Nippon Steel & Sumitomo Metal Corporation | Pearlitic rail with excellent wear resistance and toughness |
US8747576B2 (en) * | 2009-06-26 | 2014-06-10 | Nippon Steel & Sumitomo Metal Corporation | Pearlite-based high carbon steel rail having excellent ductility and process for production thereof |
AU2010264015B2 (en) * | 2009-06-26 | 2015-08-20 | Nippon Steel Corporation | Pearlite-based high carbon steel rail having excellent ductility and process for production thereof |
EP2447383A4 (en) * | 2009-06-26 | 2017-06-07 | Nippon Steel & Sumitomo Metal Corporation | Pearlite based high-carbon steel rail having excellent ductility and process for production thereof |
US8980019B2 (en) | 2010-06-07 | 2015-03-17 | Nippon Steel & Sumitomo Metal Corporation | Steel rail and method of manufacturing the same |
EP3604600A1 (en) | 2010-06-07 | 2020-02-05 | Nippon Steel Corporation | Method of manufacturing a steel rail |
CN104032222A (en) * | 2014-06-24 | 2014-09-10 | 燕山大学 | Preparation method of nano pearlite steel rail |
CN104032222B (en) * | 2014-06-24 | 2016-04-06 | 燕山大学 | The preparation method of nano-beads body of light rail |
US20170283895A1 (en) * | 2014-09-22 | 2017-10-05 | Jfe Steel Corporation | Rail manufacturing method and rail manufacturing apparatus |
EP3199255A4 (en) * | 2014-09-22 | 2017-11-01 | JFE Steel Corporation | Rail manufacturing method and rail manufacturing apparatus |
CN106714990A (en) * | 2014-09-22 | 2017-05-24 | 杰富意钢铁株式会社 | Rail manufacturing method and rail manufacturing apparatus |
AU2018271236B2 (en) * | 2014-09-22 | 2020-07-23 | Jfe Steel Corporation | Rail manufacturing method and rail manufacturing apparatus |
US10995396B2 (en) | 2016-05-19 | 2021-05-04 | Nippon Steel Corporation | Rail |
WO2020054339A1 (en) | 2018-09-10 | 2020-03-19 | 日本製鉄株式会社 | Rail, and method for manufacturing rail |
WO2020189232A1 (en) | 2019-03-15 | 2020-09-24 | 日本製鉄株式会社 | Rail |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5624504A (en) | Duplex structure stainless steel having high strength and elongation and a process for producing the steel | |
KR20120070603A (en) | High-toughness abrasion-resistant steel and manufacturing method therefor | |
EP2071044A1 (en) | A method for producing high-carbon steel rails excellent in wear resistance and ductility | |
JP2003160811A (en) | Method for manufacturing tempered high-tensile- strength steel sheet superior in toughness | |
JP2024513209A (en) | Low carbon low alloy Q&P steel or hot dip galvanized Q&P steel with tensile strength ≧1180MPa and manufacturing method thereof | |
JP2002226915A (en) | Manufacturing method of rail with high wear resistance and high toughness | |
JP2001234238A (en) | Producing method for highly wear resistant and high toughness rail | |
JP4650013B2 (en) | Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same | |
JP3738004B2 (en) | Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method | |
JP2002020832A (en) | High tensile strength steel excellent in high temperature strength and its production method | |
JP3081116B2 (en) | High wear resistant rail with pearlite metal structure | |
JP2002129281A (en) | High tensile strength steel for welding structure excellent in fatigue resistance in weld zone and its production method | |
JP3113137B2 (en) | Manufacturing method of high toughness rail with pearlite metal structure | |
JP2003147482A (en) | Non-heatteated high strength and high toughness forging, and production method therefor | |
CN108368589A (en) | High hardness wear-resisting steel and its manufacturing method with excellent toughness and cut resistant cracking behavior | |
JP2000192148A (en) | Steel wire rod excellent in cold workability and its production | |
JP2004183064A (en) | Steel for case hardening having excellent cold workability and coarse grain prevention property when carburized, and production method therefor | |
JP3422865B2 (en) | Method for producing high-strength martensitic stainless steel member | |
JP2001234242A (en) | Method for producing high toughness and high tensile strength steel fine in crystal grain | |
JP2002003985A (en) | High tensile steel excellent in strength at high temperature, and its manufacturing method | |
JPH04358023A (en) | Production of high strength steel | |
JP2002363685A (en) | Low yield ratio high strength cold rolled steel sheet | |
JP2000336460A (en) | Hot rolled wire rod and steel bar for machine structure and manufacture of the same | |
JP2003147481A (en) | Non-heatteated high strength and high toughness steel for forging, method of producing the steel, and method of producing forging | |
JP2002226914A (en) | Manufacturing method of rail with high wear resistance and high toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20070904 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20100329 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20100406 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100727 |