JP2002222873A - 改良たて型mosfet - Google Patents
改良たて型mosfetInfo
- Publication number
- JP2002222873A JP2002222873A JP2001388866A JP2001388866A JP2002222873A JP 2002222873 A JP2002222873 A JP 2002222873A JP 2001388866 A JP2001388866 A JP 2001388866A JP 2001388866 A JP2001388866 A JP 2001388866A JP 2002222873 A JP2002222873 A JP 2002222873A
- Authority
- JP
- Japan
- Prior art keywords
- recess
- gate conductor
- oxide
- forming
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004020 conductor Substances 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 35
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 28
- 239000010703 silicon Substances 0.000 claims abstract description 28
- 238000000151 deposition Methods 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 16
- 125000006850 spacer group Chemical group 0.000 claims abstract description 16
- 238000005530 etching Methods 0.000 claims abstract description 15
- 239000002019 doping agent Substances 0.000 claims abstract description 12
- 239000011521 glass Substances 0.000 claims description 15
- CWNLQDWRSCZYHS-UHFFFAOYSA-N O[Si](O)(O)O.[AsH3] Chemical group O[Si](O)(O)O.[AsH3] CWNLQDWRSCZYHS-UHFFFAOYSA-N 0.000 claims description 3
- 239000005368 silicate glass Substances 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 15
- 239000004065 semiconductor Substances 0.000 abstract description 5
- 238000009792 diffusion process Methods 0.000 description 40
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 20
- 229920005591 polysilicon Polymers 0.000 description 20
- 238000003860 storage Methods 0.000 description 14
- 239000003990 capacitor Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000002955 isolation Methods 0.000 description 6
- 230000003071 parasitic effect Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000015654 memory Effects 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 101000900567 Pisum sativum Disease resistance response protein Pi49 Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/39—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench
- H10B12/395—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench the transistor being vertical
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66666—Vertical transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7827—Vertical transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/05—Making the transistor
- H10B12/053—Making the transistor the transistor being at least partially in a trench in the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/225—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
- H01L21/2251—Diffusion into or out of group IV semiconductors
- H01L21/2254—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
- H01L21/2255—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26586—Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Semiconductor Memories (AREA)
Abstract
(57)【要約】
【課題】 たて型MOSFET構造を製造するための改
良された方法を提供する。 【解決手段】 シリコン基板上のトレンチ上部酸化物2
4の上面にまで平坦化された付着ゲート導体層22を有
するたて型MOSFET DRAMセル構造を与える工
程と、シリコン基板の上面下のゲート導体層内にリセス
39を形成する工程と、リセスを通してN型ドーパント
を斜めに打ち込み、アレイPウェル32内にドーピング
・ポケット46を形成する工程と、酸化物層をリセスへ
付着し、酸化物層をエッチングしてリセスのサイドウォ
ール上にスペーサ44を形成する工程と、ゲート導体物
質をリセスへ付着し、ゲート導体物質をトレンチ上部酸
化物の上面にまで平坦化する工程とを含む半導体メモリ
・セル・アレイ構造を形成する方法。
良された方法を提供する。 【解決手段】 シリコン基板上のトレンチ上部酸化物2
4の上面にまで平坦化された付着ゲート導体層22を有
するたて型MOSFET DRAMセル構造を与える工
程と、シリコン基板の上面下のゲート導体層内にリセス
39を形成する工程と、リセスを通してN型ドーパント
を斜めに打ち込み、アレイPウェル32内にドーピング
・ポケット46を形成する工程と、酸化物層をリセスへ
付着し、酸化物層をエッチングしてリセスのサイドウォ
ール上にスペーサ44を形成する工程と、ゲート導体物
質をリセスへ付着し、ゲート導体物質をトレンチ上部酸
化物の上面にまで平坦化する工程とを含む半導体メモリ
・セル・アレイ構造を形成する方法。
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、改良たて型MOS
FET(metal oxide semicondu
ctor field effect transis
tor)の製造に関する。
FET(metal oxide semicondu
ctor field effect transis
tor)の製造に関する。
【0002】MOSFETは、ダイナミック・ランダム
・アクセス・メモリ(DRAM)の形成に用いられる。
DRAM回路は、一般的に、ワード線およびビット線と
してそれぞれ知られる行および列によって相互接続され
たメモリ・セルのアレイを含んでいる。メモリ・セルか
らのデータの読み取り、あるいはメモリ・セルへのデー
タの書き込みは、選択されたワード線およびビット線を
アクティベートすることによって達成される。典型的
に、DRAMメモリ・セルは、コンデンサに接続された
MOSFETを有する。コンデンサは、ゲートと、トラ
ンジスタの作用に基づいてドレインあるいはソース領域
と称される拡散領域とを含む。
・アクセス・メモリ(DRAM)の形成に用いられる。
DRAM回路は、一般的に、ワード線およびビット線と
してそれぞれ知られる行および列によって相互接続され
たメモリ・セルのアレイを含んでいる。メモリ・セルか
らのデータの読み取り、あるいはメモリ・セルへのデー
タの書き込みは、選択されたワード線およびビット線を
アクティベートすることによって達成される。典型的
に、DRAMメモリ・セルは、コンデンサに接続された
MOSFETを有する。コンデンサは、ゲートと、トラ
ンジスタの作用に基づいてドレインあるいはソース領域
と称される拡散領域とを含む。
【0003】種々のタイプのMOSFETが存在する。
プレーナMOSFETは、トランジスタのチャネル領域
の表面が、基板の主表面にほぼ平行なトランジスタであ
る。たて型MOSFETは、トランジスタのチャネル領
域の表面が、基板の主表面とほぼ垂直なトランジスタで
ある。トレンチMOSFETは、トランジスタのチャネ
ル領域の表面が基板の主表面と平行でなく、チャネル領
域が基板内部に存在するトランジスタである。トレンチ
MOSFETについては、チャネル領域の表面が、主表
面にほぼ垂直であるが、これは必須ではない。
プレーナMOSFETは、トランジスタのチャネル領域
の表面が、基板の主表面にほぼ平行なトランジスタであ
る。たて型MOSFETは、トランジスタのチャネル領
域の表面が、基板の主表面とほぼ垂直なトランジスタで
ある。トレンチMOSFETは、トランジスタのチャネ
ル領域の表面が基板の主表面と平行でなく、チャネル領
域が基板内部に存在するトランジスタである。トレンチ
MOSFETについては、チャネル領域の表面が、主表
面にほぼ垂直であるが、これは必須ではない。
【0004】特に、トレンチ・コンデンサはDRAMセ
ルで頻繁に用いられる。トレンチ・コンデンサは、シリ
コン基板内に形成された3次元構造である。これは、一
般に様々な寸法のトレンチをシリコン基板内にエッチン
グすることによって形成される。トレンチは、一般的に
コンデンサ(ストレージ・ノード)の一方の電極である
N+ ドープト・ポリシリコンを有する。コンデンサの他
方の電極は、ドーパント源からトレンチの下側部分を取
り囲む基板の一部へN+ ドーパントを外方拡散させるこ
とによって一般的に形成される。これら2つの電極の間
には、誘電体層が配置され、それによってコンデンサを
形成する。
ルで頻繁に用いられる。トレンチ・コンデンサは、シリ
コン基板内に形成された3次元構造である。これは、一
般に様々な寸法のトレンチをシリコン基板内にエッチン
グすることによって形成される。トレンチは、一般的に
コンデンサ(ストレージ・ノード)の一方の電極である
N+ ドープト・ポリシリコンを有する。コンデンサの他
方の電極は、ドーパント源からトレンチの下側部分を取
り囲む基板の一部へN+ ドーパントを外方拡散させるこ
とによって一般的に形成される。これら2つの電極の間
には、誘電体層が配置され、それによってコンデンサを
形成する。
【0005】キャリアが隣接するデバイス例えばコンデ
ンサ間の基板を通って移動するのを防止するために、デ
バイス分離領域が隣接する半導体デバイス間に形成され
る。一般的に、デバイス分離領域は、半導体基板の表面
の下に広がる厚いフィールド酸化物領域の形を取る。フ
ィールド酸化物領域を形成するための最も一般的な初期
の手法は、選択酸化法(“LOCOS”)である。LO
COSフィールド酸化領域は、最初に、基板表面上に窒
化シリコン(“窒化物”)の層を付着し、次に、窒化シ
リコン層の一部を選択的にエッチングしてフィールド酸
化領域が形成される基板を露出させるマスクを形成する
ことによって形成される。マスクした基板を酸化雰囲気
に置き、厚い酸化シリコン層をマスクによって露出され
た領域に成長させ、基板の表面の上下に広がる酸化物層
を形成する。LOCOSフィールド酸化に対する代替
は、浅いトレンチ分離(“STI”)の使用である。S
TIにおいて、明確に輪郭を定められたトレンチを、例
えば異方性エッチングによって半導体基板に形成する。
トレンチを基板の表面まで酸化物によって充てんしてデ
バイス分離領域を与える。STIによって形成されたト
レンチ分離領域は、デバイスの横方向の全長に渡るデバ
イス分離を提供し、より平坦な構造を提供するという利
点を有する。改良された分離を用いることにより、サイ
ズの継続した縮少が可能となる。
ンサ間の基板を通って移動するのを防止するために、デ
バイス分離領域が隣接する半導体デバイス間に形成され
る。一般的に、デバイス分離領域は、半導体基板の表面
の下に広がる厚いフィールド酸化物領域の形を取る。フ
ィールド酸化物領域を形成するための最も一般的な初期
の手法は、選択酸化法(“LOCOS”)である。LO
COSフィールド酸化領域は、最初に、基板表面上に窒
化シリコン(“窒化物”)の層を付着し、次に、窒化シ
リコン層の一部を選択的にエッチングしてフィールド酸
化領域が形成される基板を露出させるマスクを形成する
ことによって形成される。マスクした基板を酸化雰囲気
に置き、厚い酸化シリコン層をマスクによって露出され
た領域に成長させ、基板の表面の上下に広がる酸化物層
を形成する。LOCOSフィールド酸化に対する代替
は、浅いトレンチ分離(“STI”)の使用である。S
TIにおいて、明確に輪郭を定められたトレンチを、例
えば異方性エッチングによって半導体基板に形成する。
トレンチを基板の表面まで酸化物によって充てんしてデ
バイス分離領域を与える。STIによって形成されたト
レンチ分離領域は、デバイスの横方向の全長に渡るデバ
イス分離を提供し、より平坦な構造を提供するという利
点を有する。改良された分離を用いることにより、サイ
ズの継続した縮少が可能となる。
【0006】
【発明が解決しようとする課題】1Gバイトおよびそれ
以上を得るためのDRAM技術は、たて型MOSFET
の使用によりプレーナMOSFET DRAMアクセス
・トランジスタのスケーラビリティ限界を克服すること
を必要とする。一方、たて型MOSFETは、有効なサ
イズ縮少のために必要なビット密度を可能にするが、た
て型MOSFETの使用は性能と歩留り減少とのトレー
ドオフをもたらす。
以上を得るためのDRAM技術は、たて型MOSFET
の使用によりプレーナMOSFET DRAMアクセス
・トランジスタのスケーラビリティ限界を克服すること
を必要とする。一方、たて型MOSFETは、有効なサ
イズ縮少のために必要なビット密度を可能にするが、た
て型MOSFETの使用は性能と歩留り減少とのトレー
ドオフをもたらす。
【0007】例えば、ゲート導体・ビット線拡散領域の
オーバーラップ領域が増大する結果、全ビット線容量
は、従来のプレーナMOSFET構造の場合よりもたて
型MOSFETの場合の方が大きくなる。このような従
来技術構造が、たて型MOSFETの断面図である図1
に示されている。この構造では、垂直のゲート導体14
がビット線拡散領域20の全体の深さとオーバーラップ
する。この問題を解決しようと試みる従来技術は、ビッ
ト線拡散領域の深さを最小にすることを一般的に要求す
る。しかしながら、ビット線拡散領域の深さの最小化
は、集積要件が比較的高いヒート・バジット(heat
budget)を指示する(すなわち、ビット線拡散
領域(XA)がプロセスにおいて比較的初期に実現され
る必要がある)という事実によって複雑になる。
オーバーラップ領域が増大する結果、全ビット線容量
は、従来のプレーナMOSFET構造の場合よりもたて
型MOSFETの場合の方が大きくなる。このような従
来技術構造が、たて型MOSFETの断面図である図1
に示されている。この構造では、垂直のゲート導体14
がビット線拡散領域20の全体の深さとオーバーラップ
する。この問題を解決しようと試みる従来技術は、ビッ
ト線拡散領域の深さを最小にすることを一般的に要求す
る。しかしながら、ビット線拡散領域の深さの最小化
は、集積要件が比較的高いヒート・バジット(heat
budget)を指示する(すなわち、ビット線拡散
領域(XA)がプロセスにおいて比較的初期に実現され
る必要がある)という事実によって複雑になる。
【0008】たて型MOSFETが直面する他の問題
は、拡散スタッド(CB)からゲート導体(DT)への
短絡の発生である。これらの短絡回路は、図2に示され
るように、ワード線(WL)16の端部と深いトレンチ
15の端部との間のミスアライメントに起因する。
は、拡散スタッド(CB)からゲート導体(DT)への
短絡の発生である。これらの短絡回路は、図2に示され
るように、ワード線(WL)16の端部と深いトレンチ
15の端部との間のミスアライメントに起因する。
【0009】たて型MOSFETに関するさらに他の深
刻な問題は、寄生裏面導通である。この問題は、深いト
レンチのサイドウォール間の距離が100nm未満に設
計されるときに発生する。この接近において、隣接する
ワード線は、たて型MOSFETの本体内のシリコンの
電位に大きな影響を与える。この影響は、図3に示され
るように、ストレージ・ノード22とビット線拡散領域
20との間のリーク導通の恐れを増大させる。隣接する
ワード線がハイ(high)のとき、たて型MOSFE
Tの裏面上に弱反転された導通路を形成することが起こ
り得る。
刻な問題は、寄生裏面導通である。この問題は、深いト
レンチのサイドウォール間の距離が100nm未満に設
計されるときに発生する。この接近において、隣接する
ワード線は、たて型MOSFETの本体内のシリコンの
電位に大きな影響を与える。この影響は、図3に示され
るように、ストレージ・ノード22とビット線拡散領域
20との間のリーク導通の恐れを増大させる。隣接する
ワード線がハイ(high)のとき、たて型MOSFE
Tの裏面上に弱反転された導通路を形成することが起こ
り得る。
【0010】性能と歩留りとの不利な衝突が最小化され
た、スケーラブルたて型MOSFET構造を製造する方
法が必要とされる。
た、スケーラブルたて型MOSFET構造を製造する方
法が必要とされる。
【0011】
【課題を解決するための手段】本発明によれば、ゲート
・上部拡散領域のオーバーラップ容量の減少(ビット線
容量の減少),ビット線拡散領域の縮小,拡散領域・ゲ
ートの短絡の発生の減少(CB−DT短絡の発生の減
少),および裏面寄生導通に対する免疫性の向上を特徴
とするたて型MOSFET構造を製造する改良された方
法が開発された。
・上部拡散領域のオーバーラップ容量の減少(ビット線
容量の減少),ビット線拡散領域の縮小,拡散領域・ゲ
ートの短絡の発生の減少(CB−DT短絡の発生の減
少),および裏面寄生導通に対する免疫性の向上を特徴
とするたて型MOSFET構造を製造する改良された方
法が開発された。
【0012】改良たて型MOSFET構造は、最初にD
RAMアレイのゲート導体ポリシリコンを、シリコン基
板の上面下にリセスするプロセスによって達成される。
このリセス処理は、様々な従来のエッチング手法、例え
ばウェット・エッチング,ケミカル・ドライ・エッチン
グ(CDE),プラズマ・エッチング等のうちの1つを
用いて実行可能である。次に、露出したゲート誘電体を
通して、たて型MOSFETのゲート表面を含む深いト
レンチのサイドウォールへN型ドーパントの斜め打込み
を行う。この打込みは、アレイPウェル内にN型ドーピ
ング・ポケットを形成する。次の処理工程において、こ
のN型ドーピング・ポケットは、ビット線コンタクト・
スタッドからの外方拡散と結合して、ビット線とたて型
MOSFETの上部ソース/ドレイン拡散領域との間に
電気的接続を与える。このN型ドーピング・ポケット
は、ゲート導体の端部と自己整合するということを留意
すべきである。この自己整合の結果、ゲート・拡散領域
のオーバーラップ容量の変動は、本質的に存在しないこ
とになる。N型ドーパントの斜め打込みに続いて、酸化
物を任意に成長させて表面準位濃度を減少させることが
できる。次に、化学的蒸着(CVD)酸化物を付着し、
反応性イオン・エッチング(RIE)し、深いトレンチ
上の開口のサイドウォール上にスペーサを形成すること
ができる。
RAMアレイのゲート導体ポリシリコンを、シリコン基
板の上面下にリセスするプロセスによって達成される。
このリセス処理は、様々な従来のエッチング手法、例え
ばウェット・エッチング,ケミカル・ドライ・エッチン
グ(CDE),プラズマ・エッチング等のうちの1つを
用いて実行可能である。次に、露出したゲート誘電体を
通して、たて型MOSFETのゲート表面を含む深いト
レンチのサイドウォールへN型ドーパントの斜め打込み
を行う。この打込みは、アレイPウェル内にN型ドーピ
ング・ポケットを形成する。次の処理工程において、こ
のN型ドーピング・ポケットは、ビット線コンタクト・
スタッドからの外方拡散と結合して、ビット線とたて型
MOSFETの上部ソース/ドレイン拡散領域との間に
電気的接続を与える。このN型ドーピング・ポケット
は、ゲート導体の端部と自己整合するということを留意
すべきである。この自己整合の結果、ゲート・拡散領域
のオーバーラップ容量の変動は、本質的に存在しないこ
とになる。N型ドーパントの斜め打込みに続いて、酸化
物を任意に成長させて表面準位濃度を減少させることが
できる。次に、化学的蒸着(CVD)酸化物を付着し、
反応性イオン・エッチング(RIE)し、深いトレンチ
上の開口のサイドウォール上にスペーサを形成すること
ができる。
【0013】N+ ドープト・ポリシリコンの追加層を付
着し、高密度プラズマ(HDP)酸化物の上面にまで平
坦化する。ワード線,ビット線スタッド(CB),レベ
ル間誘電体および追加配線層の形成を含む標準処理工程
が続く。
着し、高密度プラズマ(HDP)酸化物の上面にまで平
坦化する。ワード線,ビット線スタッド(CB),レベ
ル間誘電体および追加配線層の形成を含む標準処理工程
が続く。
【0014】本発明の他の実施の形態において、上述し
たのと同じ方法で、最初にシリコン基板の上面下にアレ
イ・ゲート導体ポリシリコンをリセスする。次に、ヒ素
−ケイ酸塩(arsenic−silicate)ガラ
ス(ASG)あるいは他の適切なN型ドープト・ガラス
を付着し、反応性イオン・エッチングして深いトレンチ
上の開口のサイドウォール上にドープト・ガラス・スペ
ーサを形成する。後続の高温処理工程(例えば接合アニ
ール工程)は、N型ドープト・ガラスからのドーパント
を、たて型MOSFETのゲート表面を含む深いトレン
チのサイドウォールのシリコンへ外方拡散させ、アレイ
Pウェル内にN型ビット線拡散領域ポケットを形成す
る。
たのと同じ方法で、最初にシリコン基板の上面下にアレ
イ・ゲート導体ポリシリコンをリセスする。次に、ヒ素
−ケイ酸塩(arsenic−silicate)ガラ
ス(ASG)あるいは他の適切なN型ドープト・ガラス
を付着し、反応性イオン・エッチングして深いトレンチ
上の開口のサイドウォール上にドープト・ガラス・スペ
ーサを形成する。後続の高温処理工程(例えば接合アニ
ール工程)は、N型ドープト・ガラスからのドーパント
を、たて型MOSFETのゲート表面を含む深いトレン
チのサイドウォールのシリコンへ外方拡散させ、アレイ
Pウェル内にN型ビット線拡散領域ポケットを形成す
る。
【0015】先の実施の形態に関して上述したように、
次に、N+ ドープト・ポリシリコンの追加層を付着し、
HDP酸化物の上面にまで平坦化する。ワード線,ビッ
ト線スタッド,レベル間誘電体および追加配線層の形成
を含む標準かつ一般的な処理が続く。
次に、N+ ドープト・ポリシリコンの追加層を付着し、
HDP酸化物の上面にまで平坦化する。ワード線,ビッ
ト線スタッド,レベル間誘電体および追加配線層の形成
を含む標準かつ一般的な処理が続く。
【0016】得られた改良たて型MOSFET構造は、
拡散スタッドとゲート導体との間の短絡の発生を減少さ
せる。というのは、この構造は、ビット線拡散領域とゲ
ート導体との間の追加スペーサ(ワード線スペーサに加
えて)を含むからである。この改良たて型MOSFET
構造の他の利点は、ビット線拡散領域がMOSFETの
ゲート表面と重なるが、MOSFETの裏側表面とは重
ならないような非対称ビット線拡散領域の形成である。
ビット線拡散領域における非対称性は、MOSFETの
裏面上の寄生導通路内に増大した電位バリアを与える。
さらに、拡散領域の長さは従来技術の構造と比較して縮
小されるので、ドレイン誘導バリア低下(DIBL)も
また縮小される。縮小したDIBLは、(DTストレー
ジ・ノード・ポリシリコン・リセスの変動から生じる)
たて型MOSFETのチャネル長の変動に対するデバイ
ス電気的特性の感度の減少をもたらす。
拡散スタッドとゲート導体との間の短絡の発生を減少さ
せる。というのは、この構造は、ビット線拡散領域とゲ
ート導体との間の追加スペーサ(ワード線スペーサに加
えて)を含むからである。この改良たて型MOSFET
構造の他の利点は、ビット線拡散領域がMOSFETの
ゲート表面と重なるが、MOSFETの裏側表面とは重
ならないような非対称ビット線拡散領域の形成である。
ビット線拡散領域における非対称性は、MOSFETの
裏面上の寄生導通路内に増大した電位バリアを与える。
さらに、拡散領域の長さは従来技術の構造と比較して縮
小されるので、ドレイン誘導バリア低下(DIBL)も
また縮小される。縮小したDIBLは、(DTストレー
ジ・ノード・ポリシリコン・リセスの変動から生じる)
たて型MOSFETのチャネル長の変動に対するデバイ
ス電気的特性の感度の減少をもたらす。
【0017】上述した双方の実施の形態において述べた
ように、改良たて型MOSFET構造を形成する全処理
工程の際に、チップの周辺サポート領域はHDP酸化物
の上部層によって継続的に保護され、したがって、処理
の間に必要とされる追加のマスク手法は必要とされない
ということも留意すべきである。
ように、改良たて型MOSFET構造を形成する全処理
工程の際に、チップの周辺サポート領域はHDP酸化物
の上部層によって継続的に保護され、したがって、処理
の間に必要とされる追加のマスク手法は必要とされない
ということも留意すべきである。
【0018】
【発明の実施の形態】図1を参照すると、トレンチ上部
酸化物(TTO)層12,ゲート導体(GC)14,ワ
ード線(WL)16,窒化物保護膜18,ビット線拡散
領域(XA)20,ストレージ・ノード拡散領域22,
および拡散スタッド24を含む従来のたて型MOSFE
T構造10が示される。ビット線拡散領域20の全体の
深さに渡る垂直のゲート導体14の大きなオーバーラッ
プ26は、従来のプレーナMOSFETの場合よりも大
きい全ビット線容量を、このたて型MOSFETの場合
にもたらす。
酸化物(TTO)層12,ゲート導体(GC)14,ワ
ード線(WL)16,窒化物保護膜18,ビット線拡散
領域(XA)20,ストレージ・ノード拡散領域22,
および拡散スタッド24を含む従来のたて型MOSFE
T構造10が示される。ビット線拡散領域20の全体の
深さに渡る垂直のゲート導体14の大きなオーバーラッ
プ26は、従来のプレーナMOSFETの場合よりも大
きい全ビット線容量を、このたて型MOSFETの場合
にもたらす。
【0019】図2において、ワード線16の端部と深い
トレンチの端部との間のミスアライメントを説明する他
の従来のたて型MOSFET構造が示される。これは、
15に指示されるように、拡散スタッド24からゲート
導体への短絡の発生をもたらす。
トレンチの端部との間のミスアライメントを説明する他
の従来のたて型MOSFET構造が示される。これは、
15に指示されるように、拡散スタッド24からゲート
導体への短絡の発生をもたらす。
【0020】図3は、また、生じ得る裏面寄生導通の問
題を説明する従来のたて型MOSFET構造を示す。深
いトレンチのサイドウォール間の距離が100nm未満
に設計されるとき、隣接するワード線26は、たて型M
OSFET10の本体のシリコンの電位に大きな影響を
与える。これは、矢印28によって示されるように、ス
トレージ・ノード22とビット線拡散領域20との間の
導通の恐れを増大させる。
題を説明する従来のたて型MOSFET構造を示す。深
いトレンチのサイドウォール間の距離が100nm未満
に設計されるとき、隣接するワード線26は、たて型M
OSFET10の本体のシリコンの電位に大きな影響を
与える。これは、矢印28によって示されるように、ス
トレージ・ノード22とビット線拡散領域20との間の
導通の恐れを増大させる。
【0021】図4は、N型ドーピング・ポケット30を
有し、ビット線拡散領域(図3における20)がMOS
FETの裏面と重ならず、したがって寄生電流28を妨
げる改良された構造を備える本発明の改良たて型MOS
FET構造を示す。縮小されたビット線拡散領域29
は、さらに、DIBLの減少およびビット線拡散領域容
量のさらなる減少をもたらす。
有し、ビット線拡散領域(図3における20)がMOS
FETの裏面と重ならず、したがって寄生電流28を妨
げる改良された構造を備える本発明の改良たて型MOS
FET構造を示す。縮小されたビット線拡散領域29
は、さらに、DIBLの減少およびビット線拡散領域容
量のさらなる減少をもたらす。
【0022】図5は、トレンチ上部酸化物(TTO)層
24の上面までのアレイMOSFETゲート導体ポリシ
リコン22の平坦化による標準処理手法を用いて製造さ
れた、基板内に形成されたたて型MOSFET DRA
Mセルを示す。このような標準処理は、典型的に以下の
工程を含む。
24の上面までのアレイMOSFETゲート導体ポリシ
リコン22の平坦化による標準処理手法を用いて製造さ
れた、基板内に形成されたたて型MOSFET DRA
Mセルを示す。このような標準処理は、典型的に以下の
工程を含む。
【0023】(1)シリコン基板を用意し、薄い熱酸化
物(2〜20nm)より成るパッド構造をシリコン基板
上に成長させ、次に、窒化シリコンの付着層(50〜2
00nm),高密度化されたTEOS酸化物(またはH
DP酸化物)の層(50〜500nm)およびBSG酸
化物の付着最上層(50〜500nm)を形成する。
物(2〜20nm)より成るパッド構造をシリコン基板
上に成長させ、次に、窒化シリコンの付着層(50〜2
00nm),高密度化されたTEOS酸化物(またはH
DP酸化物)の層(50〜500nm)およびBSG酸
化物の付着最上層(50〜500nm)を形成する。
【0024】(2)次に、パッド構造内にトレンチ・パ
ターンを開口し、約7マイクロメータの深さまでシリコ
ンを異方性エッチングすることによって、慣用的に実施
される方法で深いトレンチ・ストレージ・コンデンサを
形成する。
ターンを開口し、約7マイクロメータの深さまでシリコ
ンを異方性エッチングすることによって、慣用的に実施
される方法で深いトレンチ・ストレージ・コンデンサを
形成する。
【0025】(3)ポリシリコン緩衝LOCOSカラー
36(あるいは他のタイプの酸化物カラー)を、上側部
分(上部約1マイクロメータ)に形成する。
36(あるいは他のタイプの酸化物カラー)を、上側部
分(上部約1マイクロメータ)に形成する。
【0026】(4)多数の周知の方法(例えば、ASG
ガラスからの外方拡散,気相ドーピング等)のうちの1
つを用いて、埋込プレート拡散領域をストレージ・トレ
ンチの下側部分に形成する。
ガラスからの外方拡散,気相ドーピング等)のうちの1
つを用いて、埋込プレート拡散領域をストレージ・トレ
ンチの下側部分に形成する。
【0027】(5)ストレージ・ノード誘電体38を形
成する。
成する。
【0028】(6)トレンチをN+ ドープト・ポリシリ
コン42で充てんし、高密度化されたTEOS酸化物層
およびBSG層まで平坦化する。HF/硫酸またはHF
蒸気を用いて残存する全てのBSGを取り除くことがで
きる。
コン42で充てんし、高密度化されたTEOS酸化物層
およびBSG層まで平坦化する。HF/硫酸またはHF
蒸気を用いて残存する全てのBSGを取り除くことがで
きる。
【0029】(7)埋込ストラップを形成することが望
まれる、シリコン基板の表面より低い深さまでN+ ドー
プト・ポリシリコンをリセスする。
まれる、シリコン基板の表面より低い深さまでN+ ドー
プト・ポリシリコンをリセスする。
【0030】(8)標準埋込ストラップ・プロセスを用
いて、N+ ポリシリコンから深いストレージ・トレンチ
のサイドウォールへのストラップ外方拡散領域31を形
成する。標準ストラップ・プロセスは、ストラップを形
成すべき位置より上の、ストレージ・トレンチの1側面
からのカラー酸化物の除去と、ストラップ・ポリシリコ
ンの付着およびエッチングとを含む。ストラップ・ポリ
シリコンは、深いトレンチ内のN+ ポリシリコン(コン
デンサのストレージ・ノード電極)を単結晶シリコンへ
電気的に橋絡する。続いて、高温での処理の間にストラ
ップ外方拡散領域を形成する。
いて、N+ ポリシリコンから深いストレージ・トレンチ
のサイドウォールへのストラップ外方拡散領域31を形
成する。標準ストラップ・プロセスは、ストラップを形
成すべき位置より上の、ストレージ・トレンチの1側面
からのカラー酸化物の除去と、ストラップ・ポリシリコ
ンの付着およびエッチングとを含む。ストラップ・ポリ
シリコンは、深いトレンチ内のN+ ポリシリコン(コン
デンサのストレージ・ノード電極)を単結晶シリコンへ
電気的に橋絡する。続いて、高温での処理の間にストラ
ップ外方拡散領域を形成する。
【0031】(9)次に、標準エッチング・プロセスに
よってパッド層(SiNおよびその下にある薄い酸化
物)を除去する。
よってパッド層(SiNおよびその下にある薄い酸化
物)を除去する。
【0032】(10)トレンチのサイドウォールおよび
シリコン基板の上面上に犠牲酸化物を成長させる。
シリコン基板の上面上に犠牲酸化物を成長させる。
【0033】(11)犠牲酸化物を通して、N+ ビット
線拡散領域(XA)およびアレイ・ウェル(VA)32
の打込みを行う。
線拡散領域(XA)およびアレイ・ウェル(VA)32
の打込みを行う。
【0034】(12)犠牲酸化物を取り除く。
【0035】(13)HDP酸化物付着により、リセス
されたN+ ポリシリコンの上面上にトレンチ上部酸化物
(TTO)44を形成する。
されたN+ ポリシリコンの上面上にトレンチ上部酸化物
(TTO)44を形成する。
【0036】(14)ストレージ・トレンチの露出した
サイドウォール(カラー酸化物によって覆われていない
部分)上に、たて型アレイMOSFETのためのゲート
酸化物34を成長させる。
サイドウォール(カラー酸化物によって覆われていない
部分)上に、たて型アレイMOSFETのためのゲート
酸化物34を成長させる。
【0037】(15)N+ ポリシリコン・ゲート導体
(GC)22を付着して、TTO上のトレンチ内の開口
に充てんする。
(GC)22を付着して、TTO上のトレンチ内の開口
に充てんする。
【0038】(16)次に、N+ GCポリシリコン22
を、シリコン基板の上面上に形成されたTTO24の上
面まで平坦化する。
を、シリコン基板の上面上に形成されたTTO24の上
面まで平坦化する。
【0039】図6において示されるように、標準エッチ
ング手法を用いてアレイGCポリシリコン22をシリコ
ン基板の上面下にリセスし、リセス39内にゲート誘電
体を露出させる。
ング手法を用いてアレイGCポリシリコン22をシリコ
ン基板の上面下にリセスし、リセス39内にゲート誘電
体を露出させる。
【0040】図7において、リセス39内の露出したゲ
ート誘電体を通して深いトレンチのサイドウォールへN
型ドーパントの斜め打込み(矢印40によって表され
る)を行い、ゲート導体22の端部と自己整合するN型
ドーピング・ポケット46を形成する。
ート誘電体を通して深いトレンチのサイドウォールへN
型ドーパントの斜め打込み(矢印40によって表され
る)を行い、ゲート導体22の端部と自己整合するN型
ドーピング・ポケット46を形成する。
【0041】図8に示される任意の処理工程において、
CVD酸化物層を付着し、反応性イオン・エッチングし
て深いトレンチ上の開口のサイドウォール上にスペーサ
44を形成する。
CVD酸化物層を付着し、反応性イオン・エッチングし
て深いトレンチ上の開口のサイドウォール上にスペーサ
44を形成する。
【0042】図9において示されるように、N+ ドープ
ト・ポリシリコン22の追加層を付着し、TTO HD
P酸化物24の上面にまで平坦化する。この工程に続い
て、標準処理手法を適用して、ワード線,ビット線スタ
ッド,レベル間誘電体,追加配線層等を形成する。
ト・ポリシリコン22の追加層を付着し、TTO HD
P酸化物24の上面にまで平坦化する。この工程に続い
て、標準処理手法を適用して、ワード線,ビット線スタ
ッド,レベル間誘電体,追加配線層等を形成する。
【0043】図10は、図5に示される構造のゲート誘
電体リセス39内にN型ドープト・ガラス例えばASG
を付着する本発明の第2の実施の形態を説明する。この
N型ドープト・ガラス付着物を反応性イオン・エッチン
グしてドープト・ガラス・スペーサ48を形成する。M
OSFET DRAM製造プロセスでの後続の高温処理
工程は、ガラス・スペーサ48からのドーパントを外方
拡散させ、図7,8および9において46によって表さ
れるものと同様のN型ビット線拡散領域ポケットをMO
SFETの正面に形成できる。トランジスタの裏面の厚
い酸化物は、拡散領域ポケットの形成を妨げる。
電体リセス39内にN型ドープト・ガラス例えばASG
を付着する本発明の第2の実施の形態を説明する。この
N型ドープト・ガラス付着物を反応性イオン・エッチン
グしてドープト・ガラス・スペーサ48を形成する。M
OSFET DRAM製造プロセスでの後続の高温処理
工程は、ガラス・スペーサ48からのドーパントを外方
拡散させ、図7,8および9において46によって表さ
れるものと同様のN型ビット線拡散領域ポケットをMO
SFETの正面に形成できる。トランジスタの裏面の厚
い酸化物は、拡散領域ポケットの形成を妨げる。
【0044】2つの特定の実施の形態の点から本発明を
説明してきたが、当業者は、特許請求の範囲の趣旨およ
び範囲内の様々な形態において本発明を実施可能である
ということを理解できるであろう。
説明してきたが、当業者は、特許請求の範囲の趣旨およ
び範囲内の様々な形態において本発明を実施可能である
ということを理解できるであろう。
【0045】まとめとして、本発明の構成に関して以下
の事項を開示する。 (1)シリコン基板上のトレンチ上部酸化物の上面にま
で平坦化された付着ゲート導体層を有するたて型MOS
FET DRAMセル構造を与える工程と、前記シリコ
ン基板の上面下の前記ゲート導体層内にリセスを形成す
る工程と、前記リセスを通してN型ドーパントを斜めに
打ち込み、アレイPウェル内にドーピング・ポケットを
形成する工程と、ゲート導体物質を前記リセスへ付着
し、前記ゲート導体物質を前記トレンチ上部酸化物の前
記上面にまで平坦化する工程とを含む半導体メモリ・セ
ル・アレイ構造を形成する方法。 (2)前記ゲート導体物質を前記リセスへ付着する前
に、酸化物層を前記リセスへ付着し、前記酸化物層をエ
ッチングして前記リセスのサイドウォール上にスペーサ
を形成する工程をさらに含む上記(1)に記載の方法。 (3)前記ドーピング・ポケットは、前記ゲート導体層
と自己整合する上記(1)に記載の方法。 (4)シリコン基板上のトレンチ上部酸化物の上面にま
で平坦化された付着ゲート導体層を有するたて型MOS
FET DRAMセル構造を与える工程と、前記シリコ
ン基板の上面下の前記ゲート導体層内にリセスを形成す
る工程と、前記リセスを通してN型ドーパントを斜めに
打ち込み、アレイPウェル内にドーピング・ポケットを
形成する工程と、酸化物層を前記リセスへ付着し、前記
酸化物層をエッチングして前記リセスのサイドウォール
上にスペーサを形成する工程と、ゲート導体物質を前記
リセスへ付着し、前記ゲート導体物質を前記トレンチ上
部酸化物の前記上面にまで平坦化する工程とを含む半導
体メモリ・セル・アレイ構造を形成する方法。 (5)シリコン基板上のトレンチ上部酸化物の上面にま
で平坦化された付着ゲート導体層を有するたて型MOS
FET DRAMセル構造を与える工程と、前記シリコ
ン基板の上面下の前記ゲート導体層内にリセスを形成す
る工程と、N型ドープト・ガラス層を前記リセスへ付着
し、前記ガラス層をエッチングして前記リセスのサイド
ウォール上にスペーサを形成する工程と、ゲート導体物
質を前記リセスへ付着し、前記ゲート導体物質を前記ト
レンチ上部酸化物の前記上面にまで平坦化する工程とを
含む半導体メモリ・セル・アレイ構造を形成する方法。 (6)前記N型ドープト・ガラス層は、ヒ素−ケイ酸塩
ガラス物質である上記(5)に記載の方法。
の事項を開示する。 (1)シリコン基板上のトレンチ上部酸化物の上面にま
で平坦化された付着ゲート導体層を有するたて型MOS
FET DRAMセル構造を与える工程と、前記シリコ
ン基板の上面下の前記ゲート導体層内にリセスを形成す
る工程と、前記リセスを通してN型ドーパントを斜めに
打ち込み、アレイPウェル内にドーピング・ポケットを
形成する工程と、ゲート導体物質を前記リセスへ付着
し、前記ゲート導体物質を前記トレンチ上部酸化物の前
記上面にまで平坦化する工程とを含む半導体メモリ・セ
ル・アレイ構造を形成する方法。 (2)前記ゲート導体物質を前記リセスへ付着する前
に、酸化物層を前記リセスへ付着し、前記酸化物層をエ
ッチングして前記リセスのサイドウォール上にスペーサ
を形成する工程をさらに含む上記(1)に記載の方法。 (3)前記ドーピング・ポケットは、前記ゲート導体層
と自己整合する上記(1)に記載の方法。 (4)シリコン基板上のトレンチ上部酸化物の上面にま
で平坦化された付着ゲート導体層を有するたて型MOS
FET DRAMセル構造を与える工程と、前記シリコ
ン基板の上面下の前記ゲート導体層内にリセスを形成す
る工程と、前記リセスを通してN型ドーパントを斜めに
打ち込み、アレイPウェル内にドーピング・ポケットを
形成する工程と、酸化物層を前記リセスへ付着し、前記
酸化物層をエッチングして前記リセスのサイドウォール
上にスペーサを形成する工程と、ゲート導体物質を前記
リセスへ付着し、前記ゲート導体物質を前記トレンチ上
部酸化物の前記上面にまで平坦化する工程とを含む半導
体メモリ・セル・アレイ構造を形成する方法。 (5)シリコン基板上のトレンチ上部酸化物の上面にま
で平坦化された付着ゲート導体層を有するたて型MOS
FET DRAMセル構造を与える工程と、前記シリコ
ン基板の上面下の前記ゲート導体層内にリセスを形成す
る工程と、N型ドープト・ガラス層を前記リセスへ付着
し、前記ガラス層をエッチングして前記リセスのサイド
ウォール上にスペーサを形成する工程と、ゲート導体物
質を前記リセスへ付着し、前記ゲート導体物質を前記ト
レンチ上部酸化物の前記上面にまで平坦化する工程とを
含む半導体メモリ・セル・アレイ構造を形成する方法。 (6)前記N型ドープト・ガラス層は、ヒ素−ケイ酸塩
ガラス物質である上記(5)に記載の方法。
【図1】従来のたて型MOSFET構造を説明する図で
ある。
ある。
【図2】従来のたて型MOSFET構造を説明する図で
ある。
ある。
【図3】従来のたて型MOSFET構造を説明する図で
ある。
ある。
【図4】従来のたて型MOSFET構造より優れた利点
を特徴とする本発明の改良たて型MOSFET構造を示
す図である。
を特徴とする本発明の改良たて型MOSFET構造を示
す図である。
【図5】改良たて型MOSFETを形成する処理工程を
示す図である。
示す図である。
【図6】改良たて型MOSFETを形成する処理工程を
示す図である。
示す図である。
【図7】改良たて型MOSFETを形成する処理工程を
示す図である。
示す図である。
【図8】改良たて型MOSFETを形成する処理工程を
示す図である。
示す図である。
【図9】改良たて型MOSFETを形成する処理工程を
示す図である。
示す図である。
【図10】改良たて型MOSFETを形成する方法の他
の実施の形態を示す図である。
の実施の形態を示す図である。
10 従来のたて型MOSFET構造 12 トレンチ上部酸化物(TTO)層 14 ゲート導体 15 深いトレンチ 16 ワード線(WL) 18 窒化物保護膜 20 ビット線拡散領域(XA) 22 ストレージ・ノード拡散領域 24 拡散スタッド 26 オーバーラップ 28 寄生電流 29 ビット線拡散領域 30 ドーピング・ポケット 31 ストラップ外方拡散領域 32 アレイ・ウェル(VA) 34 ゲート酸化物 36 LOCOSカラー 38 ストレージ・ノード誘電体 39 リセス 40 矢印 42 N+ ドープト・ポリシリコン 44 スペーサ 46 N型ドーピング・ポケット 48 ドープト・ガラス・スペーサ
フロントページの続き (72)発明者 ラマチャンドラ・ディヴァカルニ アメリカ合衆国 10589 ニューヨーク州 サマーズ ヘリテイジ ヒルズ 131ビ ー (72)発明者 ヘオン・リー アメリカ合衆国 94087 カリフォルニア 州 サニーヴェイル ブラームス ウェイ ナンバー230 455 (72)発明者 ジャック・エイ・マンデルマン アメリカ合衆国 12582 ニューヨーク州 ストームヴィル ジャミー レーン 9 (72)発明者 カール・ジェイ・レイデンス アメリカ合衆国 12540 ニューヨーク州 ラグランジュビル カシュラー ドライ ブ 35 (72)発明者 ジャイ−フーン・シム アメリカ合衆国 12590 ニューヨーク州 ワッピンガーズ フォールズ ウィンス ロップ コート エイピーティー イー 28 Fターム(参考) 5F083 AD04 AD17 GA03 KA05 PR10 PR29 PR37 PR38
Claims (6)
- 【請求項1】シリコン基板上のトレンチ上部酸化物の上
面にまで平坦化された付着ゲート導体層を有するたて型
MOSFET DRAMセル構造を与える工程と、 前記シリコン基板の上面下の前記ゲート導体層内にリセ
スを形成する工程と、 前記リセスを通してN型ドーパントを斜めに打ち込み、
アレイPウェル内にドーピング・ポケットを形成する工
程と、 ゲート導体物質を前記リセスへ付着し、前記ゲート導体
物質を前記トレンチ上部酸化物の前記上面にまで平坦化
する工程とを含む半導体メモリ・セル・アレイ構造を形
成する方法。 - 【請求項2】前記ゲート導体物質を前記リセスへ付着す
る前に、酸化物層を前記リセスへ付着し、前記酸化物層
をエッチングして前記リセスのサイドウォール上にスペ
ーサを形成する工程をさらに含む請求項1に記載の方
法。 - 【請求項3】前記ドーピング・ポケットは、前記ゲート
導体層と自己整合する請求項1に記載の方法。 - 【請求項4】シリコン基板上のトレンチ上部酸化物の上
面にまで平坦化された付着ゲート導体層を有するたて型
MOSFET DRAMセル構造を与える工程と、 前記シリコン基板の上面下の前記ゲート導体層内にリセ
スを形成する工程と、 前記リセスを通してN型ドーパントを斜めに打ち込み、
アレイPウェル内にドーピング・ポケットを形成する工
程と、 酸化物層を前記リセスへ付着し、前記酸化物層をエッチ
ングして前記リセスのサイドウォール上にスペーサを形
成する工程と、 ゲート導体物質を前記リセスへ付着し、前記ゲート導体
物質を前記トレンチ上部酸化物の前記上面にまで平坦化
する工程とを含む半導体メモリ・セル・アレイ構造を形
成する方法。 - 【請求項5】シリコン基板上のトレンチ上部酸化物の上
面にまで平坦化された付着ゲート導体層を有するたて型
MOSFET DRAMセル構造を与える工程と、 前記シリコン基板の上面下の前記ゲート導体層内にリセ
スを形成する工程と、 N型ドープト・ガラス層を前記リセスへ付着し、前記ガ
ラス層をエッチングして前記リセスのサイドウォール上
にスペーサを形成する工程と、 ゲート導体物質を前記リセスへ付着し、前記ゲート導体
物質を前記トレンチ上部酸化物の前記上面にまで平坦化
する工程とを含む半導体メモリ・セル・アレイ構造を形
成する方法。 - 【請求項6】前記N型ドープト・ガラス層は、ヒ素−ケ
イ酸塩ガラス物質である請求項5に記載の方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/757,514 US6440793B1 (en) | 2001-01-10 | 2001-01-10 | Vertical MOSFET |
US09/757514 | 2001-01-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002222873A true JP2002222873A (ja) | 2002-08-09 |
Family
ID=25048101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001388866A Pending JP2002222873A (ja) | 2001-01-10 | 2001-12-21 | 改良たて型mosfet |
Country Status (4)
Country | Link |
---|---|
US (1) | US6440793B1 (ja) |
JP (1) | JP2002222873A (ja) |
KR (1) | KR100403066B1 (ja) |
TW (1) | TW529176B (ja) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19845058A1 (de) * | 1998-09-30 | 2000-04-13 | Siemens Ag | DRAM-Zellenanordnung und Verfahren zu deren Herstellung |
DE10135870C1 (de) * | 2001-07-24 | 2003-02-20 | Infineon Technologies Ag | Verfahren zum Herstellen einer integrierten Halbleiterschaltung mit einem Speicher- und einem Logikbereich |
US6777829B2 (en) | 2002-03-13 | 2004-08-17 | Celis Semiconductor Corporation | Rectifier utilizing a grounded antenna |
US6586300B1 (en) * | 2002-04-18 | 2003-07-01 | Infineon Technologies Ag | Spacer assisted trench top isolation for vertical DRAM's |
US6780728B2 (en) * | 2002-06-21 | 2004-08-24 | Micron Technology, Inc. | Semiconductor constructions, and methods of forming semiconductor constructions |
US6853587B2 (en) * | 2002-06-21 | 2005-02-08 | Micron Technology, Inc. | Vertical NROM having a storage density of 1 bit per 1F2 |
US6638815B1 (en) * | 2002-10-25 | 2003-10-28 | International Business Machines Corporation | Formation of self-aligned vertical connector |
US6707095B1 (en) | 2002-11-06 | 2004-03-16 | International Business Machines Corporation | Structure and method for improved vertical MOSFET DRAM cell-to-cell isolation |
US6660581B1 (en) * | 2003-03-11 | 2003-12-09 | International Business Machines Corporation | Method of forming single bitline contact using line shape masks for vertical transistors in DRAM/e-DRAM devices |
TW591756B (en) * | 2003-06-05 | 2004-06-11 | Nanya Technology Corp | Method of fabricating a memory cell with a single sided buried strap |
US7384727B2 (en) * | 2003-06-26 | 2008-06-10 | Micron Technology, Inc. | Semiconductor processing patterning methods |
US6913968B2 (en) * | 2003-07-30 | 2005-07-05 | International Business Machines Corporation | Method and structure for vertical DRAM devices with self-aligned upper trench shaping |
US6930004B2 (en) * | 2003-08-13 | 2005-08-16 | International Business Machines Corporation | Self-aligned drain/channel junction in vertical pass transistor DRAM cell design for device scaling |
TWI223385B (en) * | 2003-09-04 | 2004-11-01 | Nanya Technology Corp | Trench device structure with single side buried strap and method for fabricating the same |
US7115532B2 (en) | 2003-09-05 | 2006-10-03 | Micron Technolgoy, Inc. | Methods of forming patterned photoresist layers over semiconductor substrates |
US7232718B2 (en) * | 2003-09-17 | 2007-06-19 | Nanya Technology Corp. | Method for forming a deep trench capacitor buried plate |
US7026243B2 (en) * | 2003-10-20 | 2006-04-11 | Micron Technology, Inc. | Methods of forming conductive material silicides by reaction of metal with silicon |
US6969677B2 (en) * | 2003-10-20 | 2005-11-29 | Micron Technology, Inc. | Methods of forming conductive metal silicides by reaction of metal with silicon |
TWI227933B (en) * | 2003-12-05 | 2005-02-11 | Nanya Technology Corp | Method for forming a self-aligned buried strap of a vertical memory cell |
TWI225689B (en) * | 2003-12-05 | 2004-12-21 | Nanya Technology Corp | Method for forming a self-aligned buried strap in a vertical memory cell |
TWI229940B (en) * | 2004-01-30 | 2005-03-21 | Nanya Technology Corp | Memory cell with a vertical transistor and fabrication method thereof |
US7153769B2 (en) * | 2004-04-08 | 2006-12-26 | Micron Technology, Inc. | Methods of forming a reaction product and methods of forming a conductive metal silicide by reaction of metal with silicon |
US7268395B2 (en) | 2004-06-04 | 2007-09-11 | International Rectifier Corporation | Deep trench super switch device |
US20050285175A1 (en) * | 2004-06-23 | 2005-12-29 | International Business Machines Corporation | Vertical SOI Device |
US7119031B2 (en) * | 2004-06-28 | 2006-10-10 | Micron Technology, Inc. | Methods of forming patterned photoresist layers over semiconductor substrates |
US20060046392A1 (en) * | 2004-08-26 | 2006-03-02 | Manning H M | Methods of forming vertical transistor structures |
US7241705B2 (en) | 2004-09-01 | 2007-07-10 | Micron Technology, Inc. | Methods of forming conductive contacts to source/drain regions and methods of forming local interconnects |
US7078756B2 (en) * | 2004-12-06 | 2006-07-18 | International Business Machines Corporation | Collarless trench DRAM device |
US7256441B2 (en) * | 2005-04-07 | 2007-08-14 | Infineon Technologies Ag | Partially recessed DRAM cell structure |
KR100673109B1 (ko) * | 2005-11-17 | 2007-01-22 | 주식회사 하이닉스반도체 | 반도체소자의 리세스 게이트 형성방법 |
KR20140084913A (ko) | 2012-12-27 | 2014-07-07 | 에스케이하이닉스 주식회사 | 리세스게이트를 구비한 반도체장치 및 그 제조 방법 |
US11963774B2 (en) * | 2017-12-12 | 2024-04-23 | International Business Machines Corporation | Method probe with high density electrodes, and a formation thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5448090A (en) * | 1994-08-03 | 1995-09-05 | International Business Machines Corporation | Structure for reducing parasitic leakage in a memory array with merged isolation and node trench construction |
US5827765A (en) | 1996-02-22 | 1998-10-27 | Siemens Aktiengesellschaft | Buried-strap formation in a dram trench capacitor |
US5770484A (en) * | 1996-12-13 | 1998-06-23 | International Business Machines Corporation | Method of making silicon on insulator buried plate trench capacitor |
US5981332A (en) | 1997-09-30 | 1999-11-09 | Siemens Aktiengesellschaft | Reduced parasitic leakage in semiconductor devices |
US5914511A (en) * | 1997-10-06 | 1999-06-22 | Micron Technology, Inc. | Circuit and method for a folded bit line memory using trench plate capacitor cells with body bias contacts |
US6137128A (en) * | 1998-06-09 | 2000-10-24 | International Business Machines Corporation | Self-isolated and self-aligned 4F-square vertical fet-trench dram cells |
DE19842665C2 (de) * | 1998-09-17 | 2001-10-11 | Infineon Technologies Ag | Herstellungsverfahren für einen Grabenkondensator mit einem Isolationskragen |
US6143599A (en) * | 1998-09-29 | 2000-11-07 | Infineon Technologies North America Corp. | Method for manufacturing memory cell with trench capacitor |
US6297089B1 (en) * | 1998-11-26 | 2001-10-02 | International Business Machines Corporation | Method of forming buried straps in DRAMs |
DE19908809B4 (de) * | 1999-03-01 | 2007-02-01 | Infineon Technologies Ag | Verfahren zur Herstellung einer MOS-Transistorstruktur mit einstellbarer Schwellspannung |
US6228706B1 (en) * | 1999-08-26 | 2001-05-08 | International Business Machines Corporation | Vertical DRAM cell with TFT over trench capacitor |
US6261894B1 (en) * | 2000-11-03 | 2001-07-17 | International Business Machines Corporation | Method for forming dual workfunction high-performance support MOSFETs in EDRAM arrays |
US6326261B1 (en) * | 2001-01-05 | 2001-12-04 | United Microelectronics Corp. | Method of fabricating a deep trench capacitor |
-
2001
- 2001-01-10 US US09/757,514 patent/US6440793B1/en not_active Expired - Fee Related
- 2001-12-21 JP JP2001388866A patent/JP2002222873A/ja active Pending
- 2001-12-28 KR KR10-2001-0086730A patent/KR100403066B1/ko not_active IP Right Cessation
-
2002
- 2002-01-07 TW TW091100109A patent/TW529176B/zh not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW529176B (en) | 2003-04-21 |
KR100403066B1 (ko) | 2003-10-30 |
KR20020060571A (ko) | 2002-07-18 |
US6440793B1 (en) | 2002-08-27 |
US20020090780A1 (en) | 2002-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002222873A (ja) | 改良たて型mosfet | |
JP3110977B2 (ja) | トレンチ・キャパシタを備えたdramセルの製造方法 | |
US6204140B1 (en) | Dynamic random access memory | |
US5629226A (en) | Method of manufacturing a buried plate type DRAM having a widened trench structure | |
US6184549B1 (en) | Trench storage dynamic random access memory cell with vertical transfer device | |
US4816884A (en) | High density vertical trench transistor and capacitor memory cell structure and fabrication method therefor | |
US5770484A (en) | Method of making silicon on insulator buried plate trench capacitor | |
JP2673952B2 (ja) | メモリセル製造方法 | |
JP3140948B2 (ja) | 半導体メモリ・アレイ | |
US6426252B1 (en) | Silicon-on-insulator vertical array DRAM cell with self-aligned buried strap | |
US5116776A (en) | Method of making a stacked copacitor for dram cell | |
US5990511A (en) | Memory cell with transfer device node in selective polysilicon | |
US6437401B1 (en) | Structure and method for improved isolation in trench storage cells | |
US6309924B1 (en) | Method of forming self-limiting polysilicon LOCOS for DRAM cell | |
US6255684B1 (en) | DRAM cell configuration and method for its production | |
JP2002134631A (ja) | 半導体装置およびその製造方法 | |
JPS61280654A (ja) | 縦型dramメモリセルアレイ | |
US6414347B1 (en) | Vertical MOSFET | |
JPH04233272A (ja) | ダブルトレンチ半導体メモリ及びその製造方法 | |
US20040248364A1 (en) | Method of forming a memory cell with a single sided buried strap | |
US6373086B1 (en) | Notched collar isolation for suppression of vertical parasitic MOSFET and the method of preparing the same | |
JPS61174670A (ja) | Dramセルおよびその製作方法 | |
US5529946A (en) | Process of fabricating DRAM storage capacitors | |
US5196909A (en) | Capacitor for DRAM cell | |
JP2687777B2 (ja) | ダイナミック・ランダム・アクセス・メモリ・セルおよびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040901 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041005 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041206 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050308 |