JP2002220253A - Synthetic quartz glass and method of manufacturing it - Google Patents
Synthetic quartz glass and method of manufacturing itInfo
- Publication number
- JP2002220253A JP2002220253A JP2001009074A JP2001009074A JP2002220253A JP 2002220253 A JP2002220253 A JP 2002220253A JP 2001009074 A JP2001009074 A JP 2001009074A JP 2001009074 A JP2001009074 A JP 2001009074A JP 2002220253 A JP2002220253 A JP 2002220253A
- Authority
- JP
- Japan
- Prior art keywords
- quartz glass
- synthetic quartz
- fluorine
- gas
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/06—Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2201/00—Glass compositions
- C03C2201/06—Doped silica-based glasses
- C03C2201/08—Doped silica-based glasses containing boron or halide
- C03C2201/12—Doped silica-based glasses containing boron or halide containing fluorine
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Glass Melting And Manufacturing (AREA)
- Glass Compositions (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は紫外線波長を有する
レーザを用いる光学系装置に使用される石英ガラス及び
その製造方法に係り、特に、光学系装置のレンズ、ミラ
ー、プリズム、窓部材などの光学部材として使用される
合成石英ガラス及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz glass used for an optical system using a laser having an ultraviolet wavelength and a method for manufacturing the same, and more particularly to an optical system such as a lens, a mirror, a prism, and a window member of the optical system. The present invention relates to a synthetic quartz glass used as a member and a method for producing the same.
【0002】[0002]
【従来の技術】近年における急速なコンピューター技術
の進歩は、MPUなどの集積回路の微細加工化、高集積化
により達成されたと言える。一方で、集積回路の微細加
工化、高集積化は集積回路の製造技術の発達により達成
され、その大きな役割の一端を果たしたのが、微細パタ
ーンを基板上に露光・転写するフォトリソグラフィ技術
である。2. Description of the Related Art Rapid progress in computer technology in recent years can be said to have been achieved by microfabrication and high integration of integrated circuits such as MPUs. On the other hand, fine processing and high integration of integrated circuits have been achieved by the development of integrated circuit manufacturing technology, and one of the major roles played by photolithography technology is exposure and transfer of fine patterns onto a substrate. is there.
【0003】フォトリソグラフィ技術とは、基板にレジ
ストを塗布し、微細パターンが形成されたマスクを介し
て露光し、現像を行い、必要な部分のみレジストを残す
技術のことをいい、その露光工程はステッパと呼ばれる
一連の光学系を有する装置により行われる。ステッパに
より形成される配線の微細度は、ステッパの投影レンズ
の解像度、焦点深度によって決定され、ともに使用され
る光源の波長に比例する。従って、解像度、焦点深度を
高くする、すなわち配線を微細にするには波長の短い光
源を使用する必要がある。よって、光源の波長はより短
くなる傾向にあり、現在では、光源の発振波長が300nm
以下のKrF(248nm)、ArF(193nm)エキシマレーザが光源
として用いられ始めている。[0003] The photolithography technique is a technique in which a resist is applied to a substrate, exposed through a mask having a fine pattern formed thereon, developed, and the resist is left only in necessary portions. This is performed by a device having a series of optical systems called a stepper. The fineness of the wiring formed by the stepper is determined by the resolution and depth of focus of the projection lens of the stepper, and both are proportional to the wavelength of the light source used. Therefore, in order to increase the resolution and the depth of focus, that is, to make the wiring fine, it is necessary to use a light source having a short wavelength. Therefore, the wavelength of the light source tends to be shorter, and currently, the oscillation wavelength of the light source is 300 nm.
The following KrF (248 nm) and ArF (193 nm) excimer lasers have begun to be used as light sources.
【0004】この光源の発振波長の変化に伴い、ステッ
パに用いられる光学レンズの変更も必要になる。従来用
いられていた光学ガラスは、波長が365nm以下の光に対
し、透過率が低い。従って、発振波長が短いKrFあるい
はArFエキシマレーザのような光源については、短波長
光に対し高い透過性を期待できる石英ガラス製光学レン
ズを用いる必要がある。As the oscillation wavelength of the light source changes, it is necessary to change the optical lens used for the stepper. Conventionally used optical glass has a low transmittance for light having a wavelength of 365 nm or less. Therefore, for a light source such as a KrF or ArF excimer laser having a short oscillation wavelength, it is necessary to use an optical lens made of quartz glass which can be expected to have high transmittance for short wavelength light.
【0005】短波長を有する上記エキシマレーザは大き
なエネルギー密度を有するため、石英ガラス製光学レン
ズにエキシマレーザを照射した場合、石英ガラスに吸収
帯や発光帯が発生する。その結果、石英ガラスのレーザ
の透過率低下が避けられず、耐久性(レーザ耐性)が著
しく低くなる。Since the above-described excimer laser having a short wavelength has a large energy density, when an excimer laser is irradiated on an optical lens made of quartz glass, an absorption band or a light emission band is generated in the quartz glass. As a result, a decrease in the transmittance of the quartz glass laser is inevitable, and the durability (laser resistance) is significantly reduced.
【0006】そこで、このような短波長レーザ照射によ
る石英ガラスのレーザ耐性の向上を図るために、フッ素
を用いたさまざまな発明が提案されている。特開平8−
67530号公報には、OH基濃度(10ppm以上)とフ
ッ素含有量(1wt%以上)を制御した石英ガラスの記載が
ある。この発明では、OH基とフッ素を石英ガラスに導
入することで、吸収欠陥の原因となるSi-Si基、Si-O-
O-Si基の除去を図っている。また、特開平10−67
521号公報には、フッ素含有ガスを用い石英ガラスを
製造する製造方法の記載がある。この発明では、フッ素
含有ガスの導入方法を工夫することにより、フッ素含有
ガスの流れを制御し、石英ガラス中にフッ素を導入して
レーザ耐性の向上を図っている。Therefore, various inventions using fluorine have been proposed in order to improve the laser resistance of quartz glass by such short-wavelength laser irradiation. JP-A-8-
JP 67530 describes a quartz glass in which the OH group concentration (10 ppm or more) and the fluorine content (1 wt% or more) are controlled. In the present invention, by introducing OH groups and fluorine into quartz glass, Si-Si groups and Si-O-
O-Si groups are removed. Also, JP-A-10-67
No. 521 describes a manufacturing method for manufacturing quartz glass using a fluorine-containing gas. In the present invention, the flow of the fluorine-containing gas is controlled by devising a method for introducing the fluorine-containing gas, and fluorine is introduced into the quartz glass to improve the laser resistance.
【0007】[0007]
【発明が解決しようとする課題】上記の先行技術では、
一定のレーザ耐性向上は図れるものの以下のような問題
があった。特開平8−67530号公報の発明では、Si
-Si基あるいは遊離ラジカルSi・の除去を目的として1wt
%ものフッ素を導入している。フッ素により、Si-Si基、
Si・は通常SiF基に化学変化するが、フッ素が過剰に導
入されているため、SiFは形成されず、SiFn(n≧2)が
多く形成され、ある程度のレーザ耐性は期待できるもの
の、必ずしも高いレーザ耐性を得ることは出来ない。In the above prior art,
Although a certain improvement in laser resistance can be achieved, there are the following problems. In the invention of JP-A-8-67530, Si
1 wt.% For the purpose of removing -Si group or free radical Si
% Of fluorine is introduced. By fluorine, Si-Si group,
Normally, Si · chemically changes to a SiF group, but since fluorine is excessively introduced, SiF is not formed, and a large amount of SiF n (n ≧ 2) is formed. High laser resistance cannot be obtained.
【0008】特開平10−67521号公報の発明で
は、Si含有ガス、支燃性ガス(O2)、可燃性ガス(H
2)およびフッ素含有ガスの流れを制御することで、フ
ッ素とH2との反応を抑制し、合成石英ガラス中にフッ
素を導入することが可能になるが、単純にガスの流れを
制御することだけによって、Si-Fn (n≧2)の発生を抑
制することは困難である。また、新たな装置を導入、あ
るいは装置の変更をする必要があるので、設備投資に伴
うコスト増大という問題もある。In the invention of Japanese Patent Application Laid-Open No. 10-67521, a Si-containing gas, a combustible gas (O 2 ), and a flammable gas (H
2 ) By controlling the flow of the fluorine-containing gas, it is possible to suppress the reaction between fluorine and H 2 and introduce fluorine into the synthetic quartz glass, but simply control the flow of the gas. It is difficult to suppress the generation of Si—F n (n ≧ 2) only by the above. In addition, since it is necessary to introduce a new device or to change the device, there is a problem that the cost increases due to capital investment.
【0009】[0009]
【課題を解決するための手段】本発明者らは、合成石英
ガラスに導入されるフッ素のシリコン原子との結合に注
目し、Si-Fn(n≧2)で表されるシリコンとフッ素の結
合が50ppm以下のとき、レーザ耐性が著しく向上するこ
とを見いだし本発明を完成した。Means for Solving the Problems The present inventors have focused on the bonding between fluorine and silicon atoms introduced into synthetic quartz glass, and have found that silicon and fluorine represented by Si—F n (n ≧ 2) It has been found that when the coupling is 50 ppm or less, the laser resistance is remarkably improved, and the present invention has been completed.
【0010】本発明は、紫外線波長領域のレーザ光を照
射して使用する合成石英ガラスであって、合成石英ガラ
スに含有されるフッ素の濃度が50〜1000ppmの範囲内に
あり、1個のシリコン原子に対しフッ素原子が2個以上
結合したSi-Fn(n≧2)結合をなすフッ素の濃度が50ppm
以下であることを特徴とする合成石英ガラス、を提供す
る。The present invention relates to a synthetic quartz glass used by irradiating a laser beam in the ultraviolet wavelength region, wherein the concentration of fluorine contained in the synthetic quartz glass is in the range of 50 to 1000 ppm, and one silicon The concentration of fluorine forming a Si-F n (n ≧ 2) bond in which two or more fluorine atoms are bonded to an atom is 50 ppm
The present invention provides a synthetic quartz glass characterized by the following.
【0011】また、本発明は、紫外線波長領域のレーザ
光を照射して使用する合成石英ガラスであって、合成石
英ガラスに含有されるフッ素の濃度が50〜1000ppmの範
囲内にあり、1個のシリコン原子に対しフッ素原子が1
個結合したSi-F結合をなすフッ素が合成石英ガラスに
含有されるフッ素の85%以上であることを特徴とする合
成石英ガラス、を提供する。Further, the present invention relates to a synthetic quartz glass used by irradiating a laser beam in an ultraviolet wavelength region, wherein the concentration of fluorine contained in the synthetic quartz glass is in the range of 50 to 1000 ppm, and 1 fluorine atom per 1 silicon atom
The present invention provides a synthetic quartz glass, characterized in that fluorine forming a bonded Si—F bond is at least 85% of fluorine contained in the synthetic quartz glass.
【0012】さらに、本発明は、上記合成石英ガラスを
得るために、SiCl4ガスとSiF4ガスからなる原料ガス
に希ガスを加えた混合ガスを加水分解させることによ
り、フッ素濃度が50〜1000ppmの範囲内にあるスート体
を形成し、スート体に透明化処理を施し合成石英ガラス
を作製し、合成石英ガラスを800〜1500℃の温度範囲に1
〜20時間保持した後、500℃以下の温度まで10℃/時間
以下の冷却速度で徐冷することを特徴とする合成石英ガ
ラスの製造方法、を提供する。Further, the present invention provides a method for obtaining the above-mentioned synthetic quartz glass by hydrolyzing a mixed gas obtained by adding a rare gas to a raw material gas composed of SiCl 4 gas and SiF 4 gas, so that the fluorine concentration is 50 to 1000 ppm. To form a soot body within the range described above, subject the soot body to a transparency treatment to produce a synthetic quartz glass, and apply the synthetic quartz glass to a temperature range of 800 to 1500 ° C.
A method for producing synthetic quartz glass, characterized by gradually cooling to a temperature of 500 ° C. or less at a cooling rate of 10 ° C./hour or less after holding for 〜20 hours.
【0013】[0013]
【発明の実施の形態】本発明に係る合成石英ガラスは、
その濃度が50〜1000ppmの範囲内にあるフッ素を含有す
る。一般に、合成石英ガラスにフッ素を含有させること
により、短波長領域に属するレーザ光に対する耐久性が
向上するといわれている。しかし、フッ素濃度が50ppm
未満ではフッ素のレーザ耐性に与える効果が少ない。よ
り好ましくは、フッ素濃度は100ppm以上必要である。10
0ppm以上のとき、よりレーザ耐性が向上するからであ
る。また、フッ素濃度が1000ppmよりも多いときはレー
ザ耐性の効果はあるものの、合成石英ガラスに含まれる
フッ素の濃度分布が不均一になり、この濃度分布の不均
一性に起因する屈折率の変動幅が大きくなるので、レー
ザ光を照射して使用するには好ましくない。フッ素濃度
の上限は、より好ましくは、500ppmである。以下にも説
明するが、フッ素濃度が高ければ、それだけSi-Fn (n
≧2)結合が生じ易くなるからである。BEST MODE FOR CARRYING OUT THE INVENTION The synthetic quartz glass according to the present invention
Contains fluorine whose concentration is in the range of 50-1000 ppm. Generally, it is said that by including fluorine in synthetic quartz glass, durability against laser light belonging to a short wavelength region is improved. However, the fluorine concentration is 50ppm
If it is less than the above, the effect of fluorine on laser resistance is small. More preferably, the fluorine concentration needs to be 100 ppm or more. Ten
This is because when the content is 0 ppm or more, the laser resistance is further improved. When the fluorine concentration is higher than 1000 ppm, although there is an effect of laser resistance, the concentration distribution of fluorine contained in the synthetic quartz glass becomes non-uniform, and the fluctuation range of the refractive index caused by the non-uniformity of the concentration distribution. Therefore, it is not preferable to use by irradiating a laser beam. The upper limit of the fluorine concentration is more preferably 500 ppm. As described below, the higher the fluorine concentration, the higher the Si—F n (n
≧ 2) Bonding is likely to occur.
【0014】本発明に係る合成石英ガラスでは、1個の
シリコン原子に対しフッ素原子が2個以上結合したSi-F
n (n≧2)結合をなすフッ素の濃度が50ppm以下である。
ただし、Si-Fn(n≧2)結合が50ppmを越えていても、Si
-F結合が85%以上であれば目的は達成できる。Si-Fn
(n≧2)結合はできるだけ少ない方がよい。好ましくはS
i-Fn(n≧2)結合が存在しないことである。Si-Fn(n
≧2)結合はSi-F結合に比べその結合が弱い。そのた
め、エネルギー密度が高い紫外線波長領域のレーザ光を
照射した場合、Si-Fn(n≧2)結合が分解されやすい。
その結果、レーザ耐性が低下する。In the synthetic quartz glass according to the present invention, Si-F in which two or more fluorine atoms are bonded to one silicon atom.
The concentration of fluorine forming n (n ≧ 2) bonds is 50 ppm or less.
However, even if the Si—F n (n ≧ 2) bond exceeds 50 ppm,
If the -F bond is 85% or more, the object can be achieved. Si- Fn
(n ≧ 2) The number of bonds is preferably as small as possible. Preferably S
That is, there is no i-F n (n ≧ 2) bond. Si-F n (n
≧ 2) The bond is weaker than the Si—F bond. Therefore, when a laser beam in an ultraviolet wavelength region having a high energy density is irradiated, Si—F n (n ≧ 2) bonds are easily decomposed.
As a result, laser resistance decreases.
【0015】また、本発明に係る合成石英ガラスでは、
Si-F結合をなすフッ素のうち、その85%以上がSi-F結
合を構成する合成石英ガラスである。ただし、Si-F結
合が85%未満でも、Si-Fn(n≧2)結合がが50ppm以下な
ら目的は達成できる。好ましくはSi-F結合が100%であ
る。石英ガラス中に存在するSi-F結合のほとんどがSi-
F結合であれば、残りの15%以下という割合で存在するS
i-Fn(n≧2)結合が損傷したとしても、レーザに耐える
ことができる。Further, in the synthetic quartz glass according to the present invention,
85% or more of the fluorine forming the Si-F bond is synthetic quartz glass forming the Si-F bond. However, even if the Si—F bond is less than 85%, the object can be achieved if the Si—F n (n ≧ 2) bond is 50 ppm or less. Preferably, the Si—F bond is 100%. Most of the Si-F bonds existing in quartz glass are Si-
If it is an F bond, the remaining S exists at a rate of 15% or less.
Even if the i-F n (n ≧ 2) bond is damaged, it can withstand the laser.
【0016】本発明に係る合成石英ガラスはその仮想温
度が900℃以下であることが好ましい。仮想温度が900℃
以上の場合、構造的に不安定な三員環、四員環構造等が
多く見られるからである。仮想温度とは、石英ガラスの
構造安定性を示す指標となる温度で、仮に十分高い温度
で安定な擬平衡状態のガラスを無限大の速度で常温まで
急冷した場合の急冷前の温度をいう。一般に仮想温度が
低いほど石英ガラスの構造は安定である。仮想温度は90
0℃以下であることがより好ましい。The synthetic quartz glass according to the present invention preferably has a virtual temperature of 900 ° C. or less. Virtual temperature is 900 ℃
In the above case, structurally unstable three-membered ring, four-membered ring structure and the like are often found. The fictive temperature is a temperature that serves as an index indicating the structural stability of quartz glass, and refers to the temperature before quenching when quasi-equilibrium glass that is stable at a sufficiently high temperature is rapidly cooled to room temperature at an infinite speed. In general, the lower the virtual temperature, the more stable the structure of quartz glass. Virtual temperature is 90
It is more preferable that the temperature is 0 ° C. or lower.
【0017】本発明に係る合成石英の製造方法は、SiCl
4ガスとSiF4ガスからなる原料ガスに希ガスを加えた
混合ガスを加水分解させることにより、フッ素濃度が50
〜1000ppmの範囲内にあるスート体を形成し、スート体
に透明化処理を施して合成石英ガラスを作製し、合成石
英ガラスを800〜1500℃の温度範囲に1〜20時間保持した
後、少なくとも500℃以下の温度までは10℃/時間以下
の冷却速度で徐冷することを特徴とする。The method for producing synthetic quartz according to the present invention comprises the steps of:
By hydrolyzing a mixed gas obtained by adding a rare gas to a raw material gas composed of four gases and SiF 4 gas, the fluorine concentration becomes 50%.
To form a soot body in the range of ~ 1000ppm, to produce a synthetic quartz glass by subjecting the soot body to a transparency treatment, and after holding the synthetic quartz glass in a temperature range of 800 to 1500 ° C for 1 to 20 hours, at least It is characterized by gradually cooling at a cooling rate of 10 ° C./hour or less to a temperature of 500 ° C. or less.
【0018】本発明の方法では、SiCl4ガスとSiF4ガ
スからなる原料ガスに希ガスを加えた混合ガスを加水分
解させてスート体を形成する。希ガスを加えることによ
って、フッ素濃度分布の不均一化を防止し、屈折率変動
幅を小さくするだけでなく、希ガスによるフッ素濃度の
希釈により、Si-Fn(n≧2)結合よりSi-F結合が導入さ
れやすくなる。In the method of the present invention, a soot body is formed by hydrolyzing a mixed gas obtained by adding a rare gas to a raw material gas composed of SiCl 4 gas and SiF 4 gas. By adding a rare gas, it is possible to prevent the non-uniformity of the fluorine concentration distribution and to reduce the refractive index fluctuation width, and also to dilute the fluorine concentration with the rare gas to reduce the Si-F n (n ≧ 2) bond to the Si. -F bonds are easily introduced.
【0019】このとき、使用する希ガスの種類はHe、N
e、Ar、Kr、Xe、Rnなど特に限定はない。もちろん、こ
れらを単一、あるいは混合して用いてもかまわない。入
手のし易さ、価格などを考慮に入れると、HeあるいはAr
を用いることが好ましい。なお、最終的に得られる合成
石英ガラスには微量ながら希ガスが混入するが、特に最
終製品に害はない。At this time, the type of rare gas used is He, N
There is no particular limitation on e, Ar, Kr, Xe, Rn and the like. Of course, these may be used alone or as a mixture. Considering availability and price, He or Ar
It is preferable to use Although rare gas is mixed in the synthetic quartz glass finally obtained in a small amount, it does not harm the final product.
【0020】SiCl4ガスとSiF4ガスからなる原料ガス
に希ガスを加えた混合ガスの混合比は、フッ素濃度が50
〜1000ppmの範囲内にスート体が形成できるように設定
される。用いる設備、酸素・水素火炎中での加水分解の
状況に応じて、適宜設定すればよい。好ましくは、SiCl
4ガス:希ガス=10:1〜1:10の範囲で混合したガス1000
〜200000に対し、体積比で1のSiF4ガスを加えた混合
ガスを使用する。The mixing ratio of a mixed gas obtained by adding a rare gas to a raw material gas composed of SiCl 4 gas and SiF 4 gas is such that the fluorine concentration is 50%.
It is set so that a soot body can be formed within the range of ~ 1000 ppm. What is necessary is just to set suitably according to the equipment used and the state of hydrolysis in an oxygen / hydrogen flame. Preferably, SiCl
4 gas: Noble gas = gas mixed in the range of 10: 1 to 1:10 1000
A mixed gas obtained by adding SiF 4 gas at a volume ratio of 1 to 200,000 is used.
【0021】スート体を形成後、透明化処理を施す。透
明化処理は多孔質であるスート体を焼結させて緻密化し
透明な合成石英を得る処理のことを言う。透明化処理は
一般に行われているように行えばよく、孔が除去できる
程度の非常に低い速度でスート体を加熱炉の均熱帯域で
移動させればよい。透明化温度、移動速度、加熱炉雰囲
気などはスート体に合わせて適宜変更すればよい。ま
た、透明化処理の前に、酸素雰囲気下でプレアニールを
行ってもよい。After the soot body is formed, a transparentizing process is performed. Transparency treatment refers to a process of sintering a porous soot body to make it dense and obtain transparent synthetic quartz. The clarification treatment may be performed as generally performed, and the soot body may be moved in the soaking zone of the heating furnace at a very low speed enough to remove holes. The transparency temperature, moving speed, heating furnace atmosphere, and the like may be appropriately changed according to the soot body. Further, pre-annealing may be performed in an oxygen atmosphere before the transparentizing treatment.
【0022】透明化処理後は、合成石英ガラスを800〜1
500℃の温度範囲に1〜20時間保持した後、少なくとも50
0℃以下の温度までは10℃/時間以下の冷却速度で徐冷
する。この処理により、不安定構造である三員環、四員
環構造等を取り除くことができるため、仮想温度が900
℃以下となる。ここで、保持温度が800℃より小さいの
場合は、十分、三員環、四員環構造等を取り除くことが
できないため、石英ガラスの構造安定化効果はなく、仮
想温度が900℃とはならない。また、保持温度が1500℃
を超える場合は、レーザ耐性がある六員環が壊れてしま
うため好ましくない。より好ましいのは800〜1000℃の
温度範囲で保持することである。After the clearing treatment, the synthetic quartz glass is 800-1
After holding in the temperature range of 500 ° C for 1-20 hours, at least 50
Cool slowly to a temperature of 0 ° C or less at a cooling rate of 10 ° C / hour or less. By this processing, the three- or four-membered ring structure, which is an unstable structure, can be removed.
° C or lower. Here, when the holding temperature is lower than 800 ° C., the three-membered ring, the four-membered ring structure and the like cannot be sufficiently removed, so that there is no structure stabilizing effect of the quartz glass, and the fictive temperature does not reach 900 ° C. . The holding temperature is 1500 ℃
When the value exceeds, the six-membered ring having laser resistance is broken, which is not preferable. More preferably, the temperature is maintained in the temperature range of 800 to 1000 ° C.
【0023】保持する時間は最低でも1時間は必要であ
る。1時間未満であると、仮想温度が900℃にならない。
また、保持時間は長くてもさしつかえがないが、実用上
を考えると20時間程度行えば十分である。また、この時
の雰囲気は酸素雰囲気であることが好ましい。熱処理中
に合成石英ガラス表面より酸素が逃げ、表面に酸素欠乏
欠陥が発生することを抑制するためである。The holding time must be at least one hour. If it is less than 1 hour, the virtual temperature does not reach 900 ° C.
Although the holding time may be long, it is sufficient if the holding time is about 20 hours in practical use. The atmosphere at this time is preferably an oxygen atmosphere. This is to prevent oxygen from escaping from the surface of the synthetic quartz glass during the heat treatment, thereby suppressing generation of oxygen deficiency defects on the surface.
【0024】この後、少なくとも500℃以下の温度まで
は10℃/時間以下の冷却速度で徐冷する。これ以上の早
い冷却速度で行うと、急激な温度変化に伴う歪みが生じ
る可能性がある。Thereafter, the temperature is gradually reduced to a temperature of at least 500 ° C. at a cooling rate of 10 ° C./hour or less. If the cooling is performed at a higher cooling rate than this, distortion may occur due to a rapid temperature change.
【0025】また、製造設備の不具合による熱処理雰囲
気からの汚染や、酸素欠乏欠陥の生成が懸念される場合
には、透明化処理後の熱処理において、透明化処理によ
り得られた合成石英ガラスを別に作製した石英ガラス製
ダミー材で挟むなどの処理を施し、直接熱処理雰囲気に
接触しないようにすることが好ましい。この場合、ダミ
ー材は合成石英ガラスと同等またはそれ以上の純度を有
していることが好ましい。ダミー材からの汚染を防ぐた
めである。If there is a possibility of contamination from the heat treatment atmosphere or generation of oxygen deficiency defects due to a defect in the production equipment, the synthetic quartz glass obtained by the transparency treatment is separately added to the heat treatment after the transparency treatment. It is preferable to perform processing such as sandwiching between the manufactured quartz glass dummy materials so as not to come into direct contact with the heat treatment atmosphere. In this case, the dummy material preferably has a purity equal to or higher than that of the synthetic quartz glass. This is to prevent contamination from the dummy material.
【0026】[0026]
【実施例】本発明に係る合成石英ガラスを以下の手順で
作製した。まず、合成石英ガラスのもととなる混合ガス
を調合した。はじめに、SiCl4とArを体積比で6:4の割
合で混合し、得られたガス10000に対し、SiF4ガスを1
の体積割合で再混合し、SiCl4、SiF4、Arからなる混
合ガスを得た。混合ガスは酸素・水素火炎中に導入し、
約1800℃で加水分解し、石英ガラス微粒子を合成した。
これを種棒に付着・堆積させることにより、多孔質の合
成石英ガラス、いわゆるスート体を得た。さらに、この
スート体を酸素雰囲気下100Paのもと、10時間、1400℃
で焼結し、続いて、6時間、1550℃で透明化処理を行
い、透明化処理により孔が除去された石英ガラス体を得
た。この後、この石英ガラス体を成形し、直径250mmの
インゴットとし、高さ10cmの円板状に切り出した。一
方、同じインゴットからダミー材を切り出し、円板状イ
ンゴットをダミー材で挟み込んだ。最後に、再び雰囲気
炉にて、Arガス雰囲気中で15時間、1000℃で熱処理を行
った。熱処理後は、毎時10℃づつ冷却し、50時間をかけ
て500℃まで徐冷した。500℃まで冷却後は、炉から取り
だし、室温まで冷却されるまで放置した。(実施例1)
また、別の実施例として、SiCl4とArを体積比で6:4の
割合で混合した混合ガス3000に対し、SiF4ガスを1の
体積割合で再混合し、他は以上に記した製造方法により
製造した合成石英ガラスについても作製した。(実施例
2)一方、以上に記した実施例の製造方法の一部を変
え、比較例として、SiF4ガスを導入せず、SiCl4とAr
からなるガスを加水分解して、インゴットを得たもの
(比較例1)、Arを導入せず、SiCl4とSiF4からなる
ガスを加水分解して、インゴットを得たもの(比較例
2)、スート体を真空化で焼結し、インゴットを得たも
の(比較例3)、インゴットを得た後、熱処理を行わな
かったもの(比較例4)の4つの合成石英ガラスを作製
した。EXAMPLES A synthetic quartz glass according to the present invention was produced by the following procedure. First, a mixed gas serving as a base for synthetic quartz glass was prepared. First, SiCl 4 and Ar were mixed at a volume ratio of 6: 4, and the obtained gas (10000) was mixed with 1: 1 of SiF 4 gas.
To obtain a mixed gas composed of SiCl 4 , SiF 4 and Ar. The mixed gas is introduced into the oxygen / hydrogen flame,
Hydrolysis was performed at about 1800 ° C to synthesize quartz glass fine particles.
This was adhered and deposited on a seed rod to obtain a porous synthetic quartz glass, so-called soot body. Furthermore, this soot body was heated at 1400 ° C. for 10 hours under an oxygen atmosphere at 100 Pa.
, Followed by a clarification treatment at 1550 ° C. for 6 hours to obtain a quartz glass body from which holes were removed by the clarification treatment. Thereafter, the quartz glass body was formed into an ingot having a diameter of 250 mm, and cut into a disk having a height of 10 cm. Meanwhile, a dummy material was cut out from the same ingot, and a disc-shaped ingot was sandwiched between the dummy materials. Finally, heat treatment was performed again at 1000 ° C. for 15 hours in an Ar gas atmosphere in an atmosphere furnace. After the heat treatment, the mixture was cooled at 10 ° C./hour and gradually cooled to 500 ° C. over 50 hours. After cooling to 500 ° C., it was taken out of the furnace and left to cool to room temperature. (Example 1)
As another embodiment, a mixed gas 3000 in which SiCl 4 and Ar are mixed at a volume ratio of 6: 4 is mixed again with a SiF 4 gas at a volume ratio of 1 and the other processes described above are performed. The synthetic quartz glass produced by the method was also produced. (Example 2) On the other hand, a part of the manufacturing method of the example described above was changed, and as a comparative example, SiCl 4 and Ar were used without introducing SiF 4 gas.
Ingot obtained by hydrolyzing gas consisting of (Comparative Example 1), and ingot obtained by hydrolyzing gas consisting of SiCl 4 and SiF 4 without introducing Ar (Comparative Example 2) Then, the soot body was sintered under vacuum to obtain four ingots (Comparative Example 3), and after obtaining the ingot, four synthetic quartz glasses without heat treatment (Comparative Example 4).
【0027】以上のように得られた実施例1、2、比較
例1〜4の合成石英ガラスについて、原子吸光分析法に
て、含まれる不純物濃度を測定した。不純物の存在は、
ガラス構造の安定性の欠如およびレーザ光の吸収(透過
率の低下)といった特性の低下につながるため、実施例
と比較例の特性差が不純物の相違に起因するものなのか
調べる必要があるからである。測定の結果、実施例、比
較例における金属不純物(アルカリ金属Li、Na、K、ア
ルカリ土類金属Mg、Ca、および遷移金属Ti、V、Cr、M
n、Fe、Co、Ni、Cu)は合計で200ppb以下と低く、得ら
れた石英ガラスは非常に高純度であることがわかった。
よって、実施例、比較例の特性差は不純物の相違による
ものではないことが判明した。The concentrations of impurities contained in the synthetic quartz glasses of Examples 1 and 2 and Comparative Examples 1 to 4 obtained as described above were measured by atomic absorption analysis. The presence of impurities
This leads to deterioration of characteristics such as lack of stability of the glass structure and absorption of laser light (reduction of transmittance). Therefore, it is necessary to investigate whether the characteristic difference between the example and the comparative example is caused by a difference in impurities. is there. As a result of the measurement, metal impurities (alkali metals Li, Na, K, alkaline earth metals Mg, Ca, and transition metals Ti, V, Cr, M) in Examples and Comparative Examples
n, Fe, Co, Ni, and Cu) were as low as 200 ppb or less in total, and the obtained quartz glass was found to be of very high purity.
Therefore, it was found that the difference in characteristics between the example and the comparative example was not due to the difference in impurities.
【0028】本発明の特徴であるSi-F結合の存在は、
赤外線吸収測定により確認ができる。赤外線吸収測定で
は横軸に波長の逆数をとった場合、Si-Fは520cm−1、
Si-F2は550cm−1付近に吸収のピークが発現すること
が知られている。特に実施例1とスート体作製時にArガ
スを用いなかった比較例2について、赤外線吸収測定を
行った。The existence of the Si—F bond which is a feature of the present invention is as follows.
It can be confirmed by infrared absorption measurement. In the infrared absorption measurement, when the reciprocal of the wavelength is taken on the horizontal axis, Si-F is 520 cm −1 ,
It is known that Si-F 2 exhibits an absorption peak near 550 cm −1 . In particular, infrared absorption measurement was performed for Example 1 and Comparative Example 2 in which no Ar gas was used during the production of the soot body.
【0029】図1に実施例1に係る合成石英ガラスの赤
外線吸収、図2に比較例2に係る合成石英ガラスの赤外
線吸収を示す。実施例1では、520cm−1近傍にピーク
が発現したのに対し、比較例2では、520cm−1近傍だ
けでなく550cm−1近傍にもピークが発現した。これよ
り、実施例ではSi-Fn(n≧2)結合がほとんど含まれて
いないことが推測でき、Arガスによる希釈効果により、
合成石英ガラス中へのSi-F結合の取りこみが促進され
ることがわかる。FIG. 1 shows the infrared absorption of the synthetic quartz glass according to Example 1, and FIG. 2 shows the infrared absorption of the synthetic quartz glass according to Comparative Example 2. In Example 1, while the peak in the vicinity of 520 cm -1 is expressed, in Comparative Example 2, the peak was expressed in 550 cm -1 vicinity not only near 520 cm -1. From this, it can be inferred that in the examples, Si—F n (n ≧ 2) bonds are scarcely contained, and the dilution effect by Ar gas
It can be seen that the incorporation of Si—F bonds into the synthetic quartz glass is promoted.
【0030】また、合成石英中のフッ素濃度の定量評価
は、イオンクロマトグラフィ法により行うことができ
る。同法により実施例、比較例について、前記インゴッ
トの円形断面の中心部より採取した石英ガラスを粉砕し
て得た平均粒度約100μmの粉末を用いてF濃度、Si-F
n(n≧2)結合濃度の定量評価を行った。The quantitative evaluation of the fluorine concentration in the synthetic quartz can be performed by an ion chromatography method. For the examples and comparative examples according to the same method, F concentration, Si-F using powder having an average particle size of about 100 μm obtained by pulverizing quartz glass collected from the center of the circular cross section of the ingot.
Quantitative evaluation of n (n ≧ 2) binding concentration was performed.
【0031】さらに、精度のよい測定を行うために、同
じく円形断面の中心部より直径50mmの円板を切り出して
FT-IR法(フーリエ変換赤外線吸収法)により、仮想温
度の測定を行った。この方法では、吸収スペクトルの11
22cm−1近傍のピークの位置ν1を Tf1=43809.21/(ν1−2228.64) に代入することで仮想温度Tf1を求めることができ
る。Further, in order to perform accurate measurement, a disk having a diameter of 50 mm is cut out from the center of the circular section.
The virtual temperature was measured by the FT-IR method (Fourier transform infrared absorption method). In this method, 11
The virtual temperature T f1 can be obtained by substituting the peak position ν 1 near 22 cm −1 into T f1 = 43809.21 / (ν 1 −2228.64).
【0032】表1に実施例、比較例のF濃度、Si-F
n(n≧2)結合濃度および仮想温度を示す。実施例1は、
比較例に比べSi-Fn (n≧2)結合濃度が30ppmと極めて
小さくなり、F濃度に占めるSi-F結合のF濃度の割合
も90%近い高い値を示した。さらには、仮想温度も850
℃と低い値が得られることがわかった。また、実施例2
は、Si-Fn (n≧2)結合濃度が比較例2〜4と同じ程度
高いが、F濃度は1000ppmであり、Si-F結合濃度/F濃
度は89.0%であった。Table 1 shows the F concentration, Si-F of Examples and Comparative Examples.
n (n ≧ 2) indicates binding concentration and fictive temperature. Example 1
Compared with the comparative example, the Si—F n (n ≧ 2) bond concentration was as extremely low as 30 ppm, and the ratio of the F concentration of the Si—F bond to the F concentration also showed a high value close to 90%. Furthermore, the virtual temperature is 850
It was found that a value as low as ° C. was obtained. Example 2
Although the concentration of Si—F n (n ≧ 2) was as high as Comparative Examples 2 to 4, the F concentration was 1000 ppm, and the ratio of Si—F bond concentration / F concentration was 89.0%.
【0033】[0033]
【表1】 さらに、実施例、比較例について、円形断面の中心部よ
り直径50mmの円板を切り出して、透過率低下量の測定を
行った。各試料にはKrFエキシマレーザ(波長248nm)
を200mJ/cm2で100万回照射し、10万回毎にその吸光度
(ln(I/I0);I:入射光強度、I0:透過光強度)を真
空紫外分光計(日本分光製:VUV-200)で測定した。[Table 1] Further, in Examples and Comparative Examples, discs having a diameter of 50 mm were cut out from the center of the circular cross section, and the transmittance reduction was measured. KrF excimer laser (wavelength 248nm) for each sample
Is irradiated 1 million times at 200 mJ / cm 2 , and the absorbance (ln (I / I 0 ); I: incident light intensity, I 0 : transmitted light intensity) is measured every 100,000 times by a vacuum ultraviolet spectrometer (manufactured by JASCO Corporation). : VUV-200).
【0034】図3に実施例および比較例に係る合成石英
ガラスの吸光度を示す。図3から本実施例は吸光度が極
めて小さい、すなわち248nmの波長を有する光に対する
透過度が極めて優れており、グラフの傾きがゼロに近い
ことから、レーザ耐性も極めて優れていることがわか
る。FIG. 3 shows the absorbance of the synthetic quartz glass according to the example and the comparative example. From FIG. 3, it can be seen that this example has an extremely small absorbance, that is, an extremely excellent transmittance for light having a wavelength of 248 nm, and the slope of the graph is close to zero, indicating that the laser resistance is also extremely excellent.
【0035】[0035]
【発明の効果】本発明に係る合成石英ガラスは、そのフ
ッ素の濃度が50〜1000ppmの範囲内にあり、Si-Fn(n≧
2)結合をなすフッ素の濃度が50ppm以下である、あるい
は、Si-F結合をなすフッ素の濃度が合成石英ガラスに
含有するフッ素の85%以上であるため、レーザ耐性が極
めて高く、本合成石英ガラスを使用したフォトマスクな
どの光学部品の寿命を著しく向上させることが可能であ
る。The synthetic quartz glass according to the present invention has a fluorine concentration in the range of 50 to 1000 ppm, and has a Si—F n (n ≧
2) Since the concentration of fluorine forming the bond is 50 ppm or less, or the concentration of fluorine forming the Si-F bond is 85% or more of the fluorine contained in the synthetic quartz glass, the laser resistance is extremely high. It is possible to significantly improve the life of optical components such as a photomask using glass.
【0036】また、本発明に係る合成石英ガラスの製造
方法は、製造初期段階で原料ガスに希ガスを混合し、製
造最終段階で熱処理をするだけで、レーザ耐性を向上さ
せるSi-F結合を合成石英ガラス中に簡単に導入するこ
とができ、新しく製造装置を導入したり、大掛かりな製
造装置の変更も必要ない。Further, in the method for producing synthetic quartz glass according to the present invention, a rare gas is mixed with a raw material gas in an initial stage of production, and a heat treatment is carried out in a final stage of production, thereby forming a Si—F bond for improving laser resistance. It can be easily introduced into synthetic quartz glass, and there is no need to introduce new manufacturing equipment or to make major changes to manufacturing equipment.
【図1】実施例1に係る合成石英ガラスの赤外線吸収を
示す図である。FIG. 1 is a diagram showing infrared absorption of a synthetic quartz glass according to Example 1.
【図2】比較例2に係る合成石英ガラスの赤外線吸収を
示す図である。FIG. 2 is a diagram showing infrared absorption of a synthetic quartz glass according to Comparative Example 2.
【図3】実施例および比較例に係る合成石英ガラスの吸
光度を示す図である。FIG. 3 is a diagram showing the absorbance of synthetic quartz glass according to Examples and Comparative Examples.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/027 H01L 21/30 515D Fターム(参考) 4G014 AH21 AH23 4G062 AA04 AA18 BB02 CC07 GE02 MM02 NN16 NN20 5F046 BA04 CA04 CB02 CB10 CB12 CB19 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme coat ゛ (Reference) H01L 21/027 H01L 21/30 515D F-term (Reference) 4G014 AH21 AH23 4G062 AA04 AA18 BB02 CC07 GE02 MM02 NN16 NN20 5F046 BA04 CA04 CB02 CB10 CB12 CB19
Claims (4)
する合成石英ガラスであって、該合成石英ガラスに含有
されるフッ素の濃度が50〜1000ppmの範囲内にあり、1
個のシリコン原子に対しフッ素原子が2個以上結合したS
i-Fn(n≧2)結合をなすフッ素の濃度が50ppm以下であ
ることを特徴とする合成石英ガラス。1. A synthetic quartz glass used by irradiating a laser beam in an ultraviolet wavelength region, wherein the concentration of fluorine contained in the synthetic quartz glass is in a range of 50 to 1000 ppm.
S with two or more fluorine atoms bonded to one silicon atom
Synthetic quartz glass, wherein the concentration of fluorine forming i- Fn (n ≧ 2) bonds is 50 ppm or less.
する合成石英ガラスであって、該合成石英ガラスに含有
されるフッ素の濃度が50〜1000ppmの範囲内にあり、1
個のシリコン原子に対しフッ素原子が1個結合したSi-F
結合をなすフッ素が合成石英ガラスに含有されるフッ素
の85%以上であることを特徴とする合成石英ガラス。2. A synthetic quartz glass to be used by irradiating a laser beam in an ultraviolet wavelength region, wherein the concentration of fluorine contained in the synthetic quartz glass is in the range of 50 to 1000 ppm.
Si-F with one fluorine atom bonded to one silicon atom
Synthetic quartz glass characterized in that the fluorine forming the bond is at least 85% of the fluorine contained in the synthetic quartz glass.
する請求項1または2記載の合成石英ガラス。3. The synthetic quartz glass according to claim 1, wherein the fictive temperature is 900 ° C. or less.
に希ガスを加えた混合ガスを加水分解させることによ
り、フッ素濃度が50〜1000ppmの範囲内にあるスート体
を形成し、該スート体に透明化処理を施して合成石英ガ
ラスを作製し、該合成石英ガラスを800〜1500℃の温度
範囲に1〜20時間保持した後、少なくとも500℃以下の温
度までは10℃/時間以下の冷却速度で徐冷することを特
徴とする合成石英ガラスの製造方法。4. A soot body having a fluorine concentration in the range of 50 to 1000 ppm is formed by hydrolyzing a mixed gas obtained by adding a rare gas to a raw material gas composed of SiCl 4 gas and SiF 4 gas. A synthetic quartz glass is produced by subjecting the body to a transparency treatment, and after maintaining the synthetic quartz glass in a temperature range of 800 to 1500 ° C. for 1 to 20 hours, at least up to a temperature of 500 ° C. or less, 10 ° C./hour or less. A method for producing synthetic quartz glass, comprising gradually cooling at a cooling rate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001009074A JP4674972B2 (en) | 2001-01-17 | 2001-01-17 | Synthetic quartz glass and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001009074A JP4674972B2 (en) | 2001-01-17 | 2001-01-17 | Synthetic quartz glass and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002220253A true JP2002220253A (en) | 2002-08-09 |
JP4674972B2 JP4674972B2 (en) | 2011-04-20 |
Family
ID=18876615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001009074A Expired - Fee Related JP4674972B2 (en) | 2001-01-17 | 2001-01-17 | Synthetic quartz glass and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4674972B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010098352A1 (en) * | 2009-02-24 | 2010-09-02 | 旭硝子株式会社 | Process for producing porous quartz glass object, and optical member for euv lithography |
US7964522B2 (en) | 2006-08-31 | 2011-06-21 | Corning Incorporated | F-doped silica glass and process of making same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08259255A (en) * | 1995-01-06 | 1996-10-08 | Nikon Corp | Quartz glass for photolithography, optical member including the same, exposing device using the same and its production |
-
2001
- 2001-01-17 JP JP2001009074A patent/JP4674972B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08259255A (en) * | 1995-01-06 | 1996-10-08 | Nikon Corp | Quartz glass for photolithography, optical member including the same, exposing device using the same and its production |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7964522B2 (en) | 2006-08-31 | 2011-06-21 | Corning Incorporated | F-doped silica glass and process of making same |
WO2010098352A1 (en) * | 2009-02-24 | 2010-09-02 | 旭硝子株式会社 | Process for producing porous quartz glass object, and optical member for euv lithography |
US8356494B2 (en) | 2009-02-24 | 2013-01-22 | Asahi Glass Company, Limited | Process for producing porous quartz glass object, and optical member for EUV lithography |
Also Published As
Publication number | Publication date |
---|---|
JP4674972B2 (en) | 2011-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100382776B1 (en) | Quartz glass, optical member containing the same, and manufacturing method thereof | |
JP2859095B2 (en) | Synthetic quartz mask substrate for excimer laser lithography | |
US6475682B2 (en) | Photolithography method, photolithography mask blanks, and method of making | |
JP2005255423A (en) | Synthetic quartz glass-made photomask substrate and photomask | |
JP2008063181A (en) | Synthetic quartz glass substrate for excimer laser and production method therefor | |
JPH0653593B2 (en) | Synthetic silica glass optical body and method for producing the same | |
JPWO2003091175A1 (en) | Synthetic quartz glass for optical members, projection exposure apparatus and projection exposure method | |
JP3654500B2 (en) | Quartz glass material and optical member for F2 excimer laser optical member | |
WO2000039038A1 (en) | Method for producing optical quartz glass for excimer lasers | |
JP2005336047A (en) | Optical member made of synthetic quartz glass and process for its production | |
JP2002220253A (en) | Synthetic quartz glass and method of manufacturing it | |
JPH092828A (en) | Quartz glass, optical member containing the same and production of the same | |
JP3705501B2 (en) | Method for producing synthetic quartz glass member for excimer laser optical material | |
JPH0831723A (en) | Synthetic quartz mask substrate for arf excimer laser lithography and manufacture thereof | |
JP4228493B2 (en) | Synthetic quartz glass | |
JPH11116248A (en) | Synthetic quartz glass member | |
JPH0624997B2 (en) | Optical components for laser light | |
JPH0912323A (en) | Quartz glass member suppressed from becoming dense due to irradiation of uv ray | |
JP2566151B2 (en) | Method for manufacturing laser optical system base material | |
JP2002012441A (en) | Synthetic quartz glass and its manufacturing method | |
JP2652847B2 (en) | Optical system member for laser beam and optical system member for lithographic apparatus | |
JP5050969B2 (en) | Synthetic quartz glass optical member and manufacturing method thereof | |
JP2004026587A (en) | High homogeneous synthetic quartz glass for vacuum ultraviolet light, manufacture method of the same and mask substrates for vacuum ultraviolet light using this | |
JP4093393B2 (en) | Highly homogeneous synthetic quartz glass for vacuum ultraviolet light, method for producing the same, and mask substrate for vacuum ultraviolet light using the same | |
JPH06234545A (en) | Synthetic quartz glass for light transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070723 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080616 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080909 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100817 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20101018 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110118 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110125 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140204 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4674972 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140204 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |