[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002217474A - Photoelectric conversion film and solid-state image sensor equipped with the same - Google Patents

Photoelectric conversion film and solid-state image sensor equipped with the same

Info

Publication number
JP2002217474A
JP2002217474A JP2001007747A JP2001007747A JP2002217474A JP 2002217474 A JP2002217474 A JP 2002217474A JP 2001007747 A JP2001007747 A JP 2001007747A JP 2001007747 A JP2001007747 A JP 2001007747A JP 2002217474 A JP2002217474 A JP 2002217474A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
organic
conversion film
polymer
organic dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001007747A
Other languages
Japanese (ja)
Inventor
Satoshi Aihara
聡 相原
Nobuo Saito
信雄 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2001007747A priority Critical patent/JP2002217474A/en
Publication of JP2002217474A publication Critical patent/JP2002217474A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Color Television Image Signal Generators (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem of a conventional three-plate type image sensor being large and heavy, of spectral prism being required in order to make the image sensor small and lightweight and of a single-plate type constituted of a light-receiving element of one plate being desired. SOLUTION: The photoelectric conversion film is formed fundamentally of a structure, wherein a light absorption and photoelectric conversion layer in which various organic pigments are dispersed to an organic polymer is sandwiched between electrodes, and a solid-state image sensor which is provided uses the photoelectric conversion film. The photoelectric conversion film has a structure where light absorption and photoelectric conversion part (film), in which the organic pigments are dispersed to the organic polymer, is sandwiched between the electrodes. When the organic pigments dispersed in the polymer absorb light, electric charges are generated. When a DC voltage is applied to both the electrodes, the electric charge generated are transported by the polymer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種有機色素を有
機系高分子に分散させた機能性薄膜を用いた固体撮像装
置に関するものであり、特に、分光プリズムの必要がな
い単板式の固体撮像装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device using a functional thin film in which various organic dyes are dispersed in an organic polymer, and more particularly to a single-plate solid-state imaging device which does not require a spectral prism. It concerns the device.

【0002】[0002]

【従来の技術】現在、テレビカメラなどの撮像装置に利
用されている光電変換膜としては、Siやa-Se膜などの
無機材料が主に用いられている。無機材料は、光電変換
特性に急峻な波長依存性を持たないため、これらの無機
材料を光電変換膜として用いた撮像装置においては、入
射光を赤、緑、青の三原色に分解するプリズム、及びプ
リズムの後段に配置された3枚の光電変換膜からなる3
板式が主流である。
2. Description of the Related Art At present, inorganic materials such as Si and a-Se films are mainly used as photoelectric conversion films used in imaging devices such as television cameras. Since inorganic materials do not have a sharp wavelength dependence in photoelectric conversion characteristics, in an imaging device using these inorganic materials as a photoelectric conversion film, a prism that separates incident light into three primary colors of red, green, and blue, and 3 composed of three photoelectric conversion films disposed after the prism
Plate type is the mainstream.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
3板式撮像装置は、大きくて重くなるという問題があ
り、撮像装置の小型軽量化を実現するためには、分光プ
リズムの必要がなく、受光素子が1枚である単板式が望
まれる。
However, the conventional three-plate type imaging device has a problem that it is large and heavy, and in order to reduce the size and weight of the imaging device, there is no need for a spectral prism and a light receiving element. Is a single plate type.

【0004】この課題を解決する手法として、有機系材
料の使用が考えられる。有機系材料は、その多様性、形
状の自由度の高さなどにより次世代の機能性材料として
盛んに研究開発が行われている。有機系材料を用いた光
電変換素子の開発も活発であるが、現状では太陽電池や
電子写真感光体素子への応用展開に見通しが立っている
に過ぎない。
As a technique for solving this problem, use of an organic material is conceivable. Organic materials are being actively researched and developed as next-generation functional materials due to their variety and high degree of freedom in shape. Although the development of photoelectric conversion devices using organic materials is also active, at present the prospects for application to solar cells and electrophotographic photoreceptors are only rising.

【0005】[0005]

【課題を解決するための手段】本発明による光電変換膜
は、有機系高分子と、その有機系高分子中に分散され、
所定の波長の光を吸収して、前記有機系高分子中で輸送
される電荷を発生させる有機色素とを有することを特徴
とするものである。本光電変換膜によれば、分光プリズ
ムの必要のない受光素子が1枚である単板式の撮像装置
に応用でき、撮像装置の小型軽量化を実現できる。ま
た、有機系材料を用いるので、形状を自由に変更でき
る。また、低電圧で駆動させることができ、省電力化を
図ることができる。
Means for Solving the Problems A photoelectric conversion film according to the present invention is dispersed in an organic polymer and the organic polymer.
An organic dye that absorbs light of a predetermined wavelength to generate charges transported in the organic polymer. According to the present photoelectric conversion film, it can be applied to a single-plate type imaging device having one light receiving element that does not require a spectral prism, and it is possible to reduce the size and weight of the imaging device. Further, since an organic material is used, the shape can be freely changed. In addition, driving can be performed at a low voltage, and power can be saved.

【0006】また、本発明による固体撮像装置は、入射
された光を電荷に変換する光電変換膜を具え、その光電
変換膜が、有機系高分子と、その有機系高分子中に分散
され、所定の波長の光を吸収して、前記有機系高分子中
で輸送される電荷を発生させる有機色素とを有すること
を特徴とするものである。本固体撮像装置によれば、上
述したように分光プリズムの必要がない受光素子が1枚
である単板式の撮像装置に応用でき、撮像装置の小型軽
量化を実現できる。
Further, the solid-state imaging device according to the present invention includes a photoelectric conversion film for converting incident light into electric charges, wherein the photoelectric conversion film is dispersed in an organic polymer and the organic polymer. An organic dye that absorbs light of a predetermined wavelength to generate charges transported in the organic polymer. According to the present solid-state imaging device, as described above, it can be applied to a single-plate imaging device having one light receiving element that does not require a spectral prism, and it is possible to reduce the size and weight of the imaging device.

【0007】さらに、本発明による固体撮像装置は、前
記有機色素が赤色光を吸収する第1の光電変換膜と、前
記有機色素が緑色光を吸収する第2の光電変換膜と、前
記有機色素が青色光を吸収する第3の光電変換膜と、を
具え、これら第1〜第3の光電変換膜を、並列または積
層して配置したことを特徴とするものである。本固体撮
像装置によれば、シンプルな構成で容易にフルカラー撮
像装置を作製できる。
Further, in the solid-state imaging device according to the present invention, there is provided a first photoelectric conversion film in which the organic dye absorbs red light, a second photoelectric conversion film in which the organic dye absorbs green light, and the organic dye. And a third photoelectric conversion film that absorbs blue light, and the first to third photoelectric conversion films are arranged in parallel or stacked. According to the solid-state imaging device, a full-color imaging device can be easily manufactured with a simple configuration.

【0008】[0008]

【発明の実施の形態】本発明は、種々の有機色素を有機
系高分子に分散させた光吸収・光電変換層を電極で挟ん
だ構造を基本とする光電変換膜及びそれを用いた固体撮
像装置に関するものである。素子構造は、近年数多くの
開発が行われている有機エレクトロルミネッセンス(以
下、有機EL素子と略す)と類似のものであるが、有機
EL素子の駆動領域が有機系高分子層への電流注入が開
始される印加電圧以上であるのに対し、本願発明の固体
撮像素子は、有機系高分子層へ電流注入が開始される以
前の印加電圧領域で駆動することを特徴とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a photoelectric conversion film having a structure in which a light absorption / photoelectric conversion layer in which various organic dyes are dispersed in an organic polymer is sandwiched between electrodes, and a solid-state imaging device using the same. It concerns the device. The device structure is similar to organic electroluminescence (hereinafter, abbreviated as organic EL device), which has been developed in many cases in recent years. However, the driving region of the organic EL device is such that current injection into an organic polymer layer is performed. While the applied voltage is equal to or higher than the applied voltage, the solid-state imaging device of the present invention is characterized in that it is driven in an applied voltage region before current injection to the organic polymer layer is started.

【0009】以下、本発明による固体撮像素子について
詳細に説明する。本発明による固体撮像素子は、有機色
素を有機高分子に分散させた光吸収・光電変換部(膜)
を電極でサンドイッチした構造をしており、高分子に均
一に分散させた有機色素が光を吸収することにより電荷
を発生し、両電極に直流電圧を印加することによって、
発生した電荷を高分子が輸送することを特徴とする。
Hereinafter, the solid-state imaging device according to the present invention will be described in detail. The solid-state imaging device according to the present invention is a light absorption / photoelectric conversion unit (film) in which an organic dye is dispersed in an organic polymer.
Is sandwiched between electrodes, and the organic dye uniformly dispersed in the polymer generates light by absorbing light, and by applying a DC voltage to both electrodes,
The generated charges are transported by the polymer.

【0010】図1に本発明による固体撮像装置の断面図
を示す。図1において、11は基板、12は有機色素を
分散させた有機色素分散高分子層、13は電極である。
基板11上に、電極13、有機色素分散高分子層12、
電極13を順次設ける。従って、有機色素分散高分子層
12を電極13で挟み込んだ構成となっている。基板1
1は、基板側から光を照射する場合は、透明性が高いほ
うが望ましく、ガラス、ポリエチレン、ポリエチレンテ
レフタレート、ポリエーテルサルフォン、ポリプロピレ
ンなどが好適である。しかし、基板11側から光照射を
行わない場合には、基板の透明性という制限はなく、上
述の材料の他にSi、Ge、GaAs等を用いることもできる。
FIG. 1 is a sectional view of a solid-state imaging device according to the present invention. In FIG. 1, 11 is a substrate, 12 is an organic dye-dispersed polymer layer in which an organic dye is dispersed, and 13 is an electrode.
On a substrate 11, an electrode 13, an organic dye-dispersed polymer layer 12,
The electrodes 13 are provided sequentially. Therefore, the organic dye-dispersed polymer layer 12 is sandwiched between the electrodes 13. Substrate 1
As for 1, when light is irradiated from the substrate side, it is desirable that the transparency is high, and glass, polyethylene, polyethylene terephthalate, polyether sulfone, polypropylene, or the like is preferable. However, when light irradiation is not performed from the substrate 11 side, there is no limitation on the transparency of the substrate, and Si, Ge, GaAs, or the like can be used in addition to the above-described materials.

【0011】有機色素分散高分子層12に分散させた光
吸収を担う有機色素としては、可視部に吸収のあるもの
であればよく、アクリジン系色素、クマリン系色素、シ
アニン系色素、スクエアリリウム、オキサジン系色素、
キサンテン系色素等が用いられる。もちろん、紫外部に
吸収のある有機高分子を用いれば紫外線用光電変換素子
に応用できることは言うまでもない。
The organic dye dispersed in the organic dye-dispersed polymer layer 12 that absorbs light can be any organic dye that absorbs in the visible region, and includes acridine dyes, coumarin dyes, cyanine dyes, squarylium, Oxazine dyes,
Xanthene dyes and the like are used. Needless to say, if an organic polymer that absorbs in the ultraviolet is used, it can be applied to a photoelectric conversion element for ultraviolet rays.

【0012】一方、有機色素分散高分子層12における
高分子としては、ポリビニルアルコール、ポリカーボネ
ートに代表される非導電性高分子から、望ましくはポリ
パラフェニレンビニレン類、ポリフルオレン類、ポリビ
ニルカルバゾール類、ポリチオール類、ポリチオフェン
類などのπ電子系導電高分子一般、更にはポリシラン
類、ポリゲルマン類やこれらのネットワーク型高分子な
どのσ電子系高分子が好適である。
On the other hand, the polymer in the organic dye-dispersed polymer layer 12 is preferably a non-conductive polymer represented by polyvinyl alcohol or polycarbonate, and is preferably polyparaphenylenevinylenes, polyfluorenes, polyvinylcarbazoles, polythiol. And π-electron conductive polymers such as polythiophenes, and σ-electron polymers such as polysilanes, polygermanes, and their network polymers are preferred.

【0013】有機色素の添加量は、光電変換膜として充
分な光電荷の生成数を得るために、有機高分子の単位ユ
ニットに対するモル比で0.1mol%以上が必要であり、
5mol%以上とするのが好適である。
The amount of the organic dye to be added must be 0.1 mol% or more in terms of a molar ratio with respect to the unit unit of the organic polymer in order to obtain a sufficient number of photocharges to be generated as a photoelectric conversion film.
The content is preferably at least 5 mol%.

【0014】光電変換膜の成膜は、スピンコート法、バ
ーコート法、キャスト法、ディップ法などの湿式法が良
く、高分子と有機色素との混合溶液から生成される。溶
媒としては、高分子及び有機色素が可溶である有機溶媒
であれば何れも使用可能であり、テトラヒドロフラン、
トルエン、酢酸ブチル、モノクロロベンゼン、酢酸2−
エトキシエチル、酢酸エチルカルビトール、酢酸プロピ
レングリコールモノメチルエーテル、N−メチル−2−ピ
ロリドン、乳酸エチル、プロピレングリコールモノメチ
ルエーテル、メタノール、エタノール、プロパノール、
ジオキサン等が用いられる。高分子、有機色素双方が可
溶な溶媒が常に得られるとは限らないため、そのような
場合には、上記溶媒を用いた有機色素、高分子それぞれ
の単体溶液を混合して成膜する。
The photoelectric conversion film is formed by a wet method such as a spin coating method, a bar coating method, a casting method, and a dipping method, and is formed from a mixed solution of a polymer and an organic dye. As the solvent, any organic solvent can be used as long as the polymer and the organic dye are soluble, and tetrahydrofuran,
Toluene, butyl acetate, monochlorobenzene, acetic acid 2-
Ethoxyethyl, ethyl carbitol acetate, propylene glycol monomethyl ether acetate, N-methyl-2-pyrrolidone, ethyl lactate, propylene glycol monomethyl ether, methanol, ethanol, propanol,
Dioxane or the like is used. Since a solvent in which both the polymer and the organic dye are soluble is not always obtained, in such a case, a single solution of each of the organic dye and the polymer using the above solvent is mixed to form a film.

【0015】一方、各色素高分子粉末を用いた共真空蒸
着法、多元有機分子線蒸着法、色素及び高分子のペレッ
トを用いた共レーザアブレーション法、スパッタ法、な
どに代表される乾式法も考えられるが、この際には、高
エネルギー電磁波の照射や熱による高分子鎖の切断に注
意して成膜する必要がある。
On the other hand, there are also dry methods typified by co-vacuum vapor deposition using each polymer powder, multi-element organic molecular beam vapor deposition, co-laser ablation using dye and polymer pellets, and sputtering. In this case, it is necessary to pay attention to the irradiation of high-energy electromagnetic waves and the breaking of the polymer chains due to heat.

【0016】光電変換膜の膜厚は、厚すぎると光電流を
得るために高電圧を印加しなければならないばかりか、
膜表面にひびが生じるおそれがあり、また薄すぎると電
極間の短絡が生じてしまうため、10nm〜10μm程
度、望ましくは100nm〜5μmに調節するのが良い。
If the thickness of the photoelectric conversion film is too large, not only must a high voltage be applied to obtain a photocurrent,
The film surface may be cracked, and if it is too thin, a short circuit between the electrodes may occur. Therefore, the thickness is preferably adjusted to about 10 nm to 10 μm, preferably 100 nm to 5 μm.

【0017】電極13に関しては、少なくとも光照射側
は透明性電極が望ましく、インジウムスズ酸化物、イン
ジウム酸化物、酸化スズなどが相当し、他方の電極に関
しては、前記透明電極はもちろん、アルミニウム、バナ
ジウム、金、銀、白金、鉄、コバルト、炭素、ニッケ
ル、タングステン、パラジウム、マグネシウム、カルシ
ウム、スズ、鉛、チタン、イットリウム、リチウム、ル
テニウム、マンガン等の金属またはそれらの合金が用い
られる。これらの電極膜厚は100nm〜200nm程度で
良いが、光の透過性を得たい場合には50nm〜100nm
の半透明電極を形成して使用することが可能である。
Regarding the electrode 13, at least the light irradiation side is desirably a transparent electrode, which corresponds to indium tin oxide, indium oxide, tin oxide, and the like. For the other electrode, not only the transparent electrode but also aluminum and vanadium. Metals such as gold, silver, platinum, iron, cobalt, carbon, nickel, tungsten, palladium, magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium and manganese or alloys thereof are used. The thickness of these electrodes may be about 100 nm to 200 nm, but if it is desired to obtain light transmittance, 50 nm to 100 nm
Can be used.

【0018】上記有機色素のうち赤色吸収、緑色吸収、
青色吸収のものを選択し、それぞれの色素を分散させた
高分子膜を並列、もしくは積層に配置することにより、
容易にフルカラー撮像装置用光電変換膜を作製できる。
Of the above organic dyes, red absorption, green absorption,
By selecting those with blue absorption and arranging polymer films in which each dye is dispersed in parallel or in a stack,
A photoelectric conversion film for a full-color imaging device can be easily manufactured.

【0019】図2に本発明による並列型固体撮像装置の
断面図を示す。図2において、21は基板、22Aは第
1の有機色素分散高分子層、22Bは第2の有機色素分
散高分子層、22Cは第3の有機色素分散高分子層、2
3A〜23Fは電極である。基板21及び電極23A〜
23Fの材料に関しては、図1で説明した固体撮像装置
に準じる。第1〜第3の有機色素分散高分子層22A〜
22Cは、それぞれ、赤色吸収層、緑色吸収層、青色吸
収層であるが、配置の順番に特に制限はなく、電荷輸送
を担う高分子に関しても、各色吸収層で異なる材料を使
用できる。
FIG. 2 is a sectional view of a parallel type solid-state imaging device according to the present invention. 2, reference numeral 21 denotes a substrate, 22A denotes a first organic dye-dispersed polymer layer, 22B denotes a second organic dye-dispersed polymer layer, and 22C denotes a third organic dye-dispersed polymer layer.
3A to 23F are electrodes. Substrate 21 and electrodes 23A-
The material of 23F conforms to the solid-state imaging device described with reference to FIG. First to third organic dye-dispersed polymer layers 22A-
22C is a red absorption layer, a green absorption layer, and a blue absorption layer, respectively. However, the order of arrangement is not particularly limited, and a different material can be used for each color absorption layer with respect to a polymer that performs charge transport.

【0020】図3に本発明による積層型固体撮像装置の
断面図を示す。図3において、31は基板、32Aは第
1の有機色素分散高分子層、32Bは第2の有機色素分
散高分子層、32Cは第3の有機色素分散高分子層、3
3A〜33Fは電極、34A及び34Bは絶縁層であ
る。基板31の材料としては、上記に述べたものの何れ
も使用可能である。第1〜第3の有機色素分散高分子層
32A〜32Cは、それぞれ赤色吸収層、緑色吸収層、
青色吸収層であるが、各色吸収層の積層順に特に制限は
なく、電荷輸送を担う高分子に関しても、各色吸収層で
異なる材料を使用できる。電極33A〜33Fの材料に
関しては、前述のインジウムスズ酸化物、インジウム酸
化物、酸化スズなどの透明電極が好適であるが、アルミ
ニウム、バナジウム、金、銀、白金、鉄、コバルト、炭
素、ニッケル、タングステン、パラジウム、マグネシウ
ム、カルシウム、スズ、鉛、チタン、イットリウム、リ
チウム、ルテニウム、マンガン等の金属、またはそれら
の合金を用い、電極膜厚をおよそ50nm〜100nmに調
節した半透明電極を使用することも可能である。絶縁層
11,12には、ガラス、ポリエチレン、ポリエチレン
テレフタレート、ポリエーテルサルフォン、ポリプロピ
レン等の透明性絶縁材料を用いる。
FIG. 3 is a sectional view of a stacked solid-state imaging device according to the present invention. In FIG. 3, 31 is a substrate, 32A is a first organic dye-dispersed polymer layer, 32B is a second organic dye-dispersed polymer layer, and 32C is a third organic dye-dispersed polymer layer.
3A to 33F are electrodes, and 34A and 34B are insulating layers. As the material of the substrate 31, any of the materials described above can be used. The first to third organic dye-dispersed polymer layers 32A to 32C respectively include a red absorption layer, a green absorption layer,
Although it is a blue absorption layer, there is no particular limitation on the order of lamination of each color absorption layer, and a different material can be used for each color absorption layer also for a polymer that performs charge transport. Regarding the materials of the electrodes 33A to 33F, the above-described transparent electrodes such as indium tin oxide, indium oxide, and tin oxide are preferable, but aluminum, vanadium, gold, silver, platinum, iron, cobalt, carbon, nickel, Use a metal such as tungsten, palladium, magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, or an alloy thereof, and use a translucent electrode whose electrode thickness is adjusted to about 50 nm to 100 nm. Is also possible. For the insulating layers 11 and 12, a transparent insulating material such as glass, polyethylene, polyethylene terephthalate, polyether sulfone, or polypropylene is used.

【0021】[0021]

【実施例】以下、本発明を実施例に基づきさらに詳細に
説明する。有機色素としてクマリン6を、高分子として
ポリシランを用い、ポリシランのユニットモルに対する
クマリン6のモル比が5.0mol%になるようにクマリン
6を2.9mg、ポリシラン20mgを1mlのクロロホルム
に溶解することで混合溶液を調製した。この混合溶液を
20mm×20mmのインジウムスズ酸化物薄膜(ITO)電
極付き石英ガラス基板上に0.3ml滴下することによ
り膜厚1.0μmの有機色素添加高分子層を得た。その
上にアルミニウム電極を2mm×2mm膜厚120nmで形成
した。
The present invention will be described in more detail with reference to the following examples. Using coumarin 6 as an organic dye and polysilane as a polymer, dissolving 2.9 mg of coumarin 6 and 20 mg of polysilane in 1 ml of chloroform so that the molar ratio of coumarin 6 to unit mole of polysilane is 5.0 mol%. To prepare a mixed solution. 0.3 ml of this mixed solution was dropped onto a 20 mm × 20 mm quartz glass substrate provided with an indium tin oxide thin film (ITO) electrode to obtain a 1.0 μm-thick organic dye-added polymer layer. An aluminum electrode was formed thereon with a thickness of 2 mm × 2 mm and a thickness of 120 nm.

【0022】図4は、この実施例で得られた素子に直流
電圧10Vを印加したときの分光感度特性をグラフに示
したものである。ITO電極に正電圧を印加し、石英基
板側から50μW/cm2の光を照射した。図には比較の
ため、電荷輸送を担うポリシランのみの膜の特性も載せ
た。図から明らかなように、クマリン6色素に由来する
光電流が明瞭に観測された。
FIG. 4 is a graph showing spectral sensitivity characteristics when a DC voltage of 10 V is applied to the device obtained in this embodiment. A positive voltage was applied to the ITO electrode, and light of 50 μW / cm 2 was irradiated from the quartz substrate side. For comparison, the figure also shows the characteristics of a film made of only polysilane that performs charge transport. As is clear from the figure, a photocurrent derived from the coumarin 6 dye was clearly observed.

【0023】図5は、光電流極大波長における電圧−電
流特性をグラフに示したものである。光非照射時と比較
して、約10倍の光電流を得ることができた。
FIG. 5 is a graph showing the voltage-current characteristics at the maximum photocurrent wavelength. It was possible to obtain a photocurrent about 10 times as large as that when no light was irradiated.

【0024】なお、本発明は、上述した実施例、実施態
様により何ら限定されるものではなく、幾多の変形、修
正が可能である。例えば、赤外線領域で光を吸収し光電
荷を発生する有機色素を用いれば、赤外線用の撮像素子
として利用することも可能である。また、上記において
は、3原色への分解を例にとって説明したが、本発明は
3原色に限定されるものではなく、任意の要素色への分
解に適用できるものであることはもちろんである。
It should be noted that the present invention is not limited by the above-described embodiments and embodiments, and many variations and modifications are possible. For example, if an organic dye that absorbs light in the infrared region and generates a photocharge is used, it can be used as an infrared imaging element. In the above description, the separation into three primary colors has been described as an example. However, the present invention is not limited to the three primary colors, and it is needless to say that the present invention can be applied to the separation into arbitrary element colors.

【0025】[0025]

【発明の効果】以上に説明したように、本発明は有機色
素を有機高分子に分散させた光吸収層から成る光電変換
膜である。特に有機色素が光電荷を発生し、高分子層が
発生した電荷を輸送することを特徴とする光電変換膜で
あり、有機色素を選択することにより特定波長の光のみ
を吸収することを特徴とした光電変換膜及びこれらの光
電変換膜を具えることを特徴とする固体撮像装置であ
る。また、有機色素を適宜選択することにより赤、緑、
青吸収用の光電変換膜をそれぞれ用意し、これらを積層
または並列に配置することによって、単板式のフルカラ
ー固体撮像装置を実現できる。
As described above, the present invention is a photoelectric conversion film comprising a light absorbing layer in which an organic dye is dispersed in an organic polymer. In particular, a photoelectric conversion film is characterized in that an organic dye generates a photocharge and the polymer layer transports the generated charge, and is characterized by absorbing only light of a specific wavelength by selecting an organic dye. And a solid-state imaging device comprising these photoelectric conversion films. Also, by appropriately selecting an organic dye, red, green,
A single-panel full-color solid-state imaging device can be realized by preparing each of the blue-absorbing photoelectric conversion films and arranging them in layers or in parallel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による固体撮像装置の断面図である。FIG. 1 is a sectional view of a solid-state imaging device according to the present invention.

【図2】 本発明による並列型固体撮像装置の断面図で
ある。
FIG. 2 is a sectional view of a parallel solid-state imaging device according to the present invention.

【図3】 本発明による積層型固体撮像装置の断面図で
ある。
FIG. 3 is a sectional view of a stacked solid-state imaging device according to the present invention.

【図4】 本発明の実施例による光電変換素子の分光感
度特性のグラフである。
FIG. 4 is a graph of a spectral sensitivity characteristic of the photoelectric conversion element according to the embodiment of the present invention.

【図5】 本発明の実施例による光電変換素子の電圧−
電流特性のグラフである。
FIG. 5 is a graph showing a voltage of a photoelectric conversion element according to an embodiment of the present invention.
It is a graph of a current characteristic.

【符号の説明】[Explanation of symbols]

11 基板 12 有機色素分散高分子層 13 電極 21 基板 22A 第1の有機色素分散高分子層 22B 第2の有機色素分散高分子層 22C 第3の有機色素分散高分子層 23A〜23F 電極 31 基板 32A 第1の有機色素分散高分子層 32B 第2の有機色素分散高分子層 32C 第3の有機色素分散高分子層 33A〜33F 電極 34A、34B 絶縁層 Reference Signs List 11 substrate 12 organic dye-dispersed polymer layer 13 electrode 21 substrate 22A first organic dye-dispersed polymer layer 22B second organic dye-dispersed polymer layer 22C third organic dye-dispersed polymer layer 23A to 23F electrode 31 substrate 32A First organic dye-dispersed polymer layer 32B Second organic dye-dispersed polymer layer 32C Third organic dye-dispersed polymer layer 33A-33F Electrode 34A, 34B Insulating layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04N 9/07 H01L 29/28 Fターム(参考) 4M118 AA10 AB01 CA27 CB14 CB20 GA02 GC08 5C065 BB42 CC01 DD01 DD17 DD26 5F088 AA11 AB11 BA15 BB03 FA02 FA05 LA03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) H04N 9/07 H01L 29/28 F term (Reference) 4M118 AA10 AB01 CA27 CB14 CB20 GA02 GC08 5C065 BB42 CC01 DD01 DD17 DD26 5F088 AA11 AB11 BA15 BB03 FA02 FA05 LA03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 有機系高分子とその有機系高分子中に分
散され、所定の波長の光を吸収して、前記有機系高分子
中で輸送される電荷を発生させる有機色素と、を有する
ことを特徴とする光電変換膜。
1. An organic polymer and an organic dye dispersed in the organic polymer and absorbing light of a predetermined wavelength to generate a charge transported in the organic polymer. A photoelectric conversion film characterized by the above-mentioned.
【請求項2】 入射された光を電荷に変換する光電変換
膜を具え、 その光電変換膜が、 有機系高分子と、 その有機系高分子中に分散され、所定の波長の光を吸収
して、前記有機系高分子中で輸送される電荷を発生させ
る有機色素と、を有することを特徴とする固体撮像装
置。
2. A photoelectric conversion film for converting incident light into electric charge, wherein the photoelectric conversion film is dispersed in the organic polymer and the organic polymer, and absorbs light of a predetermined wavelength. A solid-state imaging device comprising: an organic dye that generates charges transported in the organic polymer.
【請求項3】 請求項2に記載の固体撮像装置におい
て、 前記有機色素が赤色光を吸収する第1の光電変換膜と、 前記有機色素が緑色光を吸収する第2の光電変換膜と、 前記有機色素が青色光を吸収する第3の光電変換膜と、
を具え、 これら第1〜第3の光電変換膜を、並列または積層して
配置したことを特徴とする装置。
3. The solid-state imaging device according to claim 2, wherein the organic dye absorbs red light, a first photoelectric conversion film, and the organic dye absorbs green light. A third photoelectric conversion film in which the organic dye absorbs blue light;
An apparatus comprising: the first to third photoelectric conversion films arranged in parallel or stacked.
JP2001007747A 2001-01-16 2001-01-16 Photoelectric conversion film and solid-state image sensor equipped with the same Pending JP2002217474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001007747A JP2002217474A (en) 2001-01-16 2001-01-16 Photoelectric conversion film and solid-state image sensor equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001007747A JP2002217474A (en) 2001-01-16 2001-01-16 Photoelectric conversion film and solid-state image sensor equipped with the same

Publications (1)

Publication Number Publication Date
JP2002217474A true JP2002217474A (en) 2002-08-02

Family

ID=18875460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001007747A Pending JP2002217474A (en) 2001-01-16 2001-01-16 Photoelectric conversion film and solid-state image sensor equipped with the same

Country Status (1)

Country Link
JP (1) JP2002217474A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008085160A (en) * 2006-09-28 2008-04-10 Fujifilm Corp Imaging element
JP2008294058A (en) * 2007-05-22 2008-12-04 Saitama Univ Imaging device and manufacturing method thereof
JP2012160619A (en) * 2011-02-01 2012-08-23 Nippon Hoso Kyokai <Nhk> Manufacturing method of imaging element and imaging element
JP2013020271A (en) * 2005-11-15 2013-01-31 Trustees Of Princeton Univ Organic electric camera
WO2014024581A1 (en) * 2012-08-09 2014-02-13 ソニー株式会社 Photoelectric conversion element, imaging device, and optical sensor
US8848047B2 (en) 2006-09-28 2014-09-30 Fujifilm Corporation Imaging device and endoscopic apparatus
US10043992B2 (en) 2011-09-09 2018-08-07 Samsung Electronics Co., Ltd. Photodiode
JP2020088170A (en) * 2018-11-26 2020-06-04 住友化学株式会社 Organic photoelectric conversion element
JP2021190551A (en) * 2020-05-29 2021-12-13 富士フイルム株式会社 Photoelectric conversion element, image sensor, optical sensor, and compound

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020271A (en) * 2005-11-15 2013-01-31 Trustees Of Princeton Univ Organic electric camera
US8848047B2 (en) 2006-09-28 2014-09-30 Fujifilm Corporation Imaging device and endoscopic apparatus
JP2008085160A (en) * 2006-09-28 2008-04-10 Fujifilm Corp Imaging element
JP2008294058A (en) * 2007-05-22 2008-12-04 Saitama Univ Imaging device and manufacturing method thereof
JP2012160619A (en) * 2011-02-01 2012-08-23 Nippon Hoso Kyokai <Nhk> Manufacturing method of imaging element and imaging element
US10043992B2 (en) 2011-09-09 2018-08-07 Samsung Electronics Co., Ltd. Photodiode
US11114634B2 (en) 2011-09-09 2021-09-07 Samsung Electronics Co., Ltd. Photodiode
JPWO2014024581A1 (en) * 2012-08-09 2016-07-25 ソニー株式会社 Photoelectric conversion element, imaging device, and optical sensor
US10199587B2 (en) 2012-08-09 2019-02-05 Sony Corporation Photoelectric conversion element, imaging device, and optical sensor
US10665802B2 (en) 2012-08-09 2020-05-26 Sony Corporation Photoelectric conversion element, imaging device, and optical sensor
WO2014024581A1 (en) * 2012-08-09 2014-02-13 ソニー株式会社 Photoelectric conversion element, imaging device, and optical sensor
US11183654B2 (en) 2012-08-09 2021-11-23 Sony Corporation Photoelectric conversion element, imaging device, and optical sensor
JP2020088170A (en) * 2018-11-26 2020-06-04 住友化学株式会社 Organic photoelectric conversion element
JP2021190551A (en) * 2020-05-29 2021-12-13 富士フイルム株式会社 Photoelectric conversion element, image sensor, optical sensor, and compound
JP7366841B2 (en) 2020-05-29 2023-10-23 富士フイルム株式会社 Photoelectric conversion elements, image sensors, optical sensors, compounds

Similar Documents

Publication Publication Date Title
EP1801875B1 (en) Composite light-receiving device made of differential and stationary response-type device and image sensor
JP2003234460A (en) Multilayer photoconductive film and solid state imaging device
JP5171178B2 (en) Image sensor and manufacturing method thereof
JP2006270021A (en) Laminated photoelectric conversion element
JP2000268891A (en) Multi-color pigment sensitizing transparent semiconductor electrode member and its manufacture, multi-color pigment sensitization type solar battery, and display element
JP2003158254A (en) Photoconductive film and solid-state image pickup device
WO2005096403A2 (en) Organic photoelectric conversion element utilizing an inorganic buffer layer placed between an electrode and the active material
US20140060613A1 (en) Method and apparatus for integrating an infrared (ir) photovoltaic cell on a thin film photovoltaic cell
JP2004134933A (en) Digital still camera and manufacturing method thereof
US20110259425A1 (en) Organic thin film solar cell
JP2009252768A (en) Organic solar cell and method of manufacturing the same
WO2014181072A1 (en) Photovoltaic device and method of manufacture using ferovs
CN105390528A (en) Display device with high luminous aperture ratio and preparation method thereof
JP2002217474A (en) Photoelectric conversion film and solid-state image sensor equipped with the same
JP2015128105A (en) Semiconductor nanoparticle dispersion, photoelectric conversion element, and imaging apparatus
US20070045520A1 (en) Photoelectric conversion device and imaging device
JP2011014815A (en) Photoelectric conversion device, method of manufacturing photoelectric conversion device, and electronic apparatus mounted with photoelectric conversion device
JP2006237165A (en) Organic solar cell module and manufacturing method thereof
JP5207436B2 (en) Image sensor and manufacturing method thereof
JP2005302806A (en) Imaging sensor
EP3140867B1 (en) Matrix detection device incorporating a metal mesh in a detection layer, and manufacturing method
JP4074803B2 (en) Method for manufacturing photoelectric conversion element
JP3288472B2 (en) Photoelectric conversion element and method for manufacturing the same
JPS63300575A (en) Color sensor
CN116806447A (en) Display device and manufacturing method of display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909