JP2002217342A - Phase change type heat radiating member, its manufacturing method and application - Google Patents
Phase change type heat radiating member, its manufacturing method and applicationInfo
- Publication number
- JP2002217342A JP2002217342A JP2001007412A JP2001007412A JP2002217342A JP 2002217342 A JP2002217342 A JP 2002217342A JP 2001007412 A JP2001007412 A JP 2001007412A JP 2001007412 A JP2001007412 A JP 2001007412A JP 2002217342 A JP2002217342 A JP 2002217342A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- phase
- radiating member
- adhesive portion
- change
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 230000008859 change Effects 0.000 title abstract description 14
- 239000000853 adhesive Substances 0.000 claims abstract description 61
- 230000001070 adhesive effect Effects 0.000 claims abstract description 61
- 238000010438 heat treatment Methods 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 12
- 239000011231 conductive filler Substances 0.000 claims description 20
- 239000012188 paraffin wax Substances 0.000 claims description 20
- 239000001993 wax Substances 0.000 claims description 20
- 239000012212 insulator Substances 0.000 claims description 11
- 229920005992 thermoplastic resin Polymers 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 230000005855 radiation Effects 0.000 abstract description 26
- 230000020169 heat generation Effects 0.000 abstract 3
- 238000001816 cooling Methods 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 24
- 239000002245 particle Substances 0.000 description 15
- 239000011159 matrix material Substances 0.000 description 13
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 238000002844 melting Methods 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 229910052582 BN Inorganic materials 0.000 description 5
- 229920002799 BoPET Polymers 0.000 description 5
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 239000006243 Fine Thermal Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 229920000578 graft copolymer Polymers 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- -1 methylsiloxane Chemical class 0.000 description 2
- 239000004200 microcrystalline wax Substances 0.000 description 2
- 235000019808 microcrystalline wax Nutrition 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- UTOPWMOLSKOLTQ-UHFFFAOYSA-N octacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O UTOPWMOLSKOLTQ-UHFFFAOYSA-N 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- CRHLEZORXKQUEI-UHFFFAOYSA-N dialuminum;cobalt(2+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Co+2].[Co+2] CRHLEZORXKQUEI-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 235000013872 montan acid ester Nutrition 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、相変化型放熱部材
及びその製造方法、用途に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase change type heat radiating member, a method of manufacturing the same, and a use thereof.
【0002】[0002]
【従来の技術】近年、発熱性電子部品は高密度化によ
り、放熱部材の高熱伝導化の要求が益々高まっている。
また、携帯用パソコンをはじめ電子機器は小型化、薄型
化、軽量化が進み、従って、これら電子機器に用いられ
る放熱部材も高熱伝導性のものが要求されている。2. Description of the Related Art In recent years, the demand for higher heat conductivity of heat dissipating members has been increasing with the increase in density of heat-generating electronic components.
In addition, electronic devices such as portable personal computers are becoming smaller, thinner, and lighter. Accordingly, heat dissipating members used in these electronic devices are required to have high thermal conductivity.
【0003】従来、放熱部材の熱伝導率を向上させる方
法としては、高熱伝導性フィラーを含有する放熱グリー
スや、シリコーンゴムなどの柔軟、且つ復元力のあるマ
トリックスに熱伝導性の高い粒子を分散させたものが主
流となっている。Conventionally, as a method for improving the thermal conductivity of a heat dissipating member, a heat dissipating grease containing a high thermal conductive filler, or particles having high thermal conductivity are dispersed in a flexible and resilient matrix such as silicone rubber. What has been done is the mainstream.
【0004】しかしながら、放熱グリースは塗布工程で
の作業性の悪さ、周辺部位の汚れなどの問題から敬遠さ
れる傾向にある。また、熱伝導率の高い粒子を分散させ
た柔軟性部材では使用時の厚みが比較的厚くなるため、
発熱性電子部品と放熱フィンの間に装着した場合、放熱
部材自身の熱伝導性が高くとも、実装を踏まえた伝熱指
標である熱抵抗を極端に下げることは難しかった。However, heat radiation grease tends to be avoided due to problems such as poor workability in a coating process and contamination of peripheral parts. In addition, since the thickness of the flexible member in which particles having high thermal conductivity are dispersed becomes relatively thick when used,
When mounted between the heat-generating electronic component and the radiation fins, it has been difficult to extremely reduce the thermal resistance, which is a heat transfer index based on mounting, even if the heat radiation member itself has high thermal conductivity.
【0005】すなわち、放熱部材自身の熱伝導率を上
げ、しかも放熱部材が発熱性電子部品と放熱フィンのそ
れぞれの接合面に微視的に追随して密着することで熱接
触抵抗を低減させるとともに、使用時の部材厚みがを極
力薄くなるすることが理想的である。That is, the thermal conductivity of the heat dissipating member itself is increased, and the heat dissipating member microscopically follows and closely adheres to the joint surface between the heat-generating electronic component and the heat dissipating fin, thereby reducing the thermal contact resistance. Ideally, the thickness of the member during use should be as small as possible.
【0006】一方、高熱伝導性フィラーとしては窒化ア
ルミニウム、窒化ホウ素、窒化ケイ素、アルミナ、炭化
ケイ素、黒鉛、ダイヤモンド、金属あるいはこれらの混
合物などがあるが、とりわけ窒化アルミニウムが適して
おり、これを用いた放熱部材は数多く提案されている
(特開平2−133450号公報、特開平3−1487
3号公報、特開平4−174910号公報、特開平6−
164174号公報、特開平6−209057号公報な
ど)。しかしながら、前述のように放熱部材にこれら高
熱伝導性フィラーを分散させたとしても、放熱部材自身
の熱伝導率の向上は期待できるものの、熱抵抗を飛躍的
に低減せしめることは難しかった。On the other hand, as the high thermal conductive filler, there are aluminum nitride, boron nitride, silicon nitride, alumina, silicon carbide, graphite, diamond, metal or a mixture thereof. Among them, aluminum nitride is particularly suitable. Many heat dissipating members have been proposed (JP-A-2-133450, JP-A-3-1487).
No. 3, JP-A-4-174910 and JP-A-6-174910.
164174, JP-A-6-209057, etc.). However, even if these high thermal conductive fillers are dispersed in the heat dissipating member as described above, it is difficult to drastically reduce the thermal resistance, although the thermal conductivity of the heat dissipating member itself can be improved.
【0007】他方、特開平10−67910号公報で
は、メチルシロキサンホストと単一末端に不飽和結合を
有する線状炭化水素のポリオルガノシロキサングラフト
重合体からなる熱的に安定なワックスと、アルミナ、窒
化ほう素、黒鉛、炭化けい素、ダイヤモンド、金属粉末
あるいはそれらの混合物からなる群から選択された熱伝
導性粒状固体粘度安定化剤からなる界面材が開示されて
いるが、このようなポリオルガノシロキサングラフト重
合体は高価であるとともに、比較的溶融粘度が高くなる
ため、所意の流動性を発現させるためには高熱伝導性フ
ィラーの充填量も極めて限られていた。On the other hand, JP-A-10-67910 discloses a thermally stable wax comprising a methylsiloxane host and a polyorganosiloxane graft polymer of a linear hydrocarbon having an unsaturated bond at a single terminal, alumina, An interface material comprising a thermally conductive particulate solid viscosity stabilizer selected from the group consisting of boron nitride, graphite, silicon carbide, diamond, metal powder or mixtures thereof has been disclosed. Since the siloxane graft polymer is expensive and has a relatively high melt viscosity, the amount of the high heat conductive filler to be filled is extremely limited in order to express desired fluidity.
【0008】また、特開平06−13508号公報で
は、加熱時に粘性流を示す熱伝導性半流体物質が充填さ
れた金属メッシュを含むことを特徴とする熱インターフ
ェースが開示されており、それらの熱伝導率は2.3〜
2.7W/mKであることが記載されている。しかし、
補強材が金属メッシュであり導電性を有するため、その
用途が限られると同時に、接合面が複雑な形状であると
きにはその形状に追随したものとすることは困難であ
る。Japanese Patent Application Laid-Open No. 06-13508 discloses a thermal interface characterized by including a metal mesh filled with a thermally conductive semi-fluid material that exhibits a viscous flow when heated. Conductivity is 2.3 ~
It is described as 2.7 W / mK. But,
Since the reinforcing material is a metal mesh and has conductivity, its use is limited, and at the same time, when the joining surface has a complicated shape, it is difficult to follow the shape.
【0009】さらには、特許第3032505号公報で
は、熱伝導フィラーが分散され、外部からの加熱により
相変化を生じ、電子部品に当接して電子部品と放熱板と
を連接することができる相変化部材が開示されている。
加熱により容易に相変化を生じることで、電子部品に当
接させることはできるが、相変化部材をヒートシンクに
固定させる際に接着剤を用いて貼り付けねばならず、接
着剤を塗布する手間を要する上に、相変化部材実装後に
接着剤が熱抵抗層となって発熱性電子部品からの放熱を
阻害する懸念がある。Further, in Japanese Patent No. 3032505, a phase change is generated in which a heat conductive filler is dispersed and a phase change is caused by external heating, so that the phase change can be brought into contact with the electronic component and connect the electronic component and the heat sink. A member is disclosed.
By causing a phase change easily by heating, it can be brought into contact with the electronic component, but when the phase change member is fixed to the heat sink, it must be attached using an adhesive, which saves the trouble of applying the adhesive. In addition, there is a concern that the adhesive becomes a heat resistance layer after the mounting of the phase change member and hinders heat radiation from the heat-generating electronic component.
【0010】[0010]
【発明が解決しようとする課題】本発明は上記に鑑みて
なされたものであり、その目的は加温によって相変化す
る放熱部材において、その少なくとも一方の面に、粘着
性を付与することを特徴とする、発熱性電子部品と放熱
フィンとの間への実装作業において位置決めや位置の修
正が容易にできるようにして作業性を向上させた、相変
化型放熱部材を提供することである。SUMMARY OF THE INVENTION The present invention has been made in view of the above, and an object of the present invention is to provide a heat-dissipating member which undergoes a phase change by heating to impart tackiness to at least one surface thereof. An object of the present invention is to provide a phase-change-type heat radiating member in which positioning and position correction can be easily performed in a mounting operation between a heat-generating electronic component and a heat radiating fin to improve workability.
【0011】また、網目状絶縁体と一体化しても、高熱
伝導率の著しい低下を伴わず、格段に扱いやすくなり、
切断等により所望の形状に加工することが可能な放熱部
材及び、これを用いた放熱フィン一体型発熱性部品の構
造体を提供することである。[0011] Further, even when integrated with a mesh-shaped insulator, it is much easier to handle without a significant decrease in high thermal conductivity.
An object of the present invention is to provide a heat dissipating member that can be processed into a desired shape by cutting or the like, and a heat dissipating fin integrated heat generating component structure using the heat dissipating member.
【0012】[0012]
【課題を解決するための手段】すなわち、本発明は以下
の通りである。 (請求項1)加温によって相変化する放熱部材におい
て、その少なくとも一方の面に、粘着部を点在させてな
ることを特徴とする相変化型放熱部材。 (請求項2)加温によって相変化する放熱部材が、ワッ
クス及び/又はパラフィンと高熱伝導性フィラーを含有
してなることを特徴とする請求項1記載の相変化型放熱
部材。 (請求項3)熱可塑性樹脂を更に含有してなることを特
徴とする請求項2記載の相変化型放熱部材。 (請求項4)網目状絶縁体で補強されてなることを特徴
とする請求項1〜3のいずれかに記載の相変化型放熱部
材。 (請求項5)粘着部の平面形状が、円形、長短径比2以
下の楕円形もしくはこれらに類似する形状であって、隣
接する粘着部同士の中心間距離が粘着部の平均円相当径
の3倍〜10倍であり、しかも粘着部の形成率が粘着部
形成面の面積の0.8〜20%であることを特徴とする
請求項1〜4のいずれかに記載の相変化型放熱部材。 (請求項6)請求項1〜5のいずれかに記載の放熱部材
を用いて発熱性電子部品と放熱フィンが接着されてなる
ことを特徴とする放熱フィン一体型発熱性電子部品の構
造体。 (請求項7)加温によって相変化する放熱部材を用意
し、その少なくとも粘着部を形成させる面に孔を点在さ
せたフィルムを配置し、そのフィルム上面から粘着剤を
塗布した後、フィルムを取り除き、孔部に対応する粘着
部を形成させることを特徴とする相変化型放熱部材の製
造方法。 (請求項8)加温によって相変化する放熱部材が、ワッ
クス及び/又はパラフィンと高熱伝導性フィラーとを含
有してなることを特徴とする請求項7記載の相変化型放
熱部材の製造方法。 (請求項9)熱可塑性樹脂を更に含有してなることを特
徴とする請求項8記載の相変化型放熱部材の製造方法。 (請求項10)網目状絶縁体で補強されてなることを特
徴とする請求項7〜9のいずれかに記載の相変化型放熱
部材の製造方法。That is, the present invention is as follows. (Claim 1) A phase-change-type heat radiating member, wherein an adhesive portion is interspersed on at least one surface of the heat radiating member that changes phase by heating. (2) The heat-dissipating member according to (1), wherein the heat-dissipating member that changes its phase by heating contains wax and / or paraffin and a high thermal conductive filler. (Claim 3) The phase change type heat radiating member according to claim 2, further comprising a thermoplastic resin. (4) The phase-change-type heat radiating member according to any one of (1) to (3), which is reinforced with a mesh-shaped insulator. (Claim 5) The planar shape of the adhesive portion is a circle, an elliptical shape having a ratio of major axis to minor axis of 2 or less, or a shape similar thereto, and the center-to-center distance between adjacent adhesive portions is the average circle equivalent diameter of the adhesive portion. The phase-change type heat radiation according to any one of claims 1 to 4, wherein the heat radiation rate is 3 to 10 times, and the formation ratio of the adhesive portion is 0.8 to 20% of the area of the surface on which the adhesive portion is formed. Element. (6) A structure of a heat-radiating fin-integrated heat-generating electronic component, wherein the heat-generating electronic component and the heat-radiating fin are bonded using the heat-radiating member according to any one of (1) to (5). (Claim 7) A heat-dissipating member that changes phase by heating is prepared, a film having holes scattered on at least a surface on which an adhesive portion is formed is arranged, and an adhesive is applied from the upper surface of the film. A method for manufacturing a phase-change-type heat radiating member, comprising removing an adhesive portion corresponding to a hole. (Claim 8) The method for manufacturing a phase-change-type heat radiating member according to claim 7, wherein the heat radiating member that changes phase by heating contains wax and / or paraffin and a high heat conductive filler. (Claim 9) The method for producing a phase-change-type heat radiation member according to claim 8, further comprising a thermoplastic resin. (Claim 10) The method of manufacturing a phase-change-type heat radiating member according to any one of claims 7 to 9, wherein the method is reinforced with a mesh-shaped insulator.
【0013】[0013]
【発明の実施の形態】以下、更に詳しく本発明について
説明する。本発明の大きな特徴は、室温においては固体
であるが加温によって相変化する、すなわち所要の温度
で流動性が良好になる高熱伝導性組成物を得て、その組
成物の厚みを薄化した成形体の少なくとも一方の面に粘
着部を点在させることによって、発熱性電子部品と放熱
フィンとの間への実装作業において、位置決めや位置の
修正が容易にできる放熱部材が得られることであり、さ
らにはこの成形体を網目状絶縁体で補強することによっ
て、取り扱い性に優れ、加工性の良好な放熱部材が得ら
れることである。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. A major feature of the present invention is that a highly thermally conductive composition that is solid at room temperature but undergoes a phase change upon heating, that is, has good fluidity at a required temperature, and has a reduced thickness. By dispersing the adhesive portions on at least one surface of the molded body, a mounting member between the heat-generating electronic component and the heat-radiating fin can be provided with a heat-radiating member that can be easily positioned and corrected. Further, by reinforcing this molded body with a mesh-shaped insulator, a heat-dissipating member having excellent handleability and good workability can be obtained.
【0014】本発明の相変化型放熱部材を構成する、所
要の温度で流動性が良好になる高熱伝導性組成物の例と
して、高熱伝導性フィラーをマトリックスに充填してな
る組成物を挙げることができる。マトリックスとして
は、室温においては固体であり、加熱により低粘度の液
体となる樹脂等が用いられるが、とりわけ融点を40〜
100℃の範囲に有するワックス及び/又はパラフィン
が優れている。As an example of the high heat conductive composition constituting the phase change type heat radiating member of the present invention and having good fluidity at a required temperature, a composition obtained by filling a matrix with a high heat conductive filler is cited. Can be. As the matrix, a resin or the like which is solid at room temperature and becomes a low-viscosity liquid by heating is used.
Waxes and / or paraffins in the range of 100 ° C. are excellent.
【0015】ワックス及び/又はパラフィンをマトリッ
クスとした放熱部材を用いて、発熱性電子部品と放熱フ
ィンを加熱・加圧して接合させると、流動性が良好であ
るので、それぞれの接合面に微視的に追随して密着し、
隙間を十分に埋めることによって熱接触抵抗を低減さ
せ、発生した熱を放熱フィン方向に円滑に伝達すること
ができる。また、両者を極力近接させることが可能とな
り、放熱効率が向上する。When the heat-generating electronic component and the heat-radiating fin are joined by heating and pressing using a heat-dissipating member having a matrix of wax and / or paraffin, the fluidity is good. Closely following and closely
By sufficiently filling the gap, the thermal contact resistance can be reduced, and the generated heat can be smoothly transmitted in the direction of the radiation fins. Further, both can be brought as close as possible, and the heat radiation efficiency is improved.
【0016】本発明に使用されるワックス又はパラフィ
ンの融点が40℃未満であれば、成形体として用いた時
に、夏場などの高温期に組成物が液状化してしまい形状
が保持できなくなる懸念があり、融点が100℃を超え
ると加熱溶融させて発熱性電子部品に接着する際に、電
子部品を高温にしてしまうことになるので好ましくな
い。If the melting point of the wax or paraffin used in the present invention is less than 40 ° C., when used as a molded article, there is a concern that the composition may be liquefied in a high temperature period such as summer and the shape cannot be maintained. On the other hand, if the melting point exceeds 100 ° C., the temperature of the electronic component becomes high when it is heated and melted and bonded to the heat-generating electronic component, which is not preferable.
【0017】ワックスの種類としては、マイクロクリス
タリンワックス、モンタン酸ワックス、モンタン酸エス
テルワックス等を挙げることができるが、融点が上記の
条件を満たすものであれば、これらに限定されるもので
はない。パラフィンとしてはパラフィンワックスが挙げ
られ、流動パラフィンに対して室温で固体のパラフィン
を特にパラフィンワックスと称する。これらの具体例と
しては日本精蝋社製の「パラフィンワックス・シリー
ズ」、「マイクロクリスタリンワックス Hi−Mic
・シリーズ」などを例示することができる。また、これ
らのワックス及びパラフィンは単独でも2種類以上を混
合して使用してもよい。Examples of the type of wax include microcrystalline wax, montanic acid wax, montanic acid ester wax, and the like, but are not limited to these as long as the melting point satisfies the above conditions. Paraffin includes paraffin wax, and paraffin that is solid at room temperature with respect to liquid paraffin is particularly referred to as paraffin wax. Specific examples of these are "Paraffin Wax Series" and "Microcrystalline Wax Hi-Mic" manufactured by Nippon Seiwa.
・ Series ”and the like. These waxes and paraffins may be used alone or in combination of two or more.
【0018】本発明で使用される40〜100℃で軟化
する熱可塑性樹脂は、ワックス又はパラフィンに混合し
成形体としたときに、クリープ性、脆さの改善効果を示
すものである。たとえば、エチレン系樹脂、プロピレン
系樹脂、エチレン−α−オレフィン共重合体、エチレン
−酢酸ビニル共重合体等を挙げることができるが、上記
効果を示すものであれば、これらに限定されるものでは
ない。ワックス又はパラフィンを融点以上の温度で加熱
溶融させて混合する際に、均一に混合されるものが好ま
しい。これらの具体例としては三井化学社製の「ハイワ
ックス110P」、「ハイワックスNP055」、「タ
フマーP−0180」、三井・デュポンポリケミカル社
製「エバフレックス150」などを例示することができ
る。The thermoplastic resin used in the present invention, which softens at 40 to 100 ° C., exhibits an effect of improving creep properties and brittleness when it is mixed with wax or paraffin to form a molded article. For example, ethylene-based resins, propylene-based resins, ethylene-α-olefin copolymers, ethylene-vinyl acetate copolymers and the like can be cited, but those that exhibit the above effects are not limited thereto. Absent. When the wax or paraffin is heated and melted at a temperature equal to or higher than the melting point and mixed, it is preferable that the wax or paraffin be uniformly mixed. Specific examples thereof include "HIWAX 110P", "HIWAX NP055" and "TAFMER P-0180" manufactured by Mitsui Chemicals, Inc., and "Evaflex 150" manufactured by Dupont Mitsui Polychemicals.
【0019】上記熱可塑性樹脂はワックス又はパラフィ
ンよりも比較的熱伝導率が高いので、放熱部材の放熱特
性を向上させる一端を担う作用も期待できる。上記熱可
塑性樹脂は、ワックス及び/又はパラフィンに対して4
0体積%以下で混合することができる。40体積%を超
えて混合すると、放熱部材として加熱・加圧したとき
に、流動性が不良となり、発熱性電子部品と放熱フィン
の接合面への密着性が不良となり、従って両者の隙間を
十分に埋めることが困難となる。また、密着性を上げる
ためには加圧を大きくする必要があり、電子部品の信頼
性のためには好ましくない。Since the above-mentioned thermoplastic resin has a relatively higher thermal conductivity than wax or paraffin, it can be expected to have an effect of improving the heat radiation characteristics of the heat radiation member. The thermoplastic resin has a content of 4 to wax and / or paraffin.
It can be mixed at 0% by volume or less. If the mixing exceeds 40% by volume, when heated and pressed as a heat dissipating member, the fluidity becomes poor, and the adhesion between the heat-generating electronic component and the heat dissipating fins becomes poor, so that the gap between them is sufficiently reduced. It becomes difficult to fill in. Further, it is necessary to increase the pressure in order to increase the adhesion, which is not preferable for the reliability of the electronic component.
【0020】本発明に用いられる高熱伝導性フィラー
は、例えば窒化アルミニウム、窒化ケイ素、窒化ホウ
素、アルミナ、炭化ケイ素、黒鉛、ダイヤモンド、金属
あるいはこれらの混合物などであるが、特に窒化アルミ
ニウムが適している。窒化アルミニウムフィラーは、例
えば原料の窒化アルミニウム粉末に酸化イットリウム等
の焼結助剤を0.5〜10%程度添加して成形後、窒
素、アルゴン等の非酸化性雰囲気下、温度1600〜2
000℃程度で焼結された窒化アルミニウム焼結体を粉
砕して得ることができる。The high thermal conductive filler used in the present invention is, for example, aluminum nitride, silicon nitride, boron nitride, alumina, silicon carbide, graphite, diamond, metal, or a mixture thereof. Aluminum nitride is particularly suitable. . The aluminum nitride filler is formed, for example, by adding about 0.5 to 10% of a sintering aid such as yttrium oxide to the raw material aluminum nitride powder, and then molding the mixture under a non-oxidizing atmosphere such as nitrogen or argon at a temperature of 1600-2.
An aluminum nitride sintered body sintered at about 000 ° C. can be obtained by grinding.
【0021】高熱伝導性フィラーは、その粒子径が大き
いものほど熱伝導パスが生じて伝熱しやすくなるので好
ましい。しかし、あまりにも粒子径が大きくなると、粒
子表面の凸凹が大きくなり、伝熱抵抗となる空気層が形
成されやすくなり、更には近接した発熱性電子部品と放
熱フィンに接触してしまい、それらの近接を妨げる懸念
があるので、平均粒径が10〜50μmの粉末であるこ
とが好ましい。The larger the particle size of the high thermal conductive filler, the larger the size of the thermal conductive path and the more easily the heat can be transferred. However, if the particle diameter is too large, the unevenness of the particle surface becomes large, an air layer serving as heat transfer resistance is easily formed, and furthermore, it comes into contact with the heat-generating electronic components and the radiation fins in close proximity to each other. It is preferable that the powder has an average particle diameter of 10 to 50 μm because there is a concern that the approach may be hindered.
【0022】高熱伝導性フィラーの含有量は、全組成物
に対して、45〜55体積%であることが好ましく、特
に47〜50体積%であることが好ましい。45体積%
未満では所要の熱伝導性が得られにくく、55体積%超
ではマトリックスの溶融温度における流動性が悪くな
る。The content of the high thermal conductive filler is preferably from 45 to 55% by volume, particularly preferably from 47 to 50% by volume, based on the total composition. 45% by volume
If it is less than 50%, the required thermal conductivity is hardly obtained, and if it exceeds 55% by volume, the fluidity of the matrix at the melting temperature becomes poor.
【0023】本発明においては、上記高熱伝導性フィラ
ーは、平均粒径が10μm以下の良熱伝導性微粉末と併
用されることが好ましい。何故ならば、平均粒径が10
〜50μmの粉末のみでは、その平均粒径が比較的大きい
ことから充填密度が限られ、熱伝導性の向上に限界があ
るが、良熱伝導性微粉末を併用することで充填密度が上
げられ、熱伝導性改善効果が期待できるからである。In the present invention, the above-mentioned high thermal conductive filler is preferably used in combination with a good thermal conductive fine powder having an average particle diameter of 10 μm or less. Because the average particle size is 10
In the case of powder of only 50 μm, the packing density is limited due to its relatively large average particle size, and there is a limit to the improvement in thermal conductivity. However, the packing density can be increased by using fine powder having good thermal conductivity in combination. This is because an effect of improving thermal conductivity can be expected.
【0024】良熱伝導性微粉末としては、窒化アルミニ
ウム、窒化けい素、窒化ほう素、炭化けい素、アルミ
ナ、酸化亜鉛などの非導電性の微粉末が挙げられる。中
でも、窒化アルミニウムおよびアルミナが好ましいが、
平均粒径が10μm以下のものであれば、これらに限定
されるものではない。良熱伝導性微粉末は1種又は2種
以上を混合して用いられる。Examples of the fine powder having good thermal conductivity include non-conductive fine powders such as aluminum nitride, silicon nitride, boron nitride, silicon carbide, alumina and zinc oxide. Among them, aluminum nitride and alumina are preferred,
It is not limited to these as long as the average particle size is 10 μm or less. The good heat conductive fine powder is used alone or in combination of two or more.
【0025】平均粒径が10〜50μmの高熱伝導性フ
ィラーと平均粒径が10μm以下の良熱伝導性微粉末か
らなる混合粉末の合計の含有率は、全組成物に対して7
5体積%以下であることが好ましく、特に50〜70体
積%であることが好ましい。75体積%を越えるとマト
リックスの溶融温度における流動性が悪くなる。The total content of the mixed powder composed of the high thermal conductive filler having an average particle diameter of 10 to 50 μm and the finely heat conductive fine powder having an average particle diameter of 10 μm or less is 7 to the total composition.
It is preferably 5% by volume or less, particularly preferably 50 to 70% by volume. If it exceeds 75% by volume, the fluidity of the matrix at the melting temperature becomes poor.
【0026】高熱伝導性フィラーと良熱伝導性微粉末か
らなる上記混合粉末のマトリックスへの濡れ性を改善
し、分散性を高める目的で、両者を混合する前にそれら
粉末の表面改質処理を行なっておくこともできる。表面
処理としては、一般的な界面活性剤やカップリング剤を
混合することで行なうことができる。表面処理により、
粉末表面に薄い皮膜層が形成され、マトリックスに対す
る濡れ性が向上する。とりわけ、平均粒径が10μm以
下の良熱伝導性微粉末として窒化アルミニウム微粉末を
用いる場合は、耐水性が著しく向上する。In order to improve the wettability of the mixed powder comprising the high thermal conductive filler and the fine powder having good thermal conductivity to the matrix and to enhance the dispersibility, the powder is subjected to a surface modification treatment before mixing the two. You can also do it. The surface treatment can be performed by mixing a general surfactant or a coupling agent. By surface treatment,
A thin film layer is formed on the powder surface, and the wettability to the matrix is improved. In particular, when aluminum nitride fine powder is used as the good heat conductive fine powder having an average particle diameter of 10 μm or less, the water resistance is significantly improved.
【0027】本発明においては、上記材料の他に熱伝導
率及び流動性に影響のない範囲であれば、必要に応じて
炭化水素系合成油、α−オレフィンのオリゴマーなどの
軟化剤、ハロゲン系、リン酸エステル系などの難燃剤、
シラン系、チタネート系カップリング剤などの粉体表面
改質剤、ビスフェノール系、ヒンダード・フェノール系
などの耐酸化剤、ピリジン系、トリアジン系などの抗菌
剤、べんがら、アルミン酸コバルトなどの着色剤等を含
有させることもできる。In the present invention, in addition to the above-mentioned materials, a hydrocarbon-based synthetic oil, a softener such as an α-olefin oligomer, a halogen-based , Phosphate ester and other flame retardants,
Powder surface modifiers such as silane-based and titanate-based coupling agents, oxidation-resistant agents such as bisphenol-based and hindered phenol-based, antibacterial agents such as pyridine-based and triazine-based, and colorants such as benga and cobalt aluminate Can also be contained.
【0028】本発明の放熱部材は、室温においては固体
であり、加熱により低粘度の液体となるワックス及び/
又はパラフィン等のマトリックス材料、熱伝導性フィラ
ー、熱可塑性樹脂及び良熱伝導性微粉末を、マトリック
ス材料の融点以上の温度でブレンダーやミキサー等を用
いて混合し、所望形状に成形後、その成形体の少なくと
も一方の面に粘着部を点在させることによって製造する
ことができる。The heat dissipating member of the present invention is a wax and / or wax which is solid at room temperature and becomes a low-viscosity liquid upon heating.
Or, a matrix material such as paraffin, a thermally conductive filler, a thermoplastic resin and a finely thermally conductive powder are mixed using a blender, a mixer, or the like at a temperature equal to or higher than the melting point of the matrix material, and molded into a desired shape. It can be manufactured by interspersing adhesive portions on at least one surface of the body.
【0029】本発明の放熱部材においては、粘着部を点
在ではなく面状に形成させると、放熱部材実装時に粘着
部が熱抵抗層となり放熱特性が低下してしまう。放熱特
性を低下させないためには、点在させる粘着部の平面形
状は、円形、長短径比2以下の楕円形もしくはこれらに
類似する形状であって、隣接する粘着部同士の中心間距
離が粘着部の平均円相当径の3倍〜10倍であり、しか
も粘着部の形成率が粘着部形成面の面積の0.8〜20
%であることが特に好ましい。In the heat dissipating member of the present invention, if the adhesive portion is formed in a plane instead of being scattered, the adhesive portion becomes a heat resistance layer when the heat dissipating member is mounted, and the heat radiation characteristics are degraded. In order not to lower the heat radiation characteristics, the planar shape of the adhesive portions to be dotted is a circle, an elliptical shape having a ratio of major axis to minor axis of 2 or less, or a similar shape, and the center-to-center distance between adjacent adhesive portions is 3 to 10 times the average circle equivalent diameter of the adhesive portion, and the formation rate of the adhesive portion is 0.8 to 20 times the area of the adhesive portion forming surface.
% Is particularly preferred.
【0030】隣接する粘着部同士の中心間距離が粘着部
の平均円相当径の3倍未満の場合、粘着部の形成率が全
面積の20%を超える場合、あるいは隣接する粘着部同
士の中心間距離が粘着部の平均円相当径の3倍〜10倍
でありしかも粘着部の形成率が粘着部形成面の面積の
0.8〜20%であっても、点在させる粘着部の平面形
状が長短径比2を超える楕円形もしくはこれらに類似す
る形状である場合は、放熱部材実装時に粘着部が熱抵抗
層となり放熱特性が低下する恐れがある。一方、隣接す
る粘着部同士の中心間距離が粘着部の平均円相当径の1
0倍超あるいは粘着部の形成率が粘着部形成面の面積の
0.8%未満の場合は、粘着力が不充分なため放熱部材
実装時にが位置ずれが生じやすくなる。When the distance between the centers of the adjacent adhesive portions is less than three times the average equivalent circle diameter of the adhesive portions, when the formation ratio of the adhesive portions exceeds 20% of the entire area, or when the center of the adjacent adhesive portions is Even if the distance is 3 to 10 times the average equivalent circle diameter of the adhesive portion and the formation ratio of the adhesive portion is 0.8 to 20% of the area of the adhesive portion forming surface, the surface of the adhesive portion to be dotted. When the shape is an elliptical shape having a ratio of the major axis to the minor axis exceeding 2 or a shape similar thereto, the adhesive portion may become a heat resistance layer when the heat radiating member is mounted, and the heat radiating property may be deteriorated. On the other hand, the center-to-center distance between the adjacent adhesive portions is one of the average circle equivalent diameter of the adhesive portions.
When the ratio is more than 0 times or the formation ratio of the adhesive portion is less than 0.8% of the area of the surface on which the adhesive portion is formed, the adhesive force is insufficient, so that the displacement is likely to occur when the heat radiating member is mounted.
【0031】粘着部の形成方法は、成形体の少なくとも
粘着部を形成させる面に孔を点在させたフィルムを配置
し、そのフィルム上面から粘着剤を塗布した後、フィル
ムを取り除く方法であることが好ましい。これによって
フィルムの孔部に対応して粘着部を容易に点在させるこ
とができる。粘着剤としては、アクリルゴムなどの合成
ゴム系接着剤などが用いられる。具体的には、住友スリ
ーエム社製「スプレーのり55」を例示することができ
る。The method for forming the adhesive portion is to arrange a film in which holes are scattered on at least the surface of the molded article where the adhesive portion is to be formed, apply the adhesive from the upper surface of the film, and then remove the film. Is preferred. This makes it possible to easily disperse the adhesive portions corresponding to the holes of the film. As the adhesive, a synthetic rubber adhesive such as acrylic rubber is used. Specifically, "Spray glue 55" manufactured by Sumitomo 3M Limited can be exemplified.
【0032】本発明の放熱部材は網目状絶縁体で補強さ
れていることが好ましい。網目状絶縁体としては、ガラ
スクロス、ポリエステルクロスなどを挙げることができ
る。具体例としては、鐘紡社製「テキストグラス スク
リムクロス KSシリーズ」、NBC工業社製「MON
OFILAMENT POLYESTER TNo.6
0、タイプ55」等を例示することができる。The heat radiation member of the present invention is preferably reinforced with a mesh insulator. Examples of the mesh insulator include a glass cloth and a polyester cloth. Specific examples include "Text Glass Scrim Cloth KS Series" manufactured by Kanebo and "MON" manufactured by NBC Industries.
OFILAMENT POLYESTER TNo. 6
0, type 55 "and the like.
【0033】網目状構造としては、繊維状素材を織って
形成されたものを例示することができる。また、本発明
における網目状絶縁体は、厚みの薄いものほど良く、厚
みが150μm以下のものが好ましく、特に120μm以
下のものが好ましい。さらには、目開きは大きいものほ
ど開口率が大となって好ましいが、大きすぎると細部の
補強効果が失われる。これらのことを勘案すると、目開
きは200〜1000μmが望ましく、さらに好ましく
は350〜800μmである。As the network structure, a structure formed by weaving a fibrous material can be exemplified. In the present invention, the mesh-like insulator having a smaller thickness is better, and preferably has a thickness of 150 μm or less, particularly preferably 120 μm or less. Further, the larger the aperture, the larger the aperture ratio is preferable, but if it is too large, the effect of reinforcing details is lost. In consideration of these, the aperture is desirably 200 to 1000 μm, and more desirably 350 to 800 μm.
【0034】本発明の放熱部材が補強材と一体化された
構造である場合の製造方法としては、例えば、ワックス
及び/又はパラフィン等のマトリックス材料、熱可塑樹
脂、高熱伝導性フィラー等からなる混合物をマトリック
ス材料の融点以上の温度に保持したまま、金型への注型
法、押出法あるいはドクターブレード法により成形した
後、成形体の任意の位置に網目状絶縁体を配置して、プ
レスする方法を挙げることができる。When the heat radiating member of the present invention has a structure integrated with a reinforcing material, for example, a mixture comprising a matrix material such as wax and / or paraffin, a thermoplastic resin, a high thermal conductive filler, etc. While maintaining the temperature at a temperature equal to or higher than the melting point of the matrix material, molding by a casting method, an extrusion method or a doctor blade method into a mold, a mesh-like insulator is arranged at an arbitrary position of the molded body and pressed. Methods can be mentioned.
【0035】本発明の放熱部材は用途に応じた形状に成
形することができるが、量産性、実装性を勘案するとシ
ートであることが好適である。さらに、網目状絶縁体と
一体化されたものであっても、裁断等の加工が容易であ
る。例えば、通常の打ち抜き刃で容易に連続して切断す
ることができる。なお、用途によってはブロック形状の
ものを実装することも可能である。The heat dissipating member of the present invention can be formed into a shape according to the application, but is preferably a sheet in consideration of mass productivity and mountability. Furthermore, even if it is integrated with the mesh insulator, processing such as cutting is easy. For example, continuous cutting can be easily performed with a normal punching blade. It is also possible to mount a block-shaped one depending on the application.
【0036】本発明の放熱部材の熱伝導率は2.0W/
mK以上であることが望ましい。より好ましくは2.5
W/mK以上である。The heat radiation member of the present invention has a thermal conductivity of 2.0 W /
Desirably, it is not less than mK. More preferably 2.5
W / mK or more.
【0037】本発明の放熱部材は、例えば発熱性電子部
品と放熱フィンの間に装着させて用いられる。このと
き、少なくとも一方の面に粘着部を点在させてあるの
で、実使用時における放熱特性を低下させることなく放
熱部材の位置決めや位置の修正が容易にできるようにな
り、作業性が著しく向上する。放熱部材を装着した後、
加熱しながら加圧することによって放熱部材が両者の隙
間に溶け広がり、発熱性電子部品と放熱フィンのそれぞ
れの接合面に微視的に追随して密着すると同時に、発熱
性電子部品と放熱フィンを極力近接せしめた状態で接合
することができる。The heat radiating member of the present invention is used, for example, mounted between a heat-generating electronic component and a heat radiating fin. At this time, since adhesive portions are interspersed on at least one surface, the positioning and correction of the heat radiating member can be easily performed without deteriorating the heat radiating characteristics in actual use, and workability is remarkably improved. I do. After attaching the heat dissipation member,
By applying pressure while heating, the heat dissipating member melts and spreads in the gap between them, and adheres microscopically to the respective joining surfaces of the heat-generating electronic component and the heat-radiating fins, and at the same time, the heat-generating electronic component and the heat-radiating fins Bonding can be performed in a state of being close to each other.
【0038】このときの加熱条件は用いるマトリックス
材料の融点以上で、なおかつ上記熱可塑性樹脂の軟化温
度以上であれば良く、加圧条件は高圧になるほど厚みを
薄くすることができて好ましいが、電子部品を損傷させ
ないためには0.05〜1.0MPaの範囲であること
が好ましい。The heating conditions at this time need only be higher than the melting point of the matrix material to be used and higher than the softening temperature of the thermoplastic resin. In order not to damage the components, the pressure is preferably in the range of 0.05 to 1.0 MPa.
【0039】[0039]
【実施例】以下、実施例及び比較例をあげて更に本発明
を説明する。The present invention will be further described below with reference to examples and comparative examples.
【0040】実施例1 日本精蝋社製「パラフィンワックス115(融点47
℃)」と、高熱伝導性フィラーとして窒化アルミニウム
焼結体を粉砕して得た平均粒径45μmの粉末、及び良
熱伝導性微粉末としてトクヤマ社製窒化アルミニウム粉
末「Hグレード(平均粒子径1.6μm)」を表1に示
す割合で85℃で混合し、スラリー状物を得た。このス
ラリー状物を85℃に保ったまま真空脱泡し、金型内に
離型剤処理したPETフィルムをセットしたものに注ぎ
込み、室温下でシート状にプレス成形した。プレス後、
PETフィルムごと試料を取り出し、PETフィルムか
ら室温硬化した成形物を剥がし、厚さ0.32mmのシ
ート状相変化部材を得た。Example 1 Paraffin Wax 115 (melting point 47, manufactured by Nippon Seiro Co., Ltd.)
° C) ", a powder having an average particle size of 45 µm obtained by pulverizing an aluminum nitride sintered body as a high thermal conductive filler, and an aluminum nitride powder" H grade (average particle size 1) manufactured by Tokuyama Corporation as a fine thermal conductive fine powder. .6 μm) ”at 85 ° C. in the proportions shown in Table 1 to obtain a slurry. The slurry was vacuum-defoamed at 85 ° C., poured into a mold having a PET film treated with a release agent, and pressed into a sheet at room temperature. After pressing,
The sample was taken out together with the PET film, and the molded product cured at room temperature was peeled off from the PET film to obtain a sheet-shaped phase change member having a thickness of 0.32 mm.
【0041】このシート状相変化部材の片面を表1に示
す所定形状の孔を開けたPETフィルムで覆い、その上
方から、粘着剤として住友スリーエム社製「スプレーの
り55」を、約20〜50μmの厚さになるように噴霧
した後、PETフィルムを取り除くことによって孔に対
応した形状を有する粘着部を点在させ、放熱部材を製造
した。One surface of the sheet-shaped phase-change member is covered with a PET film having a hole of a predetermined shape shown in Table 1, and from above, a “spray paste 55” manufactured by Sumitomo 3M Ltd. is applied as an adhesive from about 20 to 50 μm. Then, the PET film was removed and the adhesive portions having a shape corresponding to the holes were scattered to produce a heat dissipating member.
【0042】実施例2 日本精蝋社製「パラフィンワックス115」を85℃に
加熱溶融した中に、熱可塑性樹脂としてエチレン−酢酸
ビニル共重合体(三井デュポンポリケミカル社製「エバ
フレックス150」)を表1に示す割合で加熱混合した
こと、粘着部の平面形状を長方形としたこと、シート厚
みを0.18mmとしたこと以外は、実施例1に準じて
放熱部材を製造した。Example 2 An ethylene-vinyl acetate copolymer ("Evaflex 150" manufactured by DuPont-Mitsui Polychemicals) was used as a thermoplastic resin while "Paraffin Wax 115" manufactured by Nippon Seirowa Co., Ltd. was heated and melted at 85 ° C. Were heat-mixed at the ratios shown in Table 1, the planar shape of the adhesive portion was rectangular, and the sheet thickness was 0.18 mm, to produce a heat dissipation member according to Example 1.
【0043】実施例3 実施例2と同様にしてスラリー状物を得、これを85℃
に保ったまま真空脱泡し、金型内に離型剤処理したPE
Tフィルムをセットしたものに注ぎ込み、その上にポリ
エステル製網目状体(NBC工業社製「MONOFIL
AMENT POLYESTER TNo.60、タイ
プ55」、目開き370μm、厚さ90μm)をのせ、
室温下でシート状にプレス成形したこと、粘着部の平面
形状を正方形としたこと以外は、実施例2に準じて放熱
部材を製造した。Example 3 A slurry was obtained in the same manner as in Example 2,
PE degassed in vacuum while keeping the pressure in the mold
T film was poured into the set, and a polyester mesh ("MONOFIL" manufactured by NBC Industries, Ltd.) was placed thereon.
AMENT POLYESTER TNo. 60, type 55 ", mesh opening 370 μm, thickness 90 μm)
A heat radiation member was manufactured in the same manner as in Example 2 except that the sheet was press-formed at room temperature and the planar shape of the adhesive portion was square.
【0044】実施例4〜5 高熱伝導性フィラーとして球状アルミナ粉末又は窒化ホ
ウ素粉末、良熱伝導性微粉末としてアルミナ粉末又は酸
化亜鉛粉末を用い、実施例3に準じて放熱部材を製造し
た。Examples 4-5 A heat radiation member was manufactured according to Example 3, using spherical alumina powder or boron nitride powder as the high thermal conductive filler and alumina powder or zinc oxide powder as the fine thermal conductive powder.
【0045】比較例1 粘着部を全く点在させなかったこと以外は、実施例1と
同様にして放熱部材を製造した。Comparative Example 1 A heat radiating member was manufactured in the same manner as in Example 1 except that no adhesive portions were scattered.
【0046】比較例2 粘着部を放熱部材の表面の全面に形成させたこと以外
は、実施例1と同様にして放熱部材を製造した。Comparative Example 2 A heat radiating member was manufactured in the same manner as in Example 1 except that the adhesive portion was formed on the entire surface of the heat radiating member.
【0047】得られた放熱部材について、以下に従い、
(1)熱抵抗、(2)熱伝導率及び(3)取り扱い性を
評価した。それらの結果を表1、表2に示す。Regarding the obtained heat radiating member,
(1) Thermal resistance, (2) thermal conductivity, and (3) handleability were evaluated. Tables 1 and 2 show the results.
【0048】(1)熱抵抗 放熱部材をTO−3型銅製ヒーターケースと銅板の間に
0.35MPaの圧力がかかるようにネジ止めした後、
ヒーターケースと銅板が60℃になるまで加熱後室温ま
で冷却する。ついで、ヒーターケースに電力15Wをか
けて4分間保持したときに、銅製ヒーターケースと銅板
の温度差を測定し、(1)式により算出した。 熱抵抗(℃/W)=温度差(℃)/印加電力(W) (1)(1) Thermal resistance After the heat dissipating member was screwed so that a pressure of 0.35 MPa was applied between the TO-3 type copper heater case and the copper plate,
Heat the heater case and the copper plate to 60 ° C. and then cool to room temperature. Next, when a power of 15 W was applied to the heater case and the temperature was maintained for 4 minutes, the temperature difference between the copper heater case and the copper plate was measured and calculated by the equation (1). Thermal resistance (° C / W) = temperature difference (° C) / applied power (W) (1)
【0049】(2)熱伝導率 (2)式により算出した。なお、ここで試料厚みは熱抵
抗測定時の厚み(試料に0.35MPaの圧力がかかる
ようにネジ止めし、ヒーターケースと銅板を60℃に加
熱した後、室温冷却した時の試料厚み)とした。また、
伝熱面積はTO−3型の伝熱面積0.0006m2とし
た。 熱伝導率(W/mK)=[試料厚み(m)]/[熱抵抗(℃/W)×伝熱面積 (m2)] (2)(2) Thermal conductivity Calculated by equation (2). Here, the sample thickness is the thickness at the time of thermal resistance measurement (the sample thickness when the sample is screwed so that a pressure of 0.35 MPa is applied to the sample, the heater case and the copper plate are heated to 60 ° C., and then cooled to room temperature). did. Also,
The heat transfer area was a TO-3 type heat transfer area of 0.0006 m 2 . Thermal conductivity (W / mK) = [sample thickness (m)] / [thermal resistance (° C./W)×heat transfer area (m 2 )] (2)
【0050】(3)取扱い性 放熱部材を12×12mmの形状に打ち抜き、10mm
×10mmの発熱性電子部品の上面に、粘着部が電子部
品に接するように配置した。なお、粘着部を有さない比
較例1の放熱部材は、任意の面が電子部品に接するよう
に配置した。ついで、その上面から50×50mmで高
さが30mmの放熱フィンを被せ、板バネで固定した。
その後、板バネを外して解体し、放熱部材が発熱性電子
部品の上面から位置ずれを起こしていないかを目視にて
確認した。解体後に真上から見て、放熱部材が発熱性電
子部品の上面を完全に覆わずに端から発熱性電子部品の
上面が覗いているものを、位置ずれ有りと見なした。同
じ操作を一種類の放熱部材について100回行い、位置
ずれが生じなかった回数を計測した。(3) Handleability The heat radiation member is punched into a shape of 12 × 12 mm and 10 mm
The adhesive portion was arranged on the upper surface of the heat-generating electronic component of 10 mm so that the adhesive portion was in contact with the electronic component. Note that the heat radiating member of Comparative Example 1 having no adhesive portion was arranged such that an arbitrary surface was in contact with the electronic component. Next, a heat radiating fin having a size of 50 × 50 mm and a height of 30 mm was covered from the upper surface, and fixed with a leaf spring.
Thereafter, the leaf spring was removed and disassembled, and it was visually confirmed whether or not the heat dissipating member was displaced from the upper surface of the heat-generating electronic component. When viewed from directly above after disassembly, the case where the upper surface of the heat-generating electronic component was viewed from the end without the heat-radiating member completely covering the upper surface of the heat-generating electronic component was regarded as having a position shift. The same operation was performed 100 times for one kind of heat radiating member, and the number of times that no displacement occurred was measured.
【0051】[0051]
【表1】 [Table 1]
【0052】[0052]
【表2】 [Table 2]
【0053】つぎに、本発明の実施例で得られた放熱部
材を、発熱性電子部品と放熱フィンの間に挟み、60℃
に加熱して、0.35MPaの圧力をかけて放熱フィン
一体型発熱性電子部品を作製した。いずれも放熱部材が
位置ずれを起こすことなく発熱性電子部品と放熱フィン
の接合面に微視的に追随して密着し、両者の隙間を充分
に埋めている構造のものであることを確認した。Next, the heat radiating member obtained in the embodiment of the present invention is sandwiched between the heat-generating electronic component and the heat radiating fin,
And a pressure of 0.35 MPa was applied to produce a heat-generating electronic component integrated with a radiation fin. In each case, it was confirmed that the heat dissipation member had a structure that microscopically followed and closely adhered to the joint surface between the heat-generating electronic component and the heat dissipation fin without causing displacement, and sufficiently filled the gap between the two. .
【0054】[0054]
【発明の効果】本発明によれば、発熱性電子部品と放熱
フィンの間に位置ずれを起こすことなく装着でき、加熱
により流動化する放熱部材が提供される。According to the present invention, there is provided a heat dissipating member which can be mounted between a heat-generating electronic component and a heat dissipating fin without causing a displacement and which is fluidized by heating.
【0055】本発明によれば、優れた放熱特性を有する
放熱フィン一体型発熱性電子部品の構造体が提供され
る。According to the present invention, a heat-radiating fin-integrated heat-generating electronic component structure having excellent heat-radiating characteristics is provided.
【0056】本発明の製造方法によれば、発熱性電子部
品と放熱フィンの間に位置ずれを起こすことなく装着で
き、加熱により流動化する放熱部材を容易に製造するこ
とができる。According to the manufacturing method of the present invention, a heat-dissipating member that can be mounted between a heat-generating electronic component and a heat-dissipating fin without causing a positional shift and that is fluidized by heating can be easily manufactured.
Claims (10)
て、その少なくとも一方の面に、粘着部を点在させてな
ることを特徴とする相変化型放熱部材。1. A phase-change type heat radiating member, wherein an adhesive portion is scattered on at least one surface of the heat radiating member which changes phase by heating.
ックス及び/又はパラフィンと高熱伝導性フィラーとを
含有してなるものであることを特徴とする請求項1記載
の相変化型放熱部材。2. The heat-dissipating member according to claim 1, wherein the heat-dissipating member that changes its phase by heating contains wax and / or paraffin and a high thermal conductive filler.
特徴とする請求項2記載の相変化型放熱部材。3. The phase-change-type heat radiating member according to claim 2, further comprising a thermoplastic resin.
徴とする請求項1〜3のいずれかに記載の相変化型放熱
部材。4. The phase-change radiating member according to claim 1, wherein the member is reinforced with a mesh-like insulator.
以下の楕円形もしくはこれらに類似する形状であって、
隣接する粘着部同士の中心間距離が粘着部の平均円相当
径の3倍〜10倍であり、しかも粘着部の形成率が粘着
部形成面の面積の0.8〜20%であることを特徴とす
る請求項1〜4のいずれかに記載の相変化型放熱部材。5. The flat shape of the adhesive portion is circular, and the major / minor diameter ratio is 2.
The following oval or similar shapes,
The center-to-center distance between adjacent adhesive portions is 3 to 10 times the average equivalent circle diameter of the adhesive portion, and the formation ratio of the adhesive portion is 0.8 to 20% of the area of the adhesive portion forming surface. The phase-change-type heat radiating member according to claim 1, wherein:
材を用いて発熱性電子部品と放熱フィンが接着されてな
ることを特徴とする放熱フィン一体型発熱性電子部品の
構造体。6. A heat-radiating fin-integrated heat-generating electronic component structure comprising a heat-radiating member and a heat-radiating fin bonded to each other using the heat-radiating member according to claim 1.
し、その少なくとも粘着部を形成させる面に孔を点在さ
せたフィルムを配置し、そのフィルム上面から粘着剤を
塗布した後、フィルムを取り除き、孔部に対応する粘着
部を形成させることを特徴とする相変化型放熱部材の製
造方法。7. A heat dissipating member which changes its phase by heating is prepared, a film having holes scattered on at least a surface on which an adhesive portion is formed is arranged, and an adhesive is applied from the film upper surface. A method for manufacturing a phase-change-type heat radiating member, comprising removing an adhesive portion corresponding to a hole.
ックス及び/又はパラフィンと高熱伝導性フィラーとを
含有してなることを特徴とする請求項7記載の相変化型
放熱部材の製造方法。8. The method according to claim 7, wherein the heat-dissipating member that changes its phase by heating contains wax and / or paraffin and a high thermal conductive filler.
特徴とする請求項8記載の相変化型放熱部材の製造方
法。9. The method according to claim 8, further comprising a thermoplastic resin.
特徴とする請求項7〜9のいずれかに記載の相変化型放
熱部材の製造方法。10. The method for manufacturing a phase-change heat radiating member according to claim 7, wherein the member is reinforced with a mesh-like insulator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001007412A JP2002217342A (en) | 2001-01-16 | 2001-01-16 | Phase change type heat radiating member, its manufacturing method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001007412A JP2002217342A (en) | 2001-01-16 | 2001-01-16 | Phase change type heat radiating member, its manufacturing method and application |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002217342A true JP2002217342A (en) | 2002-08-02 |
Family
ID=18875166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001007412A Pending JP2002217342A (en) | 2001-01-16 | 2001-01-16 | Phase change type heat radiating member, its manufacturing method and application |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002217342A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7608326B2 (en) | 2002-10-21 | 2009-10-27 | Laird Technologies, Inc. | Thermally conductive EMI shield |
JP2013540353A (en) * | 2010-09-29 | 2013-10-31 | エンパイア テクノロジー ディベロップメント エルエルシー | Phase change energy storage in ceramic nanotube composites |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06163762A (en) * | 1991-05-27 | 1994-06-10 | Fuji Kobunshi Kogyo Kk | Heat-conducting, electric-insulating and heat-dissipating sheet and its manufacture |
JP2000124368A (en) * | 1998-10-19 | 2000-04-28 | Kitagawa Ind Co Ltd | Heat sink |
JP2000509209A (en) * | 1996-04-29 | 2000-07-18 | パーカー―ハニフイン・コーポレーシヨン | Compatible thermal interface materials for electronic components |
-
2001
- 2001-01-16 JP JP2001007412A patent/JP2002217342A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06163762A (en) * | 1991-05-27 | 1994-06-10 | Fuji Kobunshi Kogyo Kk | Heat-conducting, electric-insulating and heat-dissipating sheet and its manufacture |
JP2000509209A (en) * | 1996-04-29 | 2000-07-18 | パーカー―ハニフイン・コーポレーシヨン | Compatible thermal interface materials for electronic components |
JP2000124368A (en) * | 1998-10-19 | 2000-04-28 | Kitagawa Ind Co Ltd | Heat sink |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7608326B2 (en) | 2002-10-21 | 2009-10-27 | Laird Technologies, Inc. | Thermally conductive EMI shield |
US7842381B2 (en) | 2002-10-21 | 2010-11-30 | Laird Technologies, Inc. | Thermally conductive EMI shield |
JP2013540353A (en) * | 2010-09-29 | 2013-10-31 | エンパイア テクノロジー ディベロップメント エルエルシー | Phase change energy storage in ceramic nanotube composites |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10964617B2 (en) | Methods for establishing thermal joints between heat spreaders or lids and heat sources | |
US6926955B2 (en) | Phase change material containing fusible particles as thermally conductive filler | |
US7147367B2 (en) | Thermal interface material with low melting alloy | |
CN1290963C (en) | Phase change thermal interface composition having induced bonding property | |
JP4546086B2 (en) | Dry heat interface material | |
US20070241303A1 (en) | Thermally conductive composition and method for preparing the same | |
KR20080092966A (en) | Thermal Interconnect and Interface Systems, Their Manufacturing Methods and Applications | |
JP2003060134A (en) | Heat conductive sheet | |
CN1823415A (en) | Thermal management materials | |
EP1797155A2 (en) | Thermally conductive composition and method for preparing the same | |
KR20040030491A (en) | Compliant and crosslinkable thermal interface materials | |
JP2000509209A (en) | Compatible thermal interface materials for electronic components | |
JP5774472B2 (en) | Thermally reinforced electrical insulating adhesive paste | |
JP2002003830A (en) | High thermal conductive composition and its use | |
JP7384560B2 (en) | Thermal conductive sheets, mounting methods for thermal conductive sheets, manufacturing methods for electronic devices | |
JP2020116873A (en) | Manufacturing method of heat-conductive sheet | |
JP2002164481A (en) | Heat conductive sheet | |
CN114479257A (en) | Non-wax phase-change heat conducting fin and preparation method thereof | |
JP2004075760A (en) | Thermal conductive resin composition and phase change type heat radiation member | |
JP4627105B2 (en) | High thermal conductive composition and its use | |
JP2002217342A (en) | Phase change type heat radiating member, its manufacturing method and application | |
WO2022168729A1 (en) | Thermally conductive sheet laminate and electronic equipment using same | |
CN1318536C (en) | Heat sink and phase change conducting strip | |
WO2024154455A1 (en) | Sheet-form heat dissipation member | |
JP2001342352A (en) | High thermal conductive composition and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20071106 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20100119 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100713 |
|
A02 | Decision of refusal |
Effective date: 20101116 Free format text: JAPANESE INTERMEDIATE CODE: A02 |