[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002214221A - Impurities detector and impurities detection method - Google Patents

Impurities detector and impurities detection method

Info

Publication number
JP2002214221A
JP2002214221A JP2000379454A JP2000379454A JP2002214221A JP 2002214221 A JP2002214221 A JP 2002214221A JP 2000379454 A JP2000379454 A JP 2000379454A JP 2000379454 A JP2000379454 A JP 2000379454A JP 2002214221 A JP2002214221 A JP 2002214221A
Authority
JP
Japan
Prior art keywords
water
impurities
pure water
dissolved oxygen
meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000379454A
Other languages
Japanese (ja)
Other versions
JP3452897B2 (en
Inventor
Zenhitsu Kin
善必 金
Hideo Takeuchi
日出夫 竹内
Koko Tei
光浩 鄭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOMURA KOREA CO Ltd
Nomura Micro Science Co Ltd
Samsung Electronics Co Ltd
Original Assignee
NOMURA KOREA CO Ltd
Nomura Micro Science Co Ltd
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOMURA KOREA CO Ltd, Nomura Micro Science Co Ltd, Samsung Electronics Co Ltd filed Critical NOMURA KOREA CO Ltd
Priority to JP2000379454A priority Critical patent/JP3452897B2/en
Priority to KR1020010078492A priority patent/KR20020046974A/en
Publication of JP2002214221A publication Critical patent/JP2002214221A/en
Application granted granted Critical
Publication of JP3452897B2 publication Critical patent/JP3452897B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the number of detectors at the time of detection of impurities and to detect impurities for a short time. SOLUTION: An organic compound and a peroxide recovered by circle return piping 2 are decomposed by an ultraviolet oxidizing treatment device 11 and conductivity is measured by a resistivity meter 12 and dissolved oxygen is measured by a dissolved oxygen meter 13 to detect impurities of water recovered by the circle return piping 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は不純物検出装置およ
び不純物検出方法に関し、特に、純水または超純水中に
含まれる無機物、溶存酸素、有機化合物および過酸化物
などを検出する場合に適用して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impurity detecting apparatus and an impurity detecting method, and more particularly to an apparatus for detecting inorganic substances, dissolved oxygen, organic compounds, peroxides and the like contained in pure water or ultrapure water. It is suitable.

【0002】[0002]

【従来の技術】従来、半導体製造プロセスや液晶表示素
子製造プロセスなどに供給された純水(超純水)は、配
管を介してユースポイントと呼ばれる実際に純水や超純
水を使用する場所に供給される。このとき、純水(超純
水)は、ユースポイントを通りながら必要量だけ使用さ
れた後、余剰分は再び一次純水タンクと呼ばれるタンク
に戻ってくる。これは、(超)純水を供給する配管に常
に(超)純水が流れるようにして、バクテリアの発生や
純度の低下を防ぐためである。これを通常サークル配管
と呼んでいる。
2. Description of the Related Art Conventionally, pure water (ultra pure water) supplied to a semiconductor manufacturing process, a liquid crystal display element manufacturing process, or the like is called a point of use through a pipe, where the pure water or ultra pure water is actually used. Supplied to At this time, after the required amount of pure water (ultra pure water) is used while passing through the use point, the surplus returns to a tank called a primary pure water tank again. This is to make the (ultra) pure water always flow through the pipe for supplying the (ultra) pure water, thereby preventing the generation of bacteria and a decrease in purity. This is usually called circle piping.

【0003】この場合、ユースポイントでの純水や超純
水の使用状態によっては、サークル配管のリターン配管
にユースポイントで使用された薬品などが混入すること
がある。このため、超純水のサークル配管のリターン配
管において、リターンされる(超)純水に含まれる不純
物のモニタを行い、不純物を含んだ水が純水または超純
水の供給系に混入することを未然に防止することが行わ
れている。
[0003] In this case, depending on the state of use of pure water or ultrapure water at the use point, chemicals used at the use point may be mixed into the return pipe of the circle pipe. Therefore, in the return pipe of the ultrapure water circle pipe, the impurities contained in the returned (ultra) pure water are monitored, and the water containing the impurities is mixed into the pure water or ultrapure water supply system. It has been carried out to prevent this.

【0004】図4は、従来の超純水汚染のモニタ方法を
示すブロック図である。図4において、一次純水システ
ム3で製造された純水は一次純水タンク4に溜められ
る。そして、一次純水タンク4に溜められた純水は、ポ
ンプ5を介して超純水システム6に送られ、超純水が製
造される。超純水システム6で製造された超純水は、サ
ークル配管1を介してユースポイント7に供給される。
そして、ユースポイント7に供給された超純水のうち、
ユースポイント7で使用されなかった超純水は、サーク
ル配管1のリターン配管2を介して一次純水タンク4に
戻される。このとき、リターン配管2を介して一次純水
タンク4に戻される超純水の一部は、不純物検出装置1
4により採取される。
FIG. 4 is a block diagram showing a conventional method of monitoring ultrapure water contamination. In FIG. 4, pure water produced by the primary pure water system 3 is stored in a primary pure water tank 4. Then, the pure water stored in the primary pure water tank 4 is sent to the ultrapure water system 6 via the pump 5 to produce ultrapure water. Ultrapure water produced by the ultrapure water system 6 is supplied to the use point 7 via the circle pipe 1.
Then, of the ultrapure water supplied to use point 7,
Ultra pure water not used at the use point 7 is returned to the primary pure water tank 4 via the return pipe 2 of the circle pipe 1. At this time, a part of the ultrapure water returned to the primary pure water tank 4 via the return pipe 2 is
4 sampled.

【0005】不純物検出装置14は、抵抗率計12、溶
存酸素計13、TOC計15およびHモニタ16
を備え、これらの測定器を用いることにより、純水また
は超純水中に含まれる無機物、溶存酸素、有機化合物お
よび過酸化物などの不純物を検出する。不純物検出装置
14により不純物が検出されると、この検出結果に基づ
いてバルブ8、9の開閉を行うことにより、不純物を含
んだ水が純水または超純水が一次純水タンク4に戻され
ることを未然に防止する。
The impurity detector 14 comprises a resistivity meter 12, a dissolved oxygen meter 13, a TOC meter 15, and an H 2 O 2 monitor 16.
By using these measuring instruments, impurities such as inorganic substances, dissolved oxygen, organic compounds, and peroxides contained in pure water or ultrapure water are detected. When impurities are detected by the impurity detection device 14, the valves 8 and 9 are opened and closed based on the detection result, whereby the water containing the impurities is returned to the pure water tank 4 as pure water or ultrapure water. To prevent that from happening.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
超純水汚染のモニタ方法では、純水または超純水中に含
まれる不純物をモニタするために、抵抗率計12、溶存
酸素計13、TOC計15およびHモニタ16を
設ける必要があり、多くの検出器を必要とするという問
題があった。
However, in the conventional method for monitoring ultrapure water contamination, in order to monitor impurities contained in pure water or ultrapure water, a resistivity meter 12, a dissolved oxygen meter 13, a TOC It is necessary to provide the total 15 and the H 2 O 2 monitor 16, and there is a problem that many detectors are required.

【0007】さらに、TOC計15は測定に数分の時間
を要し、TOC計15で異常値を示したときは、すでに
一次純水タンク4を汚染していることがあり、汚染を未
然に防止することができない場合があった。
[0007] Furthermore, the TOC meter 15 takes several minutes to make a measurement, and when the TOC meter 15 shows an abnormal value, the primary pure water tank 4 may already be contaminated. In some cases, it could not be prevented.

【0008】そこで、本発明の目的は、不純物を検出す
る際の検出器の数を減らすことが可能であり、かつ、不
純物の検出を短時間で行うことが可能な不純物検出装置
および不純物検出方法を提供することである。
Accordingly, an object of the present invention is to provide an impurity detecting apparatus and an impurity detecting method capable of reducing the number of detectors for detecting impurities and capable of detecting impurities in a short time. It is to provide.

【0009】[0009]

【課題を解決するための手段】上述した課題を解決する
ために、本発明によれば、有機物または過酸化物の少な
くともいずれか一方を含む水に紫外線を照射する紫外線
照射手段と、前記紫外線照射された水の導電率または抵
抗率を測定する電気伝導測定手段と、前記紫外線照射さ
れた水の溶存酸素を測定する溶存酸素測定手段とを備え
ることを特徴とする。
According to the present invention, there is provided, in accordance with the present invention, an ultraviolet irradiation means for irradiating water containing at least one of an organic substance and a peroxide with ultraviolet light; It is characterized by comprising electrical conductivity measuring means for measuring the conductivity or resistivity of the water, and dissolved oxygen measuring means for measuring the dissolved oxygen of the ultraviolet-irradiated water.

【0010】これにより、水に含まれる有機化合物は、
紫外線照射により有機酸イオンまたは炭酸ガスなどに分
解され、水の抵抗率が低下する。また、水に含まれる過
酸化物は、紫外線照射により水と酸素に分解され、溶存
酸素が増加する。
Accordingly, the organic compound contained in the water is
The ultraviolet rays decompose into organic acid ions or carbon dioxide gas, and the resistivity of water decreases. In addition, peroxides contained in water are decomposed into water and oxygen by ultraviolet irradiation, and dissolved oxygen increases.

【0011】このため、導電率計(または抵抗率計)お
よび溶存酸素計を用いるだけで、純水または超純水に混
入した無機物、溶存酸素、有機化合物および過酸化物な
どを検出することが可能となり、純水または超純水に混
入した不純物を検出する際の検出器の数を減らすことが
可能なる。
For this reason, it is possible to detect inorganic substances, dissolved oxygen, organic compounds, peroxides, and the like mixed in pure water or ultrapure water only by using a conductivity meter (or resistivity meter) and a dissolved oxygen meter. This makes it possible to reduce the number of detectors when detecting impurities mixed in pure water or ultrapure water.

【0012】また、紫外線照射後に導電率計(または抵
抗率計)と溶存酸素計といった瞬時に測定値を検出表示
させる機器の構成によって不純物の検出時間を大幅に短
縮させることができる。
In addition, the configuration of a device such as a conductivity meter (or resistivity meter) and a dissolved oxygen meter that instantaneously detects and displays measured values after ultraviolet irradiation can greatly reduce the time required to detect impurities.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態に係わる
および不純物検出方法について図面を参照しながら説明
する。図1は、本発明の一実施形態に係わる不純物検出
システムの概略構成を示すブロック図である。なお、以
下の説明では、図4と同一の構成部分については同一符
号を付し、その説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for detecting impurities according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of an impurity detection system according to one embodiment of the present invention. In the following description, the same components as those in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted.

【0014】図1において、不純物検出装置10は、紫
外線酸化処理装置11、抵抗率計12および溶存酸素計
13を備えている。半導体工場などのユースポイント7
にサークル配管1により供給された純水または超純水
は、サークルリターン配管2により一次純水タンク4に
戻る。ここで、サークルリターン配管2により一次純水
タンク4に混入する可能性がある不純物として、例え
ば、界面活性剤、メチルアルコールやイソプロピルアル
コールなどのアルコール類、フッ酸、フッ化アンモニウ
ム、水酸化アンモニウム、硫酸、硝酸、燐酸、塩酸、金
属イオンなどの無機イオン類、オゾンや過酸化水素など
の酸化剤や過酸化物がある。
In FIG. 1, an impurity detecting device 10 includes an ultraviolet oxidation treatment device 11, a resistivity meter 12, and a dissolved oxygen meter 13. Use points 7 such as semiconductor factories
The pure water or ultrapure water supplied by the circle pipe 1 returns to the primary pure water tank 4 by the circle return pipe 2. Here, as impurities that may be mixed into the primary pure water tank 4 by the circle return pipe 2, for example, surfactants, alcohols such as methyl alcohol and isopropyl alcohol, hydrofluoric acid, ammonium fluoride, ammonium hydroxide, There are inorganic ions such as sulfuric acid, nitric acid, phosphoric acid, hydrochloric acid and metal ions, and oxidizing agents and peroxides such as ozone and hydrogen peroxide.

【0015】なお、本明細書において「純水」とは、2
5℃換算電気抵抗率が10.0MΩ・cm以上、TOC
濃度50ppb以下、0.2μm以上の微粒子数が10
個/ml以下の清浄度の高い水をいい、「超純水」と
は、25℃換算電気抵抗率が18.0MΩ・cm以上、
TOC濃度が5ppb以下、0.05μm以上の微粒子
数が10個/ml以下のさらに清浄度の高い水をいう。
In the present specification, “pure water” refers to 2
5 ° C conversion electric resistivity 10.0MΩ · cm or more, TOC
The number of fine particles having a concentration of 50 ppb or less and
Water having a high degree of cleanliness of less than particles / ml, and “ultra pure water” means that the electrical resistivity at 25 ° C. is 18.0 MΩ · cm or more,
Higher cleanliness water having a TOC concentration of 5 ppb or less and particles of 0.05 μm or more and 10 particles / ml or less.

【0016】サークルリターン配管2により一次純水タ
ンク4に戻る水の一部は、所定の流量に調節されて紫外
線酸化処理装置11に供給される。紫外線酸化処理装置
11は、水への紫外線照射(波長λ=185nm)によ
り、OHラジカルを生成し、純水中に微量残留するTO
C成分を酸化分解し、炭酸イオンまたは有機酸イオンに
変化させる。
A part of the water returned to the primary pure water tank 4 by the circle return pipe 2 is adjusted to a predetermined flow rate and supplied to the ultraviolet oxidation treatment device 11. The ultraviolet oxidation treatment device 11 generates OH radicals by irradiating water with ultraviolet light (wavelength λ = 185 nm), and a small amount of TO
The C component is oxidatively decomposed and changed into carbonate ions or organic acid ions.

【0017】また、過酸化物(H)の場合、水へ
の紫外線照射(波長λ=185nm)により、以下の化
学式に示すように、水と酸素に分解される。
In the case of peroxide (H 2 O 2 ), water is irradiated with ultraviolet rays (wavelength λ = 185 nm) to be decomposed into water and oxygen as shown by the following chemical formula.

【0018】 H→HO+1/2O=2HO+O ここで、紫外線の照射量は、1m/hの水量当たり
0.2kw以上、好ましくは0.5kw以上である。た
だし、1.0kw以上では、サークルリターン配管2に
予想される不純物量から考えて大きすぎるため、0.5
kw前後が最適である。また、チャンバ容量は、導入さ
れる(超)純水の滞溜時間により決定されるが、前記照
射量において、1秒以上、好ましくは2秒以上である。
H 2 O 2 → H 2 O + / O 2 = 2H 2 O + O 2 Here, the irradiation amount of ultraviolet rays is 0.2 kW or more, preferably 0.5 kW or more per 1 m 3 / h of water. However, if the power is 1.0 kW or more, it is too large considering the amount of impurities expected in the circle return pipe 2.
The optimum value is around kw. Further, the chamber capacity is determined by the residence time of the (ultra) pure water to be introduced, and is 1 second or more, preferably 2 seconds or more at the irradiation amount.

【0019】これにより、サークルリターン配管2によ
り一次純水タンク4に戻る純水または超純水に不純物汚
染があった場合、5秒程度以内の早い時間内に純水また
は超純水に不純物汚染を検出することが可能となる。
Thus, when there is impurity contamination in the pure water or ultrapure water returned to the primary pure water tank 4 by the circle return pipe 2, the impurity contamination in the pure water or ultrapure water occurs within about 5 seconds. Can be detected.

【0020】紫外線酸化処理装置11により紫外線照射
の行われた水は、抵抗率計12により抵抗率(または導
電率)の測定が行われる。この抵抗率の測定により、純
水または超純水に混入した無機物および有機化合物を検
出することが可能となる。なお、抵抗率計12は、導電
率計であってもよい。
The resistivity (or conductivity) of the water irradiated with ultraviolet rays by the ultraviolet oxidation treatment device 11 is measured by the resistivity meter 12. By measuring the resistivity, it is possible to detect inorganic substances and organic compounds mixed in pure water or ultrapure water. Note that the resistivity meter 12 may be a conductivity meter.

【0021】また、紫外線酸化処理装置11により紫外
線照射の行われた水は、溶存酸素計13により溶存酸素
の測定が行われ、純水または超純水に混入した溶存酸素
および過酸化物を検出することが可能となる。
In the water irradiated with ultraviolet rays by the ultraviolet oxidation apparatus 11, the dissolved oxygen is measured by a dissolved oxygen meter 13 to detect dissolved oxygen and peroxide mixed in pure water or ultrapure water. It is possible to do.

【0022】この結果、抵抗率計12および溶存酸素計
13を用いるだけで、純水または超純水中に含まれる無
機物、溶存酸素、有機化合物および過酸化物を検出する
ことが可能となり、図4のTOC計15およびH
モニタ16を省くことが可能となる。
As a result, inorganic substances, dissolved oxygen, organic compounds, and peroxides contained in pure water or ultrapure water can be detected only by using the resistivity meter 12 and the dissolved oxygen meter 13. 4 TOC meter 15 and H 2 O 2
The monitor 16 can be omitted.

【0023】不純物検出装置10により不純物が検出さ
れると、リターン配管2に設けられているバルブ8を閉
じ、バルブ9を開くことにより、汚染水を一次純水タン
ク4に戻すことを停止するとともに、この汚染水を外部
に排出する。これにより、サークルリターン配管2に不
純物が混入した場合においても、一次純水タンク4が汚
染されることを未然に防止することができる。なお、バ
ルブ8、9の開閉は、不純物検出装置10からの信号に
基づいて自動的に行うことができる。
When impurities are detected by the impurity detecting device 10, the valve 8 provided on the return pipe 2 is closed and the valve 9 is opened to stop returning contaminated water to the primary pure water tank 4. Discharge this contaminated water to the outside. Thereby, even when impurities are mixed in the circle return pipe 2, it is possible to prevent the primary pure water tank 4 from being contaminated. The opening and closing of the valves 8 and 9 can be automatically performed based on a signal from the impurity detection device 10.

【0024】図2は、本発明の一実施形態に係わる有機
化合物の分解方法を示す図である。なお、図2の実施形
態では、分解対象となる有機化合物として、イソプロピ
ルアルコール((CHCHOH)を例にとって説
明する。
FIG. 2 is a diagram showing a method for decomposing an organic compound according to one embodiment of the present invention. In the embodiment shown in FIG. 2, isopropyl alcohol ((CH 3 ) 2 CHOH) will be described as an example of the organic compound to be decomposed.

【0025】図2(a)において、イソプロピルアルコ
ール((CHCHOH)が混入した水に紫外線が
照射されると、OHラジカルが生成され、このOHラジ
カルがイソプロピルアルコールのOH基に作用すること
により、図2(b)のアセトン(CHCOCH)が
生成される。
In FIG. 2A, when water mixed with isopropyl alcohol ((CH 3 ) 2 CHOH) is irradiated with ultraviolet rays, OH radicals are generated, and these OH radicals act on OH groups of isopropyl alcohol. Thus, acetone (CH 3 COCH 3 ) shown in FIG. 2B is generated.

【0026】次に、図2(b)において、紫外線照射に
より生成されたOHラジカルがアセトンのCH基に作
用することにより、図2(c)の酢酸(CHCOO
H)が生成される。
Next, in FIG. 2 (b), the OH radical generated by the irradiation of the ultraviolet rays acts on the CH 3 group of acetone, so that the acetic acid (CH 3 COO) shown in FIG.
H) is generated.

【0027】次に、図2(c)において、紫外線照射に
より生成されたOHラジカルが酢酸(CHCOOH)
に作用することにより、図2(d)の二酸化炭素(CO
)および水(HO)が生成される。
Next, in FIG. 2 (c), the OH radical generated by the irradiation of the ultraviolet rays is converted into acetic acid (CH 3 COOH).
By acting on the carbon dioxide (CO 2) shown in FIG.
2 ) and water (H 2 O) are produced.

【0028】図2(c)、(d)で生成された酢酸(C
COOH)や二酸化炭素(CO )は、水に溶解す
ることにより、水の抵抗率を低下させる。このため、水
の抵抗率を測定することにより、水に混入したイソプロ
ピルアルコールを検出することができる。
The acetic acid (C) produced in FIGS. 2 (c) and 2 (d)
H3COOH) and carbon dioxide (CO 2) Dissolve in water
This lowers the resistivity of water. Because of this, water
By measuring the resistivity of
Pill alcohol can be detected.

【0029】図3は、本発明の一実施形態に係わる超純
水供給システムの構成例を示すブロック図である。この
超純水供給システムは、原水からイオン、パーティク
ル、有機物などの不純物の大部分を取り除いた1次純水
を製造する1次純水系、1次純水をさらにポリッシング
して不純物を極限まで低減した超純水を製造し、クリー
ンルーム内の各ユースポイントに供給する2次純水系、
およびクリーンルーム内の各ユースポイントで洗浄など
に用いられた超純水を回収して再利用する回収系からな
る。
FIG. 3 is a block diagram showing a configuration example of an ultrapure water supply system according to an embodiment of the present invention. This ultrapure water supply system produces primary pure water by removing most of impurities such as ions, particles, and organic matter from raw water. Primary water system, further polishing the primary water to reduce impurities to the utmost. Secondary pure water system that manufactures purified ultrapure water and supplies it to each use point in the clean room,
And a recovery system that collects and reuses ultrapure water used for cleaning at each use point in the clean room.

【0030】図3において、原水が前処理装置21に導
入され、原水中の懸濁物質等が分離・除去される。次い
で、前処理装置21で処理された被処理水は活性炭吸着
装置22に送られ、被処理水に含まれる有機物が分解さ
れる。次に、有機物が分解された被処理水は2床3塔2
3に送られる。2床3塔23には、カチオン交換樹脂
塔、(真空)脱気塔及びアニオン交換樹脂塔が設けら
れ、2床3塔23は、被処理水からイオン成分を除去す
る。次に、イオン成分が除去された被処理水は逆浸透装
置24に導入され、有機物、微粒子およびコロイド状物
質等の除去が行われる。
In FIG. 3, raw water is introduced into a pretreatment device 21, and suspended substances and the like in the raw water are separated and removed. Next, the water to be treated that has been treated by the pretreatment device 21 is sent to the activated carbon adsorption device 22, where the organic matter contained in the water to be treated is decomposed. Next, the treated water from which the organic matter was decomposed is divided into two beds, three towers,
Sent to 3. The two-bed three-column 23 is provided with a cation exchange resin tower, a (vacuum) degassing tower and an anion-exchange resin tower, and the two-bed three tower 23 removes ionic components from the water to be treated. Next, the water to be treated from which the ionic components have been removed is introduced into the reverse osmosis device 24 to remove organic substances, fine particles, colloidal substances and the like.

【0031】次に、有機物、微粒子およびコロイド状物
質等の除去が行われた被処理水は混床式イオン交換装置
25に送られ、被処理水中のイオン成分が除去された
後、真空脱気装置26で溶存する気体、主として溶存酸
素が除去され、一次純水タンク27に溜められる。一次
純水タンク27に溜められた被処理水は、熱交換器28
を介して低圧紫外線酸化装置29に導入され、被処理水
の溶存有機物が分解される。次に、溶存有機物が分解さ
れた被処理水は非再生型ポリッシャー30に送られ、被
処理水中のイオン成分が除去される。次に、イオン成分
が除去された被処理水は限外濾過膜装置31に導入さ
れ、極微量の微粒子等が除去される。
Next, the water to be treated, from which organic substances, fine particles, colloidal substances and the like have been removed, is sent to a mixed-bed ion exchanger 25, where the ionic components in the water to be treated are removed, followed by vacuum degassing. The dissolved gas, mainly dissolved oxygen, is removed by the device 26 and stored in the primary pure water tank 27. The water to be treated stored in the primary pure water tank 27 is supplied to the heat exchanger 28.
The dissolved organic matter is introduced into the low-pressure ultraviolet oxidizer 29 through the process, and dissolved in the water to be treated. Next, the water to be treated in which the dissolved organic matter has been decomposed is sent to the non-regenerative polisher 30, where the ionic components in the water to be treated are removed. Next, the water to be treated from which the ionic components have been removed is introduced into the ultrafiltration membrane device 31 to remove trace amounts of fine particles and the like.

【0032】こうして製造された超純水は、ユースポイ
ント(採水点)32に供給されるとともに、過剰量の超
純水は、リターン配管33を介して一次純水タンク27
に還流される。ここで、不純物検出装置34は、リター
ン配管33を流れる超純水を採取し、この超純水に混入
した不純物を測定する。そして、超純水に混入した不純
物が規定値を越える場合は、リターン配管33に設けら
れているバルブ35を閉じ、バルブ36を開くことによ
り、汚染水を純水製造系外に排出し、汚染水が一次純水
タンク27に戻されることを未然に防止する。また、回
収装置37により回収された回収水は活性炭吸着装置2
2に戻され、回収水のリサイクルが行われる。
The ultrapure water thus produced is supplied to a use point (water sampling point) 32, and an excessive amount of ultrapure water is supplied to a primary pure water tank 27 through a return pipe 33.
Refluxed. Here, the impurity detection device 34 collects ultrapure water flowing through the return pipe 33 and measures impurities mixed in the ultrapure water. When the impurities mixed in the ultrapure water exceed the specified value, the valve 35 provided in the return pipe 33 is closed and the valve 36 is opened to discharge the contaminated water to the outside of the pure water production system. Water is prevented from being returned to the primary pure water tank 27. Further, the recovered water collected by the recovery device 37 is supplied to the activated carbon adsorption device 2.
2 and the recycled water is recycled.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
有機化合物および過酸化物を紫外線で分解することによ
り、導電率計(または抵抗率計)および溶存酸素計を用
いるだけで、純水または超純水に混入した無機物、溶存
酸素、有機化合物および過酸化物などを検出することが
可能となり、さらに、これらの不純物を5秒以内という
短時間に検出することが可能となり、水質汚染を未然に
防止することが可能となる。
As described above, according to the present invention,
By decomposing organic compounds and peroxides with ultraviolet light, inorganic substances, dissolved oxygen, organic compounds and peroxides mixed in pure or ultrapure water can be obtained simply by using a conductivity meter (or resistivity meter) and a dissolved oxygen meter. Oxides and the like can be detected, and furthermore, these impurities can be detected in a short time of 5 seconds or less, and water pollution can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係わる不純物検出システ
ムの概略構成を示すブロック図である。
FIG. 1 is a block diagram showing a schematic configuration of an impurity detection system according to an embodiment of the present invention.

【図2】本発明の一実施形態に係わる有機化合物の分解
方法を示す図である。
FIG. 2 is a view showing a method for decomposing an organic compound according to one embodiment of the present invention.

【図3】本発明の一実施形態に係わる超純水供給システ
ムの構成例を示すブロック図である。
FIG. 3 is a block diagram illustrating a configuration example of an ultrapure water supply system according to an embodiment of the present invention.

【図4】従来の超純水汚染のモニタ方法を示すブロック
図である。
FIG. 4 is a block diagram showing a conventional method for monitoring ultrapure water contamination.

【符号の説明】[Explanation of symbols]

1 サークル配管 2、33 リターン配管 3 一次純水システム 4 一次純水タンク 5 ポンプ 6 超純水システム 7、32 ユースポイント 8、9、35、36 バルブ 10、34 不純物検出装置 11、29 低圧紫外線酸化処理装置 12 抵抗率計 13 溶存酸素計 21 前処理装置 22 活性炭吸着装置 23 2床3塔 24 逆浸透装置 25 混床式イオン交換装置 26 真空脱気装置 27 一次純水タンク 28 熱交換器 30 非再生型ポリッシャー 31 限外濾過装置 37 回収装置 DESCRIPTION OF SYMBOLS 1 Circle piping 2, 33 Return piping 3 Primary pure water system 4 Primary pure water tank 5 Pump 6 Ultrapure water system 7, 32 Use point 8, 9, 35, 36 Valve 10, 34 Impurity detector 11, 29 Low pressure ultraviolet oxidation Treatment device 12 Resistivity meter 13 Dissolved oxygen meter 21 Pretreatment device 22 Activated carbon adsorption device 23 2 beds 3 towers 24 Reverse osmosis device 25 Mixed bed type ion exchange device 26 Vacuum deaerator 27 Primary pure water tank 28 Heat exchanger 30 Non Regenerative polisher 31 Ultrafiltration device 37 Recovery device

フロントページの続き (72)発明者 金 善必 大韓民国京畿道ヨンジ市キフン邑ノンソ里 サン24 三星電子株式会社内 (72)発明者 竹内 日出夫 神奈川県厚木市岡田2丁目9番8号 野村 マイクロ・サイエンス株式会社内 (72)発明者 鄭 光浩 大韓民国京畿道ソンナム市ブンダン区ソン ネ洞6−4 野村コリア株式会社内 Fターム(参考) 2G060 AA06 AC04 AE16 AF07 AF08Continuing from the front page (72) Inventor Kim Seng-sung Sun 24, Nonseo-ri, Kifun-eup, Yongji-si, Gyeonggi-do, Republic of Korea (72) Inventor Hideo Takeuchi 2-9-8 Okada, Atsugi-shi, Kanagawa Nomura Micro-Science Incorporated (72) Inventor Mitsuhiro Jung 6-4 Songne-dong, Bundang-ku, Seongnam-si, Gyeonggi-do, Republic of Korea Nomura Korea Co., Ltd. F-term (reference) 2G060 AA06 AC04 AE16 AF07 AF08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有機物または過酸化物の少なくともいず
れか一方を含む水に紫外線を照射する紫外線照射手段
と、 前記紫外線照射された水の導電率または抵抗率を測定す
る電気伝導測定手段と、 前記紫外線照射された水の溶存酸素を測定する溶存酸素
測定手段とを備えることを特徴とする不純物検出装置。
An ultraviolet irradiation means for irradiating ultraviolet light to water containing at least one of an organic substance and a peroxide; an electric conduction measurement means for measuring conductivity or resistivity of the water irradiated with the ultraviolet light; An impurity detection device, comprising: dissolved oxygen measuring means for measuring dissolved oxygen in water irradiated with ultraviolet light.
【請求項2】 紫外線照射に基づいて、水に含まれる有
機物および過酸化物を分解するステップと、 前記紫外線照射された水の導電率または抵抗率を測定す
るステップと、 前記紫外線照射された水の溶存酸素を測定するステップ
とを備えることを特徴とする不純物検出方法。
2. a step of decomposing an organic substance and a peroxide contained in water based on ultraviolet irradiation, a step of measuring a conductivity or a resistivity of the water irradiated with the ultraviolet light, and the step of water irradiated with the ultraviolet light. Measuring the dissolved oxygen of the impurities.
JP2000379454A 2000-12-13 2000-12-13 Impurity detection device and impurity detection method Expired - Lifetime JP3452897B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000379454A JP3452897B2 (en) 2000-12-13 2000-12-13 Impurity detection device and impurity detection method
KR1020010078492A KR20020046974A (en) 2000-12-13 2001-12-12 Apparatus and method for detecting impurities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000379454A JP3452897B2 (en) 2000-12-13 2000-12-13 Impurity detection device and impurity detection method

Publications (2)

Publication Number Publication Date
JP2002214221A true JP2002214221A (en) 2002-07-31
JP3452897B2 JP3452897B2 (en) 2003-10-06

Family

ID=18847822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000379454A Expired - Lifetime JP3452897B2 (en) 2000-12-13 2000-12-13 Impurity detection device and impurity detection method

Country Status (2)

Country Link
JP (1) JP3452897B2 (en)
KR (1) KR20020046974A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134608A (en) * 2017-02-23 2018-08-30 オルガノ株式会社 Pipeline flushing method and filter unit
CN109643638A (en) * 2016-09-16 2019-04-16 应用材料公司 UV irradation system and method for the control arsenic degassing in lower than the manufacture of 7 nanometer CMOSs

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6590964B2 (en) * 2018-01-31 2019-10-16 オルガノ株式会社 Hydrogen peroxide concentration measuring system and measuring method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892655U (en) * 1981-12-18 1983-06-23 株式会社日立製作所 dissolved oxygen meter
JPH0994572A (en) * 1995-09-29 1997-04-08 Hitachi Ltd Method for treating organic matter-containing water and apparatus therefor
JPH09145653A (en) * 1995-11-24 1997-06-06 T & C Technical:Kk Method and instrument for measuring content of total organic carbon of high-conductivity sample water
JP2000131308A (en) * 1998-10-23 2000-05-12 Kurita Water Ind Ltd Apparatus and method for measurement of concentration of dissolved nitrogen in ultrapure water
JP2000283939A (en) * 1999-03-29 2000-10-13 Japan Organo Co Ltd Water quality monitoring system, water quality monitoring method, and demineralizer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960016302B1 (en) * 1992-05-15 1996-12-09 마쯔시다덴기산교 가부시기가이샤 Apparatus and method for production of pure water
US5518608A (en) * 1994-01-18 1996-05-21 Chubachi; Hiroshi Water purity determining device and system for producing ultrapure water using such devices
JPH07260725A (en) * 1994-03-22 1995-10-13 Japan Organo Co Ltd Organic carbon measuring device, and ultrapure water producing device with the device built-in

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892655U (en) * 1981-12-18 1983-06-23 株式会社日立製作所 dissolved oxygen meter
JPH0994572A (en) * 1995-09-29 1997-04-08 Hitachi Ltd Method for treating organic matter-containing water and apparatus therefor
JPH09145653A (en) * 1995-11-24 1997-06-06 T & C Technical:Kk Method and instrument for measuring content of total organic carbon of high-conductivity sample water
JP2000131308A (en) * 1998-10-23 2000-05-12 Kurita Water Ind Ltd Apparatus and method for measurement of concentration of dissolved nitrogen in ultrapure water
JP2000283939A (en) * 1999-03-29 2000-10-13 Japan Organo Co Ltd Water quality monitoring system, water quality monitoring method, and demineralizer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643638A (en) * 2016-09-16 2019-04-16 应用材料公司 UV irradation system and method for the control arsenic degassing in lower than the manufacture of 7 nanometer CMOSs
CN109643638B (en) * 2016-09-16 2023-09-05 应用材料公司 Ultraviolet radiation system and method for controlling arsenic outgassing in sub-7 nanometer CMOS fabrication
JP2018134608A (en) * 2017-02-23 2018-08-30 オルガノ株式会社 Pipeline flushing method and filter unit

Also Published As

Publication number Publication date
JP3452897B2 (en) 2003-10-06
KR20020046974A (en) 2002-06-21

Similar Documents

Publication Publication Date Title
JP2793100B2 (en) Pure water production method
JP2743823B2 (en) Semiconductor substrate wet treatment method
JP6119886B1 (en) Ultrapure water production apparatus and operation method of ultrapure water production apparatus
JP2003205299A (en) Hydrogen dissolved water manufacturing system
JP2010017633A (en) Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component
JP2008194560A (en) Evaluation method of water to be treated in membrane separation device, water treatment method, and water treatment device
JP6161954B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP2000354729A (en) Method and apparatus for producing functional water for washing
TW200938491A (en) Hydrogen peroxide removal method and device thereof, ozone water production method and device thereof, and washing method and device thereof
JP6400918B2 (en) Hydrogen dissolved water production apparatus and pure water production system
JP3452897B2 (en) Impurity detection device and impurity detection method
JP4175002B2 (en) Oxidation / reducing agent injection rate control method
JP2016005829A (en) Method and apparatus for producing ultrapure water
JP5638193B2 (en) Cleaning method and cleaning apparatus
JP5499433B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JPH07260725A (en) Organic carbon measuring device, and ultrapure water producing device with the device built-in
JP4519930B2 (en) Ultrapure water production method and ultrapure water production apparatus
JP6107987B1 (en) Cleaning method of ultrapure water production system
Kang et al. Fate of low molecular weight organic matters in reverse osmosis and vacuum ultraviolet process for high-quality ultrapure water production in the semiconductor industry
JP2001179252A (en) Method and apparatus for making pure water reduced in content of oxidizing substance
JP2004181364A (en) Ultrapure water making method and apparatus therefor
JPH09192643A (en) Ultrapure water producing device
JP2006073747A (en) Method and device for treating semiconductor wafer
JP4219664B2 (en) Ultrapure water production equipment
JP4447126B2 (en) Ultrapure water production equipment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030624

R150 Certificate of patent or registration of utility model

Ref document number: 3452897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term