JP2002213435A - Dynamic pressure bearing - Google Patents
Dynamic pressure bearingInfo
- Publication number
- JP2002213435A JP2002213435A JP2001011529A JP2001011529A JP2002213435A JP 2002213435 A JP2002213435 A JP 2002213435A JP 2001011529 A JP2001011529 A JP 2001011529A JP 2001011529 A JP2001011529 A JP 2001011529A JP 2002213435 A JP2002213435 A JP 2002213435A
- Authority
- JP
- Japan
- Prior art keywords
- dynamic pressure
- shaft
- cylindrical body
- peripheral surface
- lubricating fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001050 lubricating effect Effects 0.000 claims abstract description 62
- 239000012530 fluid Substances 0.000 claims abstract description 58
- 230000002093 peripheral effect Effects 0.000 claims abstract description 29
- 208000012661 Dyskinesia Diseases 0.000 abstract description 2
- 230000000452 restraining effect Effects 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000005461 lubrication Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000004323 axial length Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
Landscapes
- Sliding-Contact Bearings (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は動圧軸受に関し、更
に詳しくは、ヘリングボーンタイプの動圧溝を備えたラ
ジアル動圧軸受に関する。The present invention relates to a dynamic pressure bearing, and more particularly to a radial dynamic pressure bearing having a herringbone type dynamic pressure groove.
【0002】[0002]
【従来の技術】ヘリングボーンタイプの動圧溝を有する
ラジアル動圧軸受においては、一般に、円筒体の内部に
軸を挿入するとともに、その円筒体の内周面もしくは軸
の外周面に、ヘリングボーン形状をした動圧溝を形成
し、円筒体と軸の間に潤滑流体を供給する構成を採る。2. Description of the Related Art In a radial dynamic pressure bearing having a herringbone type dynamic pressure groove, a shaft is generally inserted into a cylindrical body, and a herringbone is provided on an inner peripheral surface of the cylindrical body or an outer peripheral surface of the shaft. A configuration in which a shaped dynamic pressure groove is formed and a lubricating fluid is supplied between the cylindrical body and the shaft is adopted.
【0003】このような構成において、円筒体と軸が相
対的に回転すると、動圧溝の作用によってその形成部位
において潤滑流体の膜圧力が発生し、円筒体と軸とが非
接触状態のもとに相対回転する。[0003] In such a configuration, when the cylinder and the shaft rotate relative to each other, a film pressure of the lubricating fluid is generated at the portion where the cylinder and the shaft are formed due to the action of the dynamic pressure groove, so that the cylinder and the shaft are not in contact with each other. And relative rotation.
【0004】[0004]
【発明が解決しようとする課題】ところで、上記したよ
うなヘリングボーンタイプの動圧溝を形成してなるラジ
アル動圧軸受においては、円筒体と軸とが相対回転した
とき、これらの間の潤滑流体に軸方向への流れが発生し
て、潤滑流体が軸受装置外に漏れ出したり、あるいは軸
の片端部を密封した軸受装置においては、潤滑流体の流
れにより密封部の圧力上昇や圧力低下が発生して、回転
体(円筒体もしくは軸のうちの回転する側の部材)が軸
方向に異常に動くという問題が発生する場合があった。By the way, in the above-mentioned radial dynamic pressure bearing having a herringbone type dynamic pressure groove formed therein, when the cylindrical body and the shaft rotate relative to each other, the lubrication between them occurs. The fluid flows in the axial direction, causing the lubricating fluid to leak out of the bearing device, or in a bearing device in which one end of the shaft is sealed, the flow of the lubricating fluid causes the pressure rise or pressure drop in the sealed portion. This may cause a problem that the rotating body (the rotating body of the cylinder or the shaft) abnormally moves in the axial direction.
【0005】本発明はこのような実情に鑑みてなされた
もので、円筒体と軸の相対回転時ににおける潤滑流体の
流れの発生を抑制して、潤滑流体の漏れや回転体の軸方
向への異常な移動を防止することのできる動圧軸受の提
供を目的としている。The present invention has been made in view of such circumstances, and suppresses the generation of the flow of the lubricating fluid during the relative rotation of the cylinder and the shaft, thereby preventing the leakage of the lubricating fluid and the axial direction of the rotating body. It is an object of the present invention to provide a dynamic pressure bearing capable of preventing abnormal movement.
【0006】[0006]
【課題を解決するための手段】上記の目的を達成するた
め、請求項1に係る発明の動圧軸受は、円筒体の内周面
もしくはその円筒体内に挿入された軸の外周面のうち、
少なくともいずれか一方の面にヘリングボーンタイプの
動圧溝を形成し、その動圧溝により上記円筒体と軸の相
対回転時にこれらの間の潤滑流体に潤滑膜圧力を付与し
て当該円筒体と軸の間を潤滑する動圧軸受において、上
記動圧溝のヘリングボーンパターンの軸方向中心を挟ん
でその両側への寸法L1 とL2 の差|L1 −L2 |が、
下記の(1)式を満たしていることによって特徴づけら
れる。 |L1 −L2 |≦0.01(L1 +L2 ) ・・・・(1)In order to achieve the above object, a hydrodynamic bearing according to the first aspect of the present invention is a hydrodynamic bearing comprising: an inner peripheral surface of a cylindrical body or an outer peripheral surface of a shaft inserted into the cylindrical body.
A herringbone type dynamic pressure groove is formed on at least one of the surfaces, and by applying the lubricating film pressure to the lubricating fluid between the cylinder and the shaft by the dynamic pressure groove during relative rotation of the shaft, the cylindrical body and in the dynamic pressure bearing for lubrication between the shaft, the dynamic differences in dimensions L 1 and L 2 to both sides of the axial center of the herringbone pattern of grooves | L 1 -L 2 | is,
It is characterized by satisfying the following expression (1). | L 1 −L 2 | ≦ 0.01 (L 1 + L 2 ) (1)
【0007】また、同じ目的を達成するため、請求項2
に係る発明の動圧軸受は、同じく円筒体の内周面もしく
はその円筒体内に挿入された軸の外周面のうち、少なく
ともいずれか一方の面にヘリングボーンタイプの動圧溝
を形成し、その動圧溝により上記円筒体と軸の相対回転
時にこれらの間の潤滑流体に潤滑膜圧力を付与して当該
円筒体と軸の間を潤滑する動圧軸受において、上記ヘリ
ングボーンタイプの動圧溝の軸方向両端部における上記
円筒体の内周面と軸の外周面との間の半径隙間δ1 とδ
2 の差|δ1 −δ2 |が、下記の(2)式を満たしてい
ることによって特徴づけられる。Further, in order to achieve the same object, a second aspect of the present invention is provided.
The dynamic pressure bearing of the invention according to the present invention forms a herringbone type dynamic pressure groove on at least one of the inner peripheral surface of the cylindrical body or the outer peripheral surface of the shaft inserted into the cylindrical body. In a dynamic pressure bearing for lubricating between a cylindrical body and a shaft by applying a lubricating film pressure to a lubricating fluid between the cylindrical body and the shaft during relative rotation of the cylindrical body and the shaft, the herringbone type dynamic pressure groove Radial gaps δ 1 and δ between the inner peripheral surface of the cylindrical body and the outer peripheral surface of the shaft at both ends in the axial direction of
2 of the difference | δ 1 -δ 2 | is characterized by that it meets the following expression (2).
【0008】 |δ1 −δ2 |≦0.45{(δ1 +δ2 )/2}1/2 ・・・・(2) 更に同じ目的を達成するため、請求項3に係る発明の動
圧軸受は、円筒体の内周面もしくはその円筒体内に挿入
された軸の外周面のうち、少なくともいずれか一方の面
に、軸方向に所定の距離を開けて2組のヘリングボーン
タイプの動圧溝を形成し、その各動圧溝により上記円筒
体と軸の相対回転時にこれらの間の潤滑流体に潤滑膜圧
力を付与して当該円筒体と軸との間を潤滑するととも
に、上記2組の動圧溝の間の円筒体と軸との間の隙間を
動圧溝の形成位置の隙間よりも大きくして潤滑流体溜ま
り部とした動圧軸受において、上記潤滑流体溜まり部の
軸方向両端部における円筒体の内周面と軸の外周面間の
半径隙間Δ1 とΔ2 の差|Δ 1 −Δ2 |が、下記の
(3)式を満たしていることによって特徴づけられる。 |Δ1 −Δ2 |≦0.45{(Δ1 +Δ2 )/2}1/2 ・・・・(3)| Δ1−δTwo| ≦ 0.45 {(δ1+ ΔTwo) / 2}1/2 ..... (2) In order to further achieve the same object, the operation of the invention according to claim 3
The pressure bearing is inserted into the inner peripheral surface of the cylinder or into the cylinder.
At least one of the outer peripheral surfaces of the shaft
Two sets of herringbones at a predetermined distance in the axial direction
Type dynamic pressure grooves, and each dynamic pressure groove
When the body and shaft rotate relative to each other, the lubricating fluid
Applying force to lubricate between the cylinder and shaft
The gap between the cylinder and the shaft between the two sets of dynamic pressure grooves is
Make the lubricating fluid reservoir larger than the gap at the position where the dynamic pressure groove is formed.
Of the lubricating fluid reservoir,
Between the inner peripheral surface of the cylindrical body and the outer peripheral surface of the shaft at both ends in the axial direction
Radial gap Δ1And ΔTwoDifference | Δ 1−ΔTwo|
It is characterized by satisfying the expression (3). | Δ1−ΔTwo| ≦ 0.45 {(Δ1+ ΔTwo) / 2}1/2 ... (3)
【0009】ここで、本発明においては、請求項1に係
る発明の動圧軸受において、請求項2に係る発明の特徴
を兼備した構成(請求項4)、および、その請求項4に
係る発明の動圧軸受において、請求項3に係る発明の特
徴を更に兼備した構成(請求項5)を好適に採用するこ
とができる。According to the present invention, there is provided a dynamic pressure bearing according to the first aspect of the present invention, which has the features of the second aspect of the present invention (claim 4), and the invention according to the fourth aspect. In the dynamic pressure bearing of the present invention, a configuration (claim 5) further combining the features of the invention according to claim 3 can be suitably adopted.
【0010】本発明者らは、ヘリングボーンタイプの動
圧溝を備えたラジアル動圧軸受の回転時における挙動を
鋭意研究した結果、この種の動圧軸受においては、動圧
溝パターンの軸方向への対称性、動圧溝の形成部位にお
ける円筒体と軸との間の半径隙間の軸方向への均一性、
および、軸方向に2組の動圧溝を形成してその間に潤滑
流体溜まり部を形成したものにあっては、その潤滑流体
溜まり部の半径隙間の軸方向への均一性が、潤滑流体の
流れの発生に大きな影響を及ぼすことを見いだし、本発
明に至ったものである。The present inventors have conducted intensive studies on the behavior of a radial dynamic pressure bearing having a herringbone type dynamic pressure groove during rotation. As a result, in this type of dynamic pressure bearing, the dynamic pressure Symmetry, uniformity in the axial direction of the radial gap between the cylindrical body and the shaft at the location of the dynamic pressure groove,
Further, in the case where two sets of dynamic pressure grooves are formed in the axial direction and the lubricating fluid reservoir is formed therebetween, the uniformity of the radial gap of the lubricating fluid reservoir in the axial direction is determined by the lubricating fluid. It has been found that this has a significant effect on the generation of the flow, which has led to the present invention.
【0011】すなわち、図2に示すように、動圧溝3a
(3b)のヘリングボーンパターンの軸方向中心Cを挟
んでその両側への寸法L1 とL2 の差|L2 −L2 |が
大きくなればなるほど、ヘリングボーンパターンの軸方
向非対称性によって潤滑流体の軸方向の流れが大きくな
る。この差|L2 −L2 |を、前記(1)式に示される
ように、ヘリングボーンパターンの全長(L1 +L2 )
の1%以下にすることにより(請求項1)、当該差|L
1 −L2 |に起因する潤滑流体の軸方向への流れの発生
を抑制できることが確かめられた。That is, as shown in FIG.
(3b) The greater the difference | L 2 −L 2 | between the dimensions L 1 and L 2 on both sides of the center C of the herringbone pattern in the axial direction of the herringbone pattern, the greater the lubrication due to the axial asymmetry of the herringbone pattern. The axial flow of the fluid increases. The difference | L 2 −L 2 | is expressed by the total length (L 1 + L 2 ) of the herringbone pattern as shown in the above equation (1).
By setting the difference to 1% or less (claim 1), the difference | L
It was confirmed that can suppress the occurrence of flow in the axial direction of the lubricating fluid resulting from | 1 -L 2.
【0012】また、図3に示すように、動圧溝3a(3
b)の軸方向両端部における円筒体1の内周面と軸2の
外周面間の半径隙間δ1 とδ2 の差|δ1 −δ2 |が大
きくなればなるほど、動圧溝3a(3b)の形成部位に
おける潤滑流体の軸方向への圧力分布が均一とならず、
軸方向流れが大きくなる。この差|δ1 −δ2 |を、前
記(2)式に示されるように、動圧溝3a(3b)の形
成部位における平均半径隙間の平方根の45%以下とす
ることにより(請求項2)、当該差|δ1 −δ 2 |に起
因する潤滑流体の軸方向への流れの発生を抑制できるこ
とが確かめられた。As shown in FIG. 3, the dynamic pressure grooves 3a (3
b) the inner peripheral surface of the cylindrical body 1 at both ends in the axial direction and the shaft 2
Radial gap δ between outer peripheral surfaces1And δTwoDifference | δ1−δTwo| Is large
The more it becomes, the more the dynamic pressure grooves 3a (3b) are formed
Pressure distribution in the axial direction of the lubricating fluid in the
Axial flow increases. This difference | δ1−δTwo|
As shown in the expression (2), the shape of the dynamic pressure grooves 3a (3b)
Not more than 45% of the square root of the average radius gap at the formation site
(Claim 2), the difference | δ1−δ Two|
The flow of lubricating fluid in the axial direction
Was confirmed.
【0013】更に、図4に示すように、軸方向に2組の
動圧溝3a,3bを形成して、その間の円筒体1と軸2
間の隙間を動圧溝3a,3bの形成部位における隙間よ
りも大きくして潤滑流体溜まり部4とした動圧軸受にお
いては、その潤滑流体溜まり部4の軸方向両端部におけ
る半径隙間Δ1 とΔ2 の差|Δ1 −Δ2 |が大きくなれ
ばなるほど、この潤滑流体溜まり部4における流体圧力
の軸方向への圧力差が発生し、潤滑流体の軸方向流れが
大きくなる。この差|Δ1 −Δ2 |を、前記(3)式に
示されるように、潤滑流体溜まり部4おける平均半径隙
間の平方根の45%以下とすることにより(請求項
3)、当該差|Δ1 −Δ2 |に起因する潤滑流体の軸方
向への流れの発生を抑制するできることが確かめられ
た。Further, as shown in FIG. 4, two sets of dynamic pressure grooves 3a and 3b are formed in the axial direction, and the cylindrical body 1 and the shaft 2 between them are formed.
Clearance dynamic pressure grooves 3a between, in the dynamic pressure bearing in which a lubricating fluid reservoir 4 is set larger than the gap in the formation site of 3b, a radial gap delta 1 in the axial ends of the lubricant reservoir 4 difference Δ 2 | Δ 1 -Δ 2 | is the greater, the pressure difference in the axial direction of the fluid pressure is generated in the lubricating fluid reservoir 4, the axial flow of the lubricating fluid is increased. By setting the difference | Δ 1 −Δ 2 | to 45% or less of the square root of the average radial gap in the lubricating fluid reservoir 4 as shown in the above equation (3), the difference | It has been confirmed that the generation of the axial flow of the lubricating fluid due to Δ 1 −Δ 2 | can be suppressed.
【0014】[0014]
【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について述べる。図1は本発明の実施の形態
の構成を示す断面図である。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing the configuration of the embodiment of the present invention.
【0015】この例においては、円筒体1内に挿入され
た軸2の外周面に、軸方向に所定の間隔を開けて2組の
ヘリングボーンタイプの動圧溝3a,3bが形成されて
いるとともに、これらの各動圧溝3a,3bの間に、こ
れらの各動圧溝3a,3bの形成部位における円筒体1
と軸2の間の隙間よりも大きな隙間を形成してなる潤滑
流体溜まり4が形成されている。そして、円筒体1と軸
2の間に、オイル等の潤滑流体が満たされている。In this example, two sets of herringbone type dynamic pressure grooves 3a and 3b are formed on the outer peripheral surface of the shaft 2 inserted into the cylindrical body 1 at predetermined intervals in the axial direction. At the same time, between the respective dynamic pressure grooves 3a and 3b, the cylindrical body 1 at the portion where the respective dynamic pressure grooves 3a and 3b are formed.
The lubricating fluid reservoir 4 is formed by forming a gap larger than the gap between the shaft and the shaft 2. The space between the cylinder 1 and the shaft 2 is filled with a lubricating fluid such as oil.
【0016】以上の構成において、円筒体1と軸2とが
相対回転すると、動圧溝3a,3bの形成位置において
潤滑流体の膜圧力が発生し、これによって円筒体1と軸
2はラジアル方向に相互に非接触のもとに相対回転す
る。なお、円筒体1と軸2とは、スラスト方向にも、こ
れらの間に設けられている例えばスパイラル状の動圧溝
を備えたスラスト動圧軸受(図示せず)の相対回転時に
おけるポンピング作用により、相互に非接触状態を維持
しつつ回転できるようになっている。In the above configuration, when the cylinder 1 and the shaft 2 rotate relative to each other, a film pressure of the lubricating fluid is generated at the positions where the dynamic pressure grooves 3a and 3b are formed, whereby the cylinder 1 and the shaft 2 are moved in the radial direction. Rotate relative to each other without contact with each other. The cylindrical body 1 and the shaft 2 also have a pumping action during relative rotation of a thrust dynamic pressure bearing (not shown) having, for example, a spiral dynamic pressure groove provided between them in the thrust direction. Thereby, it is possible to rotate while maintaining a non-contact state with each other.
【0017】さて、以上の各動圧溝3a,3bのヘリン
グボーンパターンは、図2に模式的に示すように、その
軸方向中心Cを挟んでその両側の軸方向寸法L1 とL2
の差|L1 −L2 |が、軸方向全長(L1 +L2 )の1
%以下に設定されている。すなわち、前記した(1)式
を満足している。As shown schematically in FIG. 2, the herringbone pattern of each of the dynamic pressure grooves 3a and 3b has the axial dimensions L 1 and L 2 on both sides of the axial center C thereof.
The difference | L 1 -L 2 | is 1 of the total axial length (L 1 + L 2 ).
% Or less. That is, the above expression (1) is satisfied.
【0018】また、図3に模式的に示すように、各動圧
溝3a,3bの軸方向両端部における円筒体1と軸2の
間の半径隙間δ1 とδ2 との差|δ1 −δ2 |が、前記
した(2)式を満足している。As shown schematically in FIG. 3, the difference | δ 1 between the radial gaps δ 1 and δ 2 between the cylindrical body 1 and the shaft 2 at both axial ends of each of the dynamic pressure grooves 3a and 3b. −δ 2 | satisfies the expression (2).
【0019】更に、図4に模式的に示すように、潤滑流
体溜まり部4の軸方向両端部における円筒体と軸2との
間の半径隙間Δ1 とΔ2 との差|Δ1 −Δ2 |が、前記
した(3)式を満足している。Further, as schematically shown in FIG. 4, the difference | Δ 1 −Δ between the radial gaps Δ 1 and Δ 2 between the cylindrical body and the shaft 2 at both axial ends of the lubricating fluid reservoir 4. 2 | satisfies the expression (3).
【0020】以上の本発明の実施の形態によると、円筒
体1と軸2との相対回転時にこれらの間の潤滑流体に軸
方向への流れが生じず、従って潤滑流体が軸受装置外に
漏れ出したり、円筒体1と軸2とが相対的に軸方向に異
常に動くといった不具合が生じない。According to the above embodiment of the present invention, when the cylindrical body 1 and the shaft 2 rotate relative to each other, the lubricating fluid between them does not flow in the axial direction, so that the lubricating fluid leaks out of the bearing device. There is no problem that the cylinder 1 and the shaft 2 move abnormally in the axial direction relatively to each other.
【0021】次に、前記した|L1 −L2 |、|δ1 −
δ2 |および|Δ1 −Δ2 |を種々に変化させて、動圧
溝3aまたは3bの間の潤滑流体の流れを測定する実験
結果について述べる。Next, the aforementioned | L 1 −L 2 |, | δ 1 −
An experimental result of measuring the flow of the lubricating fluid between the dynamic pressure grooves 3a or 3b while changing δ 2 | and | Δ 1 −Δ 2 | variously will be described.
【0022】この実験においては、図5に示すように、
動圧溝3aまたは3bの形成部位に潤滑流体を供給した
状態で、その軸方向両端部における液面の軸方向への移
動量を計測した。In this experiment, as shown in FIG.
With the lubricating fluid being supplied to the portion where the dynamic pressure groove 3a or 3b was formed, the amount of movement of the liquid surface in the axial direction at both axial ends was measured.
【0023】まず、|L1 −L2 |については、 α=|L1 −L2 |/(L1 +L2 )×100(%) ・・・・(4) として、αを0.2〜10%の間で種々に変化させたも
のを作り、液面の移動量を計測した。この際、βおよび
γについては、それぞれ45%とした。計測結果を[表
1]に示す。First, as for | L 1 -L 2 |, α = | L 1 -L 2 | / (L 1 + L 2 ) × 100 (%) (4) and α is 0.2 What changed variously between 10% and 10% was prepared, and the movement amount of the liquid level was measured. At this time, β and γ were each set to 45%. The measurement results are shown in [Table 1].
【0024】[0024]
【表1】 [Table 1]
【0025】また、|δ1 −δ2 |については、 β=|δ1 −δ2 |/{(δ1 +δ2 )/2}1/2 ×100(%) ・・・・(5) として、βの値を15〜75%の間で種々に変化させた
ものを作り、液面の移動量を計測した。この際、αは1
%、γについては45%とした。計測結果を[表2]に
示す。For | δ 1 −δ 2 |, β = | δ 1 −δ 2 | / {(δ 1 + δ 2 ) / 2} 1/2 × 100 (%) (5) The values of β were variously changed between 15 and 75%, and the amount of movement of the liquid surface was measured. At this time, α is 1
% And γ were set to 45%. The measurement results are shown in [Table 2].
【0026】[0026]
【表2】 [Table 2]
【0027】更に、|Δ1 −Δ2 |については、 γ=|Δ1 −Δ2 |/{(Δ1 +Δ2 )/2}1/2 ×100(%) ・・・・(6) として、γの値を15〜75%の間で種々に変化させた
ものを作り、液面の移動量を計測した。ここでは、2組
の動圧溝3a,3bおよびこれらの間の潤滑流体溜まり
部4に潤滑流体を供給した。また、この際、αについて
は1%、βについては45%とした。計測結果を[表
3]に示す。Further, as for | Δ 1 −Δ 2 |, γ = | Δ 1 −Δ 2 | / {(Δ 1 + Δ 2 ) / 2} 1/2 × 100 (%) (6) Were prepared by varying the value of γ between 15% and 75%, and the amount of movement of the liquid surface was measured. Here, the lubricating fluid was supplied to the two sets of dynamic pressure grooves 3a and 3b and the lubricating fluid reservoir 4 between them. At this time, α was set to 1%, and β was set to 45%. The measurement results are shown in [Table 3].
【0028】[0028]
【表3】 [Table 3]
【0029】以上の計測結果から明らかなように、|L
1 −L2 |、|δ1 −δ2 |および|Δ1 −Δ2 |がそ
れぞれ大きくなるほど、液面の軸方向への移動量が大と
なり、αについては1%以下、βおよびγについてはそ
れぞれ45%以下とすることによって液面の移動は生じ
ず、つまり潤滑流体の軸方向への流れが発生せず、潤滑
流体が漏出したり、あるいは円筒体1と軸2とが相対的
に軸方向に大きく移動する不具合を防止できることが確
かめられた。As is apparent from the above measurement results, | L
As the values of 1− L 2 |, | δ 1 −δ 2 | and | Δ 1 −Δ 2 | increase, the amount of movement of the liquid surface in the axial direction increases, and α is 1% or less, and β and γ Is set to 45% or less, the liquid level does not move, that is, the axial flow of the lubricating fluid does not occur, the lubricating fluid leaks out, or the cylinder 1 and the shaft 2 are relatively moved. It was confirmed that the problem of large movement in the axial direction could be prevented.
【0030】また、αを1%以下に設定した場合、βお
よびγが75%と大きくとも、潤滑流体が漏出したり円
筒体1と軸2とが相対的に軸方向に異常に変位する程度
の流れは発生せず、また、βを45%以下とした場合、
αが1%を越え、かつ、γが75%程度と大きくとも、
同じく潤滑流体が漏出したり円筒体1と軸2とが相対的
に軸方向に異常に変位する程度の流れは発生せず、更に
は、γを45%以下とした場合、αが1%を越え、か
つ、βが75%を越えても、同じく潤滑流体が漏出した
り円筒体1と軸2とが相対的に軸方向に異常に変位する
程度の流れは発生しないことも確認することができた。
そして、αを1%以下とし、なおかつβを45%以下と
することにより、γが大きくても潤滑流体の軸方向への
流れが殆ど発生せず、更に加えてγの値を45%以下と
することにより、その流れをほぼ完全になくすることが
できる。When α is set to 1% or less, even if β and γ are as large as 75%, the lubricating fluid leaks or the cylinder 1 and the shaft 2 are displaced abnormally in the axial direction relative to each other. Does not occur, and when β is set to 45% or less,
Even if α exceeds 1% and γ is as large as about 75%,
Similarly, there is no flow in which the lubricating fluid leaks or the cylinder 1 and the shaft 2 are displaced abnormally in the axial direction relative to each other. Further, when γ is set to 45% or less, α becomes 1%. Even if β exceeds 75%, it is also confirmed that there is no flow of lubricating fluid that leaks or that the cylinder 1 and the shaft 2 are displaced abnormally in the axial direction relative to each other. did it.
By setting α to 1% or less and β to 45% or less, even if γ is large, the flow of the lubricating fluid in the axial direction hardly occurs, and in addition, the value of γ is set to 45% or less. By doing so, the flow can be almost completely eliminated.
【0031】なお、以上の実施の形態においては、軸2
の外周面にヘリングボーンタイプの動圧溝3a,3bを
形成した例を示したが、これらの動圧溝3a,3bは、
円筒体1の内周面に形成しても、上記と同等の結果が得
られる。In the above embodiment, the shaft 2
An example is shown in which the herringbone type dynamic pressure grooves 3a, 3b are formed on the outer peripheral surface.
Even if it is formed on the inner peripheral surface of the cylindrical body 1, the same result as described above can be obtained.
【0032】[0032]
【発明の効果】以上のように、請求項1に係る発明よれ
ば、ヘリングボーンタイプの動圧溝を有するラジアル動
圧軸受において、ヘリングボーンパターンの軸方向中心
を挟んでその両側の寸法差を、そのパターンの軸方向全
長の1%以下とすることにより、潤滑流体の軸方向への
流れの発生を抑制することができ、これにより、潤滑流
体が軸受装置の外部に漏出したり、あるいは円筒体と軸
とが相対的に軸方向に大きく移動することを防止するこ
とができる。As described above, according to the first aspect of the present invention, in a radial dynamic pressure bearing having a herringbone type dynamic pressure groove, the dimensional difference between both sides of the herringbone pattern with respect to the axial center thereof is reduced. By setting the length of the pattern to 1% or less of the total length in the axial direction, the generation of the flow of the lubricating fluid in the axial direction can be suppressed, whereby the lubricating fluid leaks out of the bearing device, or It is possible to prevent the body and the shaft from moving relatively largely in the axial direction.
【0033】また、請求項2に係る発明によれば、同じ
くヘリングボーンタイプの動圧溝の軸方向両端部におけ
る円筒体と軸間の半径隙間の差を、その平均の半径隙間
の平方根の45%以下とすることにより、同じく潤滑流
体の軸方向への流れの発生を抑制することができ、上記
と同様に潤滑流体が軸受装置の外部に漏出したり、ある
いは円筒体と軸とが相対的に軸方向に大きく移動するこ
とを防止することができる。According to the second aspect of the present invention, the difference in the radial gap between the cylindrical body and the shaft at both ends in the axial direction of the herringbone type dynamic pressure groove is also calculated as 45% of the square root of the average radial gap. % Or less, the generation of the flow of the lubricating fluid in the axial direction can be similarly suppressed, and the lubricating fluid leaks out of the bearing device or the cylinder and the shaft move relative to each other as described above. A large movement in the axial direction can be prevented.
【0034】更に、請求項3に係る発明によれば、2組
のヘリングボーンタイプの動圧溝の間に形成された潤滑
流体溜まり部の軸方向両端部における円筒体と軸間の半
径隙間の差を、その平均の半径隙間の平方根の45%以
下とすることにより、潤滑流体の軸方向への流れの発生
を抑制することができ、潤滑流体の軸受装置の外部への
漏出や、円筒体と軸との軸方向への相対的移動を防止す
ることができる。Further, according to the third aspect of the present invention, the radial gap between the cylindrical body and the shaft at both ends in the axial direction of the lubricating fluid reservoir formed between the two sets of herringbone type dynamic pressure grooves. By making the difference 45% or less of the square root of the average radial gap, it is possible to suppress the generation of the flow of the lubricating fluid in the axial direction. Relative movement of the shaft and the shaft in the axial direction can be prevented.
【0035】また更に、請求項4に係る発明のように、
請求項1に係る発明の特徴と請求項2に係る発明の特徴
を併せ持たせることにより、上記の効果はより一層確実
なものとなるとともに、請求項5に係る発明のように、
これらに加えて請求項3に係る発明の特徴をも併せ持た
せることによって、上記した効果は更に一層確実なもの
となる。Still further, as in the invention according to claim 4,
By having the features of the invention according to claim 1 and the features of the invention according to claim 2 together, the above-mentioned effect is further ensured, and as in the invention according to claim 5,
By adding the features of the invention according to claim 3 in addition to these, the above-mentioned effects are further ensured.
【図1】本発明の実施の形態の構成を示す断面図であ
る。FIG. 1 is a sectional view showing a configuration of an embodiment of the present invention.
【図2】図1の実施の形態における各動圧溝3a,3b
のヘリングボーンパターンの軸方向対称性を説明するた
めの模式図である。FIG. 2 shows each dynamic pressure groove 3a, 3b in the embodiment of FIG.
FIG. 4 is a schematic diagram for explaining the axial symmetry of the herringbone pattern of FIG.
【図3】図1の実施の形態における各動圧溝3a,3b
の軸方向両端部における円筒体1と軸2間の隙間の差を
説明するための模式図である。FIG. 3 shows each dynamic pressure groove 3a, 3b in the embodiment of FIG.
FIG. 4 is a schematic diagram for explaining a difference in a gap between a cylindrical body 1 and a shaft 2 at both axial end portions of FIG.
【図4】図1の実施の形態における潤滑流体溜まり部4
の軸方向両端部における円筒体1と軸2間の隙間の差を
説明するための模式図である。FIG. 4 is a diagram illustrating a lubricating fluid reservoir 4 according to the embodiment of FIG.
FIG. 4 is a schematic diagram for explaining a difference in a gap between a cylindrical body 1 and a shaft 2 at both axial end portions of FIG.
【図5】本発明の実施の形態における動圧溝3a(3
b)の|L1 −L2 |、|δ1 −δ2 |、および潤滑流
体溜まり4の|Δ1 −Δ2 |を種々に変化させて、動圧
溝3a,3bの形成部位における潤滑流体の流れを計測
した実験の説明図である。FIG. 5 shows a dynamic pressure groove 3a (3) according to an embodiment of the present invention.
By varying the values of | L 1 -L 2 | and | δ 1 -δ 2 | of b) and | Δ 1 -Δ 2 | of the lubricating fluid reservoir 4, the lubrication at the portions where the dynamic pressure grooves 3 a and 3 b are formed is changed. It is explanatory drawing of the experiment which measured the flow of the fluid.
1 円筒体 2 軸 3a,3b 動圧溝 4 潤滑流体溜まり部 Reference Signs List 1 cylindrical body 2 shaft 3a, 3b dynamic pressure groove 4 lubricating fluid reservoir
Claims (5)
挿入された軸の外周面のうち、少なくともいずれか一方
の面にヘリングボーンタイプの動圧溝を形成し、その動
圧溝により上記円筒体と軸の相対回転時にこれらの間の
潤滑流体に潤滑膜圧力を付与して当該円筒体と軸の間を
潤滑する動圧軸受において、 上記動圧溝のヘリングボーンパターンの軸方向中心を挟
んでその両側への寸法L1 とL2 の差|L1 −L2 |
が、下記の(1)式を満たしていることを特徴とする動
圧軸受。 |L1 −L2 |≦0.01(L1 +L2 ) ・・・・(1)1. A herringbone-type dynamic pressure groove is formed on at least one of an inner peripheral surface of a cylindrical body and an outer peripheral surface of a shaft inserted into the cylindrical body, and the dynamic pressure groove defines the herringbone type dynamic pressure groove. In a hydrodynamic bearing for applying lubricating film pressure to a lubricating fluid between the cylindrical body and the shaft during relative rotation of the shaft and lubricating between the cylindrical body and the shaft, the axial center of the herringbone pattern of the dynamic pressure groove is sandwiched therebetween difference dimensions L 1 and L 2 to both sides | L 1 -L 2 |
Satisfies the following expression (1). | L 1 −L 2 | ≦ 0.01 (L 1 + L 2 ) (1)
挿入された軸の外周面のうち、少なくともいずれか一方
の面にヘリングボーンタイプの動圧溝を形成し、その動
圧溝により上記円筒体と軸の相対回転時にこれらの間の
潤滑流体に潤滑膜圧力を付与して当該円筒体と軸の間を
潤滑する動圧軸受において、 上記ヘリングボーンタイプの動圧溝の軸方向両端部にお
ける上記円筒体の内周面と軸の外周面間の半径隙間δ1
とδ2 の差|δ1 −δ2 |が、下記の(2)式を満たし
ていることを特徴とする動圧軸受。 |δ1 −δ2 |≦0.45{(δ1 +δ2 )/2}1/2 ・・・・(2)2. A herringbone-type dynamic pressure groove is formed on at least one of an inner peripheral surface of a cylindrical body and an outer peripheral surface of a shaft inserted into the cylindrical body. In a hydrodynamic bearing for applying a lubricating film pressure to a lubricating fluid between the cylindrical body and the shaft during relative rotation of the shaft and lubricating between the cylindrical body and the shaft, both ends in the axial direction of the herringbone type dynamic pressure groove The radial gap δ 1 between the inner peripheral surface of the cylindrical body and the outer peripheral surface of the shaft at
And a difference | δ 1 −δ 2 | between them and δ 2 satisfies the following expression (2). | Δ 1 −δ 2 | ≦ 0.45 {(δ 1 + δ 2 ) / 2} 1/2 (2)
挿入された軸の外周面のうち、少なくともいずれか一方
の面に、軸方向に所定の距離を開けて2組のヘリングボ
ーンタイプの動圧溝を形成し、その各動圧溝により上記
円筒体と軸の相対回転時にこれらの間の潤滑流体に潤滑
膜圧力を付与して当該円筒体と軸との間を潤滑するとと
もに、上記2組の動圧溝の間の円筒体と軸間の隙間を動
圧溝の形成位置の隙間よりも大きくして潤滑流体溜まり
部とした動圧軸受において、 上記潤滑流体溜まり部の軸方向両端部における円筒体の
内周面と軸の外周面間の半径隙間Δ1 とΔ2 の差|Δ1
−Δ2 |が、下記の(3)式を満たしていることを特徴
とする動圧軸受。 |Δ1 −Δ2 |≦0.45{(Δ1 +Δ2 )/2}1/2 ・・・・(3)3. A herringbone type of two sets with a predetermined axial distance between at least one of the inner peripheral surface of the cylindrical body and the outer peripheral surface of the shaft inserted into the cylindrical body. Forming a dynamic pressure groove, applying lubricating film pressure to a lubricating fluid between the cylindrical body and the shaft during relative rotation of the cylindrical body and the shaft by each of the dynamic pressure grooves to lubricate between the cylindrical body and the shaft, In a dynamic pressure bearing in which a gap between a cylindrical body and a shaft between two sets of dynamic pressure grooves is made larger than a gap at a position where a dynamic pressure groove is formed, a lubricating fluid reservoir is provided. radial gap delta 1 and delta 2 of the difference between the outer peripheral surface of the inner peripheral surface and the axis of the cylindrical body in part | delta 1
−Δ 2 | satisfies the following expression (3). | Δ 1 −Δ 2 | ≦ 0.45 {(Δ 1 + Δ 2 ) / 2} 1/2 (3)
記|δ1 −δ2 |が前記(2)式を満足していることを
特徴とする動圧軸受。4. The dynamic pressure bearing according to claim 1, wherein | δ 1 −δ 2 | satisfies the expression (2).
記|Δ1 −Δ2 |が前記(3)式を満足していることを
特徴とする動圧軸受。5. The dynamic pressure bearing according to claim 4, wherein | Δ 1 −Δ 2 | satisfies the expression (3).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001011529A JP2002213435A (en) | 2001-01-19 | 2001-01-19 | Dynamic pressure bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001011529A JP2002213435A (en) | 2001-01-19 | 2001-01-19 | Dynamic pressure bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002213435A true JP2002213435A (en) | 2002-07-31 |
Family
ID=18878660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001011529A Pending JP2002213435A (en) | 2001-01-19 | 2001-01-19 | Dynamic pressure bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002213435A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6904682B2 (en) * | 2001-09-25 | 2005-06-14 | Koyo Seiko Co., Ltd. | Dynamic pressure bearing and method of manufacturing the same |
-
2001
- 2001-01-19 JP JP2001011529A patent/JP2002213435A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6904682B2 (en) * | 2001-09-25 | 2005-06-14 | Koyo Seiko Co., Ltd. | Dynamic pressure bearing and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6683630B2 (en) | Sliding parts | |
EP2896853B1 (en) | Slide part | |
KR101597385B1 (en) | Bushing and bearing | |
KR100606982B1 (en) | Dynamic pressure bearings with porous oil and manufacturing method | |
US9347566B2 (en) | Sliding component | |
WO2018043307A1 (en) | Sliding component | |
JP6584950B2 (en) | Sliding parts | |
US10408258B2 (en) | Tilting segment for a shaft bearing device, and shaft bearing device | |
JP6713990B2 (en) | Sliding parts | |
JP2006183807A (en) | Bearing device | |
JP2005127514A (en) | Fluid hydrodynamic bearing | |
US10612666B2 (en) | Sliding component | |
JP7275028B2 (en) | sliding parts | |
JP2007177808A (en) | Hydrodynamic bearing unit | |
US20100054640A1 (en) | Fluid dynamic bearings | |
JP2002213435A (en) | Dynamic pressure bearing | |
CN108071664A (en) | Sliding bearing | |
US20190078617A1 (en) | Dynamic pressure bearing and method for manufacturing same | |
CN113614395B (en) | Fluid dynamic bearing device | |
JP7591958B2 (en) | Sealed bearings | |
WO2022181437A1 (en) | Seal-attached bearing | |
JP4433989B2 (en) | Manufacturing method of shell type full complement roller bearing | |
WO2020196599A1 (en) | Fluid dynamic bearing device | |
JPH051017U (en) | Dynamic bearing device | |
JP2002339951A (en) | Dynamic pressure bearing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20040803 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060314 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060515 |
|
A521 | Written amendment |
Effective date: 20060608 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A521 | Written amendment |
Effective date: 20060731 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20070110 Free format text: JAPANESE INTERMEDIATE CODE: A02 |