JP2002207060A - Diagnostic method of insulation degradation for power cable - Google Patents
Diagnostic method of insulation degradation for power cableInfo
- Publication number
- JP2002207060A JP2002207060A JP2001003987A JP2001003987A JP2002207060A JP 2002207060 A JP2002207060 A JP 2002207060A JP 2001003987 A JP2001003987 A JP 2001003987A JP 2001003987 A JP2001003987 A JP 2001003987A JP 2002207060 A JP2002207060 A JP 2002207060A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- leakage current
- cable
- deterioration
- insulating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Testing Relating To Insulation (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明に係る電力ケーブル
の絶縁劣化診断方法は、ゴム・プラスチック絶縁電力ケ
ーブル、代表的には架橋ポリエチレン絶縁電力ケーブル
(以下「CVケーブル」とする。)の絶縁劣化状態を診
断する為に利用する。特に、本発明の電力ケーブルの絶
縁劣化診断方法は、22kVCVケーブルの様な、長尺な
ケーブル線路を有する(継ぎ目のない1本のCVケーブ
ルが長い)CVケーブルの絶縁劣化状態を診断する為に
有効である。BACKGROUND OF THE INVENTION The present invention relates to a method of diagnosing insulation deterioration of a power cable, and to a method of diagnosing insulation deterioration of a rubber / plastic insulated power cable, typically a crosslinked polyethylene insulated power cable (hereinafter referred to as "CV cable"). Use to diagnose. In particular, the method for diagnosing insulation deterioration of a power cable according to the present invention is used to diagnose the state of insulation deterioration of a CV cable having a long cable line (one seamless CV cable is long), such as a 22 kVC cable. It is valid.
【0002】[0002]
【従来の技術】CVケーブルが浸水状態或は多湿状態で
使用される場合に発生する水トリーは、電気トリーに結
び付いて絶縁破壊を起こし、送電事故の原因になる。従
って、水トリー等の劣化部の存在に基づくCVケーブル
の絶縁の劣化状態を予め知っておく事は、送電線の事故
発生を防止する為に重要である。この様な目的でCVケ
ーブルの絶縁劣化を診断する方法として従来から、例え
ば電気学会技術報告第502号第11頁等に記載された
方法が知られている。2. Description of the Related Art A water tree generated when a CV cable is used in a flooded or humid state is tied to an electric tree and causes a dielectric breakdown, thereby causing a power transmission accident. Therefore, it is important to know in advance the deterioration state of the insulation of the CV cable based on the presence of a deteriorated portion such as a water tree in order to prevent occurrence of an accident in the transmission line. As a method for diagnosing insulation deterioration of a CV cable for such a purpose, a method described in, for example, IEEJ Technical Report No. 502, page 11, or the like is conventionally known.
【0003】この電気学会技術報告第502号第11頁
等に記載された従来方法の第1例は、CVケーブルのケ
ーブル導体と絶縁層の外周との間に直流電圧を印加した
状態で、この絶縁層を通じて流れる直流漏れ電流Id の
急激な変動成分(キック)を検出し、この絶縁層の劣化
を診断するものである。即ち、絶縁層中に電極間を橋絡
する水トリーが存在すると、この絶縁層を通じて流れる
上記直流漏れ電流Idは、図2に示す様に短時間(例え
ば1秒以内)の間に急激に変化する。従って、上記直流
漏れ電流Id 中に表われる、キックと呼ばれる急激な変
化を観察すれば、上記水トリーによる上記CVケーブル
の絶縁層の劣化を診断できる。この様な診断方法は、例
えば6.6kVCVケーブルの絶縁劣化を診断するには有
効であると考えられ、一部で利用されている。[0003] A first example of the conventional method described in IEEJ Technical Report No. 502, p. 11 or the like is that a DC voltage is applied between a cable conductor of a CV cable and an outer periphery of an insulating layer. detecting a sudden variation component of the DC leakage current I d flowing through the insulating layer (kick), it is diagnostic of deterioration of the insulating layer. That is, when water tree bridging between electrodes in the insulating layer is present, the DC leakage current I d flowing through the insulating layer is rapidly within a short time as shown in FIG. 2 (e.g., within one second) Change. Therefore, appearing in the DC leakage current I d, by looking at the sudden change called kick can diagnose deterioration of the CV cable insulation layer by the water tree. Such a diagnostic method is considered to be effective for, for example, diagnosing insulation deterioration of a 6.6 kVC cable, and is partially used.
【0004】ところが、上述の様なキックは、6.6kV
CVケーブルの様に、比較的ケーブル線路長が短いCV
ケーブルの直流漏れ電流Id には現れるが、22kVCV
ケーブルの様に、ケーブル線路長が長いCVケーブルの
直流漏れ電流Id には、図3に示す様に、現れない。即
ち、22kVCVケーブルの様にケーブル線路長が数kmと
長いと、これに伴って絶縁層の静電容量Cが大きくな
る。この為、この静電容量Cと直流電源の内部抵抗R0
とから成る、直流漏れ電流Id を測定する回路の応答時
定数τs (=C・R0 )が増大する。この結果、この直
流漏れ電流Id が平滑化されて、上述の図3に示した様
に、キックが現れなくなる。従って、このキックを利用
する診断方法では、22kVCVケーブルの様に長尺なケ
ーブルの絶縁劣化状態を診断できない。However, the kick described above is 6.6 kV
A CV with a relatively short cable line length, such as a CV cable
It appears on the DC leakage current I d of the cable but, 22KVCV
As the cable, the DC leakage current I d of a long CV Cable Cable line length, as shown in FIG. 3, it does not appear. That is, when the cable line length is as long as several kilometers as in the case of a 22 kVC cable, the capacitance C of the insulating layer increases accordingly. Therefore, the capacitance C and the internal resistance R 0 of the DC power supply
The response time constant τ s (= C · R 0 ) of the circuit for measuring the DC leakage current I d is increased. As a result, the DC leakage current Id is smoothed, and no kick appears as shown in FIG. Therefore, the diagnostic method using this kick cannot diagnose the insulation deterioration state of a long cable such as a 22 kVC cable.
【0005】この様な事情に鑑みて、特開平11−27
1386号公報には、直流漏れ電流Id の大きさが時間
の経過と共に徐々に不規則に変化する揺らぎ成分を観察
する事により、上記絶縁層の劣化を診断する方法が記載
されている。即ち、絶縁層が劣化した22kVCVケーブ
ルに直流電圧を印加した場合に、この22kVCVケーブ
ルの絶縁層を通じて流れる直流漏れ電流Id は、図3〜
4に示す様になる。この直流漏れ電流Id には、図3に
示す様に、前述した従来方法が絶縁劣化の診断に利用し
ていたキックは表われていないが、図4の拡大図に示す
様に、1分前後の周期で緩やかに且つ不規則に変動す
る、0.1μAオーダの微小な電流の変動成分、即ち揺
らぎ成分が存在する。In view of such circumstances, Japanese Patent Application Laid-Open No. 11-27
The 1386 JP, by the magnitude of the DC leakage current I d to observe gradually irregularly varying fluctuation components over time, a method of diagnosing the deterioration of the insulating layer is described. That is, when a DC voltage is applied to 22kVCV cable insulating layer is deteriorated, the DC leakage current I d flowing through the insulating layer of the 22kVCV cable, Figure 3
As shown in FIG. The DC leakage current I d, as shown in FIG. 3, the kick conventional method described above has been used for diagnosis of insulation degradation is not our table, as shown in the enlarged view of FIG. 4, 1 minute There is a minute current fluctuation component of the order of 0.1 μA, that is, a fluctuation component, which fluctuates slowly and irregularly in the period before and after.
【0006】尚、水トリーにより絶縁が劣化したCVケ
ーブルに直流電圧を印加した場合に観察される直流漏れ
電流Id 中にキックや揺らぎ成分が発生する理由は、上
記水トリー部の絶縁抵抗が時間と共に不安定に変化する
為と考えられる。即ち、水トリーの電極接触部には電気
トリーの発生が認められる場合があり、この様な場合に
電気トリー部で放電が生じると、その放電の前後で放電
部位の抵抗が変化して、上記直流漏れ電流Id の電流値
が変動する。この変動成分の、比較的周波数の高い成分
がキックとなり、周波数が著しく低い周波数成分が上記
揺らぎ成分となる。又、長尺なケーブル線路を有するC
Vケーブルの絶縁層が有する大きな静電容量Cに拘ら
ず、上述の様な揺らぎ成分が表われる理由は、この揺ら
ぎ成分の周波数帯域が直流に極めて近い(周期が著しく
長い)為に、測定回路の応答時定数τs =C・Ro (C
Vケーブルのケーブル線路の長さが1km程度の場合に
は、応答時定数τs は10秒程度になる。)の影響を受
けにくい為である。[0006] The reason why the kick and the fluctuation component is generated in the DC leakage current I d that is observed when the insulation by water trees is a DC voltage is applied to the CV cable deteriorated, the insulation resistance of the water tree section It is considered that it changes unstable with time. That is, the occurrence of electric trees may be observed in the electrode contact portion of the water tree.In such a case, when a discharge occurs in the electric tree portion, the resistance of the discharge portion changes before and after the discharge, and current value of the DC leakage current I d is varied. Of the fluctuation components, a component having a relatively high frequency becomes a kick, and a frequency component having a remarkably low frequency becomes the fluctuation component. In addition, C having a long cable line
Regardless of the large capacitance C of the insulating layer of the V cable, the above-mentioned fluctuation component appears because the frequency band of this fluctuation component is very close to DC (the period is extremely long), Response time constant τ s = C · R o (C
When the length of the cable line of the V cable is about 1 km, the response time constant τ s is about 10 seconds. ) Is less likely to be affected.
【0007】何れにしても、上記公報に記載された従来
方法の第2例の場合には、上述の様な直流漏れ電流Id
中に存在する揺らぎ成分を利用して、CVケーブルの絶
縁劣化診断を行なう。具体的には、上記揺らぎ成分を観
察し、この揺らぎ成分の有無及び大きさにより、上記絶
縁層の劣化状態を判定する。即ち、この揺らぎ成分の存
在に基づき、絶縁層の劣化に結び付く水トリー等の劣化
の存在を確認し、揺らぎ成分の大きさにより、劣化状態
を確認する。尚、この揺らぎ成分の大きさと絶縁層の劣
化程度との関係は、実験により予め求めておく。この様
に従来方法の第2例の場合には、キックによる診断を行
なえない、22kVCVケーブルの如く、絶縁層の静電容
量が大きなCVケーブルの絶縁劣化診断も行なえる。In any case, in the case of the second example of the conventional method described in the above publication, the above-described DC leakage current I d
Diagnosis of insulation deterioration of the CV cable is performed by using fluctuation components existing in the cable. Specifically, the fluctuation component is observed, and the deterioration state of the insulating layer is determined based on the presence / absence and magnitude of the fluctuation component. That is, based on the presence of the fluctuation component, the existence of the deterioration of the water tree or the like, which leads to the deterioration of the insulating layer, is confirmed, and the deterioration state is confirmed based on the magnitude of the fluctuation component. Note that the relationship between the magnitude of the fluctuation component and the degree of deterioration of the insulating layer is obtained in advance by an experiment. As described above, in the case of the second example of the conventional method, it is also possible to perform a diagnosis of insulation deterioration of a CV cable having a large capacitance of an insulating layer, such as a 22 kVC cable, in which a diagnosis by kick cannot be performed.
【0008】ところが、実線路等の静電容量Cが大きい
CVケーブルの場合、このCVケーブルの絶縁層を流れ
る直流漏れ電流Id には、測定回路の応答遅れ(応答時
定数τs =C・R0 )による波形変歪が生じる。この結
果、上記直流漏れ電流Id 中に現れる揺らぎ成分等の変
動成分が平滑化されて小さくなり、この変動成分の検出
が難しくなる。又、この様に変動成分が平滑化される
(小さくなる)度合いは、上記測定回路の応答遅れが大
きい程大きくなる。この為、上記変動成分の大きさは、
絶縁層の劣化程度が等しい場合でも、上記応答時定数τ
s の大きさを決定する、測定対象となるCVケーブルの
静電容量Cの大きさ(線路長)により相違する。この
為、上記直流漏れ電流Id に含まれる変動成分を直接観
察する方法では、定量的な劣化判定基準の策定を行なえ
ない。[0008] However, in the case of CV cable capacitance C is large, such as the real line, the DC leakage current I d flowing in the insulating layer of the CV cable, response delay (response time constant tau s = C · measurement circuit R 0 ) causes waveform distortion. As a result, fluctuation component of the fluctuation component such as appearing in the DC leakage current I d becomes small is smoothed, the detection of the fluctuation component is difficult. In addition, the degree to which the fluctuation component is smoothed (decreased) increases as the response delay of the measurement circuit increases. Therefore, the magnitude of the fluctuation component is
Even when the degree of deterioration of the insulating layer is equal, the response time constant τ
It depends on the magnitude (line length) of the capacitance C of the CV cable to be measured, which determines the magnitude of s . Therefore, the method of observing the fluctuation component included in the DC leakage current I d directly, it can not be performed the development of quantitative degradation criterion.
【0009】又、上述の様に直流漏れ電流Id に波形変
歪が生じる結果、この直流漏れ電流Id の測定開始直後
には、前述の図3に示した様に、この直流漏れ電流Id
の値が時間の経過と共に減衰する減衰部分が現れる。と
ころが、この減衰部分の存在は、当該部分に現れる変動
成分の検出の妨げとなる。これに対して、上記直流漏れ
電流Id の値は、上記減衰部分でも不規則に変化してい
る場合が多い。そして、この減衰部分には、上記直流漏
れ電流Id の定常部分に比べて、絶縁劣化に関する情報
を表す信号(劣化信号)である、上記変動成分をより多
く含んでいる可能性がある。従って、信頼性の高い電力
ケーブルの絶縁劣化診断を行なう為には、上記直流漏れ
電流Id 中の変動成分を、上記定常部分だけでなく、上
記減衰部分でも観察する事が好ましい。言い換えれば、
上記変動成分は、上記直流漏れ電流Id の測定開始直後
から広い範囲に亙り収集できる様にする事が好ましい。[0009] As a result of the waveform warp occurs in the DC leakage current I d as described above, immediately after the start of measurement of the DC leakage current I d is as shown in FIG. 3 described above, the DC leakage current I d
Appears as the value of decay with time. However, the presence of the attenuated portion hinders detection of a fluctuation component appearing in the portion. In contrast, the value of the DC leakage current I d is, if you change irregularly in the damping portion is large. Then, this damping part, as compared with the constant part of the DC leakage current I d, a signal representing the information about the insulation degradation (degradation signal), it is possible to contain more of the fluctuation component. Therefore, in order to perform the insulation deterioration diagnosis reliable power cable, the fluctuation component in the DC leakage current I d, as well as the constant part, it is preferable to observe in the damping portion. In other words,
The fluctuation component, it is preferable to like can be collected over a wide range of immediately after the start of measurement of the DC leakage current I d.
【0010】[0010]
【先発明の説明】上述の様な問題を解決する為、即ち、
上記直流漏れ電流Id 中に含まれる変動成分が平滑化さ
れるのを防止すると共に、この直流漏れ電流Id から減
衰部分をなくす為には、測定回路の応答遅れにより生じ
る、上記直流漏れ電流Id の波形変歪を根本的に取り除
く必要がある。この様な事情に鑑みて、本発明者等は先
に、測定回路の応答遅れにより生じる、上記直流漏れ電
流Id の波形変歪を取り除く方法を発明した。以下、こ
の先発明に就いて説明する。[Description of the Prior Invention] In order to solve the above problems,
With drift components included in the DC leakage current I d is prevented from being smoothed in order to eliminate the damping part from the DC leakage current I d is caused by the response delay of the measuring circuit, the DC leakage current it is necessary to remove the waveform warp of I d fundamentally. In view of such circumstances, the present inventors have previously caused by response delay of the measurement circuit, it invented a method for removing waveform warp of the DC leakage current I d. Hereinafter, the present invention will be described.
【0011】図5は、上記直流漏れ電流Id を測定する
状態を示す等価回路(測定回路)を示している。絶縁劣
化診断を行なう際に、試料であるCVケーブル1には、
直流電源2(起電力E、内部抵抗3の抵抗値R0 )によ
り、ケーブル導体と絶縁層の外周面との間に、直流電圧
を印加する。この結果、上記絶縁層を通じて、上記直流
漏れ電流Id が流れる。即ち、上述の様にCVケーブル
1に直流電圧を印加する(この直流電圧の印加後の経過
時間をtとする)と、このCVケーブル1を構成する絶
縁層の健全部4(静電容量C)を通じて、充電電流i4
(t)が流れる。一方、上記測定回路内で上記健全部4
と並列に存在する、上記絶縁層に生じた水トリー等の劣
化部5{抵抗値R(≫R0 )}を通じて、劣化部漏れ電
流i5 (t)が流れる。そして、これら両電流i4
(t)、i5 (t)が合成されて、実際に測定されるべ
き上記直流漏れ電流Id {=i4 (t)+i5 (t)}
となる。尚、上記直流電圧の印加時に、上記劣化部5の
抵抗値Rは、時間tの経過と共に不安定に変動する。そ
して、この様に劣化部5の抵抗値Rが不安定に変動する
事に基づいて、上記直流漏れ電流Id 中にキックや揺ら
ぎ成分等の変動成分が発生するのは、前述した通りであ
る。[0011] Figure 5 shows an equivalent circuit (measurement circuit) showing a state of measuring the DC leakage current I d. When performing insulation deterioration diagnosis, the sample CV cable 1
A DC voltage is applied between the cable conductor and the outer peripheral surface of the insulating layer by the DC power supply 2 (electromotive force E, resistance value R 0 of the internal resistor 3). As a result, the DC leakage current Id flows through the insulating layer. That is, as described above, when a DC voltage is applied to the CV cable 1 (the elapsed time after the application of the DC voltage is represented by t), the sound portion 4 of the insulating layer constituting the CV cable 1 (capacitance C ) Through the charging current i 4
(T) flows. On the other hand, in the measurement circuit, the sound part 4
A leak current i 5 (t) of the deteriorated portion flows through a deteriorated portion 5 (resistance value R ({R 0 )) of a water tree or the like generated in the insulating layer and existing in parallel with the insulating layer. And these two currents i 4
(T) and i 5 (t) are combined and the DC leakage current I d {= i 4 (t) + i 5 (t)} to be actually measured
Becomes When the DC voltage is applied, the resistance value R of the deteriorated portion 5 fluctuates unstablely with the passage of time t. Then, the resistance value R of the deteriorated part 5 in this manner is based on that fluctuates unstably, the fluctuation components such as kicks and fluctuation component generated during the DC leakage current I d is as previously described .
【0012】先ず、上記測定回路に於いて、上記直流電
源2により、上記CVケーブル1にステップ状の直流電
圧Eを印加した場合を考える。この場合、上記測定回路
には応答時定数τs (≒C・R0 )の応答遅れがある
為、上記直流漏れ電流Id を表す測定信号io (t)
は、次の(1)式の様に表される。First, consider a case where a step-like DC voltage E is applied to the CV cable 1 by the DC power supply 2 in the measurement circuit. In this case, since the measurement circuit has a response delay of a response time constant τ s (≒ C · R 0 ), the measurement signal i o (t) representing the DC leakage current I d.
Is expressed as in the following equation (1).
【数1】 上記(1)式の右辺第1項は、上記健全部4を通じて流
れる充電電流i4 (t)を、右辺第2項は、上記劣化部
5を通じて流れる劣化部漏れ電流i5 (t)を、それぞ
れ表している。(Equation 1) The first term on the right side of the above equation (1) represents the charging current i 4 (t) flowing through the sound part 4, and the second term on the right side represents the leak current i 5 (t) flowing through the deteriorated part 5 , Each is represented.
【0013】図6の枠α内に、上記測定信号io (t)
と、上記CVケーブル1の電極間の電圧V(t)とを示
す。この図6の枠α内の記載から明らかな様に、上記測
定信号io (t)には、上記直流電圧Eの印加直後に、
この測定信号io (t)の値が時間の経過と共に減衰す
る減衰部分が含まれている。更に、この測定信号i
o(t)には、P1 部に示す様に、劣化信号である変動
成分が現れているが、この変動成分は上記応答遅れの影
響を受けて平滑化されており、その大きさが小さくなっ
ている。即ち、上記測定信号io (t)は、上記応答遅
れの影響を受けて波形変歪を生じている。In the frame α of FIG. 6, the measurement signal i o (t)
And the voltage V (t) between the electrodes of the CV cable 1. As is clear from the description in the frame α of FIG. 6, the measurement signal i o (t) is immediately added to the DC voltage E,
An attenuation portion is included in which the value of the measurement signal i o (t) attenuates with time. Further, the measurement signal i
a o (t) is, as shown in part P, is a degraded signal variation component is observed, the fluctuation component is smoothed by the influence of the response delay, small in size Has become. That is, the measurement signal i o (t) undergoes waveform distortion under the influence of the response delay.
【0014】次に、図5の測定回路に関し、前記内部抵
抗3の抵抗値R0 を零とした、仮想的な回路を考える。
この様な仮想回路の場合には、応答時定数τs (≒C・
R0)が零となり、回路の応答遅れがなくなる。この様
な仮想回路に於いて、前記直流電源2により、上記CV
ケーブル1にステップ状の直流電圧Eを印加すると、こ
の仮想回路を流れる直流漏れ電流Id を表す信号ii
(t)は、次の(2)式で表される。Next, regarding the measuring circuit of FIG. 5, a virtual circuit in which the resistance value R 0 of the internal resistor 3 is set to zero will be considered.
In the case of such a virtual circuit, the response time constant τ s (≒ C ·
R 0 ) becomes zero, and the response delay of the circuit is eliminated. In such a virtual circuit, the above-described CV
When a step-like DC voltage E is applied to the cable 1, a signal i i representing a DC leakage current I d flowing through this virtual circuit is obtained.
(T) is represented by the following equation (2).
【数2】 この(2)式中、δ(t)は、デルタ関数{δ(t≠
0)=0、δ(t=0)=∞、∫δ(t)dt=1}を、
u(t)は、ユニットステップ関数{u(t<0)=
0、u(t≧0)=1}を、それぞれ表している。又、
上記(2)式の右辺第1項は、前記健全部4を通じて流
れる充電電流i4 (t)R0=0を、右辺第2項は、前記劣
化部5を通じて流れる劣化部漏れ電流i5 (t)
R0=0を、それぞれ表している。即ち、上述の様な仮想回
路の場合、上記充電電流i4 (t)R0=0は、上記直流電
圧Eの印加時(t=0)の値が無限大となるインパルス
波形となり、上記劣化部漏れ電流i5 (t)R0=0は、上
記直流電圧Eの印加直後から一定の値を持つ波形とな
る。(Equation 2) In the equation (2), δ (t) is a delta function {δ (t}
0) = 0, δ (t = 0) = ∞, {δ (t) dt = 1}
u (t) is a unit step function {u (t <0) =
0 and u (t ≧ 0) = 1}, respectively. or,
The first term on the right side of the above equation (2) indicates the charging current i 4 (t) R0 = 0 flowing through the sound part 4, and the second term on the right side indicates the deteriorated part leakage current i 5 (t) flowing through the deteriorated part 5. )
R0 = 0 is represented respectively. That is, in the case of the virtual circuit as described above, the charging current i 4 (t) R0 = 0 becomes an impulse waveform in which the value when the DC voltage E is applied (t = 0) becomes infinite, and the degraded portion The leakage current i 5 (t) R0 = 0 has a waveform having a constant value immediately after the application of the DC voltage E.
【0015】図6の枠β内に、上記仮想回路を流れる直
流漏れ電流Id を表す信号ii (t)と、上記CVケー
ブル1の電極間の電圧V(t)とを示す。この図6の枠
β内の記載から明らかな様に、上記信号ii (t)に
は、この信号ii (t)の値が時間の経過と共に減衰す
る減衰部分は含まれていない。更に、この信号ii
(t)には、P2 部に示す様に、劣化信号である変動成
分が明確に現れている。即ち、上記仮想回路の場合に
は、この回路の応答遅れがない為、上記P2 部に示した
変動成分は平滑化される(その値が小さくなる)事な
く、明確な劣化信号として現れる。言い換えれば、上記
信号ii (t)は、応答遅れによる波形変歪を生じてい
ない信号となる。[0015] Within the framework β in FIG. 6 shows a signal i i (t) representative of the DC leakage current I d flowing through the virtual circuit, and a voltage V (t) between the electrodes the CV cable 1. The As is apparent from the description of the framework β in FIG. 6, to the signal i i (t), the value of the signal i i (t) is not included in the damping part for damping over time. Further, this signal i i
A (t) is, as shown in P 2 parts, a deterioration signal variation component is clearly manifest. That is, in the case of the virtual circuit, since there is no response delay of the circuit, fluctuation components shown in the P 2 parts is smoothed (its value becomes smaller) that no, appears as a clear deterioration signal. In other words, the signal i i (t) is a signal having no waveform distortion due to a response delay.
【0016】従って、上記仮想回路を流れる直流漏れ電
流Id を表す信号ii (t)を観察すれば、この信号i
i (t)中に現れる劣化信号である変動成分を、測定開
始(直流電圧Eの印加)直後から広い範囲に亙り収集で
きる。この為、信頼性の高い絶縁劣化診断を行なえる。
又、上記変動成分は、測定対象となるCVケーブル1の
静電容量Cの大きさに拘りなく明確に現れる。この為、
このCVケーブル1の線路長に影響されない劣化判定基
準の策定が可能となる。Therefore, when observing the signal i i (t) representing the DC leakage current I d flowing through the virtual circuit, the signal i i (t)
The fluctuation component, which is a degraded signal appearing in i (t), can be collected over a wide range immediately after the start of measurement (application of the DC voltage E). For this reason, highly reliable insulation deterioration diagnosis can be performed.
Further, the above-mentioned fluctuation component clearly appears regardless of the magnitude of the capacitance C of the CV cable 1 to be measured. Because of this,
This makes it possible to establish a deterioration determination standard that is not affected by the line length of the CV cable 1.
【0017】ところが、実際の測定では、前記内部抵抗
3の抵抗値R0 を零にする事は不可能である為、上記信
号ii (t)に対応する直流漏れ電流Id そのものを、
図5に示した測定回路より測定する事はできない。この
為、先発明の場合には、次の様な手法により、実際に測
定された直流漏れ電流Id {測定信号io (t)}か
ら、上記信号ii (t)を得る。However, in actual measurement, it is impossible to make the resistance value R 0 of the internal resistor 3 zero, so that the DC leakage current I d itself corresponding to the signal i i (t) is
It cannot be measured by the measurement circuit shown in FIG. Therefore, in the case of the prior invention, the signal i i (t) is obtained from the actually measured DC leakage current I d {measurement signal i o (t)} by the following method.
【0018】即ち、前記(2)式で表された信号ii
(t)から、前記(1)式で表された測定信号io
(t)への変換{ii (t)→io (t)}は、インパ
ルス応答によるコンボルーション(畳み込み積分)の関
係で表す事ができる。具体的には、次の(3)式が成立
する。That is, the signal i i represented by the above equation (2)
From (t), the measurement signal i o expressed by the above equation (1) is obtained.
The conversion to (t) {i i (t) → io (t)} can be expressed by a convolution (convolution integral) by an impulse response. Specifically, the following equation (3) holds.
【数3】 但し、この(3)式中、インパルス応答関数h(t)
は、次の(4)式で表される。(Equation 3) However, in the equation (3), the impulse response function h (t)
Is represented by the following equation (4).
【数4】 (Equation 4)
【0019】これに対して、前記(1)式で表された測
定信号io (t)から、前記(2)式で表された信号i
i (t)への変換(逆変換){io (t)→ii
(t)}は、上記コンボルーションに対する逆コンボル
ーションの関係で表す事ができる。具体的には、次の
(5)式が成立する。On the other hand, from the measurement signal i o (t) represented by the above equation (1), the signal i o represented by the above equation (2) is obtained.
Conversion to i (t) (inverse conversion) {i o (t) → i i
(T)} can be represented by the inverse convolution relation to the above convolution. Specifically, the following equation (5) holds.
【数5】 (Equation 5)
【0020】そこで、先発明の場合、CVケーブル1の
絶縁劣化診断を行なう際には、図6に示す様に、先ず、
ステップ1として、図5に示した測定回路内に設けた図
示しない測定器により、この測定回路を流れる直流漏れ
電流Id {測定信号io (t)}を測定する。そして、
次のステップ2で、この測定信号io (t)の波形か
ら、測定回路の応答時定数τs を求める(推定する)。
そして、次のステップ3で、これら測定信号io (t)
と応答時定数τs とを用いて上記(5)式の演算(逆変
換演算)を、上記測定器に組み込んだ演算器により実行
し、上記仮想回路を流れる直流漏れ電流Id を表す信号
ii (t)を得る。そして、最後のステップ4で、この
様にして得た信号ii (t)中の変動成分を観察する。
この様に信号ii (t)中の変動成分を観察すれば、前
述した様に信頼性の高い絶縁劣化診断を行なえると共
に、CVケーブル1の線路長に依存しない劣化判定基準
の策定が可能となる。Therefore, in the case of the prior invention, when the insulation deterioration diagnosis of the CV cable 1 is performed, first, as shown in FIG.
In step 1, a DC leakage current I d {measurement signal i o (t)} flowing through the measurement circuit is measured by a measurement device (not shown) provided in the measurement circuit shown in FIG. And
In the next step 2, the response time constant τ s of the measurement circuit is obtained (estimated) from the waveform of the measurement signal i o (t).
Then, in the next step 3, these measurement signals i o (t)
The operation (inverse conversion operation) of the above equation (5) is executed by the arithmetic unit incorporated in the measuring device using the response time constant τ s and the signal i representing the DC leakage current I d flowing through the virtual circuit. i (t) is obtained. Then, in the last step 4, the fluctuation component in the signal i i (t) obtained in this way is observed.
By observing the fluctuation component in the signal i i (t) in this way, it is possible to perform a reliable insulation deterioration diagnosis as described above, and to establish a deterioration judgment standard independent of the line length of the CV cable 1. Becomes
【0021】[0021]
【発明が解決しようとする課題】ところが、上述した様
な先発明を実施するCVケーブル1は、実際に長期間に
亙って送電に利用している、所謂実線路である場合が多
い。この様な実線路を対象として上記先発明を実施する
場合、上記測定信号io (t)には、図7の枠α´内に
示す様に、劣化信号となる変動成分だけでなく、絶縁劣
化に関する情報とは無関係な変動成分(ノイズ)が重畳
されている場合がある。この様なノイズは、例えば、課
電リード線の接触不良等に基づいて発生するものであ
り、上記測定回路の応答遅れの影響を受ける事なく、上
記測定信号io (t)中に現れる。一方、上記先発明を
実施する場合には、上述した様に、測定信号io (t)
の波形から測定回路の応答時定数τs を求める(推定す
る)必要がある。この為、上述の様に測定信号io
(t)にノイズが重畳されている場合には、上記応答時
定数τs の推定を誤る(応答時定数τs の推定値が実際
の値から大きく外れる)可能性がある。そして、この様
に応答時定数τs の推定を誤った場合には、前記(5)
式の演算に基づく逆変換後の信号ii (t)に、波形変
歪が残る等の不都合が生じ、信頼性のある絶縁劣化診断
を行なえなくなる可能性がある。However, in many cases, the CV cable 1 embodying the above-mentioned prior invention is a so-called real line that is actually used for power transmission over a long period of time. When the above-described invention is implemented for such an actual line, the measurement signal i o (t) includes not only a fluctuation component that becomes a degradation signal but also an insulation signal as shown in a frame α ′ in FIG. In some cases, a fluctuation component (noise) irrelevant to the information on deterioration is superimposed. Such noise is generated based on, for example, a contact failure of the power supply lead wire, and appears in the measurement signal i o (t) without being affected by the response delay of the measurement circuit. On the other hand, in the case of carrying out the destination invention, as described above, the measurement signal i o (t)
It is necessary to obtain (estimate) the response time constant τ s of the measurement circuit from the waveform of Therefore, as described above, the measurement signal i o
If (t) to the noise is superimposed is wrong estimation of the response time constant tau s (estimated value of the response time constant tau s deviates significantly from the actual value) is likely. When the response time constant τ s is incorrectly estimated as described above,
The signal i i (t) after the inverse conversion based on the calculation of the equation may have a problem such as remaining waveform distortion, and may not be able to perform a reliable insulation deterioration diagnosis.
【0022】又、前記(5)式の演算では、上記測定信
号io (t)に対する微分操作を行なう為、上述の様に
測定信号io (t)にノイズが重畳されている場合に
は、図7の枠β´内に示す様に、上記逆変換後の信号i
i (t)中に上記ノイズが大幅に強調されて出現する。
この結果、劣化信号となる変動成分が、上述の様に強調
されたノイズに埋もれて検出しにくくなったり、著しい
場合には検出できなくなる可能性がある。本発明の電力
ケーブルの絶縁劣化診断方法は、上述の様な事情に鑑み
て、測定信号io (t)に重畳されたノイズと、逆変換
後の信号ii (t)中に強調されて出現したノイズとを
平滑化する事により、信頼性のある絶縁劣化診断を可能
とすべく発明したものである。[0022] Also, the (5) in the calculation of the equation, for carrying out differential operation on the measurement signal i o (t), if the noise is superimposed on the measurement signal i o (t) as described above As shown in a frame β ′ in FIG.
During i (t), the noise appears greatly enhanced.
As a result, there is a possibility that the fluctuation component which becomes a degraded signal is buried in the noise emphasized as described above and becomes difficult to detect, or in a case where the fluctuation component is remarkable, the detection becomes impossible. In view of the above-described circumstances, the power cable insulation deterioration diagnosis method of the present invention emphasizes the noise superimposed on the measurement signal i o (t) and the signal i i (t) after the inverse conversion. The present invention has been invented in order to enable a reliable insulation deterioration diagnosis by smoothing the noise that has appeared.
【0023】[0023]
【課題を解決するための手段】本発明の電力ケーブルの
絶縁劣化診断方法は、前述した先発明の場合と同様、絶
縁層が劣化した電力ケーブルに直流電圧を印加した場合
に、この電力ケーブルの絶縁層を通じて流れる直流漏れ
電流Id を評価して、この絶縁層の劣化程度を診断す
る。具体的には、この直流漏れ電流Id を表す信号io
(t)から、この直流漏れ電流Id を測定する回路の応
答時定数τs を求める。これと共に、(逆)変換式ii
(t)=τs ・dio (t)/dt+io (t)[但
し、t>0]に基づき、上記信号io (t)を、上記回
路の持つ応答遅れの影響を取り除いた信号ii (t)に
(逆)変換する。そして、この(逆)変換後の信号ii
(t)の大きさが時間tの経過と共に不規則に変化する
変動成分を観察する事により、上記絶縁層の劣化程度を
診断する。According to the method of diagnosing insulation deterioration of a power cable according to the present invention, similarly to the above-mentioned invention, when a DC voltage is applied to a power cable whose insulation layer has been deteriorated, the power cable is diagnosed. evaluating the DC leakage current I d flowing through the insulating layer, for diagnosing the degree of deterioration of the insulating layer. Specifically, a signal i o representing the DC leakage current I d
From (t), the response time constant τ s of the circuit for measuring the DC leakage current I d is obtained. At the same time, the (inverse) conversion equation i i
(T) = τ s · di o (t) / dt + i o (t) [ where, t> 0] based on the above signal i o a (t), the signal i obtained by removing the influence of response delay with the said circuit i (t). Then, the signal i i after this (inverse) conversion
By observing a fluctuation component in which the magnitude of (t) changes irregularly with the passage of time t, the degree of deterioration of the insulating layer is diagnosed.
【0024】更に、本発明の電力ケーブルの絶縁劣化診
断方法の場合には、上記変動成分を観察するに当たり、
次の、のうちの少なくとも一方の処理を行なってか
ら、上記絶縁層の劣化程度を診断する。 上記直流漏れ電流Id を表す信号io (t)に含ま
れる変動成分のうち、上記絶縁層の劣化に関する情報を
表す信号となる変動成分以外の変動成分(ノイズ)を平
滑化する処理。 上記(逆)変換後の信号ii (t)に含まれる変動
成分のうち、上記絶縁層の劣化関する情報を表す信号と
なる変動成分以外の変動成分(ノイズ)を平滑化する処
理。Further, in the case of the method for diagnosing insulation deterioration of a power cable according to the present invention, when observing the above-mentioned fluctuation component,
After performing at least one of the following processes, the degree of deterioration of the insulating layer is diagnosed. A process of smoothing a variation component (noise) other than a variation component serving as a signal representing information related to the deterioration of the insulating layer among the variation components included in the signal i o (t) representing the DC leakage current I d . A process of smoothing a variation component (noise) other than a variation component serving as a signal representing information relating to the deterioration of the insulating layer among the variation components included in the signal i i (t) after the (inverse) conversion.
【0025】[0025]
【作用】上述の様な本発明の電力ケーブルの絶縁劣化診
断方法の基本的な作用は、前述した先発明の場合と同様
である。特に、本発明の電力ケーブルの絶縁劣化診断方
法によれば、実際に測定した直流漏れ電流Id を表す信
号io (t)並びに(逆)変換後の信号ii (t)に含
まれるノイズを、それぞれ平滑化して低減若しくは消滅
させる事ができる。この為、上記直流漏れ電流Id を表
す信号io (t)から応答時定数τs を推定する作業
と、(逆)変換後の信号ii (t)から劣化信号となる
変動成分を検出する作業とを、それぞれ正確に行なえ
る。この為、信頼性の高い絶縁劣化診断を行なえる。The basic operation of the above-described method of diagnosing insulation deterioration of a power cable according to the present invention is the same as that of the above-described prior invention. In particular, according to the power cable insulation deterioration diagnosis method of the present invention, the noise included in the signal i o (t) representing the actually measured DC leakage current I d and the signal i i (t) after (inverse) conversion. Can be reduced or eliminated by smoothing, respectively. Therefore, the task of estimating the response time constant tau s of signal i o (t) representing the DC leakage current I d, the variation component as a degradation signal from (opposite) the converted signal i i (t) detected Work can be performed accurately. For this reason, highly reliable insulation deterioration diagnosis can be performed.
【0026】[0026]
【発明の実施の形態】図1は、本発明の実施の形態の1
例を示している。尚、本発明の特徴は、直流漏れ電流I
d を表す測定信号io (t)並びに逆変換後の信号ii
(t)に含まれる、絶縁劣化に関する情報とは無関係な
変動成分(ノイズ)を、それぞれ平滑化して低減若しく
は消滅させる事にある。その他、絶縁劣化診断を行なう
際の基本的な作用(流れ)は、前述した先発明の場合と
同様である。この為、重複する部分に関する説明は省略
若しくは簡略にし、以下、本発明の特徴部分を中心に説
明する。FIG. 1 shows a first embodiment of the present invention.
An example is shown. The feature of the present invention is that the DC leakage current I
measurement signal i o (t) representing d and signal i i after inverse transformation
Variation components (noise) irrelevant to the information related to insulation deterioration included in (t) may be reduced or eliminated by smoothing, respectively. In addition, the basic operation (flow) in performing the insulation deterioration diagnosis is the same as that of the above-described prior invention. For this reason, the description of the overlapping parts will be omitted or simplified, and the following description will focus on the characteristic parts of the present invention.
【0027】本発明を実施する場合には、先ず、ステッ
プ1で、前述の図5に示した測定回路により、直流漏れ
電流Id を測定する。この直流漏れ電流Id を表す測定
信号io (t)には、前述の図7の枠α´内に示す様
に、劣化信号となる変動成分だけでなく、絶縁劣化に関
する情報とは無関係な変動成分(ノイズ)が含まれてい
る可能性がある。課電リード線の接触不良等を原因とし
て生ずるこのノイズは、上記図7の枠α´内に示す様
に、パルス等の急峻で周期の短い変動である事が多い。In practicing the present invention, first, in step 1, the DC leakage current Id is measured by the measuring circuit shown in FIG. The measurement signal i o (t) representing the DC leakage current I d has not only the fluctuation component serving as the deterioration signal but also has no relation to the information regarding the insulation deterioration, as shown in the above-mentioned box α ′ in FIG. A fluctuation component (noise) may be included. The noise generated due to a poor contact of the power supply lead wire or the like is often a steep and short-cycle fluctuation of a pulse or the like as shown in the frame α 'in FIG.
【0028】そこで、本例の場合には、次のステップ2
で、上記測定信号io (t)に含まれるノイズの平滑化
処理を行なう。本例の場合、このステップ2でのノイズ
の平滑化処理方法として、上述の様な急峻で周期の短い
ノイズを低減するのに有効な、単純移動平均処理を採用
している。即ち、上記測定信号io (t)の、時刻tと
その前後の時刻t±△tとに於ける各電流値の平均値
を、改めて測定信号io(t)の時刻tに於ける電流値
{図示の例では、y(i)で表示}とする処理を行な
う。尚、この処理により、劣化信号となる変動成分を殆
ど平滑化させる事なく、上記ノイズのみを十分に平滑化
する為には、上記△t(刻み時間)として、上記劣化信
号となる変動成分の周期よりも十分に短い適当な時間を
選べば良い。即ち、上記劣化信号となる変動成分の周期
(1分前後)は、上記ノイズの周期(数秒程度)よりも
十分に長いので、上述の様にして選んだ刻み時間△tを
用いて上記処理を行なえば、劣化信号となる変動成分を
殆ど平滑化させる事なく、上記ノイズのみを十分に平滑
化する事ができる。Therefore, in the case of this example, the following step 2
Then, a smoothing process of noise included in the measurement signal i o (t) is performed. In the case of this example, as the noise smoothing processing method in step 2, a simple moving average processing that is effective for reducing steep and short-period noise as described above is employed. That is, the average value of the current values of the measurement signal i o (t) at time t and at times t ± Δt before and after the time t is again calculated as the current value of the measurement signal i o (t) at time t. A process is performed to set the value {displayed with y (i) in the illustrated example}. Note that, in order to sufficiently smooth only the noise without substantially smoothing the fluctuation component serving as the deterioration signal by this processing, Δt (interval time) is set as Δt (interval time). It is sufficient to select an appropriate time that is sufficiently shorter than the cycle. That is, the period of the fluctuation component (about 1 minute) which is the deterioration signal is sufficiently longer than the period of the noise (about several seconds). If this is done, it is possible to sufficiently smooth only the above-mentioned noise without almost smoothing the fluctuation component that becomes a degraded signal.
【0029】上述の様にして、ノイズを平滑化した測定
信号io (t)を得たならば、次のステップ3で、この
ノイズ平滑化後の測定信号io (t)の波形から、測定
回路の応答時定数τs の推定を行なう。そして、この応
答時定数τs の推定値を得たならば、次のステップ4
で、前記(5)式の演算(逆変換演算)を実行する事に
より、上記測定信号io (t)を、波形変歪の生じてい
ない信号ii (t)に逆変換する。尚、上述の様な逆変
換演算では、上記ノイズ平滑化後の測定信号io(t)
に対し微分操作を行なう。この為、上記逆変換後の信号
ii (t)には、逆変換前の測定信号io (t)に含ま
れていたノイズ(ステップ2の平滑化処理により消滅し
切らなかったもの)が強調されて出現する。When the noise-smoothed measurement signal i o (t) is obtained as described above, in the next step 3, the waveform of the noise-smoothed measurement signal i o (t) is calculated as follows: The response time constant τ s of the measurement circuit is estimated. Then, when the estimated value of the response time constant τ s is obtained, the next step 4
Then, the measurement signal i o (t) is inversely converted into a signal i i (t) free from waveform distortion by performing the operation (inverse conversion operation) of the above equation (5). In the above-described inverse transform operation, the measurement signal i o (t) after noise smoothing is used.
Perform differentiation operation on. For this reason, in the signal i i (t) after the inverse conversion, the noise (which has not been completely eliminated by the smoothing processing in step 2) included in the measurement signal i o (t) before the inverse conversion is included. Appears with emphasis.
【0030】そこで、本例の場合には、次のステップ5
で、上記逆変換後の信号ii (t)中に強調されて出現
したノイズの平滑化処理を行なう。本例の場合、このス
テップ5に於けるノイズの平滑化処理方法として、上記
逆変換後の信号ii (t)に対して畳み込み積分(コン
ボルーション)を実行する方法を採用する。即ち、上記
逆変換後の信号ii (t)に対して畳み込み積分を実行
する事により、上記逆変換後の信号ii (t)に応答遅
れ(応答時定数τ0 )を与えて、この逆変換後の信号i
i (t)に含まれるノイズを平滑化する。Therefore, in the case of this example, the following step 5
Then, a smoothing process is performed on the noise that has been emphasized and appeared in the signal i i (t) after the inverse conversion. In the case of this example, a method of executing convolution and integration (convolution) on the signal i i (t) after the above-described inverse transformation is adopted as the noise smoothing processing method in step 5. That is, by executing the convolution integral with respect to the signal after the inverse transform i i (t), gives the response delay (response time constant tau 0) in the signal after the inverse transform i i (t), this Inverted signal i
The noise included in i (t) is smoothed.
【0031】尚、上記畳み込み積分を実行する際に用い
る応答時定数τ0 の値は、上記逆変換後の信号ii
(t)の特徴を損なわない様にすべく、測定回路の応答
時定数τ s よりも十分に小さく(τo ≪τs )設定する
必要がある。本例の場合には、上記畳み込み積分を実行
する際に用いる応答時定数τ0 を、2秒に設定した。こ
の理由は、上記逆変換後の信号ii (t)に2秒程度の
応答遅れτ0 を与えても、劣化信号となる変動成分の大
きさが殆ど変化しない事、更には、上記逆変換後の信号
ii (t)に含まれるノイズを平滑化して目立たなくす
る為には、最低でも1〜2秒程度の応答遅れτ0 が必要
である事を、実験等により確認した為である。It should be noted that the above-mentioned convolution integral is used for execution.
Response time constant τ0 Is the signal i after the inverse conversion.i
The response of the measurement circuit in order not to impair the characteristics of (t)
Time constant τ s Much smaller than (τo ≪τs ) Set
There is a need. In the case of this example, execute the above convolution integral
Response time constant τ0 Was set to 2 seconds. This
Is because the signal i after the inverse conversion isi (T) about 2 seconds
Response delay τ0 Even if the
The amplitude is hardly changed, and furthermore, the signal after the above inverse conversion
ii Smooth out noise included in (t) to make it less noticeable
To achieve this, a response delay τ of at least about 1 to 2 seconds0 Is necessary
Is confirmed by experiments and the like.
【0032】上述の様に逆変換後の信号ii (t)に含
まれるノイズを平滑化したならば、最後のステップ6
で、上記ノイズを平滑化した後の信号ii (t){図示
の例では、i(t)で表示}に含まれる、劣化信号とな
る変動成分を観察して、CVケーブルの絶縁劣化診断を
行なう。If the noise included in the inversely transformed signal i i (t) has been smoothed as described above, the final step 6
Then, the signal i i (t) after the noise is smoothed (in the illustrated example, indicated by i (t)) is used to observe a fluctuation component that becomes a degraded signal to diagnose the insulation deterioration of the CV cable. Perform
【0033】上述の様な本発明の電力ケーブルの絶縁劣
化診断方法によれば、直流漏れ電流Id の測定信号io
(t)並びに逆変換後の信号ii (t)に含まれるノイ
ズを、それぞれ平滑化して低減若しくは消滅させる事が
できる。この為、上記測定信号io (t)(ノイズを平
滑化したもの)から応答時定数τs を推定する作業と、
上記逆変換後の信号ii (t){ノイズを平滑化したも
の。上記信号i(t)}から劣化信号となる変動成分を
検出する作業とを、それぞれ正確に行なえる。この為、
信頼性のある絶縁劣化診断を行なえる。According to the method for diagnosing insulation deterioration of a power cable of the present invention as described above, the measurement signal i o of the DC leakage current I d is measured.
(T) and noise included in the signal i i (t) after the inverse conversion can be reduced or eliminated by smoothing, respectively. Therefore, an operation of estimating a response time constant τ s from the measurement signal i o (t) (smoothed noise),
The signal i i (t) after the above-mentioned inverse conversion is obtained by smoothing noise. The operation of detecting a fluctuation component that becomes a deterioration signal from the signal i (t)} can be accurately performed. Because of this,
A reliable insulation deterioration diagnosis can be performed.
【0034】尚、上述した例では、直流漏れ電流Id の
測定信号io (t)と逆変換後の信号ii (t)との双
方の信号に対してノイズの平滑化処理を行なう場合に就
いて説明した。但し、本発明の場合、上記測定信号io
(t)に含まれるノイズが少ない場合には、この測定信
号io (t)と上記逆変換後の信号ii (t)とのうち
の何れか一方の信号に対してのみ、ノイズの平滑化処理
を行なう事としても良い。In the above-described example, the noise smoothing process is performed on both the measurement signal i o (t) of the DC leakage current I d and the signal i i (t) after the inverse conversion. Was explained. However, in the case of the present invention, the measurement signal i o
When the noise included in (t) is small, only one of the measurement signal i o (t) and the signal i i (t) after the inverse conversion is smoothed. It is also possible to perform a conversion process.
【0035】[0035]
【発明の効果】本発明の電力ケーブルの絶縁劣化診断方
法は、以上に述べた通り構成され作用するので、前述し
た先発明の場合と同様に、対象とする電力ケーブルの線
路長に依存しない絶縁劣化判定基準の策定を行なえる。
特に、本発明の場合には、測定信号io (t)から応答
時定数τs を推定する作業と、逆変換後の信号ii
(t)に含まれる劣化信号の検出作業とを、それぞれ正
確に行なえる。この為、絶縁劣化診断の信頼性を向上で
きる。Since the method for diagnosing insulation deterioration of a power cable according to the present invention is constructed and operates as described above, the insulation independent of the line length of the target power cable is performed in the same manner as in the above-mentioned prior invention. Deterioration criteria can be formulated.
In particular, in the case of the present invention, the operation of estimating the response time constant τ s from the measurement signal i o (t) and the signal i i after the inverse conversion are performed.
The operation of detecting the deteriorated signal included in (t) can be performed accurately. Therefore, the reliability of the insulation deterioration diagnosis can be improved.
【図1】本発明の実施の形態の1例を、行程順に示すフ
ローチャート。FIG. 1 is a flowchart showing an example of an embodiment of the present invention in the order of steps.
【図2】比較的短いケーブル線路を有するCVケーブル
の絶縁劣化の診断を行なう為に直流電圧を印加した場合
に発生する直流漏れ電流Id を示す線図。[Figure 2] diagram showing a DC leakage current I d that occurs when a DC voltage is applied to the diagnosis of insulation degradation of CV cable having a relatively short cable line.
【図3】長いケーブル線路を有するCVケーブルの絶縁
劣化の診断を行なう為に直流電圧を印加した場合に発生
する直流漏れ電流Id を示す線図。[Figure 3] diagram showing a DC leakage current I d that occurs when a DC voltage is applied to the diagnosis of insulation degradation of CV cable having a long cable line.
【図4】図3のX部を取り出し、電流値を増幅した状態
で示す線図。FIG. 4 is a diagram showing a state in which an X portion of FIG. 3 is taken out and a current value is amplified.
【図5】直流漏れ電流Id を測定する状態を示す等価回
路。Figure 5 is an equivalent circuit showing a state of measuring the DC leakage current I d.
【図6】先発明の絶縁劣化診断方法を、行程順に示すフ
ローチャート。FIG. 6 is a flowchart showing the insulation deterioration diagnosing method of the present invention in the order of steps;
【図7】測定した直流漏れ電流Id を表す信号io
(t)にノイズが含まれる状態と、逆変換後の信号ii
(t)にノイズが強調されて出現する状態とを示す図。[7] signal i o representative of the DC leakage current I d as measured
(T) contains noise and the signal i i after the inverse transformation
The figure which shows the state in which the noise is emphasized in (t).
1 CVケーブル 2 直流電源 3 内部抵抗 4 健全部 5 劣化部 DESCRIPTION OF SYMBOLS 1 CV cable 2 DC power supply 3 Internal resistance 4 Sound part 5 Deterioration part
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大高 巖 埼玉県熊谷市新堀1008番地 三菱電線工業 株式会社熊谷製作所内 (72)発明者 上野 雅史 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 (72)発明者 小泉 覚 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 Fターム(参考) 2G014 AA15 AB33 AC00 2G015 AA27 BA04 CA01 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Iwao Otaka 1008 Niibori, Kumagaya-shi, Saitama Mitsubishi Cable Industry Co., Ltd. Kumagaya Works (72) Inventor Masafumi Ueno 1-3-1 Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo Within Electric Power Company (72) Inventor Satoru Koizumi 1-3-1 Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo Electric Power Company F-term (reference) 2G014 AA15 AB33 AC00 2G015 AA27 BA04 CA01
Claims (1)
圧を印加した場合にこの電力ケーブルの絶縁層を通じて
流れる直流漏れ電流Id を評価して、この絶縁層の劣化
程度を診断すべく、この直流漏れ電流Id を表す信号i
o (t)からこの直流漏れ電流Id を測定する回路の応
答時定数τs を求めると共に、変換式ii (t)=τs
・dio (t)/dt+io (t)[但し、t>0]に
基づいて上記信号io (t)を、上記回路の持つ応答遅
れの影響を取り除いた信号ii(t)に変換し、この変
換後の信号ii (t)の大きさが時間tの経過と共に不
規則に変化する変動成分を観察するに当たり、次の、
のうちの少なくとも一方の処理を行なってから上記絶
縁層の劣化程度を診断する電力ケーブルの絶縁劣化診断
方法。 上記直流漏れ電流Id を表す信号io (t)に含ま
れる変動成分のうち、上記絶縁層の劣化に関する情報を
表す信号となる変動成分以外の変動成分を平滑化する処
理。 上記変換後の信号ii (t)に含まれる変動成分の
うち、上記絶縁層の劣化関する情報を表す信号となる変
動成分以外の変動成分を平滑化する処理。1. A evaluates DC leakage current I d that when a DC voltage is applied to the power cable insulating layer is deteriorated flowing through the insulating layer of the power cable, in order to diagnose the degree of degradation of the insulating layer, the signal i representative of the DC leakage current I d
The response time constant τ s of the circuit for measuring the DC leakage current I d is obtained from o (t), and the conversion equation i i (t) = τ s
The signal i o (t) is converted into a signal i i (t) from which the influence of the response delay of the circuit has been removed based on di o (t) / dt + io (t) [where t> 0]. When observing a fluctuation component in which the magnitude of the converted signal i i (t) changes irregularly with the passage of time t,
A method for diagnosing the degree of deterioration of the insulation layer after performing at least one of the processes. A process of smoothing, among the fluctuation components included in the signal i o (t) representing the DC leakage current I d , fluctuation components other than the fluctuation component serving as a signal representing information on the deterioration of the insulating layer. A process of smoothing, among the fluctuation components included in the converted signal i i (t), the fluctuation components other than the fluctuation component serving as a signal representing information relating to the deterioration of the insulating layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001003987A JP2002207060A (en) | 2001-01-11 | 2001-01-11 | Diagnostic method of insulation degradation for power cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001003987A JP2002207060A (en) | 2001-01-11 | 2001-01-11 | Diagnostic method of insulation degradation for power cable |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002207060A true JP2002207060A (en) | 2002-07-26 |
Family
ID=18872238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001003987A Pending JP2002207060A (en) | 2001-01-11 | 2001-01-11 | Diagnostic method of insulation degradation for power cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002207060A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2438912A (en) * | 2006-06-09 | 2007-12-12 | Greenlee Textron | Economical wiremapping and office id functioning of a remote unit using identification tags and characteristic waveforms to find cable faults |
JP2008096126A (en) * | 2006-10-06 | 2008-04-24 | Hioki Ee Corp | Multicore cable length measuring instrument |
JP2017044586A (en) * | 2015-08-27 | 2017-03-02 | 光商工株式会社 | Insulation resistance monitoring device and detecting voltage estimation method |
-
2001
- 2001-01-11 JP JP2001003987A patent/JP2002207060A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2438912A (en) * | 2006-06-09 | 2007-12-12 | Greenlee Textron | Economical wiremapping and office id functioning of a remote unit using identification tags and characteristic waveforms to find cable faults |
GB2438912B (en) * | 2006-06-09 | 2010-03-10 | Greenlee Textron | Office ID remote with oscillating circuit |
JP2008096126A (en) * | 2006-10-06 | 2008-04-24 | Hioki Ee Corp | Multicore cable length measuring instrument |
JP2017044586A (en) * | 2015-08-27 | 2017-03-02 | 光商工株式会社 | Insulation resistance monitoring device and detecting voltage estimation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110703076A (en) | GIS fault diagnosis method based on vibration signal frequency domain energy ratio | |
JP2002207060A (en) | Diagnostic method of insulation degradation for power cable | |
KR101579896B1 (en) | System and Method for Analyzing Cable State using Multi Band Signal | |
US9389265B2 (en) | Method and apparatus for reducing interference in electrical locating of a buried cable sheathing fault | |
JP2002207059A (en) | Diagnostic method of insulation degradation for power cable | |
JP7339881B2 (en) | Partial discharge detection device and partial discharge detection method | |
JP2001349924A (en) | Remaining life estimating method of cv cable | |
WO2004001430A1 (en) | Electric power line on-line diagnostic method | |
JP5559638B2 (en) | Degradation judgment method for power cables | |
JP3629409B2 (en) | CV cable deterioration diagnosis method | |
KR101770773B1 (en) | Method and apparatus for application and suppression of Cross-Term in time-frequency domain reflectometry for detecting cable fault location | |
Low et al. | A spectral slit approach to doubletalk detection | |
JP3294220B2 (en) | Diagnosis method for insulation deterioration of power cable | |
JP3629425B2 (en) | CV cable insulation diagnosis method | |
JPH0545405A (en) | Partial discharge measurement method of cable | |
JP5130985B2 (en) | Discharge aspect judgment device | |
JP3832339B2 (en) | Power cable life estimation method | |
JP3306370B2 (en) | Diagnosis method for insulation deterioration of power cable | |
CN111722060A (en) | Distribution line early fault severity evaluation method based on waveform characteristics | |
JP2004101457A (en) | Insulation deterioration diagnosing method for power cable | |
JP3092772B2 (en) | Diagnosis method for insulation deterioration of power cable | |
JP2003084028A (en) | Hot line diagnostic method for power cable | |
JPH07306241A (en) | Insulation deterioration judging method for power cable | |
EP4386394A1 (en) | Condition monitoring method of an electric conductor | |
JP4681391B2 (en) | Degradation diagnosis method for low-voltage cables |