[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002200052A - Vascular endothelium function tester - Google Patents

Vascular endothelium function tester

Info

Publication number
JP2002200052A
JP2002200052A JP2000401506A JP2000401506A JP2002200052A JP 2002200052 A JP2002200052 A JP 2002200052A JP 2000401506 A JP2000401506 A JP 2000401506A JP 2000401506 A JP2000401506 A JP 2000401506A JP 2002200052 A JP2002200052 A JP 2002200052A
Authority
JP
Japan
Prior art keywords
blood
blood flow
measuring
blood vessel
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000401506A
Other languages
Japanese (ja)
Other versions
JP3590583B2 (en
Inventor
Kazuo Oba
和夫 大庭
Isamu Suzuki
勇 鈴木
Koji Takahashi
孝司 高橋
Takeshi Ishikawa
毅 石川
Mitsuya Maruyama
満也 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Denshi Co Ltd
Original Assignee
Fukuda Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Denshi Co Ltd filed Critical Fukuda Denshi Co Ltd
Priority to JP2000401506A priority Critical patent/JP3590583B2/en
Publication of JP2002200052A publication Critical patent/JP2002200052A/en
Application granted granted Critical
Publication of JP3590583B2 publication Critical patent/JP3590583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Vascular Medicine (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vascular endothelium function tester by which ever an unskilled skilled operator can precisely measure a vascular endothelium function without applying a large load to a subject. SOLUTION: Constant current electrodes 41, 42 are put on in between the shoulder part and the wrist part of the upper arm of a subject and micro-high- frequency constant current is applied from a constant current supplying part 40. Impedance between voltage electrodes 51, 52 put on at a prescribed distance 'L' on the upper arm is measured by a cuff 22 for hemodynamometry/ avascularization before and after avascularization of the upper arm part. The variation rate of impedance measured by the impedance converting part 50 is compared therewith and calculated by a before and after avascularization comparing part 11. The impedance variation is caught as a blood flow rate variation and the variation rate is referred to the vascular endothelium function to make a measurement index of the vascular endothelium function taking a vascular area and other blood flow speed variation, etc., in consideration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、駆血前と駆血解除
後の血管拡張反応を測定することにより血管内皮機能を
測定可能な血管内皮機能測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vascular endothelial function measuring apparatus capable of measuring a vascular endothelial function by measuring a vasodilatory response before and after avascularization.

【0002】[0002]

【従来の技術】血管内皮細胞はアセチルコリンやメカニ
カルストレス(又はshear stress)等の刺激により窒素
酸化物、即ち、EDRF(一酸化窒素(Nitric Oxide)
または窒素酸化物類似化合物)を産生、放出し血管のト
ーヌスを調節していることが判明してきており、動脈硬
化血管ではこのEDRF(NO)を介する内皮依存性血
管弛緩反応が低下していることが報告されてきている。
2. Description of the Related Art Vascular endothelial cells are stimulated by acetylcholine or mechanical stress (or shear stress) to produce nitrogen oxides, that is, EDRF (Nitric Oxide).
Or nitrogen oxide analogs) to produce and release vascular tonus, which has been found to regulate the vascular tonus, and that EDRF (NO) -mediated endothelium-dependent vasorelaxation is reduced in atherosclerotic blood vessels. Have been reported.

【0003】このことより、近年、動脈硬化症の早期病
変として、血管内皮細胞の機能的異常が指摘されてきて
いる。そして、この血管内皮機能の低下が動脈硬化症の
初期変化であるとの認識が深まってきている。
[0003] For these reasons, in recent years, an abnormal function of vascular endothelial cells has been pointed out as an early lesion of arteriosclerosis. And it is increasingly recognized that this decrease in vascular endothelial function is an initial change in arteriosclerosis.

【0004】従って、このEDRF(NO)を介する内
皮依存性血管弛緩反応を測定すれば、血管内皮細胞の機
能的異常を検出することが可能であり、動脈硬化症の早
期病変の発見を容易に行うことができる。
[0004] Therefore, by measuring the endothelium-dependent vasorelaxation reaction mediated by EDRF (NO), it is possible to detect a functional abnormality of vascular endothelial cells, and to easily find an early lesion of arteriosclerosis. It can be carried out.

【0005】従来のEDRF(NO)を介する内皮依存
性血管弛緩反応の測定方法としては、カテーテル等を用
いた侵襲的方法により冠状動脈内にアセチルコリン等を
投与し、同血管の拡張反応を検討する方法がとられてい
た。
As a conventional method for measuring the endothelium-dependent vasorelaxant response via EDRF (NO), acetylcholine or the like is administered into the coronary artery by an invasive method using a catheter or the like, and the dilatation of the blood vessel is examined. The way was being taken.

【0006】しかしながら、この様な侵襲的方法では測
定に多大の労力が必要であり、また患者にも多大の負担
を強いることになる。このため、超音波装置を用いた非
侵襲的方法が発明され、内皮依存性血管拡張反応とし
て、上腕動脈における血流依存性血管拡張反応を検討す
る方法も行われてきている。
[0006] However, such an invasive method requires a great deal of labor for measurement, and imposes a great burden on the patient. For this reason, a non-invasive method using an ultrasonic device has been invented, and a method for examining a blood flow-dependent vasodilation reaction in the brachial artery has been performed as an endothelium-dependent vasodilation reaction.

【0007】従来の超音波装置を用いた非侵襲的方法
は、例えば腕の所定部位に測定端子を位置決め配置し、
安静状態での血管状態を検出し、血管径を検出する。そ
の後前記所定部位の血管を一定時間、例えば5分間駆血
する。そして駆血解除後再び測定端子を先の安静時の血
管系の測定部位に位置決め配置し、駆血解除後所定時
間、例えば駆血解除後15分経過後の位置決め配置位置
の血管径を検出する。そして血管の拡張割合を測定して
いた。
In a conventional non-invasive method using an ultrasonic device, for example, a measuring terminal is positioned and arranged at a predetermined portion of an arm,
The state of the blood vessel in the resting state is detected, and the diameter of the blood vessel is detected. Thereafter, the blood vessel at the predetermined site is avascularized for a predetermined time, for example, 5 minutes. After the release of the avascularization, the measurement terminal is positioned and arranged again at the measurement site of the vascular system at the time of rest, and the blood vessel diameter at the positioning and placement position after a predetermined time after the release of the avascularization, for example, 15 minutes after the release of the avascularization, is detected. . And the dilation rate of the blood vessel was measured.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、血管の
径はそれほど太いものではなく、しかもその血管の拡張
割合を求めなければならず、駆血の前後で測定端子を全
く同じ位置に配置しなければ測定の精度を確保できなか
った。このため、よほどの熟練がなければ高精度での検
出結果は得られなかった。
However, the diameter of the blood vessel is not so large, and the expansion ratio of the blood vessel must be determined. The measurement terminals must be arranged at exactly the same position before and after the avascularization. Measurement accuracy could not be ensured. For this reason, a highly accurate detection result could not be obtained without a great deal of skill.

【0009】即ち、超音波装置を用いた非侵襲的方法
は、単に特定部位の血管径のみの計測であり、未梢の内
皮機能を反映しないこと、また高価な超音披診断装置を
使用し血管の長軸Bモード像を得るのに熱練を要し、ま
た血管の計測において客観性あるいは再現性を得るため
に他に画像解析装置等を利用しなければならないなど計
測値の信頼性や普及性に問題があった。
In other words, the non-invasive method using an ultrasonic device simply measures the diameter of a blood vessel at a specific site, does not reflect the peripheral endothelial function, and uses an expensive ultrasonic diagnostic device. It takes heat to obtain a long-axis B-mode image of a blood vessel, and it is necessary to use an image analysis device or the like to obtain objectivity or reproducibility in blood vessel measurement. There was a problem with the spread.

【0010】更に検査期間中は超音波センサ固定に被検
者が拘束される神経をつかう作業もあった。
[0010] Further, during the examination period, there is also an operation of using a nerve which restrains the subject while the ultrasonic sensor is fixed.

【0011】[0011]

【課題を解決するための手段】本発明は上記課題に鑑み
てなされたものであって、被検者に多大な負荷を与える
ことなく、しかもさほどの熟練が無くても安定した測定
環境を提供でき、精度の高い血管内皮機能が測定できる
血管内皮機能測定装置を提供することを目的とする。係
る目的を達成する一手段として例えば以下の構成を備え
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a stable measurement environment without imposing a great load on a subject and without much skill. It is an object of the present invention to provide a vascular endothelial function measurement device capable of measuring vascular endothelial function with high accuracy. For example, the following configuration is provided as one means for achieving such an object.

【0012】即ち、被検者の手足における所定距離離反
した所定部位に装着された第1の生体電極間に所定の定
電流を供給する定電流供給手段と、前記生体電極の間の
所定距離離間した部位に装着された第2の生体電極間の
電圧値を測定する電圧検出手段と、前記上腕部の所定部
位に巻回されたカフを加圧制御するカフ制御手段と、前
記カフ制御手段を制御して一定時間前記カフ内圧を加圧
して一定時間の間上腕部を駆血する駆血制御手段と、前
記電圧検出手段での検出電圧と前記定電流供給手段の供
給電流より前記駆血制御手段による駆血の前と一定時間
の駆血を解除した後の所定時間経過ごとに前記第2の生
体電極間の生体インピーダンスを測定するインピーダン
ス測定手段と、前記インピーダンス測定手段の生体イン
ピーダンスより血流量の変化を求め、駆血前後の変化量
より血管内皮機能を導出する導出手段とを備えることを
特徴とする。
That is, a constant current supply means for supplying a predetermined constant current between first biological electrodes mounted on predetermined portions of the limbs of the subject separated from each other by a predetermined distance, and a predetermined distance between the biological electrodes Voltage detecting means for measuring a voltage value between the second living body electrodes attached to the part, a cuff control means for pressurizing and controlling a cuff wound around a predetermined part of the upper arm, and the cuff control means. A control means for controlling the pressure inside the cuff to pressurize the internal pressure of the cuff for a fixed time to exhale the upper arm for a fixed time; and controlling the blood drive based on the voltage detected by the voltage detecting means and the supply current of the constant current supply means. Impedance measuring means for measuring the bioimpedance between the second bioelectrodes before and after a predetermined period of time after the excursion by the means, and after a certain period of time after the excision of blood for a certain period of time; Seeking changes in the amount, characterized in that it comprises a derivation means for deriving a vascular endothelial function than the amount of change before and after the avascularization.

【0013】そして例えば、更に脈拍数を計測する脈拍
計測手段を備え、前記導出手段は、前記インピーダンス
測定手段で測定した生体インピーダンスより求めた血液
量と前記脈拍計測手段で計測した脈拍数から1分間の拍
出量を求め、駆血前後の血液量と1分間の拍出量の変化
量より血管内皮機能を導出することを特徴とする。
[0013] For example, the apparatus further comprises pulse measuring means for measuring a pulse rate, wherein the deriving means is for one minute from the blood volume obtained from the bioelectrical impedance measured by the impedance measuring means and the pulse rate measured by the pulse measuring means. Is obtained, and the vascular endothelial function is derived from the blood volume before and after the avascularization and the change amount of the one-minute pulse volume.

【0014】また例えば、前記導出手段は、前記インピ
ーダンス測定手段で測定した生体インピーダンスに基づ
いて前記第2の生体電極間の血流量の駆血前後の血流量
の変化を求め、血管面積及び血流速度要素の変化率を推
定することを特徴とする。
Also, for example, the deriving means obtains a change in blood flow between the second biological electrodes before and after avascularization based on the bioelectrical impedance measured by the impedance measuring means, and obtains a blood vessel area and a blood flow. It is characterized by estimating a rate of change of a speed element.

【0015】また、被検者の手足における所定距離離反
した所定部位に装着された第1の生体電極間に所定の定
電流を供給する定電流供給手段と、前記生体電極の間の
所定距離離間した部位に装着された第2の生体電極間の
電圧値を測定する電圧検出手段と、前記被検者の所定部
位に巻回されたカフを加圧制御するカフ制御手段と、前
記カフ制御手段を制御して一定時間前記カフ内圧を加圧
して一定時間の間上腕部を駆血する駆血制御手段と、前
記電圧検出手段での検出電圧と前記定電流供給手段の供
給電流より前記第2の生体電極間の生体インピーダンス
を測定するインピーダンス測定手段と、前記カフと前記
第2の電極間において血管内の血液量と血流量を検出す
る血流量検出手段と、前記血流量検出手段での検出血流
量より駆血前後の変化量より血管面積及び血流速度要素
の変化率を推定し血管内皮機能を導出する導出手段とを
備えることを特徴とする。
A constant current supply means for supplying a predetermined constant current between the first living electrodes mounted on a predetermined portion of the limb of the subject separated from the living body by a predetermined distance; Voltage detecting means for measuring a voltage value between the second living body electrodes attached to the subject, cuff control means for controlling pressurization of a cuff wound around a predetermined part of the subject, and the cuff control means Controlling the blood pressure in the cuff for a certain period of time to exfoliate the upper arm for a certain period of time; and detecting the second voltage based on the voltage detected by the voltage detecting unit and the supply current of the constant current supplying unit. Impedance measuring means for measuring bioimpedance between the biological electrodes, blood flow detecting means for detecting blood volume and blood flow in a blood vessel between the cuff and the second electrode, and detection by the blood flow detecting means Before and after perfusion Characterized in that it comprises a derivation means for deriving the estimated vascular endothelial function the rate of change of the vascular area and the blood flow velocity component than of quantity.

【0016】そして例えば、前記血流量検出手段は、更
に、超音波信号を送受信して手足における血流に伴うド
ップラー効果により血流速度を検出して血管内の血液量
と血流量を検出し、前記導出手段は前記血流量検出手段
での検出血流量を血流速度で除すことで血管面積あるい
は血管径変化を導出することを特徴とする。
For example, the blood flow detecting means further transmits and receives an ultrasonic signal, detects a blood flow velocity by the Doppler effect accompanying blood flow in the limbs, and detects a blood volume and a blood flow in a blood vessel. The deriving means derives a blood vessel area or a blood vessel diameter change by dividing a blood flow detected by the blood flow detecting means by a blood flow velocity.

【0017】また例えば、前記被検者の血圧を測定する
血圧測定手段を備え、前記導出手段は前記血圧測定手段
の測定する駆血前後の血圧値の変化量も参考として血管
内皮機能を導出することを特徴とする。あるいは、更に
脈拍数を計測する脈拍計測手段を備え、前記導出手段
は、前記インピーダンス測定手段で測定した生体インピ
ーダンスより求めた血流量と前記脈拍計測手段で計測し
た脈拍数から1分間の拍出量を求め、求めた1分間の拍出
量から末梢血管抵抗を求め、駆血前後の血流量と末梢血
管抵抗より血管内皮機能を導出することを特徴とする。
For example, the blood pressure measuring means for measuring the blood pressure of the subject is provided, and the deriving means derives the vascular endothelial function with reference to the change in blood pressure before and after the avascularization measured by the blood pressure measuring means. It is characterized by the following. Alternatively, the apparatus further comprises a pulse measuring means for measuring a pulse rate, wherein the deriving means includes a one minute pulse output from the blood flow rate obtained from the bioelectrical impedance measured by the impedance measuring means and the pulse rate measured by the pulse measuring means. , The peripheral vascular resistance is determined from the determined one-minute pulse output, and the vascular endothelial function is derived from the blood flow before and after the avascularization and the peripheral vascular resistance.

【0018】更にまた、被検者の血管内の窒素酸化物産
生量を検出する窒素酸化物産生量検出手段と、前記窒素
酸化物産生量検出手段で検出した窒素酸化物産生量に基
づいて血管内皮機能を導出する導出手段とを備え、前記
窒素酸化物産生量検出手段は血管にメカニカルストレス
を負荷する前後の血管径の変化を測定して窒素酸化物産
生量を検出することを特徴とする。
Further, a nitrogen oxide production amount detecting means for detecting a nitrogen oxide production amount in a blood vessel of the subject, and a blood vessel based on the nitrogen oxide production amount detected by the nitrogen oxide production amount detecting means. Deriving means for deriving an endothelial function, wherein the nitrogen oxide production amount detection means detects a nitrogen oxide production amount by measuring a change in a blood vessel diameter before and after applying a mechanical stress to the blood vessel. .

【0019】そして例えば、窒素酸化物産生量検出手段
は、窒素酸化物の産生により血管の弛緩が生じる現象を
利用して所定時間測定範囲の血管を駆血し、駆血前後の
所定範囲の血管のインピーダンスを測定して窒素酸化物
の産出量を推定することを特徴とする。
For example, the nitrogen oxide production amount detecting means utilizes a phenomenon in which the blood vessel is relaxed due to the production of nitrogen oxide to avascularize a blood vessel within a measurement range for a predetermined period of time, and a blood vessel within a predetermined range before and after the avascularization. Is characterized in that the output of nitrogen oxides is estimated by measuring the impedance of the nitrogen oxides.

【0020】また例えば、更に、窒素酸化物産生量検出
手段には前記血管の血流量を検出する血流量検出手段を
含み、前記測定した生体インピーダンス値と血管内流量
値より末梢抵抗値及び血管径、最高血流速度、及び平均
血流速度を算出し、血管径の変化割合より血管内に産出
された窒素酸化物産生量を検出することを特徴とする。
Further, for example, the nitrogen oxide production amount detecting means further includes a blood flow detecting means for detecting a blood flow in the blood vessel, and a peripheral resistance value and a blood vessel diameter are obtained from the measured bioimpedance value and blood flow value. , The maximum blood flow velocity and the average blood flow velocity, and the amount of nitrogen oxide produced in the blood vessel is detected from the change rate of the blood vessel diameter.

【0021】更に例えば、前記導出手段は、前記窒素酸
化物産生量検出手段が検出した血管にメカニカルストレ
スを負荷した後所定時間毎の窒素酸化物量の増加量の割
合に基づいて血管内皮機能を導出することを特徴とす
る。
Further, for example, the deriving means derives a vascular endothelial function based on the rate of increase in the amount of nitrogen oxide every predetermined time after applying mechanical stress to the blood vessel detected by the nitrogen oxide production amount detecting means. It is characterized by doing.

【0022】また、被検者の測定部位の血管を駆血する
駆血手段と、被検者の測定部位の前記駆血手段による駆
血前後の生体インピーダンスを測定するインピーダンス
測定手段と、前記インピーダンス測定手段で測定した生
体インピーダンスより前記駆血手段による駆血前後の前
記被検者の所定部位の動脈血管径変化を検出する血管拡
張変化検出手段と、前記血管拡張変化検出手段の検出動
脈血管拡張変化に基づいて血管内皮機能を導出する導出
手段とを備えることを特徴とする。
[0022] In addition, an avascularization means for advancing a blood vessel at a measurement site of the subject, an impedance measurement means for measuring a bioimpedance of the measurement site of the subject before and after the avascularization by the avascularization means, and Vasodilatory change detecting means for detecting a change in arterial vascular diameter of a predetermined portion of the subject before and after the avascularization by the avascularizing means from the bioelectrical impedance measured by the measuring means, and arterial vasodilation detected by the vasodilatory change detecting means A deriving means for deriving a vascular endothelial function based on the change.

【0023】また例えば、前記血管拡張変化検出手段
は、前記インピーダンス測定手段の測定インピーダンス
変動分から未梢動脈血管拡張変化を検出し、基底インピ
ーダンス変動分から細動脈及び毛細血管における血管抵
抗変化を検出して前記導出手段に出力可能とすることを
特徴とする。
Further, for example, the vasodilatory change detecting means detects a peripheral arterial vasodilatory change from the measured impedance fluctuation of the impedance measuring means, and detects a vascular resistance change in arterioles and capillaries from the basal impedance fluctuation. It can be output to the deriving means.

【0024】更に例えば、更に脈拍数を計測する脈拍計
測手段を備え、前記血管拡張変化検出手段は、前記イン
ピーダンス測定手段で測定した生体インピーダンスより
求めた血液量と前記脈拍計測手段で計測した脈拍数から
1分間の拍出量を求め、求めた1分間の拍出量から末梢血
管抵抗を求め、駆血前後の血液量と末梢血管抵抗より血
管内皮機能を導出することを特徴とする。
Further, for example, the apparatus further comprises pulse measuring means for measuring a pulse rate, wherein the vasodilatory change detecting means comprises a blood volume obtained from the bioelectrical impedance measured by the impedance measuring means and a pulse rate measured by the pulse measuring means. From
It is characterized in that a stroke volume per minute is obtained, a peripheral vascular resistance is obtained from the calculated stroke volume per minute, and a vascular endothelial function is derived from the blood volume before and after the avascularization and the peripheral vascular resistance.

【0025】また例えば、更に、血管内の血流量を検出
する血流量検出手段を備え、前記駆血手段による駆血前
後の未梢動脈血管拡張変化を定量化可能とすることを特
徴とする。あるいは、前記血流量検出手段は、超音波信
号を送受信して測定部位における血流に伴うドップラー
効果により血流速度を検出して血管内の血液量と血流量
を検出し、前記血管拡張変化検出手段は前記血流量検出
手段での検出血流量を血流速度で除すことで血管面積あ
るいは血管径変化を導出することを特徴とする。
Further, for example, a blood flow detecting means for detecting a blood flow in a blood vessel is further provided, and a change in peripheral arterial vasodilation before and after the avascularization by the avascularization means can be quantified. Alternatively, the blood flow detecting means transmits and receives an ultrasonic signal, detects a blood flow velocity by a Doppler effect accompanying blood flow at a measurement site, detects blood volume and blood flow in a blood vessel, and detects the vasodilation change. The means derives a blood vessel area or a blood vessel diameter change by dividing a blood flow detected by the blood flow detecting means by a blood flow velocity.

【0026】[0026]

【発明の実施の形態】以下、図面を参照して本発明に係
る一発明の実施の形態例の血管内皮機能測定装置を詳細
に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A vascular endothelial function measuring apparatus according to an embodiment of the present invention will be described below in detail with reference to the drawings.

【0027】近年、血管にシェアストレスが作用する
と、血管内皮細胞よりの窒素酸化物、具体的には一酸化
窒素(NO)やプロスタサイクリンの産生が増如した
り,接着分子の発現も変化するなど,多くの内皮機能が
修飾を受ける事が判明してきている。従って駆血前後の
血管の状態を検出すれば、血管内皮機能を識別する事が
可能となる。
In recent years, when shear stress acts on blood vessels, the production of nitrogen oxides, specifically nitric oxide (NO) and prostacyclin, from vascular endothelial cells increases, and the expression of adhesion molecules also changes. It has been found that many endothelial functions are modified. Therefore, by detecting the state of the blood vessel before and after the avascularization, it becomes possible to identify the vascular endothelial function.

【0028】シェアストレスに対する内皮細胞の反応と
しては、数分以内に起こる反応としての「NOの産生量
増加」があり、また、「プロスタサイクリンの産生増
加、「プロテインキナーゼの活性化」、「接着斑の変
化」「Immediate early geneの発現」
等があり、これらを計測できれば血管内皮機能を識別す
ることができる。
The response of endothelial cells to shear stress includes "increase in NO production" as a response occurring within minutes, and "increase in production of prostacyclin," activation of protein kinase ", Changes in plaques "" Expression of immediate early gene "
If these can be measured, the vascular endothelial function can be identified.

【0029】そこで、本実施の形態例ではこの内の「N
Oの産生量増加」に注目し、「NOの産生量増加」によ
り血管径が拡張する点に着目して血流量、血流速度、末
梢血管抵抗を計測、また、それらを用いて駆血前後の値
を比較し血管内皮機能識別のための指標を提供可能とし
た点に特徴を有している。
Therefore, in this embodiment, "N"
Focusing on "increase in O production," measuring blood flow, blood flow velocity, and peripheral vascular resistance by focusing on the fact that the blood vessel diameter expands due to "increase in NO production," Is characterized in that an index for discriminating vascular endothelial function can be provided by comparing the values of.

【0030】具体的には、被検者の例えば手(上腕)又
は足(下肢)の電気インピーダンスを測定することによ
り、血管内皮機能を計測する点に特徴を有しており、そ
れに血流速度、血圧値を同時し求めることで、動脈硬化
の進展度合いを知る目的で、血流量変化、未梢動脈血管
拡張変化、末梢血管抵抗等を独立して提供可能とし、血
管内皮機能識別のための指標を提供する。
Specifically, it is characterized in that the vascular endothelial function is measured by measuring the electrical impedance of, for example, the hand (upper arm) or foot (lower limb) of the subject. By simultaneously obtaining blood pressure values, blood flow changes, peripheral arterial vasodilatory changes, peripheral vascular resistance, etc. can be provided independently for the purpose of knowing the degree of progression of arteriosclerosis, Provide an indicator.

【0031】例えば、血流量変化、未梢動脈血管拡張変
化はインピーダンス変動分から求め、細動脈及び毛細血
管における血管抵抗変化は基底インピーダンス変化から
求める事を特徴とする。
For example, blood flow changes and peripheral arterial vasodilation changes are determined from impedance variations, and vascular resistance changes in arterioles and capillaries are determined from basal impedance changes.

【0032】これらの指標は相対比較であるため、生体
固有定数の影響を受けず、日時を違えた結果の比較や人
と人の間の比較を可能とできる。
Since these indices are relative comparisons, they are not affected by the biological intrinsic constant, and it is possible to compare results with different dates and times and between people.

【0033】また、電気インピーダンス計測に加え、血
管内の血流速度をドップラー血流センサにより計測可能
とし、対象血管を標的として生体電気インピーダンス計
測と同時に実施し、未梢動脈血管拡張変化を定量化する
手段を提供する。
In addition to the electrical impedance measurement, the blood flow velocity in the blood vessel can be measured by a Doppler blood flow sensor, and the measurement is performed simultaneously with the bioelectrical impedance measurement on the target blood vessel to quantify the vascular dilatation change of the peripheral artery. Provide a means to do so.

【0034】更に、上腕等の動脈血圧を同時に計測する
ことで、生体電気インピーダンス計測で得られる未梢動
脈における血液駆出量との間で局所未梢抵抗を計測し表
示する手段を提供可能とする。また更に、血管拡張の自
律神経関与の程度を評価する新しい計測手段も提供可能
とする。
Furthermore, by simultaneously measuring arterial blood pressure of the upper arm and the like, it is possible to provide a means for measuring and displaying local peripheral resistance between the amount of blood ejection in peripheral arteries obtained by bioelectrical impedance measurement. I do. Furthermore, a new measuring means for evaluating the degree of autonomic nerve involvement in vasodilation can be provided.

【0035】以上の血管内皮機能を反映する正確な情報
の提供が可能となることより、心疾患、高血圧の診断と
治療、予防に応用でき、小児から成人まで幅広い対象に
対し、安全、容易で安価な検査手段を提供できる。
By providing accurate information reflecting the above vascular endothelial function, it can be applied to diagnosis, treatment and prevention of heart disease and hypertension, and is safe and easy for a wide range of subjects from children to adults. Inexpensive inspection means can be provided.

【0036】即ち、生体電気インヒーダンス法を単純な
モデルである腕あるいは下肢に適用することで、熟練を
必要とせずに、かつ簡単な構成で実現すると共に、被検
者に対しても電極を装着するのみの簡単な、また後述す
るドップラー血流測定を行う場合でも検出部を一定部位
に装着した状態のままで血管内皮機能評価のための諸指
標が求められる。更に、インヒーダンス波形あるいは血
流波形より同期をとることにより、任意時点の変動を追
跡可能とする。
That is, by applying the bioelectrical impedance method to an arm or a lower limb, which is a simple model, it can be realized with a simple configuration without requiring skill and an electrode can be applied to a subject. Even when a simple measurement of Doppler blood flow described below is performed, various indices for evaluating the vascular endothelial function can be obtained with the detection unit mounted on a certain site. Furthermore, synchronization at an arbitrary time can be tracked by synchronizing with the inherence waveform or the blood flow waveform.

【0037】以上の結果、血菅内皮機能を簡便かつ定量
的に計測する手段を提供でき、動脈硬化起因の冠動脈疾
患、高血圧、閉塞性動脈疾患の予測、診断、予防、治療
に幅広く応用可能となる。以下具体的に説明する。
As a result, it is possible to provide a means for simply and quantitatively measuring blood vessel endothelial function, and it can be widely applied to prediction, diagnosis, prevention and treatment of coronary artery disease, hypertension, and occlusive artery disease caused by arteriosclerosis. Become. This will be specifically described below.

【0038】〔実施の形態例〕図1は、本発明に係る一
発明の実施の形態例の管内皮機能測定装置の基本構成を
説明するための図,図2は被検者に対する検出部の装着
常態を説明するための図である。
[Embodiment] FIG. 1 is a view for explaining a basic configuration of a vascular endothelial function measuring apparatus according to an embodiment of the present invention, and FIG. 2 is a view showing a detection unit for a subject. It is a figure for explaining a wearing normal condition.

【0039】図において、10は本実施の形態例装置の
全体制御を司る演算制御部であり、詳細を後述する駆血
前後比較部11を内蔵している。演算制御部10は、イ
ンピーダンス変換部50、Zo,ΔZ分離部62等を介
して測定したインピーダンスより得られたデータから、
流量値の最高値、平均値、1分間血流量を演算し、血圧
計測及び駆血制御部20より得られた血圧値及びドップ
ラー血流計測部30を用いて検出した血流速度値から末
梢抵抗値、血管面積(径)、最高血流速値、平均血流速
値、を求めることが可能である。更に、表示部70,記
録部75,保存部80,音声発生部85その他を制御可
能である。
In the figure, reference numeral 10 denotes an arithmetic and control unit which controls the overall control of the apparatus according to the present embodiment, and incorporates a before-and-after blood transfusion comparing unit 11 which will be described in detail later. The arithmetic control unit 10 calculates, from data obtained from the impedance measured via the impedance conversion unit 50, the Zo, ΔZ separation unit 62, and the like,
The maximum value, the average value of the flow value, the blood flow for one minute are calculated, and the peripheral resistance is calculated from the blood pressure value obtained from the blood pressure measurement and the avascularization control unit 20 and the blood flow velocity value detected using the Doppler blood flow measurement unit 30. Value, blood vessel area (diameter), maximum blood flow velocity value, and average blood flow velocity value. Further, the display unit 70, the recording unit 75, the storage unit 80, the sound generation unit 85 and the like can be controlled.

【0040】更に、内蔵する駆血前後比較部11は、演
算制御部10での上記各種の計測値、計測結果等を駆血
前後で比較し、診断指標を演算するものであり、例えば
駆血前後の血流量、血流速度比較、末梢血管抵抗の比
較、血管面積(径)の比較、血圧値の比較などを行うこ
とができる。そして、以上の指標より血管内皮機能を導
出して結果を表示部70に表示したり記録部75に記録
出力可能であり、保存部80に保存させることも可能で
ある。
Further, the built-in pre- and post-vascularization comparison unit 11 compares the various measured values and the measurement results obtained by the arithmetic and control unit 10 before and after the avascularization, and calculates a diagnostic index. Comparison of blood flow before and after blood flow, comparison of blood flow velocity, comparison of peripheral vascular resistance, comparison of blood vessel area (diameter), comparison of blood pressure value, and the like can be performed. Then, the vascular endothelial function is derived from the above index, and the result can be displayed on the display unit 70 or recorded and output on the recording unit 75, and can be stored in the storage unit 80.

【0041】また、駆血前後の脈拍数を血圧測定/駆血
用カフ22等を利用して計測する事も可能であり、測定
した生体インピーダンスより求めた血流量と計測した脈
拍数から1分間の拍出量を求め、駆血前後の血流量と1分
間の拍出量の変化量より血管内皮機能を導出することが
可能である。即ち、測定した生体インピーダンスに基づ
いて電圧電極51,52間の駆血前後の血液量の比を求
めて血管面積要素と血流速度要素の変化率を推定する。
It is also possible to measure the pulse rate before and after cardiovascularization using the blood pressure measurement / cardiographic cuff 22 or the like. One minute is determined from the blood flow rate obtained from the measured bioelectrical impedance and the measured pulse rate. Vascular endothelial function can be derived from the blood flow volume before and after cardiotomy and the change amount of the cardiac output volume for one minute. That is, the ratio of the blood volume before and after the avascularization between the voltage electrodes 51 and 52 is obtained based on the measured bioimpedance, and the change rates of the blood vessel area element and the blood flow velocity element are estimated.

【0042】20は血圧計測及び駆血制御部であり、血
圧測定/駆血用カフ22の加圧、計測制御を行って被検
者の例えば駆血前の血圧測定及び前腕の駆血を行うと共
に、手首用カフ24の加圧制御を行って手首駆血を行う
血圧計測及び駆血制御部である。
Reference numeral 20 denotes a blood pressure measurement and transvascularization control unit which presses the blood pressure measurement / transfusion cuff 22 and controls the measurement to measure the blood pressure of the subject, for example, before the transfusion, and to transect the forearm. Also, it is a blood pressure measurement and avascularization control unit that performs pressurization control of the wrist cuff 24 to perform wrist avascularization.

【0043】血圧計測及び駆血制御部20は、通常の血
圧測定装置の有する各構成、例えば、カフ内圧を検出す
る圧力センサ、カフ22,24のゴム嚢22a、24a
を加圧する加圧ポンプ、カフ内圧を定速度で減圧して例
えば血圧測定などを行うための定速排気弁、駆血解除の
場合など急速にカフ内圧を減圧するための急速排気弁、
最高血圧値、最低血圧値を決定する血圧決定部等を包含
する。これらの構成については公知であるため詳細説明
を省略する。
The blood pressure measurement and transvascularization control unit 20 includes the components of a normal blood pressure measurement device, for example, a pressure sensor for detecting the internal pressure of the cuff, and rubber bladders 22a, 24a of the cuffs 22, 24.
Pressurizing pump, pressurizing the cuff, reducing the internal pressure of the cuff at a constant speed, for example, a constant-speed exhaust valve for performing blood pressure measurement, etc., a rapid exhaust valve for rapidly reducing the internal pressure of the cuff, such as in the case of blood removal,
It includes a blood pressure determining unit that determines a systolic blood pressure value and a diastolic blood pressure value. Since these configurations are known, detailed description thereof will be omitted.

【0044】21は血圧計測及び駆血制御部20よりの
加圧制御用エアーを血圧測定/駆血用カフ22に送るか
手首用カフ24に送るかを切り換える切換弁である。2
2は被検者の前腕(又は上腕)に巻回して血圧測定及び
駆血が可能な加圧用のゴム嚢22aを備える血圧測定/
駆血用カフ、24は必要に応じて手首部分の駆血を行う
ための手首用カフである。
Numeral 21 denotes a switching valve for switching between sending the pressure control air from the blood pressure measurement and transfusion control unit 20 to the blood pressure measurement / transfusion cuff 22 or the wrist cuff 24. 2
Reference numeral 2 denotes a blood pressure measurement / wrapping around the forearm (or upper arm) of the subject, and a blood pressure measurement /
A cuff for blood augmentation 24 is a cuff for a wrist for performing a blood cuff for a wrist as needed.

【0045】30は超音波を利用したドップラー効果を
利用して血管内の血流速度を検出する血流計測部、35
は検出部であり、検出部(ドップラセンサ)35の先端
部近傍より所定周波数の超音波信号を送出すると共に、
被検者の例えば上腕部より反射してくる受信信号を検出
して被検者の検出器35装着位置における血管内の血液
の血流速度を計測する。なお、ドップラー効果を利用し
て血管内の血流速度を検出する原理、構成については公
知であるため、詳細説明を省略する。
Reference numeral 30 denotes a blood flow measuring unit for detecting a blood flow velocity in a blood vessel using the Doppler effect using ultrasonic waves;
Is a detection unit, which transmits an ultrasonic signal of a predetermined frequency from near the tip of the detection unit (Doppler sensor) 35,
A received signal reflected from, for example, the upper arm of the subject is detected, and the blood flow velocity of the blood in the blood vessel at the position where the subject is mounted with the detector 35 is measured. The principle and configuration of detecting a blood flow velocity in a blood vessel using the Doppler effect are known, and thus detailed description is omitted.

【0046】本実施の形態例では、血流計測部30は例
えば5MHz〜10MHzの超音波信号を発振する発振
部を内蔵し、該発振部よりの超音波信号を検出部35か
ら送信/受信し、受信した超音波信号の遅延度より公知
のドップラー効果による血流速度を検測可能である。
In the present embodiment, the blood flow measuring section 30 has a built-in oscillating section for oscillating an ultrasonic signal of, for example, 5 MHz to 10 MHz, and transmits / receives an ultrasonic signal from the oscillating section from the detecting section 35. In addition, the blood flow velocity by the known Doppler effect can be detected from the degree of delay of the received ultrasonic signal.

【0047】40は定電流電極41,42間に所定周波
数の定電流を供給可能な低電流供給部であり、例えば役
60KHzの信号を発振する発振回路と定電流源とを包
含している。50は定電流供給部40の供給する定電流
電極41,42間に装着される電圧電極51,52間の
インピーダンス値(生体インピーダンス)を検出するイ
ンピーダンス変換部である。電圧電極51,52は安定
した計測結果を得るためにAg−Agcl電極等を用い
ることが望ましい。
Reference numeral 40 denotes a low current supply unit which can supply a constant current of a predetermined frequency between the constant current electrodes 41 and 42, and includes, for example, an oscillation circuit for oscillating a signal of 60 KHz and a constant current source. Reference numeral 50 denotes an impedance conversion unit that detects an impedance value (bioimpedance) between the voltage electrodes 51 and 52 mounted between the constant current electrodes 41 and 42 supplied by the constant current supply unit 40. It is desirable to use an Ag-Agcl electrode or the like for the voltage electrodes 51 and 52 in order to obtain a stable measurement result.

【0048】電圧電極51,52間に微小高周波電流を
流すと、両電極には両電極の間に存在する組織のインピ
ーダンスに比例した電圧が検出される。上腕や下肢など
に様に他の臓器などが無い部分では、電圧電極51,5
2間で検出されるインピーダンスは主に心臓から拍出さ
れる血液に影響される。従って、この電圧電極51,5
2間のインピーダンスを計測することにより、その部位
を流れる拍出量を求めることが可能となり、血流量等を
導き出すことができる。
When a minute high-frequency current flows between the voltage electrodes 51 and 52, a voltage proportional to the impedance of the tissue existing between the electrodes is detected at both electrodes. In areas where there is no other organ such as the upper arm or the lower limb, the voltage electrodes 51, 5
The impedance detected between the two is mainly affected by the blood pumped from the heart. Therefore, the voltage electrodes 51, 5
By measuring the impedance between the two, it is possible to determine the amount of stroke flowing through the site, and to derive the blood flow and the like.

【0049】61はインピーダンス変換部50よりのイ
ンピーダンス値より血管内の血流量を計測する流量計測
部であり、生体インピーダンス値の変化分の微分値(d
Z/dt)を検出可能である。62はインピーダンス変
換部50よりのインピーダンス値より駆血前後の基底イ
ンピーダンス項(Zo)変動比、ΔZ項変動比を分離し
て出力するZo,ΔZ変換部、63はインピーダンス変
換部50よりのインピーダンス値の変動より心拍などと
の同期を検出する同期検出部である。
Reference numeral 61 denotes a flow rate measuring section for measuring the blood flow rate in the blood vessel from the impedance value from the impedance converting section 50, and the differential value (d
Z / dt) can be detected. 62 is a Zo, ΔZ converter that separates and outputs the basal impedance term (Zo) variation ratio and ΔZ term variation ratio before and after avascularization from the impedance value from the impedance converter 50, and 63 is the impedance value from the impedance converter 50 This is a synchronization detection unit that detects synchronization with a heartbeat or the like from fluctuations in the heart rate.

【0050】また、70は各種の操作ガイダンスや計測
結果、診断指標を表示可能な表示部、75は計測結果、
診断指標を記録出力可能な記録部1、80は計測結果、
診断指標を保存する保存部であり、大容量外部記憶装置
などが適用可能である。85は音声でのガイダンス出力
や各種報知音が出力可能な音声発生部である。
Reference numeral 70 denotes a display unit capable of displaying various operation guidance, measurement results, and diagnostic indices; 75, the measurement results;
The recording units 1 and 80 capable of recording and outputting diagnostic indices are measurement results,
This is a storage unit for storing a diagnostic index, and a large-capacity external storage device or the like is applicable. Reference numeral 85 denotes a voice generation unit that can output guidance by voice and various notification sounds.

【0051】以上の構成を備える本実施の形態例におい
て、被検者への各種センサ類の装着方法を図2を参照し
て説明する。定電流電極41,42を装着する部位、即
ち被検者の測定部位は、被検者の体中で駆血が可能でか
つ血管が最も単純に配置している単純モデル部位、例え
ば下肢や上腕に所定距離離間して装着することが望まし
い。
In this embodiment having the above configuration, a method of mounting various sensors on the subject will be described with reference to FIG. The part to which the constant current electrodes 41 and 42 are attached, that is, the measurement part of the subject, is a simple model part in which blood can be ablated in the body of the subject and a blood vessel is most simply arranged, for example, a lower limb or an upper arm It is desirable to mount them at a predetermined distance from each other.

【0052】本実施の形態例では、上腕部を測定部位と
する場合を例として説明する。そして、以下の説明は図
2の例として上腕部に電圧電極51、52を装着し、前
腕部に血圧測定/駆血用カフ22を装着する例について
行う。しかし、この例に限定されるものではなく、上腕
に血圧測定/駆血用カフ22を装着し、前腕に電圧電極
51、52を装着しても同様の測定結果が得られる。こ
の様に、装着部位は任意に選択できる。
In this embodiment, a case where the upper arm is used as a measurement site will be described as an example. The following description will be made with reference to the example of FIG. 2 in which the voltage electrodes 51 and 52 are attached to the upper arm and the blood pressure measurement / blood-compensation cuff 22 is attached to the forearm. However, the present invention is not limited to this example. Similar measurement results can be obtained by attaching the cuff 22 for measuring and advancing blood pressure to the upper arm and attaching the voltage electrodes 51 and 52 to the forearm. Thus, the mounting site can be arbitrarily selected.

【0053】測定部位も腕部に限らず、下肢を測定部位
としても良いことは勿論であり、他の部位を利用しても
よいことは言うまでもない。
The measurement site is not limited to the arm, but the lower limb may be used as the measurement site, and it goes without saying that other sites may be used.

【0054】図2に示す本実施の形態例では、上腕部の
方の部分に一方の定電流電極41を装着し、他方の定電
流電極42を手首の部分あるいは手の甲の部分に装着す
る。そして、インピーダンス測定時にはこの両電極4
1,42間に所定周波数の定電流を印加する。
In this embodiment shown in FIG. 2, one constant current electrode 41 is attached to the upper arm portion, and the other constant current electrode 42 is attached to the wrist or back of the hand. When measuring the impedance, the two electrodes 4 are used.
A constant current of a predetermined frequency is applied between the terminals 1 and 42.

【0055】そしてこの両電極間に他のセンサ類をそれ
ぞれ装着する。上腕部の最上部側(血液流の上流側)に
電圧電極51,52の離間距離を所定距離、例えば
“L”とした間隔に位置決めして固定する電圧電極固定
治具55を介して装着する。なお、この電極の装着方法
は電圧電極固定治具55及び電極51,52が離脱しな
い方法であれば任意の方法を採用できる。
Then, other sensors are mounted between the two electrodes. The voltage electrodes 51 and 52 are mounted on the uppermost side (upstream side of the blood flow) of the upper arm via a voltage electrode fixing jig 55 for positioning and fixing the distance between the voltage electrodes 51 and 52 to a predetermined distance, for example, an interval of “L”. . The electrode may be mounted in any manner as long as the voltage electrode fixing jig 55 and the electrodes 51 and 52 do not come off.

【0056】電圧電極固定治具55を介して電圧電極5
1,52の離間距離を所定距離、例えば“L”に位置決
めして固定するのは、駆血前後での測定結果の相対比較
を容易化するためであり、わずかの変動も正確に検出す
るためである。これにより、例え被検者が代わっても、
あるいは計測日時が変更となっても離間距離を一定とで
き、定量的な計測結果が得られる。
The voltage electrode 5 via the voltage electrode fixing jig 55
The reason for positioning and fixing the separation distance between the first and the second 52 at a predetermined distance, for example, “L” is to facilitate relative comparison of measurement results before and after avascularization, and to accurately detect even a slight change. It is. As a result, even if the subject changes,
Alternatively, even if the measurement date is changed, the separation distance can be kept constant, and a quantitative measurement result can be obtained.

【0057】そして、電圧電極52bの下流側(下部)
の血管外側皮膚位置に検出部35を位置決め固定する。
検出部35近傍の下流側部位に血圧測定/駆血用カフ2
2を位置決め装着する。そして必要に応じて更に下流側
に手首用カフ24を装着する。
Then, on the downstream side (lower part) of the voltage electrode 52b.
The detection unit 35 is positioned and fixed at the outer skin position of the blood vessel.
A cuff 2 for blood pressure measurement / avascularization in the downstream portion near the detection unit 35
Position and mount 2. Then, if necessary, a wrist cuff 24 is attached further downstream.

【0058】なお、図2に示す例では手首用カフ24を
装着しているが、手首用カフ24は手における血液の循
環の影響を考慮する場合に使用するものであり手首用カ
フ24及び切換弁21を省略して使用されてもよい。
Although the wrist cuff 24 is worn in the example shown in FIG. 2, the wrist cuff 24 is used when considering the influence of blood circulation in the hand, and the wrist cuff 24 and the switching The valve 21 may be omitted and used.

【0059】以上のように各センサ類を装着した本実施
の形態例の血管内皮機能測定方法を図3のフローチャー
トを参照して以下に説明する。
The method of measuring the vascular endothelial function according to the present embodiment equipped with the sensors as described above will be described below with reference to the flowchart of FIG.

【0060】本実施の形態例においては、先ず図3のス
テップS1において、図2に示すように各センサ類を被
検者の所定部位に装着する。装着が終了するとステップ
S2の処理に移行し、演算制御部10は切換弁21を血
圧測定/駆血用カフ22側に切り換えると共に、血圧計
測及び駆血制御部20を起動して被検者の血圧測定、特
に最高血圧値の測定を行う。
In this embodiment, first, in step S1 of FIG. 3, the sensors are mounted on a predetermined portion of the subject as shown in FIG. When the mounting is completed, the process proceeds to step S2, in which the arithmetic and control unit 10 switches the switching valve 21 to the blood pressure measurement / blood-compensation cuff 22 side, activates the blood pressure measurement and blood-compression control unit 20, and activates the subject. The blood pressure is measured, particularly the systolic blood pressure value.

【0061】なお、指より血圧値を測定する場合や医師
などによる手動での血圧測定を行うような場合にはステ
ップS2の血圧測定を最初に行い、その後にステップS
1のセンサ類の装着を行っても良い。
When a blood pressure value is measured from a finger or when a blood pressure measurement is manually performed by a doctor or the like, the blood pressure measurement in step S2 is performed first, and then the step S2 is performed.
One sensor may be mounted.

【0062】続いてステップS3に進み、駆血前の血管
状態の計測処理を行う。ここでは、駆血前の各種のセン
サよりの計測データ(コントロールデータ)を取得す
る。ここでは、インピーダンス変換部50により電圧電
極51,52間の生体インピーダンス計測を行い、また
ドップラ血流計測部30、検出部35を用いての血流速
度計測を行なう。
Then, the process proceeds to a step S3, wherein a measurement process of the blood vessel state before the avascularization is performed. Here, measurement data (control data) from various sensors before the cardiovascularization is acquired. Here, the bioelectrical impedance between the voltage electrodes 51 and 52 is measured by the impedance conversion unit 50, and the blood flow velocity is measured by using the Doppler blood flow measurement unit 30 and the detection unit 35.

【0063】これにより、Zo、ΔZ分離部62による
駆血前の基底インピーダンスZo、インピーダンス変化
分ΔZ、流量計測部61による駆血前の血流量(FLO
W:dZ/dt(インピーダンス変化分の微分値))、
最高血流量、平均血流量、同期検出部63の検出した同
期情報も参照しての1回拍出量SV、1分間拍出量、PR
(脈拍数)等を計測する。また、先に測定した血圧値B
Pを取得すると共に連続的なインピーダンス計測結果に
基づく血流量波形、血流速波形を取得し、この取得結果
を表示部70の表示画面に表示する。
As a result, the base impedance Zo before the avascularization by the Zo and ΔZ separation unit 62, the impedance change ΔZ, and the blood flow volume before the avascularization (FLO
W: dZ / dt (differential value of impedance change)),
The maximum blood flow, the average blood flow, the stroke volume SV with reference to the synchronization information detected by the synchronization detection unit 63, the minute volume, PR
(Pulse rate) and the like are measured. Also, the blood pressure value B measured earlier
While acquiring P, a blood flow waveform and a blood flow waveform based on continuous impedance measurement results are obtained, and the obtained results are displayed on the display screen of the display unit 70.

【0064】そして、取得結果を保存部80に保存す
る。またこの取得結果は表示部70の表示画面に表示す
る。
Then, the obtained result is stored in the storage unit 80. The obtained result is displayed on the display screen of the display unit 70.

【0065】例えば、インピーダンス変換部50から計
測したインピーダンス変化分をΔZとすると、電圧電極
51,52間(距離L)の血液量変化分ΔVはΔV=ρ
(L/Zo)ΔZで表すことができる。ΔV∝量(立
方cm=ml)であり、時間微分(dV/dt)∝流量=面
積(平方cm)×流速(cm/S)である。
For example, if the impedance change measured by the impedance converter 50 is ΔZ, the blood volume change ΔV between the voltage electrodes 51 and 52 (distance L) is ΔV = ρ
(L / Zo) 2 ΔZ. ΔV∝amount (cubic cm = ml), time derivative (dV / dt) ∝flow rate = area (square cm) × flow rate (cm / S).

【0066】以上に鑑みれば、このインピーダンス変換
部50よりの検出インピーダンスのみであっても以下の
血管拡張度、血流量などを計測することができ、後述す
る駆血後の計測結果と比較することで、血流量、血管面
積(径)変化等、即ち血管内皮の一酸化窒素の生成能力
等の血管内皮機能の指標を提供できる。
In view of the above, it is possible to measure the following degree of vasodilatation, blood flow, etc., using only the detected impedance from the impedance conversion unit 50, and to compare it with the measurement results after avascularization described later. Thus, it is possible to provide an index of vascular endothelial function such as a change in blood flow and a blood vessel area (diameter), that is, a capability of generating nitrocellular nitric oxide.

【0067】しかし、流量のみに限ってみても、更に正
確な値を得ることができれば臨床的な意義が向上する。
そこで本実施の形態例においては、面積の要素は無いが
計測部位の血流速度を検出することができるドップラー
血流計測部30を更に備える構成として、正確な血流速
(cm/S)が得られるようにしている。このドップラ
ー血流計測部30からは、インピーダンス変換部50の
検出結果から流量計測部61が計測する流量を示す(d
V/dt)と近似の波形が得られる。
However, even if only the flow rate is limited, if a more accurate value can be obtained, the clinical significance will be improved.
Therefore, in the present embodiment, an accurate blood flow velocity (cm / S) is provided as a configuration further including the Doppler blood flow measurement unit 30 which has no area element but can detect the blood flow velocity at the measurement site. I am getting it. The Doppler blood flow measurement unit 30 indicates the flow rate measured by the flow measurement unit 61 from the detection result of the impedance conversion unit 50 (d
V / dt).

【0068】これにより、両者の総合的な判断を可能と
し、一方の計測値が症状を正しく反映しない場合があっ
ても、より確度の高い検測結果が得られる。例えば、超
音波信号を送受信して手足における血流に伴うドップラ
ー効果により血流速度を検出して血管内の血液量と血流
量を検出し、検出血流量を血流速度で除すことで血管面
積あるいは血管径変化を導出することができる。
This makes it possible to make a comprehensive judgment between the two, and even if one of the measured values does not correctly reflect the symptom, a more accurate measurement result can be obtained. For example, an ultrasonic signal is transmitted and received, the blood flow velocity is detected by the Doppler effect accompanying the blood flow in the limbs, the blood volume and the blood flow in the blood vessel are detected, and the detected blood flow is divided by the blood flow velocity. The area or blood vessel diameter change can be derived.

【0069】次に、ステップS4において、演算制御部
10は切換弁21を血圧測定/駆血用カフ22側に切り
換えられていることを確認すると共に、血圧計測及び駆
血制御部20を起動して血圧測定/駆血用カフ22を加
圧し被検者の上腕部で所定時間駆血する。本実施の形態
例では、カフ内圧をステップS2で測定した最高血圧値
より約30〜50mmHg程度高い圧力に約5分間維持す
る。
Next, in step S4, the arithmetic and control unit 10 confirms that the switching valve 21 has been switched to the blood pressure measurement / blood-compensation cuff 22 side, and activates the blood pressure measurement and blood-compression control unit 20. Then, the cuff 22 for blood pressure measurement / arterialization is pressurized, and the subject's upper arm is used for the predetermined period of time. In the present embodiment, the cuff internal pressure is maintained at a pressure higher by about 30 to 50 mmHg than the systolic blood pressure value measured in step S2 for about 5 minutes.

【0070】続いてステップS5において、所定時間経
過後(本実施の形態例では約5分後)血圧計測及び駆血
制御部20を制御して内蔵する不図示の急速開放弁を起
動して血圧測定/駆血用カフ22内圧を急速に減圧して
駆血状態を解除する。そしてステップS6に進む。
Subsequently, in step S5, after a lapse of a predetermined time (after about 5 minutes in the present embodiment), the blood pressure measurement and control unit 20 is controlled to activate a built-in quick opening valve (not shown) to control the blood pressure. The internal pressure of the cuff 22 for measurement / blood transfusion is rapidly reduced to release the blood transfusion state. Then, the process proceeds to step S6.

【0071】ステップS6では駆血解除後所定時間間隔
で血管状態を取得し、例えば保存部80に保存する。こ
のステップS6における血管状態の取得はステップS3
の場合と同様である。例えば駆血解除後1分毎に10分
後まで計測する。これにより、例えばシェアストレスに
対する内皮細胞の数分以内に起こる反応としての「NO
の産生量増加(血管系拡張)」状態を時系列に計測す
る。
In step S 6, the blood vessel state is acquired at predetermined time intervals after the end of the anastomosis, and is stored in, for example, the storage unit 80. The acquisition of the blood vessel state in step S6 is performed in step S3.
Is the same as For example, the measurement is performed every minute after the end of the avascularization until 10 minutes later. Thus, for example, “NO” as a response to shear stress within several minutes of endothelial cells
The increase in the amount of production (vasodilation) of the "" is measured in chronological order.

【0072】そして、計測終了後、あるいは計測中にス
テップS8に示すインピーダンス計測波形(印ピーダン
ス変化量)の測定毎の変化量割合(インピーダンスの変
動比率)を駆血前後比較部11で比較して求め、所定閾
値と比較して、所定閾値より大きいか小さいかなど血管
内皮機能の状態を逐一計測し、例えば変化量がより大き
い場合には血管内皮機能状態がより良いと判断して血管
内皮機能の状態識別の指標として例えば表示部70に表
示し、記録部75より記録出力する。また、必要に応じ
て保存部80に保存する。
After the measurement is completed or during the measurement, the change ratio (impedance change ratio) of each measurement of the impedance measurement waveform (marked impedance change amount) shown in step S8 is compared by the pre- and post-vascularization comparison unit 11. The state of the vascular endothelial function, such as whether the vascular endothelial function is larger or smaller than the predetermined threshold, is measured one by one. For example, it is displayed on the display unit 70 as an index of the state identification, and recorded and output from the recording unit 75. Further, it is stored in the storage unit 80 as needed.

【0073】例えば、リアルタイムで血管状態を計測し
ている状態時の表示部70への表示例を図4に、ステッ
プS8での解析結果の出力例を図5に示す。
For example, FIG. 4 shows a display example on the display unit 70 when the blood vessel state is being measured in real time, and FIG. 5 shows an output example of the analysis result in step S8.

【0074】そして最後にステップS9において、以上
の計測、解析結果に基づいて血管の内皮非依存症性の評
価を必要な場合行う。
Finally, in step S9, evaluation of the endothelial independence of the blood vessel is required based on the above measurement and analysis results.

【0075】上記本実施の形態例の計測が、電圧電極5
1,52間のインピーダンスの変化に基づいて行われる
ため、従来の様な1箇所の血管の径の変化度合いではな
く、例えば動脈の血管拡張度合い及び細動脈レベルでの
血管拡張度合いを独立して計測可能であり、血流量の変
化計測も容易に行うことができる。
The measurement of the present embodiment is performed by using the voltage electrode 5
For example, the degree of change in the diameter of a blood vessel at one location is different from the degree of change in the diameter of a single blood vessel as in the related art. Measurement is possible, and a change in blood flow can be easily measured.

【0076】本実施の形態例の血管の内皮非依存症性の
評価は、これらの絶対値の評価でなく駆血前後の変化を
検出して変化量の比率として提示するという従来にない
全く新しい指標に従って診断する事を可能とする。これ
により、健常者と発病者の状態比較結果等より正常と異
常の判断基準を明確に定めことができる。この結果は冠
動脈疾患の予測にも寄与し得るものであり、以上により
全般的な動脈硬化診断に有益な手段が提供できる。
The evaluation of the endothelium independence of the blood vessel according to the present embodiment is not an evaluation of these absolute values, but an entirely new, unconventional method that detects a change before and after cardiotomy and presents it as a ratio of the change amount. Diagnosis is possible according to the index. This makes it possible to clearly determine the criterion for determining whether the condition is normal or abnormal based on the result of comparison between the state of the healthy person and the diseased person. This result can also contribute to the prediction of coronary artery disease, and thus can provide a useful means for general arteriosclerosis diagnosis.

【0077】[0077]

【発明の効果】以上に説明したように本発明によれば、
被検者に多大な負荷を与えることなく、しかもさほどの
熟練が無くても、精度の高い血管内皮機能が測定できる
血管内皮機能測定装置を提供することができる。
According to the present invention as described above,
It is possible to provide a vascular endothelial function measurement device capable of measuring a vascular endothelial function with high accuracy without imposing a large load on the subject and without much skill.

【0078】また、生体の測定部の血管の駆血前後の血
管状態を熟練を必要とせずに簡単な操作で計測可能と
し、駆血前後の血管状態の変化に基づいて血管内皮機能
を識別するため、被検者の個体差の影響が少ない、多数
の被検者に共通の血管内皮機能の評価指標を提供するこ
とができる。
Further, the vascular condition of the blood vessel in the measuring section of the living body before and after the avascularization can be measured by a simple operation without skill, and the vascular endothelial function is identified based on the change in the vascular condition before and after the avascularization. Therefore, it is possible to provide a common evaluation index of vascular endothelial function to a large number of subjects, which is less affected by individual differences among the subjects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る一発明の実施の形態例の血管内皮
機能測定装置の構成を説明するための図である。
FIG. 1 is a diagram for explaining a configuration of a vascular endothelial function measuring device according to an embodiment of the present invention.

【図2】本実施の形態例のセンサ類の装着状態を説明す
るための図である。
FIG. 2 is a diagram for explaining a mounted state of sensors and the like according to the embodiment.

【図3】本実施の形態例の血管内皮機能測定手順を説明
するためのフローチャート図である。
FIG. 3 is a flowchart for explaining a procedure for measuring a vascular endothelial function according to the embodiment;

【図4】本実施の形態例の血管状態計測中の表示画面例
を示す図である。
FIG. 4 is a diagram showing an example of a display screen during blood vessel state measurement according to the embodiment.

【図5】本実施の形態例の血管状態解析結果の表示例を
示す図である。
FIG. 5 is a diagram showing a display example of a blood vessel state analysis result according to the embodiment;

【符号の説明】[Explanation of symbols]

41,42 定電流電極 51,52 電圧電極 21 切換弁 22 血圧測定/駆血用カフ 24 手首用カフ 41, 42 Constant current electrode 51, 52 Voltage electrode 21 Switching valve 22 Cuff for blood pressure measurement / blood augmentation 24 Cuff for wrist

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 孝司 東京都文京区本郷3−39−4 フクダ電子 株式会社内 (72)発明者 石川 毅 東京都文京区本郷3−39−4 フクダ電子 株式会社内 (72)発明者 丸山 満也 東京都文京区本郷3−39−4 フクダ電子 株式会社内 Fターム(参考) 4C017 AA02 AA07 AA10 AA11 AC01 AC16 AC23 AD01 DE01 FF05 4C027 AA06 BB05 EE01  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Takashi Takahashi 3-39-4 Hongo, Bunkyo-ku, Tokyo Fukuda Electronics Co., Ltd. (72) Inventor Takeshi Ishikawa 3-39-4 Hongo, Bunkyo-ku, Tokyo Fukuda Electronics Co., Ltd. (72) Inventor Mitsuya Maruyama 3-39-4 Hongo, Bunkyo-ku, Tokyo Fukuda Electronics Co., Ltd.F-term (reference)

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 被検者の手足における所定距離離反した
所定部位に装着された第1の生体電極間に所定の定電流
を供給する定電流供給手段と、 前記生体電極の間の所定距離離間した部位に装着された
第2の生体電極間の電圧値を測定する電圧検出手段と、 前記上腕部の所定部位に巻回されたカフを加圧制御する
カフ制御手段と、 前記カフ制御手段を制御して一定時間前記カフ内圧を加
圧して一定時間の間上腕部を駆血する駆血制御手段と、 前記電圧検出手段での検出電圧と前記定電流供給手段の
供給電流より前記駆血制御手段による駆血の前と一定時
間の駆血を解除した後の所定時間経過ごとに前記第2の
生体電極間の生体インピーダンスを測定するインピーダ
ンス測定手段と、 前記インピーダンス測定手段の生体インピーダンスより
血流量の変化を求め、駆血前後の変化量より血管内皮機
能を導出する導出手段とを備えることを特徴とする血管
内皮機能測定装置。
1. A constant current supply means for supplying a predetermined constant current between first biological electrodes attached to a predetermined portion of a limb of a subject separated by a predetermined distance, and a predetermined distance between the biological electrodes Voltage detecting means for measuring a voltage value between the second living body electrodes attached to the site where the cuff is wound, cuff control means for pressurizing and controlling a cuff wound around a predetermined portion of the upper arm portion, and cuff control means A control means for controlling the pressure inside the cuff to pressurize the internal pressure of the cuff for a predetermined time to exhale the upper arm for a predetermined time; and controlling the blood flow based on the voltage detected by the voltage detection means and the supply current of the constant current supply means. Impedance measuring means for measuring the bioimpedance between the second bioelectrodes before the blood transfusion by the means and every elapse of a predetermined time after releasing the blood transfusion for a certain time; and blood flow from the bioelectric impedance of the impedance measuring means. Seeking changes, vascular endothelial function measurement apparatus, characterized in that it comprises a derivation means for deriving a vascular endothelial function than the amount of change before and after the avascularization.
【請求項2】 更に脈拍数を計測する脈拍計測手段を備
え、 前記導出手段は、前記インピーダンス測定手段で測定し
た生体インピーダンスより求めた血液量と前記脈拍計測
手段で計測した脈拍数から1分間の拍出量を求め、駆血
前後の血液量と1分間の拍出量の変化量より血管内皮機
能を導出することを特徴とする請求項1記載の血管内皮
機能測定装置。
2. A pulse measuring means for measuring a pulse rate, wherein the deriving means comprises a one-minute pulse based on the blood volume obtained from the bioelectrical impedance measured by the impedance measuring means and the pulse rate measured by the pulse measuring means. 2. The vascular endothelial function measuring apparatus according to claim 1, wherein the vascular endothelial function is derived from a blood volume before and after the avascularization and a change amount of the blood volume for one minute before and after the avascularization.
【請求項3】 前記導出手段は、前記インピーダンス測
定手段で測定した生体インピーダンスに基づいて前記第
2の生体電極間の血流量の駆血前後の血流量の変化を求
め、血管面積及び血流速度要素の変化率を推定すること
を特徴とする請求項1記載の血管内皮機能測定装置。
3. The deriving means obtains a change in blood flow between the second bioelectrode before and after avascularization based on the bioelectrical impedance measured by the impedance measuring means, and calculates a blood vessel area and a blood flow velocity. 2. The vascular endothelial function measuring device according to claim 1, wherein a change rate of the element is estimated.
【請求項4】 被検者の手足における所定距離離反した
所定部位に装着された第1の生体電極間に所定の定電流
を供給する定電流供給手段と、 前記生体電極の間の所定距離離間した部位に装着された
第2の生体電極間の電圧値を測定する電圧検出手段と、 前記被検者の所定部位に巻回されたカフを加圧制御する
カフ制御手段と、 前記カフ制御手段を制御して一定時間前記カフ内圧を加
圧して一定時間の間上腕部を駆血する駆血制御手段と、 前記電圧検出手段での検出電圧と前記定電流供給手段の
供給電流より前記第2の生体電極間の生体インピーダン
スを測定するインピーダンス測定手段と、 前記カフと前記第2の電極間において血管内の血液量と
血流量を検出する血流量検出手段と、 前記血流量検出手段での検出血流量より駆血前後の変化
量より血管面積及び血流速度要素の変化率を推定し血管
内皮機能を導出する導出手段とを備えることを特徴とす
る血管内皮機能測定装置。
4. A constant current supply means for supplying a predetermined constant current between first bioelectrodes mounted on predetermined portions of the limbs of the subject separated by a predetermined distance, and a predetermined distance between the bioelectrodes Voltage detecting means for measuring a voltage value between the second living body electrodes attached to the subject, cuff control means for controlling pressurization of a cuff wound around a predetermined part of the subject, and cuff control means Controlling the blood pressure in the cuff for a certain period of time to exhale the upper arm for a certain period of time; and detecting the second voltage based on the voltage detected by the voltage detecting unit and the supply current of the constant current supplying unit. Impedance measuring means for measuring bioimpedance between the biological electrodes, blood flow detecting means for detecting blood volume and blood flow in a blood vessel between the cuff and the second electrode, and detection by the blood flow detecting means Changes before and after avascularization from blood flow A vascular endothelial function measuring device, comprising: a deriving unit that derives a vascular endothelial function by estimating a change rate of a blood vessel area and a blood flow velocity element from a conversion amount.
【請求項5】 前記血流量検出手段は、更に、超音波信
号を送受信して手足における血流に伴うドップラー効果
により血流速度を検出して血管内の血液量と血流量を検
出し、 前記導出手段は前記血流量検出手段での検出血流量を血
流速度で除すことで血管面積あるいは血管径変化を導出
することを特徴とする請求項4記載血管内皮機能測定装
置。
5. The blood flow detecting means further transmits and receives an ultrasonic signal, detects a blood flow velocity by a Doppler effect accompanying blood flow in a limb, and detects a blood volume and a blood flow in a blood vessel. 5. The vascular endothelial function measuring device according to claim 4, wherein the deriving means derives a change in a blood vessel area or a blood vessel diameter by dividing a blood flow detected by the blood flow detecting means by a blood flow velocity.
【請求項6】 前記被検者の血圧を測定する血圧測定手
段を備え、前記導出手段は前記血圧測定手段の測定する
駆血前後の血圧値の変化量も参考として血管内皮機能を
導出することを特徴とする請求項1乃至請求項4のいず
れかに記載の血管内皮機能測定装置。
6. A blood pressure measuring means for measuring a blood pressure of the subject, wherein the deriving means derives a vascular endothelial function with reference to a change in blood pressure value before and after avascularization measured by the blood pressure measuring means. The vascular endothelial function measuring device according to any one of claims 1 to 4, characterized in that:
【請求項7】 更に脈拍数を計測する脈拍計測手段を備
え、 前記導出手段は、前記インピーダンス測定手段で測定し
た生体インピーダンスより求めた血流量と前記脈拍計測
手段で計測した脈拍数から1分間の拍出量を求め、求め
た1分間の拍出量から末梢血管抵抗を求め、駆血前後の
血流量と末梢血管抵抗より血管内皮機能を導出すること
を特徴とする請求項6記載の血管内皮機能測定装置。
7. A pulse measuring unit for measuring a pulse rate, wherein the deriving unit is configured to calculate a pulse rate for one minute from a blood flow rate obtained from a bioelectrical impedance measured by the impedance measuring unit and a pulse rate measured by the pulse measuring unit. 7. The vascular endothelium according to claim 6, wherein the vascular endothelial function is derived from the blood flow volume before and after the avascularization and the peripheral vascular resistance by obtaining the volume of the output, calculating the peripheral vascular resistance from the obtained volume of the output per minute. Function measuring device.
【請求項8】 被検者の血管内の窒素酸化物産生量を検
出する窒素酸化物産生量検出手段と、 前記窒素酸化物産生量検出手段で検出した窒素酸化物産
生量に基づいて血管内皮機能を導出する導出手段とを備
え、 前記窒素酸化物産生量検出手段は血管にメカニカルスト
レスを負荷する前後の血管径の変化を測定して窒素酸化
物産生量を検出することを特徴とする血管内皮機能測定
装置。
8. A nitrogen oxide production amount detecting means for detecting a nitrogen oxide production amount in a blood vessel of a subject, and a vascular endothelium based on the nitrogen oxide production amount detected by the nitrogen oxide production amount detecting means. A deriving means for deriving a function, wherein the nitrogen oxide production amount detecting means detects a nitrogen oxide production amount by measuring a change in a blood vessel diameter before and after applying a mechanical stress to the blood vessel. Endothelial function measurement device.
【請求項9】 窒素酸化物産生量検出手段は、窒素酸化
物の産生により血管の弛緩が生じる現象を利用して所定
時間測定範囲の血管を駆血し、駆血前後の所定範囲の血
管のインピーダンスを測定して窒素酸化物の産出量を推
定することを特徴とする請求項8記載の血管内皮機能測
定装置。
9. The nitrogen oxide production amount detecting means utilizes a phenomenon in which the blood vessel is relaxed due to the production of nitrogen oxide to avascularize a blood vessel in a measurement range for a predetermined time, and to detect a blood vessel in a predetermined range before and after the avascularization. 9. The vascular endothelial function measuring apparatus according to claim 8, wherein the output of nitrogen oxide is estimated by measuring impedance.
【請求項10】 更に、窒素酸化物産生量検出手段には
前記血管の血流量を検出する血流量検出手段を含み、 前記測定した生体インピーダンス値と血管内流量値より
末梢抵抗値及び血管径、最高血流速度、及び平均血流速
度を算出し、血管径の変化割合より血管内に産出された
窒素酸化物産生量を検出することを特徴とする請求項9
記載の血管内皮機能測定装置。
10. The nitrogen oxide production amount detecting means further includes a blood flow detecting means for detecting a blood flow in the blood vessel, wherein a peripheral resistance value and a blood vessel diameter are calculated based on the measured bioimpedance value and intravascular flow value. 10. The method according to claim 9, wherein a maximum blood flow velocity and an average blood flow velocity are calculated, and a production amount of nitrogen oxide produced in the blood vessel is detected from a change rate of the blood vessel diameter.
The vascular endothelial function measuring device according to the above.
【請求項11】 前記導出手段は、前記窒素酸化物産生
量検出手段が検出した血管にメカニカルストレスを負荷
した後所定時間毎の窒素酸化物量の増加量の割合に基づ
いて血管内皮機能を導出することを特徴とする請求項8
乃至請求項10のいずれかに記載の血管内皮機能測定装
置。
11. The deriving unit derives a vascular endothelial function based on a rate of an increase in the amount of nitrogen oxide every predetermined time after applying mechanical stress to a blood vessel detected by the nitrogen oxide production amount detecting unit. 9. The method according to claim 8, wherein
The vascular endothelial function measuring device according to any one of claims 10 to 10.
【請求項12】 被検者の測定部位の血管を駆血する駆
血手段と、 被検者の測定部位の前記駆血手段による駆血前後の生体
インピーダンスを測定するインピーダンス測定手段と、 前記インピーダンス測定手段で測定した生体インピーダ
ンスより前記駆血手段による駆血前後の前記被検者の所
定部位の動脈血管径変化を検出する血管拡張変化検出手
段と、 前記血管拡張変化検出手段の検出動脈血管拡張変化に基
づいて血管内皮機能を導出する導出手段とを備えること
を特徴とする血管内皮機能測定装置。
12. An avascularization means for advancing a blood vessel at a measurement site of a subject, an impedance measuring means for measuring a bioimpedance of the measurement site of the subject before and after the avascularization by the avascularization means, and the impedance Vasodilation change detection means for detecting a change in arterial vascular diameter of a predetermined portion of the subject before and after the avascularization by the avascularization means from the bioimpedance measured by the measurement means, and arterial vasodilation detected by the vasodilation change detection means A deriving unit for deriving a vascular endothelial function based on the change.
【請求項13】 前記血管拡張変化検出手段は、前記イ
ンピーダンス測定手段の測定インピーダンス変動分から
未梢動脈血管拡張変化を検出し、基底インピーダンス変
動分から細動脈及び毛細血管における血管抵抗変化を検
出して前記導出手段に出力可能とすることを特徴とする
請求項12記載の血管内皮機能測定装置。
13. The blood vessel dilation change detecting means detects a peripheral arterial vasodilation change from a measured impedance fluctuation of the impedance measuring means, and detects a vascular resistance change in arterioles and capillaries from a basal impedance fluctuation. 13. The vascular endothelial function measuring device according to claim 12, wherein the device can be output to a deriving unit.
【請求項14】 更に脈拍数を計測する脈拍計測手段を
備え、 前記血管拡張変化検出手段は、前記インピーダンス測定
手段で測定した生体インピーダンスより求めた血液量と
前記脈拍計測手段で計測した脈拍数から1分間の拍出量
を求め、求めた1分間の拍出量から末梢血管抵抗を求
め、駆血前後の血液量と末梢血管抵抗より血管内皮機能
を導出することを特徴とする請求項13記載の血管内皮
機能測定装置。
14. A pulse measuring device for measuring a pulse rate, wherein the vasodilatory change detecting device detects a blood volume obtained from a bioelectrical impedance measured by the impedance measuring device and a pulse rate measured by the pulse measuring device. The blood flow volume per minute is obtained, peripheral blood vessel resistance is obtained from the blood flow volume obtained per minute, and the vascular endothelial function is derived from the blood volume before and after the avascularization and the peripheral blood vessel resistance. Vascular endothelial function measurement device.
【請求項15】 更に、血管内の血流量を検出する血流
量検出手段を備え、 前記駆血手段による駆血前後の未梢動脈血管拡張変化を
定量化可能とすることを特徴とする請求項12乃至請求
項14のいずれかに記載の血管内皮機能測定装置。
15. A blood flow detecting means for detecting a blood flow in a blood vessel, wherein a change in vascular dilatation of a peripheral artery before and after anastomosis by the avascularization means can be quantified. The vascular endothelial function measuring device according to any one of claims 12 to 14.
【請求項16】 前記血流量検出手段は、超音波信号を
送受信して測定部位における血流に伴うドップラー効果
により血流速度を検出して血管内の血液量と血流量を検
出し、 前記血管拡張変化検出手段は前記血流量検出手段での検
出血流量を血流速度で除すことで血管面積あるいは血管
径変化を導出することを特徴とする請求項12乃至請求
項15のいずれかに記載血管内皮機能測定装置。
16. The blood flow detecting means transmits and receives an ultrasonic signal, detects a blood flow velocity by a Doppler effect accompanying a blood flow at a measurement site, and detects a blood volume and a blood flow in a blood vessel. 16. The expansion change detecting means according to claim 12, wherein a blood flow area or a blood vessel diameter change is derived by dividing a blood flow detected by the blood flow detecting means by a blood flow velocity. Vascular endothelial function measurement device.
JP2000401506A 2000-12-28 2000-12-28 Vascular endothelial function measurement device Expired - Fee Related JP3590583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000401506A JP3590583B2 (en) 2000-12-28 2000-12-28 Vascular endothelial function measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000401506A JP3590583B2 (en) 2000-12-28 2000-12-28 Vascular endothelial function measurement device

Publications (2)

Publication Number Publication Date
JP2002200052A true JP2002200052A (en) 2002-07-16
JP3590583B2 JP3590583B2 (en) 2004-11-17

Family

ID=18865930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000401506A Expired - Fee Related JP3590583B2 (en) 2000-12-28 2000-12-28 Vascular endothelial function measurement device

Country Status (1)

Country Link
JP (1) JP3590583B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006115979A (en) * 2004-10-20 2006-05-11 Yunekusu:Kk Evaluation apparatus of relaxed condition of smooth muscle
JP2006516000A (en) * 2002-12-09 2006-06-15 ラモト アット テル アヴィヴ ユニヴァーシティ リミテッド Method for determining endothelium-dependent vasoactivity
JP2006181261A (en) * 2004-12-28 2006-07-13 Fukuda Denshi Co Ltd Vascular endothelial function measuring instrument
JP2008289678A (en) * 2007-05-25 2008-12-04 Parama Tec:Kk Vascular endothelium function measuring instrument
KR20110123754A (en) * 2009-02-27 2011-11-15 킴벌리-클라크 월드와이드, 인크. Apparatus and method for assessing vascular health
JP2012512679A (en) * 2008-12-19 2012-06-07 アソシアシオン・アンセーニュマン・テクニーク・シュペリウール・グループ・エエスアイペ Method for measuring the local stiffness index of the wall of a conductive artery and corresponding device
JP2012526613A (en) * 2009-05-12 2012-11-01 アンジオロジックス インコーポレイテッド System and method for measuring changes in limb arterial volume
JP2012528671A (en) * 2009-06-02 2012-11-15 ウィット,マイケル,デイヴィッド Method and apparatus for detecting and evaluating reactive hyperemia using segmental plethysmography
WO2014192990A1 (en) * 2013-05-28 2014-12-04 연세대학교 산학협력단 Method for estimating motion in blood vessel image and apparatus therefor
JP2019033901A (en) * 2017-08-16 2019-03-07 セイコーエプソン株式会社 Living body analysis device, living body analysis method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5069878B2 (en) * 2006-07-19 2012-11-07 フクダ電子株式会社 Vein inspection device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187196B2 (en) 2002-12-09 2012-05-29 Ramot At Tel-Aviv University Ltd. System for determining endothelial dependent vasoactivity
JP2006516000A (en) * 2002-12-09 2006-06-15 ラモト アット テル アヴィヴ ユニヴァーシティ リミテッド Method for determining endothelium-dependent vasoactivity
JP4620423B2 (en) * 2004-10-20 2011-01-26 株式会社ユネクス Smooth muscle relaxed state evaluation device
JP2006115979A (en) * 2004-10-20 2006-05-11 Yunekusu:Kk Evaluation apparatus of relaxed condition of smooth muscle
JP2006181261A (en) * 2004-12-28 2006-07-13 Fukuda Denshi Co Ltd Vascular endothelial function measuring instrument
JP4629430B2 (en) * 2004-12-28 2011-02-09 フクダ電子株式会社 Vascular endothelial function measuring device
JP2008289678A (en) * 2007-05-25 2008-12-04 Parama Tec:Kk Vascular endothelium function measuring instrument
JP2012512679A (en) * 2008-12-19 2012-06-07 アソシアシオン・アンセーニュマン・テクニーク・シュペリウール・グループ・エエスアイペ Method for measuring the local stiffness index of the wall of a conductive artery and corresponding device
KR20110123754A (en) * 2009-02-27 2011-11-15 킴벌리-클라크 월드와이드, 인크. Apparatus and method for assessing vascular health
JP2012519015A (en) * 2009-02-27 2012-08-23 キンバリー クラーク ワールドワイド インコーポレイテッド Apparatus and method for evaluating vascular health
KR101649000B1 (en) 2009-02-27 2016-08-17 킴벌리-클라크 월드와이드, 인크. Apparatus and method for assessing vascular health
JP2012526613A (en) * 2009-05-12 2012-11-01 アンジオロジックス インコーポレイテッド System and method for measuring changes in limb arterial volume
JP2015097932A (en) * 2009-05-12 2015-05-28 アンジオロジックス インコーポレイテッド System and storage medium for measuring changes in arterial volume of limb segment
JP2012528671A (en) * 2009-06-02 2012-11-15 ウィット,マイケル,デイヴィッド Method and apparatus for detecting and evaluating reactive hyperemia using segmental plethysmography
WO2014192990A1 (en) * 2013-05-28 2014-12-04 연세대학교 산학협력단 Method for estimating motion in blood vessel image and apparatus therefor
JP2019033901A (en) * 2017-08-16 2019-03-07 セイコーエプソン株式会社 Living body analysis device, living body analysis method, and program
JP7087301B2 (en) 2017-08-16 2022-06-21 セイコーエプソン株式会社 Bioanalyzers, bioanalysis methods and programs

Also Published As

Publication number Publication date
JP3590583B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
US7402138B2 (en) Method and apparatus for measuring blood volume, and vital sign monitor using the same
JP5756244B2 (en) Measurement system and storage medium for changes in arterial volume of limbs
JP2831471B2 (en) Apparatus and method for measuring induced perturbations to determine physiological parameters
US8016761B2 (en) Method and apparatus for automated flow mediated dilation
JP5665776B2 (en) Estimating hemodynamic data
US20060178585A1 (en) Non-invasive measurement of suprasystolic signals
US8197416B1 (en) Pulsatile measurement of cardiac malfunction conditions
JPH03504202A (en) Non-invasive continuous mean arterial blood pressure monitor
WO1998051211A1 (en) Apparatuses and methods for a noninvasive measurement of physiological parameters
Zahedi et al. Finger photoplethysmogram pulse amplitude changes induced by flow-mediated dilation
US20030069508A1 (en) Angiopathy diagnosing apparatus
JP3590583B2 (en) Vascular endothelial function measurement device
EP3457929B1 (en) Non-invasive system and method for measuring blood pressure variability
JP4668421B2 (en) Method and apparatus for continuous analysis of cardiovascular activity of a subject
JP2009000388A (en) Vascular endothelial function measurement apparatus
Yamakoshi Non‐invasive cardiovascular hemodynamic measurements
JP4629430B2 (en) Vascular endothelial function measuring device
US10342437B2 (en) Detection of progressive central hypovolemia
EP3922175A1 (en) Hemodynamic parameter estimation
JP2008289678A (en) Vascular endothelium function measuring instrument
Jobbágy et al. Blood pressure measurement at home
WO2020240464A1 (en) Apparatus for measuring the speed of a pressure wave propagating in the venous district of an individual and corresponding method
Bar-Noam et al. Novel method for non-invasive blood pressure measurement from the finger using an optical system based on dynamic light scattering
RU172903U1 (en) Device for continuous measurement of blood pressure and relative integral extensibility of arterial vessels
Kalmar et al. Technology report: ccNexfin monitor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3590583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees