JP2002298840A - Positive active material for alkaline storage battery and alkaline storage battery using the same - Google Patents
Positive active material for alkaline storage battery and alkaline storage battery using the sameInfo
- Publication number
- JP2002298840A JP2002298840A JP2001095742A JP2001095742A JP2002298840A JP 2002298840 A JP2002298840 A JP 2002298840A JP 2001095742 A JP2001095742 A JP 2001095742A JP 2001095742 A JP2001095742 A JP 2001095742A JP 2002298840 A JP2002298840 A JP 2002298840A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- cobalt
- solid solution
- active material
- storage battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
(57)【要約】
【課題】 優れた高温充電特性を維持しつつ、高率放電
特性にも優れたアルカリ蓄電池用正極活物質およびアル
カリ蓄電池を提供することを目的とする。
【解決手段】 水酸化ニッケルを主成分とする固溶体粒
子において、前記固溶体粒子の表面積の1〜30%をイ
ットリウム、スカンジウムまたはランタノイドから選ば
れる少なくとも一種の酸化物粒子にて被覆し、かつ、そ
の外周をコバルト平均価数が3.0価より大であるコバ
ルト酸化物にて被覆する。(57) [Problem] To provide a positive electrode active material for an alkaline storage battery and an alkaline storage battery having excellent high-rate discharge characteristics while maintaining excellent high-temperature charge characteristics. SOLUTION: In solid solution particles containing nickel hydroxide as a main component, 1 to 30% of the surface area of the solid solution particles is coated with at least one oxide particle selected from yttrium, scandium or lanthanoid, and the outer periphery thereof Is coated with a cobalt oxide having an average cobalt valence of more than 3.0.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、アルカリ蓄電池用
正極活物質とこれを用いたアルカリ蓄電池に関連するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for an alkaline storage battery and an alkaline storage battery using the same.
【0002】[0002]
【従来の技術】近年、アルカリ蓄電池は携帯機器の普及
に伴い高容量化が強く要望されている。特にニッケル・
水素蓄電池は、水酸化ニッケルを主体とした正極と、水
素吸蔵合金を主体とした負極からなる二次電池であり、
高容量かつ高信頼性の二次電池として普及している。2. Description of the Related Art In recent years, there has been a strong demand for alkaline storage batteries to have higher capacities with the spread of portable devices. Especially nickel
A hydrogen storage battery is a secondary battery including a positive electrode mainly composed of nickel hydroxide and a negative electrode mainly composed of a hydrogen storage alloy.
It is widely used as a high capacity and highly reliable secondary battery.
【0003】以下、このアルカリ蓄電池用の正極につい
て説明する。Hereinafter, the positive electrode for an alkaline storage battery will be described.
【0004】アルカリ蓄電池用の正極には、大別して焼
結式と非焼結式の2つがある。前者はパンチングメタル
等の芯材とニッケル粉末とを焼結させて得た多孔度80
%程度のニッケル焼結基板に、硝酸ニッケル水溶液等の
ニッケル塩溶液を含浸し、続いてアルカリ水溶液に含浸
するなどして多孔質ニッケル焼結基板中に水酸化ニッケ
ルを生成させて作製するものである。この正極は基板の
多孔度をこれ以上大きくすることが困難であるため、水
酸化ニッケル量を増加することができず、高容量化には
限界がある。The positive electrodes for alkaline storage batteries are roughly classified into two types: a sintered type and a non-sintered type. The former has a porosity of 80 obtained by sintering a core material such as punched metal and nickel powder.
% Nickel sintered substrate is impregnated with a nickel salt solution such as an aqueous solution of nickel nitrate, and then is impregnated with an aqueous alkali solution to produce nickel hydroxide in the porous nickel sintered substrate. is there. Since it is difficult for the positive electrode to further increase the porosity of the substrate, the amount of nickel hydroxide cannot be increased, and there is a limit to increasing the capacity.
【0005】後者の非焼結式正極としては、例えば特開
昭50−36935号公報に開示されたように、三次元
的に連続した多孔度95%程度の発泡ニッケル基板に、
水酸化ニッケル粒子を保持させるものが提案されてお
り、現在、高容量のアルカリ蓄電池の正極として広く用
いられている。この非焼結式正極では高容量化の観点か
ら、嵩密度が大きい球状の水酸化ニッケル粒子が使用さ
れる。また、放電特性や充電受け入れ性、寿命特性の向
上のために、上記の水酸化ニッケル粒子にコバルト、カ
ドミウム、亜鉛等の金属元素を一部固溶させて用いるの
が一般的である。As the latter non-sintered positive electrode, for example, as disclosed in JP-A-50-36935, a three-dimensionally continuous nickel foam substrate having a porosity of about 95% is used.
Those that hold nickel hydroxide particles have been proposed, and are currently widely used as positive electrodes of high-capacity alkaline storage batteries. In this non-sintered positive electrode, spherical nickel hydroxide particles having a large bulk density are used from the viewpoint of increasing the capacity. Further, in order to improve discharge characteristics, charge acceptability, and life characteristics, it is common to use a metal element such as cobalt, cadmium, or zinc in a solid solution in the above nickel hydroxide particles.
【0006】また、このような水酸化ニッケル粒子とと
もに発泡ニッケル基板に保持させる導電剤としては2価
のコバルト酸化物(例えば特開平7−77129号公
報)等が提案されている。Further, as a conductive agent to be held on the foamed nickel substrate together with such nickel hydroxide particles, divalent cobalt oxide (for example, JP-A-7-77129) has been proposed.
【0007】2価のコバルト酸化物の機能は次の通りで
ある。通常、発泡ニッケル基板の孔の大きさは、これに
充填する水酸化ニッケルの粒径よりも十分大きく設けら
れている。したがって、集電が保たれた基板骨格近傍の
水酸化ニッケル粒子では充放電反応が円滑に進行する
が、骨格から離れた水酸化ニッケル粒子の反応は十分に
進行しない。そこで多くの場合、水酸化コバルト、一酸
化コバルトのような2価のコバルト酸化物を添加してい
る。これら2価のコバルト酸化物はそれ自身は導電性を
有しないものの、電池内での初期の充電において導電性
を有するβ−オキシ水酸化コバルトへと電気化学的に酸
化され、これが水酸化ニッケル粒子と基板骨格とをつな
ぐ導電ネットワークとして機能する。この導電ネットワ
ークの存在によって、非焼結式正極では高密度に充填し
た活物質の利用率を大幅に高めることが可能となり、焼
結式正極に比べて高容量化が図られる。The function of the divalent cobalt oxide is as follows. Usually, the size of the holes of the foamed nickel substrate is provided sufficiently larger than the particle size of the nickel hydroxide to be filled therein. Therefore, the charge / discharge reaction proceeds smoothly in the nickel hydroxide particles near the substrate skeleton where the current collection is maintained, but the reaction of the nickel hydroxide particles separated from the skeleton does not sufficiently proceed. Therefore, in many cases, divalent cobalt oxides such as cobalt hydroxide and cobalt monoxide are added. Although these divalent cobalt oxides have no conductivity per se, they are electrochemically oxidized into β-cobalt oxyhydroxide having conductivity during initial charging in a battery, and this is converted to nickel hydroxide particles. It functions as a conductive network connecting the substrate and the substrate skeleton. Due to the presence of the conductive network, the utilization rate of the active material filled at high density can be significantly increased in the non-sintered positive electrode, and the capacity can be increased as compared with the sintered positive electrode.
【0008】しかし、上記のような構成の非焼結式正極
やこれを用いたアルカリ蓄電池においても、コバルトに
よる導電ネットワークの集電性能は完全なものではない
ため、水酸化ニッケル粒子の利用率には上限があった。
さらに上記正極では、電池を過放電あるいは短絡状態で
放置したり、長期の保存や高温下での保存等を行うと、
その後の充放電で正極容量が低下するという欠点があっ
た。これは、上記したような電池内の電気化学的なコバ
ルトの酸化反応では、2価のコバルト酸化物を完全にβ
−オキシ水酸化コバルトへ変化させることができず、導
電ネットワークの機能低下が起こりやすいためである。However, even in the non-sintered positive electrode having the above-described structure and the alkaline storage battery using the same, the current collection performance of the conductive network by cobalt is not perfect, so that the utilization rate of the nickel hydroxide particles is reduced. Had an upper limit.
Furthermore, in the above-described positive electrode, when the battery is left in an overdischarged or short-circuit state, or when stored for a long time or at a high temperature, etc.,
There was a disadvantage that the capacity of the positive electrode was reduced by subsequent charging and discharging. This is because, in the electrochemical cobalt oxidation reaction in the battery as described above, divalent cobalt oxide is completely converted to β.
-It is because it cannot be changed to cobalt oxyhydroxide and the function of the conductive network is likely to be reduced.
【0009】こうしたコバルトによる導電ネットワーク
の不完全さを改善する手段として、特開平8−1481
45号公報および特開平8−148146号公報におい
て、正極活物質中の水酸化コバルトを、電池外において
アルカリ水溶液と酸素(空気)との共存下で加熱処理
(酸化)し、結晶構造の乱れた2価よりも価数の大きい
コバルト酸化物に改質する手法が開示されている。これ
に類似する内容として、特開平9−147905号公報
においてコバルト価数が2.5〜2.93までのコバル
ト酸化物の改良が、さらに特開平9−259888号公
報では同様の手法で作製したβ−オキシ水酸化コバルト
を使用した電池の特性が示されている。As means for improving the imperfectness of the conductive network due to such cobalt, Japanese Patent Application Laid-Open No. 8-14881 discloses a method.
No. 45 and JP-A-8-148146, heat treatment (oxidation) of cobalt hydroxide in a positive electrode active material in the presence of an alkaline aqueous solution and oxygen (air) outside a battery causes disordered crystal structure. A technique for modifying cobalt oxide having a valence larger than divalent is disclosed. As contents similar to this, an improvement of cobalt oxide having a cobalt valence of 2.5 to 2.93 in JP-A-9-147905 and a similar method in JP-A-9-259888 were produced. The characteristics of the battery using β-cobalt oxyhydroxide are shown.
【0010】また、前記の特開平8−148146号公
報では、同様の加熱処理を水酸化コバルトの被覆層を有
する水酸化ニッケル固溶体粒子に施す点も述べられてい
る。この場合には、あらかじめ水酸化コバルト被覆水酸
化ニッケル固溶体粒子を作製しておくことによるコバル
トの分散性向上等の理由により、使用するコバルト量を
少なくできるという利点がある。一方、特開平9−73
900号公報では、この際の製造方法に関して、アルカ
リ水溶液を含んだ水酸化コバルト被覆水酸化ニッケル固
溶体粒子を、流動造粒装置等の中で流動させるかあるい
は分散させながら加熱する方法が開示されている。この
ような処理を行うと、凝集による粒子塊の発生等のトラ
ブルを少なくできるという利点がある。The above-mentioned Japanese Patent Application Laid-Open No. 8-148146 also discloses that a similar heat treatment is applied to nickel hydroxide solid solution particles having a coating layer of cobalt hydroxide. In this case, there is an advantage that the amount of cobalt used can be reduced for reasons such as improvement in the dispersibility of cobalt by preparing cobalt hydroxide-coated nickel hydroxide solid solution particles in advance. On the other hand, JP-A-9-73
Japanese Patent Publication No. 900 discloses a method for producing a solid solution particle of a cobalt hydroxide-containing nickel hydroxide containing an aqueous alkaline solution in a fluidized-granulation apparatus or the like while heating or dispersing the solid-solution particles in the fluidized-granulation apparatus. I have. By performing such a process, there is an advantage that troubles such as generation of a particle mass due to aggregation can be reduced.
【0011】しかし、上記公報に記載のアルカリ蓄電池
用正極活物質(酸化を施したコバルト種の被覆層を有す
る水酸化ニッケル固溶体粒子)では、被覆層を形成する
コバルト種の酸化状態は未だ完全なものとは言い難く、
改良の余地が残されていた。これは、アルカリ共存下で
の水酸化コバルトの酸化の進行が、周囲の温度や共存さ
せるアルカリ水溶液の濃度だけでなく、周囲の水分や酸
素量にも大きく影響を受け、これらの制御なしには十分
に高次な状態にまで酸化させることができないためであ
る。この課題を改善する提案として、特開平11−97
008号公報においては、酸化条件を最適に制御するこ
とによって被覆層を形成するコバルト種は価数が3.0
よりも高次なγ−オキシ水酸化コバルトまで酸化される
という点、そして、この活物質を用いた正極の利用率や
耐過放電性能等が、コバルト酸化が不十分な活物質を用
いた場合に比べて飛躍的に向上する点が開示された。こ
こで、このγ−オキシ水酸化コバルトは結晶内にアルカ
リカチオン(K+あるいはNa+)を多量に含有するとい
った特徴も併せ持つ。さらに特開平11−147719
号公報においては、上記コバルト価数が3.0よりも高
次なγ−オキシ水酸化コバルト層の結晶内部に、水酸化
リチウムあるいはリチウムイオンを固定化することによ
り、高温雰囲気下で充放電サイクルを繰り返した場合の
容量劣化を抑制できる点が開示されている。However, in the positive electrode active material for an alkaline storage battery (nickel hydroxide solid solution particles having a coating layer of an oxidized cobalt species) described in the above publication, the oxidation state of the cobalt species forming the coating layer is still incomplete. Hard to say
There was room for improvement. This is because the progress of oxidation of cobalt hydroxide in the presence of alkali is greatly affected not only by the ambient temperature and the concentration of the aqueous alkaline solution to coexist, but also by the amount of ambient moisture and oxygen, and without these controls. This is because it cannot be oxidized to a sufficiently high-order state. As a proposal for improving this problem, Japanese Patent Application Laid-Open No. H11-97
No. 008, the cobalt species forming the coating layer by optimally controlling the oxidation conditions have a valence of 3.0.
The point that it is oxidized to higher γ-cobalt oxyhydroxide than that, and the utilization rate and overdischarge resistance of the positive electrode using this active material, when using an active material with insufficient cobalt oxidation A point that is dramatically improved as compared with the above is disclosed. Here, this γ-cobalt oxyhydroxide also has a feature that a large amount of alkali cation (K + or Na + ) is contained in the crystal. Further, Japanese Patent Application Laid-Open No. H11-147719
In the publication, a lithium hydroxide or lithium ion is fixed inside the crystal of the γ-cobalt oxyhydroxide layer having a cobalt valence higher than 3.0, so that the charge / discharge cycle is performed under a high temperature atmosphere. It is disclosed that the capacity deterioration when repeating is repeated.
【0012】近年に出願、公開された以上のような技術
は、基本的には電池の初充電時に起こるコバルト酸化反
応(通常の条件では満足に進行しない)を、電池外で十
分に行わせる主旨のものである。したがって、先述のコ
バルトによる導電ネットワークの不完全さに起因する欠
点の改良を図ることができる。The above-mentioned techniques, which have been filed and published in recent years, basically aim to sufficiently perform the cobalt oxidation reaction (which does not proceed satisfactorily under ordinary conditions) occurring at the time of initial charging of the battery sufficiently outside the battery. belongs to. Therefore, it is possible to improve a defect caused by the imperfectness of the conductive network due to the aforementioned cobalt.
【0013】一方、非焼結式ニッケル極は高温雰囲気下
での充電効率が低いという欠点を有する。通常、アルカ
リ蓄電池の充電末期には、水酸化ニッケルからオキシ水
酸化ニッケルへの充電反応(酸化反応)の他に、副反応
である酸素発生反応が競争的に起こる。特に高温雰囲気
下での充電においては、酸素発生過電圧が低下するた
め、充電電気量の多くが酸素発生反応に消費されること
になる。その結果、水酸化ニッケルがオキシ水酸化ニッ
ケルに充分に酸化されず、電池容量の低下をきたす。On the other hand, the non-sintered nickel electrode has a disadvantage that charging efficiency under a high-temperature atmosphere is low. Usually, at the end of charging of an alkaline storage battery, in addition to the charging reaction (oxidation reaction) from nickel hydroxide to nickel oxyhydroxide, an oxygen generation reaction, which is a side reaction, occurs competitively. In particular, in charging in a high-temperature atmosphere, the oxygen generation overvoltage decreases, so that a large amount of charged electricity is consumed in the oxygen generation reaction. As a result, nickel hydroxide is not sufficiently oxidized to nickel oxyhydroxide, resulting in a decrease in battery capacity.
【0014】この問題を解決するために、これまでに数
多くの提案がなされてきた。例えば、特開平5−289
92号公報には、正極中にイットリウム、インジウム、
アンチモン、バリウム、カルシウムおよびベリリウムの
化合物のうち少なくとも一種を添加する方法が開示され
ている。正極中に添加されたこれらの化合物は、活物質
である水酸化ニッケルの表面に吸着し、これによって、
高温雰囲気下の充電における水酸化ニッケルの利用率が
向上する。A number of proposals have been made to solve this problem. For example, Japanese Patent Application Laid-Open No. 5-289
No. 92 discloses that yttrium, indium,
A method of adding at least one compound of antimony, barium, calcium, and beryllium is disclosed. These compounds added to the positive electrode are adsorbed on the surface of the active material nickel hydroxide,
The utilization rate of nickel hydroxide in charging under a high-temperature atmosphere is improved.
【0015】また、特開平10−294109号公報に
は、水酸化ニッケル粒子の表面にナトリウム含有コバル
ト化合物からなる被覆層が形成された複合体粒子からな
る活物質粉末に、平均粒径0.5〜20μmの金属イッ
トリウム粉末および/またはイットリウム化合物粉末を
添加した正極を用いることで、高温での充電特性を向上
できることが開示されている。また、特開平11−27
3671号公報では、3.0価よりも高次なコバルト酸
化物の被覆層を有する水酸化ニッケル固溶体粒子と、前
記コバルト酸化物で被覆された水酸化ニッケル固溶体粒
子の量に対して0.1〜5.0重量部の金属イットリウ
ム粉末またはイットリウム酸化物粉末の混合物とからな
るアルカリ蓄電池用非焼結式正極が、高利用率で耐過放
電性能等に優れることが開示されている。Japanese Patent Application Laid-Open No. 10-294109 discloses that an active material powder composed of composite particles in which a coating layer composed of a sodium-containing cobalt compound is formed on the surface of nickel hydroxide particles has an average particle diameter of 0.5. It is disclosed that by using a positive electrode to which a metal yttrium powder and / or a yttrium compound powder of up to 20 μm is added, charging characteristics at high temperatures can be improved. Also, JP-A-11-27
No. 3671 discloses that nickel hydroxide solid solution particles having a coating layer of cobalt oxide having a higher order than 3.0 valence and 0.1 parts by weight of the nickel hydroxide solid solution particles coated with the cobalt oxide. It is disclosed that a non-sintered positive electrode for an alkaline storage battery composed of a mixture of -5.0 parts by weight of metal yttrium powder or yttrium oxide powder has a high utilization rate and excellent over-discharge resistance and the like.
【0016】さらに、特開平10−21909号公報に
は、水酸化ニッケル粒子の表面を水酸化イットリウムと
水酸化コバルトとの共晶で被覆してなる複合体粒子から
なる粉末を正極活物質として用いることで、充放電サイ
クルの初期はもとより、長期にわたって高い活物質利用
率を発現することが開示されている。また、特開平11
−260360号公報には、水酸化ニッケル粒子表面の
少なくとも一部を、イッテルビウムを含有するコバルト
化合物層で被覆してなる複合体粒子を正極活物質として
用いることで、利用率および高温雰囲気下での充電効率
を向上できることが開示されている。Japanese Patent Application Laid-Open No. Hei 10-21909 discloses that a powder composed of composite particles obtained by coating the surface of nickel hydroxide particles with a eutectic of yttrium hydroxide and cobalt hydroxide is used as a positive electrode active material. This discloses that a high active material utilization rate is exhibited over a long period of time as well as in the initial stage of the charge / discharge cycle. Also, Japanese Unexamined Patent Application Publication No.
Japanese Patent Application Laid-Open No. 260260/1990 discloses that a composite particle obtained by coating at least a part of the surface of a nickel hydroxide particle with a cobalt compound layer containing ytterbium is used as a positive electrode active material, whereby the utilization factor and the temperature in a high-temperature atmosphere are increased. It is disclosed that charging efficiency can be improved.
【0017】また、特開平11−7949号公報には、
水酸化ニッケルを含有する基体粒子と、当該基体粒子を
被覆するイットリウム、スカンジウムもしくはランタノ
イド、または、それらの化合物からなる被覆内層と、当
該被覆内層を被覆するコバルトまたはコバルト化合物か
らなる被覆外層とからなる複合体粒子を正極活物質とし
て用いることで、常温下で充電した場合はもとより、高
温雰囲気下で充電した場合にも、高い活物質利用率を発
現することが開示されている。さらに、特開平11−7
950号公報には、水酸化ニッケルを含有する基体粒子
と、当該基体粒子を被覆するコバルトまたはコバルト化
合物からなる被覆内層と、当該被覆内層を被覆するイッ
トリウム、スカンジウムもしくはランタノイド、また
は、それらの化合物からなる被覆外層とからなる複合体
粒子を正極活物質として用いることで、常温下で充電し
た場合はもとより、高温雰囲気下で充電した場合にも、
高い活物質利用率を発現することが開示されている。[0017] Also, JP-A-11-7949 discloses that
Consisting of base particles containing nickel hydroxide, yttrium, scandium, or lanthanoid coating the base particles, or a coating inner layer of a compound thereof, and a coating outer layer of cobalt or a cobalt compound coating the coating inner layer. It is disclosed that by using the composite particles as a positive electrode active material, a high active material utilization rate is exhibited not only when charged at normal temperature but also when charged under a high temperature atmosphere. Further, Japanese Unexamined Patent Application Publication No. 11-7
No. 950 discloses a base particle containing nickel hydroxide, a coating inner layer of cobalt or a cobalt compound coating the base particle, and yttrium, scandium or lanthanoid coating the coating inner layer, or a compound thereof. By using the composite particles comprising the coating outer layer as a positive electrode active material, not only when charged at room temperature, but also when charged under a high temperature atmosphere,
It is disclosed that a high active material utilization rate is exhibited.
【0018】[0018]
【発明が解決しようとする課題】上記添加剤は酸素発生
過電圧を増大させ、高温充電効率を向上させる効果はあ
るものの、導電性をほとんど有していない。したがっ
て、コバルト酸化物の被覆による水酸化ニッケル粒子表
面の電子伝導性付与効果を阻害し、放電特性、特に高率
放電特性に悪影響を与えることになる。特に、上記添加
剤をコバルト酸化物被覆層に共晶させた場合、あるい
は、コバルト酸化物被覆層の内層あるいは外層として均
一に分布させた場合には、高温雰囲気下で充電した場合
には優れた活物質利用率を発現するものの、高率放電特
性は顕著に劣化することになる。The above additives have the effect of increasing the oxygen overvoltage and improving the high-temperature charging efficiency, but have little conductivity. Therefore, the effect of imparting electron conductivity to the surface of the nickel hydroxide particles due to the coating of the cobalt oxide is hindered, and the discharge characteristics, particularly the high-rate discharge characteristics, are adversely affected. In particular, when the above-mentioned additive is eutectic in the cobalt oxide coating layer, or when uniformly distributed as the inner layer or the outer layer of the cobalt oxide coating layer, it is excellent when charged under a high temperature atmosphere. Although the active material utilization rate is exhibited, the high-rate discharge characteristics are significantly deteriorated.
【0019】本発明は上記課題を解決するもので、優れ
た高温充電特性を維持しつつ、高率放電特性にも優れた
アルカリ蓄電池用正極活物質およびアルカリ蓄電池を提
供するものである。The present invention solves the above-mentioned problems, and provides a positive electrode active material for an alkaline storage battery and an alkaline storage battery which are excellent in high-rate discharge characteristics while maintaining excellent high-temperature charging characteristics.
【0020】[0020]
【課題を解決するための手段】上記課題を解決するため
に、本発明のアルカリ蓄電池用正極活物質は、水酸化ニ
ッケルを主成分とする固溶体粒子の表面積の1〜30%
が、イットリウム、スカンジウムまたはランタノイドか
ら選ばれる少なくとも一種の酸化物粒子にて被覆されて
おり、かつ、その外周をコバルト平均価数が3.0価よ
り大であるコバルト酸化物にて被覆されていることを特
徴とするものである。In order to solve the above-mentioned problems, a positive electrode active material for an alkaline storage battery according to the present invention comprises 1 to 30% of the surface area of solid solution particles containing nickel hydroxide as a main component.
Is coated with at least one oxide particle selected from yttrium, scandium or lanthanoid, and its outer periphery is coated with a cobalt oxide having an average cobalt valence of more than 3.0. It is characterized by the following.
【0021】酸素発生過電圧を増大させる効果を有する
イットリウム、スカンジウムまたはランタノイドの酸化
物粒子が、水酸化ニッケル固溶体粒子の表面に部分的に
被覆されているため、水酸化ニッケル固溶体粒子とその
外周のコバルト酸化物被覆層との結合部が存在する。し
たがって、水酸化ニッケル粒子の表面を水酸化イットリ
ウムと水酸化コバルトとの共晶で被覆する方法、あるい
は、水酸化ニッケル粒子の表面をイットリウム、スカン
ジウムもしくはランタノイド、または、それらの化合物
からなる内層にて被覆し、さらにコバルトまたはコバル
ト化合物からなる外層にて被覆する方法に比べて、活物
質内の電子伝導性が向上することになる。また、水酸化
ニッケル固溶体粒子の最外周がコバルト酸化物のみで被
覆されているため、水酸化ニッケル粒子の表面をコバル
トまたはコバルト化合物からなる内層にて被覆し、さら
にイットリウム、スカンジウムもしくはランタノイド、
または、それらの化合物からなる外層にて被覆する方法
に比べて、粒子間および粒子と基板骨格とをつなぐ導電
ネットワークが損なわれることもない。それゆえ、優れ
た高温充電特性を維持しつつ、高率放電特性にも優れた
アルカリ蓄電池用正極活物質およびアルカリ蓄電池を提
供することが可能となる。Since the surface of the nickel hydroxide solid solution particles is partially covered with yttrium, scandium or lanthanoid oxide particles having the effect of increasing the oxygen generation overpotential, the nickel hydroxide solid solution particles and the cobalt on the outer periphery thereof are coated. There is a bond with the oxide coating layer. Therefore, the method of coating the surface of the nickel hydroxide particles with a eutectic of yttrium hydroxide and cobalt hydroxide, or the surface of the nickel hydroxide particles with yttrium, scandium or lanthanoid, or an inner layer made of these compounds The electron conductivity in the active material is improved as compared with the method of coating and further coating with an outer layer made of cobalt or a cobalt compound. Further, since the outermost periphery of the nickel hydroxide solid solution particles is coated with only cobalt oxide, the surface of the nickel hydroxide particles is coated with an inner layer made of cobalt or a cobalt compound, and further, yttrium, scandium or a lanthanoid,
Alternatively, the conductive network between particles and between the particles and the substrate skeleton is not damaged as compared with the method of coating with an outer layer made of such a compound. Therefore, it is possible to provide a positive electrode active material for an alkaline storage battery and an alkaline storage battery that are excellent in high-rate discharge characteristics while maintaining excellent high-temperature charging characteristics.
【0022】[0022]
【発明の実施の形態】本発明のアルカリ蓄電池用正極活
物質は、水酸化ニッケルを主成分とする固溶体粒子の表
面積の1〜30%が、イットリウム、スカンジウムまた
はランタノイドから選ばれる少なくとも一種の酸化物粒
子にて被覆されており、かつ、その外周をコバルト平均
価数が3.0価より大であるコバルト酸化物にて被覆さ
れていることを特徴とする。BEST MODE FOR CARRYING OUT THE INVENTION The positive electrode active material for an alkaline storage battery according to the present invention is characterized in that at least one oxide selected from yttrium, scandium or lanthanoid has a surface area of 1 to 30% of the solid solution particles mainly containing nickel hydroxide. It is characterized in that it is coated with particles and its outer periphery is coated with a cobalt oxide having an average cobalt valence of more than 3.0.
【0023】ここで、イットリウム、スカンジウムまた
はランタノイドから選ばれる少なくとも一種の酸化物粒
子の被覆率は、被覆率(%)=((水酸化ニッケル固溶
体粒子一粒子当たりに結合する酸化物粒子数×酸化物粒
子の最大断面積)/(水酸化ニッケル固溶体粒子一粒子
の表面積))×100で定義した。ここで、水酸化ニッ
ケル固溶体粒子一粒子当たりに結合する酸化物粒子数
は、水酸化ニッケル固溶体粒子一粒子当たりに結合する
酸化物粒子数=(活物質中の酸化物粒子の重量/(酸化
物粒子一粒子当たりの体積×酸化物の真密度))/(活
物質中の水酸化ニッケル固溶体粒子の重量/(水酸化ニ
ッケル固溶体粒子一粒子当たりの体積×水酸化ニッケル
固溶体粒子の真密度))で定義した。なお、前記酸化物
粒子および水酸化ニッケル固溶体粒子は、その形状が真
球であり、すべての粒子がその平均粒子径を有するもの
として仮定し、粒子の断面積、一粒子の表面積、一粒子
当たりの体積を算出した。Here, the coverage of at least one oxide particle selected from yttrium, scandium or lanthanoid is as follows: coverage (%) = ((number of oxide particles bound per nickel hydroxide solid solution particle × oxidation) The maximum cross-sectional area of the material particles) / (the surface area of the nickel hydroxide solid solution particles-one particle)) × 100. Here, the number of oxide particles bound per nickel hydroxide solid solution particle is the number of oxide particles bound per nickel hydroxide solid solution particle = (weight of oxide particles in active material / (oxide Volume per particle × True density of oxide) / (Weight of nickel hydroxide solid solution particles in active material / (Volume per nickel hydroxide solid solution particle × True density of nickel hydroxide solid solution particles)) Defined. The oxide particles and the nickel hydroxide solid solution particles are assumed to be spherical in shape and all particles have the average particle diameter, and the cross-sectional area of the particles, the surface area of one particle, and the Was calculated.
【0024】酸素発生過電圧を増大させる効果を有する
イットリウム、スカンジウムまたはランタノイドの酸化
物粒子が、水酸化ニッケル固溶体粒子の表面に部分的に
被覆されているため、水酸化ニッケル固溶体粒子とその
外周のコバルト酸化物被覆層との結合部が存在し、活物
質内の電子伝導性が向上することになる。また、水酸化
ニッケル固溶体粒子の最外周がコバルト酸化物のみで被
覆されているため、粒子間および粒子と基板骨格とをつ
なぐ導電ネットワークが損なわれることもない。それゆ
え、優れた高温充電特性を維持しつつ、高率放電特性に
も優れたアルカリ蓄電池用正極活物質およびアルカリ蓄
電池が得られる。Since the surfaces of the nickel hydroxide solid solution particles are partially coated with yttrium, scandium or lanthanoid oxide particles having the effect of increasing the oxygen generation overpotential, the nickel hydroxide solid solution particles and the cobalt on the outer periphery thereof are coated. The presence of the bonding portion with the oxide coating layer improves the electron conductivity in the active material. Further, since the outermost periphery of the nickel hydroxide solid solution particles is covered only with the cobalt oxide, the conductive network connecting the particles and connecting the particles to the substrate skeleton is not damaged. Therefore, a positive electrode active material for an alkaline storage battery and an alkaline storage battery having excellent high-rate discharge characteristics while maintaining excellent high-temperature charging characteristics can be obtained.
【0025】前記正極活物質において、水酸化ニッケル
固溶体粒子の表面積に対する、イットリウム、スカンジ
ウムまたはランタノイドの酸化物粒子の被覆率が1%よ
り小さい場合、高温雰囲気下の充電における酸素発生過
電圧を十分に増大させることができない。また、被覆率
が30%より大きい場合、酸素発生過電圧を増大させる
という効果は飽和し、かつコバルト酸化物の被覆層によ
る水酸化ニッケル粒子表面の電子伝導性付与効果を阻害
し、高率放電特性に悪影響を与える。In the positive electrode active material, when the coverage of the yttrium, scandium or lanthanoid oxide particles with respect to the surface area of the nickel hydroxide solid solution particles is less than 1%, the oxygen generation overpotential during charging in a high-temperature atmosphere is sufficiently increased. I can't let it. On the other hand, when the coverage is greater than 30%, the effect of increasing the oxygen generation overvoltage is saturated, and the effect of imparting electron conductivity to the surface of the nickel hydroxide particles by the coating layer of cobalt oxide is hindered. Adversely affect
【0026】また、前記イットリウム、スカンジウムま
たはランタノイドの酸化物粒子の水酸化ニッケル固溶体
粒子に対する比率が、0.1〜3.0質量%であること
を特徴とするアルカリ蓄電池用正極活物質である。前記
正極活物質において、イットリウム、スカンジウムまた
はランタノイドの酸化物粒子の比率が0.1質量%より
少ない場合、高温雰囲気下の充電における酸素発生過電
圧を十分に増大させることができない。また、イットリ
ウム、スカンジウムまたはランタノイドの酸化物粒子の
比率が3.0質量%より多い場合、酸素発生過電圧を増
大させるという効果は飽和し、かつコバルト酸化物の被
覆層による水酸化ニッケル粒子表面の電子伝導性付与効
果を阻害し、高率放電特性に悪影響を与える。Further, the positive electrode active material for an alkaline storage battery is characterized in that the ratio of the yttrium, scandium or lanthanoid oxide particles to the nickel hydroxide solid solution particles is 0.1 to 3.0% by mass. When the ratio of the oxide particles of yttrium, scandium or lanthanoid is less than 0.1% by mass in the positive electrode active material, the oxygen generation overpotential in charging in a high-temperature atmosphere cannot be sufficiently increased. When the ratio of the oxide particles of yttrium, scandium or lanthanoid is more than 3.0% by mass, the effect of increasing the oxygen overvoltage is saturated, and the electron on the surface of the nickel hydroxide particles by the coating layer of cobalt oxide is saturated. Impedes the effect of imparting conductivity and adversely affects high-rate discharge characteristics.
【0027】また、前記水酸化ニッケルを主成分とする
固溶体粒子が、コバルト、亜鉛、カドミウム、カルシウ
ム、マンガン、マグネシウム、アルミニウム、チタン、
イットリウムおよびランタノイドから選ばれる少なくと
も一種の元素を固溶および/または共晶状態で含有する
ことを特徴とするアルカリ蓄電池用正極活物質である。
水酸化ニッケルに上記の元素を一種以上固溶および/ま
たは共晶状態で含有させることにより、充電時の膨化が
抑制され、充放電サイクルに伴う容量劣化の少ないアル
カリ蓄電池用正極活物質が得られる。Further, the solid solution particles containing nickel hydroxide as a main component include cobalt, zinc, cadmium, calcium, manganese, magnesium, aluminum, titanium,
A positive electrode active material for an alkaline storage battery, characterized by containing at least one element selected from yttrium and lanthanoids in a solid solution and / or eutectic state.
By including one or more of the above elements in a solid solution and / or eutectic state in nickel hydroxide, swelling during charging is suppressed, and a positive electrode active material for an alkaline storage battery with less capacity deterioration due to charge / discharge cycles can be obtained. .
【0028】また、前記固溶体粒子に対する前記コバル
ト酸化物の被覆層の比率が、5〜10質量%であること
を特徴とするアルカリ蓄電池用正極活物質である。被覆
層の比率が5質量%より少ない場合、導電ネットワーク
が不十分となり、活物質粒子からの集電を十分に保てな
い。また、被覆層の比率が10質量%より多い場合、正
極容量を決定する水酸化ニッケル粒子の量が相対的に減
少することになり、高エネルギー密度の正極が得られな
くなる。被覆層の比率が上記範囲内にあって、かつ水酸
化ニッケル粒子からの集電能力を最大とするために、粒
子全面を被覆した状態のものが最も好適である。[0028] The positive electrode active material for alkaline storage batteries is characterized in that the ratio of the coating layer of the cobalt oxide to the solid solution particles is 5 to 10% by mass. When the ratio of the coating layer is less than 5% by mass, the conductive network becomes insufficient, and the current collection from the active material particles cannot be sufficiently maintained. When the ratio of the coating layer is more than 10% by mass, the amount of nickel hydroxide particles that determines the capacity of the positive electrode is relatively reduced, and a positive electrode having a high energy density cannot be obtained. Most preferably, the ratio of the coating layer is within the above range and the entire surface of the particles is coated in order to maximize the current collecting ability from the nickel hydroxide particles.
【0029】また、前記コバルト酸化物の被覆層が、そ
の結晶内部にカリウムあるいはナトリウムを含有してお
り、かつ水酸化リチウムあるいはリチウムイオンを固定
化していることを特徴とするアルカリ蓄電池用正極活物
質である。上記コバルト酸化物の被覆層とすることで、
高温雰囲気下で充放電サイクルを繰り返した場合の容量
劣化を抑制できる。Further, the coating layer of the cobalt oxide contains potassium or sodium inside the crystal, and has lithium hydroxide or lithium ions immobilized thereon. It is. By forming a coating layer of the above cobalt oxide,
It is possible to suppress capacity deterioration when a charge / discharge cycle is repeated in a high temperature atmosphere.
【0030】本発明正極活物質を適用して好適なアルカ
リ蓄電池用非焼結式正極としては、導電性芯体に活物質
を含有するペーストを塗布し、乾燥してなるペースト式
正極等が挙げられる。このときの導電性芯体の具体例と
しては、ニッケル発泡体、フェルト状金属繊維多孔体お
よびパンチングメタル等が挙げられる。As a non-sintered positive electrode suitable for an alkaline storage battery to which the positive electrode active material of the present invention is applied, a paste type positive electrode obtained by applying a paste containing the active material to a conductive core and drying the paste is exemplified. Can be Specific examples of the conductive core at this time include a nickel foam, a felt-like porous metal fiber, and a punching metal.
【0031】本発明正極活物質を用いて好適なアルカリ
蓄電池の具体例としては、ニッケル・水素蓄電池、ニッ
ケル・カドミウム蓄電池、およびニッケル・亜鉛蓄電池
等が挙げられる。Specific examples of a suitable alkaline storage battery using the positive electrode active material of the present invention include a nickel-hydrogen storage battery, a nickel-cadmium storage battery, and a nickel-zinc storage battery.
【0032】[0032]
【実施例】以下、本発明の実施例について、詳細に説明
する。Embodiments of the present invention will be described below in detail.
【0033】(実施例1)正極活物質である水酸化ニッ
ケル固溶体粒子は、周知の以下の手法を用いて合成し
た。すなわち、硫酸ニッケルを主成分とし、硫酸コバル
トおよび硫酸亜鉛を所定量だけ含有させた水溶液に、ア
ンモニア水で溶液pHを調整しながら水酸化ナトリウム
を徐々に滴下し、球状の水酸化ニッケル固溶体粒子を析
出させる方法を用いた。この析出した水酸化ニッケル固
溶体粒子を水洗、乾燥して活物質粒子とした。なお、こ
の水酸化ニッケル固溶体粒子の平均粒径は10μmであ
った。Example 1 Nickel hydroxide solid solution particles as a positive electrode active material were synthesized by using the following well-known technique. That is, sodium hydroxide is gradually added dropwise to an aqueous solution containing nickel sulfate as a main component and a predetermined amount of cobalt sulfate and zinc sulfate while adjusting the solution pH with aqueous ammonia to form spherical nickel hydroxide solid solution particles. The method of precipitating was used. The precipitated nickel hydroxide solid solution particles were washed with water and dried to obtain active material particles. The average particle size of the nickel hydroxide solid solution particles was 10 μm.
【0034】次に、こうして得られた水酸化ニッケル固
溶体粒子の100重量部に、平均粒径0.2μmのY2
O3粒子を0.5重量部を加えた後、この混合物に対し
て圧縮摩砕式粉砕機によるメカノケミカル反応(メカノ
フュージョン法)を行い、水酸化ニッケル固溶体粒子の
表面にY2O3粒子を分散させ、Y酸化物分散水酸化ニッ
ケル固溶体粒子を作製した。この場合の水酸化ニッケル
固溶体粒子の表面積に対するY2O3粒子の被覆率は4.
8%である。また、イットリウム特性X線像にて、水酸
化ニッケル固溶体粒子の表面にイットリウムが部分的に
存在していることを確認した。Next, 100 parts by weight of the nickel hydroxide solid solution particles thus obtained was added to Y 2 having an average particle size of 0.2 μm.
After adding 0.5 parts by weight of O 3 particles, the mixture was subjected to a mechanochemical reaction (mechanofusion method) by a compression-milling pulverizer, and Y 2 O 3 particles were added to the surface of the nickel hydroxide solid solution particles. Was dispersed to prepare Y oxide-dispersed nickel hydroxide solid solution particles. In this case, the coverage of the Y 2 O 3 particles with respect to the surface area of the nickel hydroxide solid solution particles is 4.
8%. Further, it was confirmed from the yttrium characteristic X-ray image that yttrium was partially present on the surface of the nickel hydroxide solid solution particles.
【0035】こうして得られたイットリウム(以下、Y
と表記)酸化物分散水酸化ニッケル固溶体粒子を硫酸コ
バルト水溶液中に投入し、水酸化ナトリウム水溶液を徐
々に加え、35℃でpH=12を維持するように調整し
ながら攪拌を続けて固溶体粒子表面に水酸化コバルトを
析出させて水酸化コバルト被覆Y酸化物分散水酸化ニッ
ケル固溶体粒子を作製した。ここで水酸化コバルトの被
覆量については、水酸化ニッケル固溶体粒子に対する被
覆層の重量の比率が7.0質量%となるように調整し
た。作製した水酸化コバルト被覆Y酸化物分散水酸化ニ
ッケル固溶体粒子は水洗した後、真空乾燥を行った。The yttrium thus obtained (hereinafter referred to as Y
The oxide-dispersed nickel hydroxide solid solution particles were put into an aqueous solution of cobalt sulfate, and an aqueous solution of sodium hydroxide was gradually added thereto. The mixture was stirred at 35 ° C. while maintaining the pH at 12 to maintain the solid solution particle surface. Then, cobalt hydroxide was precipitated to prepare nickel hydroxide-coated nickel oxide-dispersed nickel hydroxide solid solution particles. Here, the coating amount of cobalt hydroxide was adjusted so that the weight ratio of the coating layer to the nickel hydroxide solid solution particles was 7.0% by mass. The produced cobalt hydroxide-coated Y oxide-dispersed nickel hydroxide solid solution particles were washed with water and then dried in vacuum.
【0036】続いて、水酸化コバルト被覆Y酸化物分散
水酸化ニッケル固溶体粒子に45質量%の水酸化カリウ
ム水溶液の適量を含浸させ、これをマイクロ波加熱の機
能を備えた乾燥装置内に投入して加熱し、酸素を送りな
がら粒子を完全乾燥まで導いた。この操作によって粒子
表面の水酸化コバルト被覆層は3.0価を越える高次な
状態まで酸化され、藍色に変化した。これを十分に水
洗、真空乾燥させて、コバルト酸化処理Y酸化物分散活
物質粒子とした(以下これを本発明活物質Aと表記す
る)。Subsequently, the cobalt hydroxide-coated Y oxide-dispersed nickel hydroxide solid solution particles are impregnated with an appropriate amount of a 45% by mass aqueous solution of potassium hydroxide, and then put into a drying apparatus having a microwave heating function. To bring the particles to complete drying with oxygen. By this operation, the cobalt hydroxide coating layer on the surface of the particles was oxidized to a higher state exceeding 3.0 valence, and turned to blue. This was sufficiently washed with water and vacuum dried to obtain cobalt oxide-treated Y oxide-dispersed active material particles (hereinafter referred to as active material A of the present invention).
【0037】また、前記水酸化ニッケル固溶体粒子を硝
酸イットリウム水溶液中に投入し、水酸化ナトリウム水
溶液を徐々に加え、35℃でpH=11を維持するよう
に調整しながら攪拌を続けて固溶体粒子表面に水酸化イ
ットリウムを析出させてY酸化物被覆水酸化ニッケル固
溶体粒子を作製した。ここで水酸化イットリウムの被覆
量については、水酸化ニッケル固溶体粒子に対する被覆
層の重量の比率がY2O3換算で0.5質量%となるよう
に調整した。作製したY酸化物被覆水酸化ニッケル固溶
体粒子は水洗した後、80℃にて乾燥を行った。Further, the nickel hydroxide solid solution particles are put into an aqueous solution of yttrium nitrate, an aqueous solution of sodium hydroxide is gradually added thereto, and stirring is continued while adjusting the pH at 11 at 35 ° C. to maintain the surface of the solid solution particles. Then, yttrium hydroxide was precipitated to prepare solid solution particles of nickel oxide-coated nickel hydroxide. Here, the coating amount of yttrium hydroxide was adjusted so that the weight ratio of the coating layer to the nickel hydroxide solid solution particles was 0.5% by mass in terms of Y 2 O 3 . The produced Y oxide-coated nickel hydroxide solid solution particles were washed with water and then dried at 80 ° C.
【0038】こうして得られたY酸化物被覆水酸化ニッ
ケル固溶体粒子を硫酸コバルト水溶液中に投入し、水酸
化ナトリウム水溶液を徐々に加え、35℃でpH=12
を維持するように調整しながら攪拌を続けてY酸化物被
覆層表面に水酸化コバルトを析出させて水酸化コバルト
被覆Y酸化物被覆水酸化ニッケル固溶体粒子を作製し
た。ここで水酸化コバルトの被覆量については、水酸化
ニッケル固溶体粒子に対する被覆層の重量の比率が7.
0質量%となるように調整した。作製した水酸化コバル
ト被覆Y酸化物被覆水酸化ニッケル固溶体粒子は水洗し
た後、真空乾燥を行った。The thus obtained Y oxide-coated nickel hydroxide solid solution particles are put into an aqueous solution of cobalt sulfate, and an aqueous solution of sodium hydroxide is gradually added thereto.
The stirring was continued while maintaining such that the temperature was maintained to deposit cobalt hydroxide on the surface of the Y oxide coating layer, thereby producing cobalt oxide-coated Y oxide-coated nickel hydroxide solid solution particles. Here, as for the coating amount of cobalt hydroxide, the ratio of the weight of the coating layer to the solid solution particles of nickel hydroxide is 7.
It was adjusted to be 0% by mass. The prepared cobalt hydroxide-coated Y oxide-coated nickel hydroxide solid solution particles were washed with water and then vacuum-dried.
【0039】続いて、水酸化コバルト被覆Y酸化物被覆
水酸化ニッケル固溶体粒子に45質量%の水酸化カリウ
ム水溶液の適量を含浸させ、これをマイクロ波加熱の機
能を備えた乾燥装置内に投入して加熱し、酸素を送りな
がら粒子を完全乾燥まで導いた。この操作によって粒子
表面の水酸化コバルト被覆層は3.0価を越える高次な
状態まで酸化され、藍色に変化した。これを十分に水
洗、真空乾燥させて、Co酸化処理Y酸化物被覆活物質
粒子とした(以下これを比較活物質Bと表記する)。Subsequently, an appropriate amount of a 45% by mass aqueous solution of potassium hydroxide is impregnated into the cobalt hydroxide-coated Y oxide-coated nickel hydroxide solid solution particles, and this is put into a drying apparatus having a microwave heating function. To bring the particles to complete drying with oxygen. By this operation, the cobalt hydroxide coating layer on the surface of the particles was oxidized to a higher state exceeding 3.0 valence, and turned to blue. This was sufficiently washed with water and dried under vacuum to obtain Co-oxidized Y oxide-coated active material particles (hereinafter referred to as comparative active material B).
【0040】また、前記水酸化ニッケル固溶体粒子を硫
酸コバルト水溶液中に投入し、水酸化ナトリウム水溶液
を徐々に加え、35℃でpH=12を維持するように調
整しながら攪拌を続けて水酸化ニッケル固溶体粒子表面
に水酸化コバルトを析出させて水酸化コバルト被覆水酸
化ニッケル固溶体粒子を作製した。ここで水酸化コバル
トの被覆量については、水酸化ニッケル固溶体粒子に対
する被覆層の重量の比率が7.0質量%となるように調
整した。作製した水酸化コバルト被覆水酸化ニッケル固
溶体粒子は水洗した後、真空乾燥を行った。Further, the nickel hydroxide solid solution particles are charged into an aqueous solution of cobalt sulfate, an aqueous solution of sodium hydroxide is gradually added, and stirring is continued while adjusting the pH at 12 at 35 ° C. to maintain a pH of 12. Cobalt hydroxide was deposited on the surface of the solid solution particles to prepare cobalt hydroxide-coated nickel hydroxide solid solution particles. Here, the coating amount of cobalt hydroxide was adjusted so that the weight ratio of the coating layer to the nickel hydroxide solid solution particles was 7.0% by mass. The prepared cobalt hydroxide-coated nickel hydroxide solid solution particles were washed with water and then dried in vacuum.
【0041】続いて、水酸化コバルト被覆水酸化ニッケ
ル固溶体粒子に45質量%の水酸化カリウム水溶液の適
量を含浸させ、これをマイクロ波加熱の機能を備えた乾
燥装置内に投入して加熱し、酸素を送りながら粒子を完
全乾燥まで導いた。この操作によって粒子表面の水酸化
コバルト被覆層は3.0価を越える高次な状態まで酸化
され、藍色に変化した。これを十分に水洗、真空乾燥さ
せて、Co酸化処理活物質粒子とした。Subsequently, the cobalt hydroxide-coated nickel hydroxide solid solution particles are impregnated with an appropriate amount of a 45% by mass aqueous solution of potassium hydroxide, and the mixture is introduced into a drying apparatus having a microwave heating function and heated. The particles were led to complete drying while sending oxygen. By this operation, the cobalt hydroxide coating layer on the surface of the particles was oxidized to a higher state exceeding 3.0 valence, and turned to blue. This was sufficiently washed with water and dried under vacuum to obtain Co-oxidized active material particles.
【0042】こうして得られたCo酸化処理活物質粒子
を硝酸イットリウム水溶液中に投入し、水酸化ナトリウ
ム水溶液を徐々に加え、35℃でpH=11を維持する
ように調整しながら攪拌を続けて水酸化コバルト被覆層
表面に水酸化イットリウムを析出させてY酸化物被覆C
o酸化処理活物質粒子を作製した。ここで水酸化イット
リウムの被覆量については、水酸化ニッケル固溶体粒子
に対する被覆層の重量の比率がY2O3換算で0.5質量
%となるように調整した。作製したY酸化物被覆Co酸
化処理活物質粒子は水洗した後、80℃にて乾燥を行っ
た(以下これを比較活物質Cと表記する)。The Co-oxidized active material particles thus obtained are put into an yttrium nitrate aqueous solution, an aqueous sodium hydroxide solution is gradually added, and stirring is continued while adjusting the pH at 11 at 35 ° C. while maintaining the pH at 11. Yttrium hydroxide is deposited on the surface of the cobalt oxide coating layer to form a Y oxide coating C
o Oxidation-treated active material particles were produced. Here, the coating amount of yttrium hydroxide was adjusted so that the weight ratio of the coating layer to the nickel hydroxide solid solution particles was 0.5% by mass in terms of Y 2 O 3 . The produced Y oxide-coated Co oxidized active material particles were washed with water and then dried at 80 ° C. (hereinafter referred to as comparative active material C).
【0043】また、前記水酸化ニッケル固溶体粒子を硝
酸コバルトと硝酸イットリウムの混合水溶液中に投入
し、水酸化ナトリウム水溶液を徐々に加え、35℃でp
H=12を維持するように調整しながら攪拌を続けて水
酸化ニッケル固溶体粒子表面に水酸化コバルトと水酸化
イットリウムの混晶物を析出させてY混晶水酸化コバル
ト被覆水酸化ニッケル固溶体粒子を作製した。ここで水
酸化コバルトの被覆量については、水酸化ニッケル固溶
体粒子に対する被覆層の重量の比率が7.0質量%とな
るように調整した。また、水酸化イットリウムの被覆量
については、水酸化ニッケル固溶体粒子に対する被覆層
の重量の比率がY2O3換算で0.5質量%となるように
調整した。作製したY混晶水酸化コバルト被覆水酸化ニ
ッケル固溶体粒子は水洗した後、真空乾燥を行った。Further, the nickel hydroxide solid solution particles were charged into a mixed aqueous solution of cobalt nitrate and yttrium nitrate, and an aqueous sodium hydroxide solution was gradually added thereto.
Stirring is continued while adjusting to maintain H = 12 to precipitate a mixed crystal of cobalt hydroxide and yttrium hydroxide on the surface of the nickel hydroxide solid solution particles, thereby forming a Y mixed crystal cobalt hydroxide-coated nickel hydroxide solid solution particle. Produced. Here, the coating amount of cobalt hydroxide was adjusted so that the weight ratio of the coating layer to the nickel hydroxide solid solution particles was 7.0% by mass. The coating amount of yttrium hydroxide was adjusted so that the weight ratio of the coating layer to the nickel hydroxide solid solution particles was 0.5% by mass in terms of Y 2 O 3 . The produced Y mixed crystal cobalt hydroxide-coated nickel hydroxide solid solution particles were washed with water and then dried in vacuum.
【0044】続いて、Y混晶水酸化コバルト被覆水酸化
ニッケル固溶体粒子に45質量%の水酸化カリウム水溶
液の適量を含浸させ、これをマイクロ波加熱の機能を備
えた乾燥装置内に投入して加熱し、酸素を送りながら粒
子を完全乾燥まで導いた。この操作によって粒子表面の
水酸化コバルト被覆層は3.0価を越える高次な状態ま
で酸化され、藍色に変化した。これを十分に水洗、真空
乾燥させて、Y混晶Co酸化処理活物質粒子とした(以
下これを比較活物質Dと表記する)。Subsequently, the Y mixed crystal cobalt hydroxide-coated nickel hydroxide solid solution particles are impregnated with an appropriate amount of a 45% by mass aqueous solution of potassium hydroxide, and put into a drying apparatus having a microwave heating function. Heating and sending oxygen led the particles to complete drying. By this operation, the cobalt hydroxide coating layer on the surface of the particles was oxidized to a higher state exceeding 3.0 valence, and turned to blue. This was sufficiently washed with water and dried in vacuum to obtain Y mixed crystal Co oxidized active material particles (hereinafter referred to as comparative active material D).
【0045】さらに、前記水酸化ニッケル固溶体粒子を
硫酸コバルト水溶液中に投入し、水酸化ナトリウム水溶
液を徐々に加え、35℃でpH=12を維持するように
調整しながら攪拌を続けて水酸化ニッケル固溶体粒子表
面に水酸化コバルトを析出させて水酸化コバルト被覆水
酸化ニッケル固溶体粒子を作製した。ここで水酸化コバ
ルトの被覆量については、水酸化ニッケル固溶体粒子に
対する被覆層の重量の比率が7.0質量%となるように
調整した。作製した水酸化コバルト被覆水酸化ニッケル
固溶体粒子は水洗した後、真空乾燥を行った。Further, the solid solution of nickel hydroxide was put into an aqueous solution of cobalt sulfate, an aqueous solution of sodium hydroxide was gradually added, and stirring was continued while adjusting the pH at 12 at 35 ° C. while maintaining the pH at 12. Cobalt hydroxide was deposited on the surface of the solid solution particles to prepare cobalt hydroxide-coated nickel hydroxide solid solution particles. Here, the coating amount of cobalt hydroxide was adjusted so that the weight ratio of the coating layer to the nickel hydroxide solid solution particles was 7.0% by mass. The prepared cobalt hydroxide-coated nickel hydroxide solid solution particles were washed with water and then dried in vacuum.
【0046】続いて、水酸化コバルト被覆水酸化ニッケ
ル固溶体粒子に45質量%の水酸化カリウム水溶液の適
量を含浸させ、これをマイクロ波加熱の機能を備えた乾
燥装置内に投入して加熱し、酸素を送りながら粒子を完
全乾燥まで導いた。この操作によって粒子表面の水酸化
コバルト被覆層は3.0価を越える高次な状態まで酸化
され、藍色に変化した。これを十分に水洗、真空乾燥さ
せて、Co酸化処理活物質粒子とした(以下これを比較
活物質Eと表記する)。Subsequently, the cobalt hydroxide-coated nickel hydroxide solid solution particles are impregnated with an appropriate amount of a 45% by mass aqueous solution of potassium hydroxide, and the mixture is introduced into a drying apparatus having a microwave heating function and heated. The particles were led to complete drying while sending oxygen. By this operation, the cobalt hydroxide coating layer on the surface of the particles was oxidized to a higher state exceeding 3.0 valence, and turned to blue. This was sufficiently washed with water and vacuum dried to obtain Co-oxidized active material particles (hereinafter referred to as comparative active material E).
【0047】次に、こうして得られた本発明活物質A、
比較活物質B、C、Dの100重量部に、それぞれ増粘
剤としてのカルボキシメチルセルロース(CMC)を
0.1重量部およびバインダーとしてのポリテトラフル
オロエチレン(PTFE)を0.2重量部と適量の純水
とを加えて混合分散させ、活物質スラリーとした。この
活物質スラリーを厚さ1.4mmの発泡ニッケル多孔体
基板に充填し、80℃の乾燥機内で乾燥させた後、ロー
ルプレスにより約0.7mmに圧延し、さらにこれを所
定の大きさに切断加工して、Niの1電子反応を基準と
した時の理論容量が1200mAhのニッケル正極とし
た。この正極と水素吸蔵合金を主体とした負極、親水化
処理を施したポリプロピレン不織布セパレータ、水酸化
カリウム濃度が7.0規定、水酸化リチウム濃度が1.
0規定である混合アルカリ電解液を用い、公知の方法に
より公称容量1200mAhのAAサイズのニッケル・
水素蓄電池を作製した(以下、本発明活物質A、比較活
物質B、C、Dに対応するこれらの電池を、それぞれ本
発明電池A、比較電池B、C、Dと表記する)。Next, the active material A of the present invention thus obtained,
To 100 parts by weight of the comparative active materials B, C and D, 0.1 part by weight of carboxymethyl cellulose (CMC) as a thickener and 0.2 part by weight of polytetrafluoroethylene (PTFE) as a binder were used. Of pure water was added and mixed and dispersed to obtain an active material slurry. This active material slurry was filled in a foamed nickel porous substrate having a thickness of 1.4 mm, dried in a drier at 80 ° C., and then rolled to about 0.7 mm by a roll press, and further reduced to a predetermined size. By cutting, a nickel positive electrode having a theoretical capacity of 1200 mAh based on a one-electron reaction of Ni was obtained. This positive electrode and a negative electrode mainly composed of a hydrogen storage alloy, a polypropylene nonwoven fabric separator subjected to a hydrophilic treatment, a potassium hydroxide concentration of 7.0 N, and a lithium hydroxide concentration of 1.
Using a mixed alkaline electrolyte of 0 normality and a known method, an AA size nickel alloy having a nominal capacity of 1200 mAh was used.
Hydrogen storage batteries were produced (hereinafter, these batteries corresponding to the active material A of the present invention and the comparative active materials B, C, and D are referred to as a battery A of the present invention and comparative batteries B, C, and D, respectively).
【0048】また、比較活物質Eの100重量部に、平
均粒径0.2μmのY2O3を0.5重量部添加すること
以外はすべて上記と同様にして、ニッケル・水素蓄電池
を作製した(以下これを比較電池Eと表記する)。A nickel-hydrogen storage battery was manufactured in the same manner as above except that 0.5 parts by weight of Y 2 O 3 having an average particle size of 0.2 μm was added to 100 parts by weight of the comparative active material E. (Hereinafter referred to as Comparative Battery E).
【0049】また、比較活物質Eを用い、Y2O3を添加
しないこと以外はすべて上記と同様にして、ニッケル・
水素蓄電池を作製した(以下これを比較電池Fと表記す
る)。Further, except that the comparative active material E was used, and that Y 2 O 3 was not added, the same procedure as above was carried out to obtain a nickel alloy.
A hydrogen storage battery was produced (hereinafter referred to as a comparative battery F).
【0050】これら6種の電池A、B、C、D、E、F
について、20℃の一定温度で、充電を120mAで1
5時間、次いで放電を240mAで終止電圧0.8Vで
行い、この充放電操作を5回繰り返した。These six types of batteries A, B, C, D, E, F
At a constant temperature of 20 ° C. and a charge of 120 mA at 1
After 5 hours, discharge was performed at 240 mA at a cutoff voltage of 0.8 V, and this charge / discharge operation was repeated 5 times.
【0051】次に、20℃の一定温度で充電を120m
Aで15時間行い、2時間の休止の後、20℃の一定温
度で放電を240mAで終止電圧0.8Vまで行い、こ
の時の放電電気量を測定し、放電容量とした。Next, charging was performed at a constant temperature of 20 ° C. for 120 m.
A for 15 hours, and after a pause of 2 hours, discharge was performed at a constant temperature of 20 ° C. at 240 mA to a final voltage of 0.8 V, and the amount of discharge electricity at this time was measured and defined as discharge capacity.
【0052】また、50℃の一定温度で充電を120m
Aで15時間行い、2時間の休止の後、20℃の一定温
度で放電を240mAで終止電圧0.8Vまで行い、こ
の時の放電電気量を測定し、放電容量とした。Further, charging at a constant temperature of 50 ° C. for 120 m
A for 15 hours, and after a pause of 2 hours, discharge was performed at a constant temperature of 20 ° C. at 240 mA to a final voltage of 0.8 V, and the amount of discharge electricity at this time was measured and defined as discharge capacity.
【0053】さらに、20℃の一定温度で充電を120
mAで15時間行い、2時間の休止の後、20℃の一定
温度で放電を3600mAで終止電圧0.8Vまで行
い、この時の放電電気量を測定し、放電容量とした。Further, charging at a constant temperature of 20 ° C. for 120
After a pause of 2 hours, the battery was discharged at a constant temperature of 20 ° C. and a final voltage of 0.8 V at 3600 mA. The amount of discharged electricity at this time was measured and defined as a discharge capacity.
【0054】(表1)に充放電試験の結果を利用率およ
び50℃充電効率として示す。利用率は、Niの1電子
反応を基準として計算したものを理論容量とし、理論容
量に対してどれだけ放電したかを示す指標として、利用
率(%)=放電容量/理論容量×100で定義した。こ
こで、放電容量に対して利用率、放電容量に対し
て利用率、放電容量に対して利用率を用いてい
る。また、50℃充電効率は20℃充電時に対してどれ
だけ充電したかを示す指標として、50℃充電効率
(%)=放電容量/放電容量で定義した。Table 1 shows the results of the charge / discharge test as the utilization factor and the charging efficiency at 50 ° C. The utilization rate is defined as the theoretical capacity based on the one-electron reaction of Ni as a reference, and is defined as utilization rate (%) = discharge capacity / theoretical capacity × 100 as an index indicating how much discharge has occurred relative to the theoretical capacity. did. Here, the utilization rate is used for the discharge capacity, the utilization rate is used for the discharge capacity, and the utilization rate is used for the discharge capacity. The 50 ° C. charge efficiency was defined as 50 ° C. charge efficiency (%) = discharge capacity / discharge capacity as an index indicating how much charge was performed during 20 ° C. charge.
【0055】[0055]
【表1】 [Table 1]
【0056】本発明電池Aの50℃充電効率が83%で
あるのに対して、比較電池Bは81%、比較電池Cは8
0%、比較電池Dは81%、比較電池Eは76%、比較
電池Fは67%であり、イットリウムが添加されている
電池A、B、C、D、Eにおいて高温充電効率の向上が
確認できる。特に、イットリウムがコバルト酸化物被覆
層の近傍あるいはその層内に存在する電池A、B、C、
Dにおいて優れた高温充電効率を示す。この現象は、イ
ットリウムの分散性が高いため、酸素発生過電圧増大に
効率良く作用したためであると考えられる。The battery A of the present invention has a charging efficiency of 50% at 50 ° C., whereas the comparative battery B has a charging efficiency of 81% and the comparative battery C has a charging efficiency of 8%.
0%, Comparative battery D 81%, Comparative battery E 76%, Comparative battery F 67%, and improvement of high-temperature charging efficiency was confirmed in batteries A, B, C, D, and E to which yttrium was added. it can. In particular, batteries A, B, C, in which yttrium exists near or in the cobalt oxide coating layer,
D shows excellent high-temperature charging efficiency. This phenomenon is considered to be due to the fact that the dispersibility of yttrium is high, and this has effectively acted on the increase of the oxygen overvoltage.
【0057】また、3600mA放電時の利用率は、本
発明電池Aが74%であるのに対して、比較電池Bは6
4%、比較電池Cは65%、比較電池Dは64%、比較
電池Eは69%、比較電池Fは74%であり、本発明電
池Aが高率放電特性にも優れていることが分かる。この
結果は、イットリウムの酸化物粒子が水酸化ニッケル固
溶体粒子の表面に部分的に被覆されているため、水酸化
ニッケル固溶体粒子とその外周のコバルト酸化物被覆層
との結合部が存在し、活物質内の電子伝導性が損なわれ
ず、かつ、活物質粒子の最外周がコバルト酸化物のみで
被覆されているため、粒子間および粒子と基板骨格とを
つなぐ導電ネットワークも損なわれないためであると考
えられる。The utilization rate at the discharge of 3600 mA was 74% for the battery A of the present invention and 6% for the comparative battery B.
4%, Comparative Battery C was 65%, Comparative Battery D was 64%, Comparative Battery E was 69%, Comparative Battery F was 74%, indicating that Battery A of the present invention was also excellent in high-rate discharge characteristics. . This result indicates that since the yttrium oxide particles are partially coated on the surface of the nickel hydroxide solid solution particles, the bonding portion between the nickel hydroxide solid solution particles and the cobalt oxide coating layer on the outer periphery thereof exists, Because the electron conductivity in the material is not impaired, and because the outermost periphery of the active material particles is coated only with the cobalt oxide, the conductive network connecting the particles and between the particles and the substrate skeleton is not impaired. Conceivable.
【0058】(実施例2)平均粒径0.2μmのY2O3
粒子を、被覆率がそれぞれ0.5、1、5、10、3
0、50%となる様に被覆すること以外はすべて実施例
1と同様にして、Co酸化処理Y酸化物分散活物質粒子
を作製し、これらを用いてニッケル・水素蓄電池を作製
した。これらの電池について実施例1と同様の充放電評
価を行い、50℃充電効率、高率放電特性を測定した。
図1に50℃充電効率、図2に高率放電特性の評価結果
を示す。Example 2 Y 2 O 3 having an average particle size of 0.2 μm
Particles with a coverage of 0.5, 1, 5, 10, 3 respectively
Co-oxidized Y-oxide dispersed active material particles were produced in the same manner as in Example 1 except that the coating was performed so as to be 0 and 50%, and a nickel-hydrogen storage battery was produced using these. For these batteries, the same charge / discharge evaluation as in Example 1 was performed, and the charging efficiency at 50 ° C. and the high rate discharge characteristics were measured.
FIG. 1 shows the evaluation results of the charging efficiency at 50 ° C., and FIG. 2 shows the evaluation results of the high-rate discharge characteristics.
【0059】図1より、Y2O3粒子の被覆率が0.5%
の場合、高温充電効率の向上がほとんど確認できないこ
とが分かる。また、Y2O3粒子を1%以上被覆した場合
に高温充電効率の向上が確認できるが、30%より多く
被覆しても、その効果は飽和し、それ以上の効果が得ら
れないことが確認できた。さらに、図2より、Y2O3粒
子を30%より多く被覆した場合、高率放電特性に悪影
響を与えることが分かる。コバルト酸化物被覆層と水酸
化ニッケル粒子表面との間に多量のY2O3が存在するた
め、コバルト酸化物の被覆層による水酸化ニッケル粒子
表面の電子伝導性付与効果が阻害されたためと考えられ
る。以上の結果より、Y2O3粒子を水酸化ニッケル固溶
体粒子の表面積の1〜30%被覆した場合、高温充電特
性に優れ、かつ高率放電特性にも優れていることが明ら
かである。FIG. 1 shows that the coverage of the Y 2 O 3 particles was 0.5%.
In the case of, it can be seen that almost no improvement in the high-temperature charging efficiency can be confirmed. In addition, when the Y 2 O 3 particles are coated at 1% or more, the improvement of the high-temperature charging efficiency can be confirmed. However, when the coating is performed at more than 30%, the effect is saturated, and no further effect is obtained. It could be confirmed. Furthermore, it can be seen from FIG. 2 that when more than 30% of the Y 2 O 3 particles are coated, the high-rate discharge characteristics are adversely affected. It is considered that a large amount of Y 2 O 3 exists between the cobalt oxide coating layer and the surface of the nickel hydroxide particles, so that the effect of imparting electron conductivity to the surface of the nickel hydroxide particles by the coating layer of the cobalt oxide was hindered. Can be From the above results, it is clear that when the Y 2 O 3 particles are covered with 1 to 30% of the surface area of the nickel hydroxide solid solution particles, the high-temperature charge characteristics and the high-rate discharge characteristics are excellent.
【0060】(実施例3)平均粒径0.3μmのY2O3
粒子をそれぞれ0.05、0.1、0.5、1.0、
3.0、5.0重量部添加すること以外はすべて実施例
1と同様にして、Co酸化処理Y酸化物分散活物質粒子
を作製し、これらを用いてニッケル・水素蓄電池を作製
した。これらの電池について実施例1と同様の充放電評
価を行い、50℃充電効率、高率放電特性を測定した。
図3に50℃充電効率、図4に高率放電特性の評価結果
を示す。Example 3 Y 2 O 3 having an average particle size of 0.3 μm
Particles are respectively 0.05, 0.1, 0.5, 1.0,
Co-oxidized Y oxide dispersed active material particles were prepared in the same manner as in Example 1 except that 3.0 and 5.0 parts by weight were added, and a nickel-hydrogen storage battery was prepared using these particles. For these batteries, the same charge / discharge evaluation as in Example 1 was performed, and the charging efficiency at 50 ° C. and the high rate discharge characteristics were measured.
FIG. 3 shows the evaluation results of the charging efficiency at 50 ° C., and FIG. 4 shows the evaluation results of the high-rate discharge characteristics.
【0061】図3より、Y2O3粒子の添加量が0.05
重量部の場合、高温充電効率の向上がほとんど確認でき
ないことが分かる。また、Y2O3粒子を0.1重量部以
上添加した場合に高温充電効率の向上が確認できるが、
3.0重量部より多く添加しても、その効果は飽和し、
それ以上の効果が得られないことが確認できた。さら
に、図4より、Y2O3粒子を3.0重量部より多く添加
した場合、高率放電特性に悪影響を与えることが分か
る。コバルト酸化物被覆層と水酸化ニッケル粒子表面と
の間に多量のY2O3が存在するため、コバルト酸化物の
被覆層による水酸化ニッケル粒子表面の電子伝導性付与
効果が阻害されたためと考えられる。以上の結果より、
Y2O3粒子を0.1〜3.0質量%添加した場合、高温
充電特性に優れ、かつ高率放電特性にも優れていること
が明らかである。FIG. 3 shows that the addition amount of Y 2 O 3 particles was 0.05
In the case of parts by weight, it can be seen that the improvement in high-temperature charging efficiency can hardly be confirmed. In addition, when Y 2 O 3 particles are added in an amount of 0.1 part by weight or more, improvement in high-temperature charging efficiency can be confirmed.
Even if more than 3.0 parts by weight is added, the effect is saturated,
It was confirmed that no further effect was obtained. Furthermore, FIG. 4 shows that the addition of more than 3.0 parts by weight of Y 2 O 3 particles has a bad influence on the high-rate discharge characteristics. It is considered that a large amount of Y 2 O 3 exists between the cobalt oxide coating layer and the surface of the nickel hydroxide particles, so that the effect of imparting electron conductivity to the surface of the nickel hydroxide particles by the coating layer of the cobalt oxide was hindered. Can be based on the above results,
It is clear that when Y 2 O 3 particles are added in an amount of 0.1 to 3.0% by mass, the high-temperature charge characteristics and the high-rate discharge characteristics are also excellent.
【0062】なお、本実施例中では水酸化コバルトの被
覆に際し、水溶液中での化学反応を利用して被覆層の形
成を行ったが、その際の被覆条件等はここで記したもの
に限定されるものでない。Y酸化物分散水酸化ニッケル
固溶体粒子と水酸化コバルト粉末とを混合し、機械混合
時におけるせん断力や衝撃力を利用して粒子表面を水酸
化コバルトで被覆させる方法(機械混合法)等を用いて
水酸化コバルト被覆Y酸化物分散水酸化ニッケル固溶体
粒子としても、本発明の正極を作製することができる。In this example, the coating layer was formed by using a chemical reaction in an aqueous solution when coating with cobalt hydroxide. However, the coating conditions and the like at this time are not limited to those described here. It is not done. A method of mixing Y oxide-dispersed nickel hydroxide solid solution particles and cobalt hydroxide powder and coating the particle surface with cobalt hydroxide using a shearing force or an impact force during mechanical mixing (mechanical mixing method) or the like. Thus, the positive electrode of the present invention can be produced also as a solid solution particle of nickel hydroxide dispersed in a cobalt oxide-coated Y oxide.
【0063】水酸化コバルト被覆Y酸化物分散水酸化ニ
ッケル固溶体粒子の酸化に際しては、高濃度の水酸化ナ
トリウム水溶液を共存させたが、高濃度の水酸化カリウ
ム水溶液を使用しても同様の効果が得られる。アルカリ
湿潤させた水酸化コバルト被覆Y酸化物分散水酸化ニッ
ケル固溶体粒子を酸化させる加熱方法として、マイクロ
波加熱の機能を備えた乾燥機内で酸素を送り込みながら
加熱する方法としたが、これに限定されるものではな
い。また、そのコバルト酸化物被覆層の結晶内部に水酸
化リチウムあるいはリチウムイオンを固定化させた水酸
化コバルト被覆水酸化ニッケル固溶体粒子を用いた場合
でも同様の効果が得られる。In oxidizing the cobalt hydroxide-coated Y oxide-dispersed nickel hydroxide solid solution particles, a high-concentration aqueous solution of sodium hydroxide was used, but the same effect was obtained even when a high-concentration aqueous solution of potassium hydroxide was used. can get. As a heating method for oxidizing the alkali-moistened cobalt hydroxide-coated Y oxide-dispersed nickel hydroxide solid solution particles, a method of heating while feeding oxygen in a dryer having a microwave heating function was used, but is not limited thereto. Not something. Similar effects can be obtained even when cobalt hydroxide-coated nickel hydroxide solid solution particles having lithium hydroxide or lithium ions immobilized inside the crystal of the cobalt oxide coating layer are used.
【0064】ここで、前記コバルト酸化物の被覆層の比
率は、5〜10質量%であることが好ましい。被覆層の
比率が5質量%より少ない場合、導電ネットワークが不
十分となり、活物質粒子からの集電を十分に保てない。
また、被覆層の比率が10質量%より多い場合、正極容
量を決定する水酸化ニッケル粒子の量が相対的に減少す
ることになり、高エネルギー密度の正極が得られなくな
る。被覆層の比率が上記範囲内にあって、かつ水酸化ニ
ッケル粒子からの集電能力を最大とするために、粒子全
面を被覆した状態のものが最も好適である。Here, the ratio of the cobalt oxide coating layer is preferably 5 to 10% by mass. When the ratio of the coating layer is less than 5% by mass, the conductive network becomes insufficient, and the current collection from the active material particles cannot be sufficiently maintained.
When the ratio of the coating layer is more than 10% by mass, the amount of nickel hydroxide particles that determines the capacity of the positive electrode is relatively reduced, and a positive electrode having a high energy density cannot be obtained. Most preferably, the ratio of the coating layer is within the above range and the entire surface of the particles is coated in order to maximize the current collecting ability from the nickel hydroxide particles.
【0065】また、本実施例中では水酸化ニッケル固溶
体粒子の作製に際し、ニッケル、コバルトおよび亜鉛の
固溶体粒子を用いたが、固溶種の元素はここで記したも
のに限定されるものでない。コバルト、亜鉛、カドミウ
ム、カルシウム、マンガン、マグネシウム、アルミニウ
ム、チタン、イットリウムおよびランタノイドから選ば
れる少なくとも一種の元素を固溶および/または共晶状
態で含有する水酸化ニッケル粒子すべてにおいて、同様
の効果が得られる。In the present embodiment, solid solution particles of nickel, cobalt and zinc were used for the preparation of solid solution particles of nickel hydroxide, but the elements of the solid solution species are not limited to those described here. Similar effects can be obtained in all nickel hydroxide particles containing at least one element selected from cobalt, zinc, cadmium, calcium, manganese, magnesium, aluminum, titanium, yttrium and lanthanoids in a solid solution and / or eutectic state. Can be
【0066】さらに、本実施例中の効果は、Y2O3粒子
を添加させた場合に限られるものではなく、スカンジウ
ムまたはランタノイドの酸化物粒子を添加させた場合で
も、同様の効果が得られることを確認した。Further, the effect in the present embodiment is not limited to the case where Y 2 O 3 particles are added, and the same effect can be obtained even when scandium or lanthanoid oxide particles are added. It was confirmed.
【0067】[0067]
【発明の効果】以上に示したように、本発明の正極活物
質を用いれば、優れた高温充電特性を維持しつつ、高率
放電特性にも優れたアルカリ蓄電池用正極活物質および
アルカリ蓄電池を提供することが可能となる。As described above, by using the positive electrode active material of the present invention, a positive electrode active material for an alkaline storage battery and an alkaline storage battery having excellent high-temperature discharge characteristics and excellent high-rate discharge characteristics can be obtained. Can be provided.
【図1】実施例2で用いた各電池の50℃充電時の充電
効率を示す図FIG. 1 is a diagram showing charging efficiency when each battery used in Example 2 is charged at 50 ° C.
【図2】実施例2で用いた各電池の3600mA放電時
の利用率を示す図FIG. 2 is a diagram showing the utilization rate of each battery used in Example 2 at 3600 mA discharge.
【図3】実施例3で用いた各電池の50℃充電時の充電
効率を示す図FIG. 3 is a diagram showing charging efficiency when each battery used in Example 3 is charged at 50 ° C.
【図4】実施例3で用いた各電池の3600mA放電時
の利用率を示す図FIG. 4 is a diagram showing the utilization rate of each battery used in Example 3 at a discharge of 3600 mA.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 和泉 陽一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 湯浅 浩次 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H028 AA06 BB03 BB05 EE05 EE10 HH00 HH01 5H050 AA05 BA11 CA04 CB13 CB14 CB16 DA09 EA12 FA17 FA18 FA19 GA02 GA22 HA00 HA01 HA07 HA13 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yoichi Izumi 1006 Kazuma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. Terms (reference) 5H028 AA06 BB03 BB05 EE05 EE10 HH00 HH01 5H050 AA05 BA11 CA04 CB13 CB14 CB16 DA09 EA12 FA17 FA18 FA19 GA02 GA22 HA00 HA01 HA07 HA13
Claims (6)
子を備え、前記固溶体粒子の表面積の1〜30%が、イ
ットリウム、スカンジウムまたはランタノイドから選ば
れる少なくとも一種の酸化物粒子にて被覆されており、
かつ、その外周をコバルト平均価数が3.0価より大で
あるコバルト酸化物にて被覆されていることを特徴とす
るアルカリ蓄電池用正極活物質。1. A solid solution particle comprising nickel hydroxide as a main component, wherein 1 to 30% of the surface area of the solid solution particle is coated with at least one oxide particle selected from yttrium, scandium or lanthanoid. ,
A positive electrode active material for an alkaline storage battery, wherein the outer periphery is coated with a cobalt oxide having an average cobalt valence of more than 3.0.
ム、スカンジウムまたはランタノイドの酸化物粒子の比
率が、0.1〜3.0質量%である請求項1記載のアル
カリ蓄電池用正極活物質。2. The positive electrode active material for an alkaline storage battery according to claim 1, wherein a ratio of the yttrium, scandium, or lanthanoid oxide particles to the solid solution particles is 0.1 to 3.0% by mass.
ドミウム、カルシウム、マンガン、マグネシウム、アル
ミニウム、チタン、イットリウムおよびランタノイドか
ら選ばれる少なくとも一種の元素を固溶および/または
共晶状態で含有することを特徴とする請求項1または請
求項2に記載のアルカリ蓄電池用正極活物質。3. The method according to claim 1, wherein the solid solution particles contain at least one element selected from the group consisting of cobalt, zinc, cadmium, calcium, manganese, magnesium, aluminum, titanium, yttrium, and lanthanoids in a solid solution and / or eutectic state. The positive electrode active material for an alkaline storage battery according to claim 1 or 2, wherein:
化物の被覆層の比率が、5〜10質量%であることを特
徴とする請求項1〜請求項3のいずれかに記載のアルカ
リ蓄電池用正極活物質。4. The positive electrode active material for an alkaline storage battery according to claim 1, wherein a ratio of the coating layer of the cobalt oxide to the solid solution particles is 5 to 10% by mass. material.
晶内部にカリウムあるいはナトリウムを含有しており、
かつ水酸化リチウムあるいはリチウムイオンを固定化し
ていることを特徴とする請求項1〜請求項4のいずれか
に記載のアルカリ蓄電池用正極活物質。5. The coating layer of the cobalt oxide contains potassium or sodium inside the crystal thereof.
The positive electrode active material for an alkaline storage battery according to any one of claims 1 to 4, wherein lithium hydroxide or lithium ions are immobilized.
正極活物質を主成分とする正極、水素吸蔵合金あるいは
カドミウム酸化物を主成分とする負極、セパレータ、ア
ルカリ電解液、およびこれらを収納する電池ケースから
なるアルカリ蓄電池。6. A positive electrode comprising the positive electrode active material according to claim 1 as a main component, a negative electrode comprising a hydrogen storage alloy or cadmium oxide as a main component, a separator, an alkaline electrolyte, and the like. Alkaline storage battery consisting of a battery case that houses
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001095742A JP4956863B2 (en) | 2001-03-29 | 2001-03-29 | Cathode active material for alkaline storage battery and alkaline storage battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001095742A JP4956863B2 (en) | 2001-03-29 | 2001-03-29 | Cathode active material for alkaline storage battery and alkaline storage battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002298840A true JP2002298840A (en) | 2002-10-11 |
JP4956863B2 JP4956863B2 (en) | 2012-06-20 |
Family
ID=18949753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001095742A Expired - Fee Related JP4956863B2 (en) | 2001-03-29 | 2001-03-29 | Cathode active material for alkaline storage battery and alkaline storage battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4956863B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007335154A (en) * | 2006-06-13 | 2007-12-27 | Tanaka Chemical Corp | Alkaline battery cathode active material |
JP2008059892A (en) * | 2006-08-31 | 2008-03-13 | Matsushita Electric Ind Co Ltd | Positive electrode for alkaline storage battery and alkaline storage battery |
JP2008251392A (en) * | 2007-03-30 | 2008-10-16 | Tanaka Chemical Corp | Nickel positive electrode active material and method for producing the same |
JP2009187963A (en) * | 2009-05-26 | 2009-08-20 | Tdk Corp | Composite particle for electrode and electrochemical device |
KR20220077081A (en) | 2020-12-01 | 2022-06-08 | 도요타 지도샤(주) | Coated cathode active material, method for producing coated cathode active material, and all solid state battery |
WO2023223628A1 (en) | 2022-05-20 | 2023-11-23 | パナソニックIpマネジメント株式会社 | Alkaline storage battery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0528992A (en) * | 1991-07-18 | 1993-02-05 | Matsushita Electric Ind Co Ltd | Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same |
JPH117949A (en) * | 1997-06-16 | 1999-01-12 | Sanyo Electric Co Ltd | Non-sintered nickel electrode for alkali storage battery |
JPH11147719A (en) * | 1997-09-10 | 1999-06-02 | Matsushita Electric Ind Co Ltd | Positive active material for alkaline storage battery and method for producing the same |
JP2001357845A (en) * | 2000-06-16 | 2001-12-26 | Canon Inc | Nickel-based secondary battery and method of manufacturing for this secondary battery |
-
2001
- 2001-03-29 JP JP2001095742A patent/JP4956863B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0528992A (en) * | 1991-07-18 | 1993-02-05 | Matsushita Electric Ind Co Ltd | Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same |
JPH117949A (en) * | 1997-06-16 | 1999-01-12 | Sanyo Electric Co Ltd | Non-sintered nickel electrode for alkali storage battery |
JPH11147719A (en) * | 1997-09-10 | 1999-06-02 | Matsushita Electric Ind Co Ltd | Positive active material for alkaline storage battery and method for producing the same |
JP2001357845A (en) * | 2000-06-16 | 2001-12-26 | Canon Inc | Nickel-based secondary battery and method of manufacturing for this secondary battery |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007335154A (en) * | 2006-06-13 | 2007-12-27 | Tanaka Chemical Corp | Alkaline battery cathode active material |
JP2008059892A (en) * | 2006-08-31 | 2008-03-13 | Matsushita Electric Ind Co Ltd | Positive electrode for alkaline storage battery and alkaline storage battery |
JP2008251392A (en) * | 2007-03-30 | 2008-10-16 | Tanaka Chemical Corp | Nickel positive electrode active material and method for producing the same |
JP2009187963A (en) * | 2009-05-26 | 2009-08-20 | Tdk Corp | Composite particle for electrode and electrochemical device |
KR20220077081A (en) | 2020-12-01 | 2022-06-08 | 도요타 지도샤(주) | Coated cathode active material, method for producing coated cathode active material, and all solid state battery |
EP4009401A1 (en) | 2020-12-01 | 2022-06-08 | Toyota Jidosha Kabushiki Kaisha | Coated cathode active material, method for producing coated cathode active material, and all solid state battery |
US11990619B2 (en) | 2020-12-01 | 2024-05-21 | Toyota Jidosha Kabushiki Kaisha | Coated cathode active material, method for producing coated cathode active material, and all solid state battery |
WO2023223628A1 (en) | 2022-05-20 | 2023-11-23 | パナソニックIpマネジメント株式会社 | Alkaline storage battery |
Also Published As
Publication number | Publication date |
---|---|
JP4956863B2 (en) | 2012-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2208270C2 (en) | Positive-plate composite material and its manufacturing process | |
JP3558590B2 (en) | Method for producing positive electrode active material for alkaline storage battery | |
EP0817291A2 (en) | Non-sintered nickel electrode for alkaline storage battery, alkaline storage battery including the same, and method for production of non-sintered nickel electrode for alkaline storage battery | |
US6251538B1 (en) | Positive active material for alkaline battery and electrode using the same | |
JP2004179064A (en) | Nickel-hydrogen secondary battery | |
JP4321997B2 (en) | Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same | |
JP2000003707A (en) | Alkaline storage battery | |
JP2001202957A (en) | Non-sintered nickel electrode for alkaline secondary batteries | |
JP2947284B2 (en) | Non-sintered positive electrode for alkaline storage battery and alkaline storage battery using the same | |
EP1113512A1 (en) | Positive active material for alkaline secondary cell and method for producing the same, and alkaline secondary cell using the positive active material and method for producing the same | |
JP4956863B2 (en) | Cathode active material for alkaline storage battery and alkaline storage battery using the same | |
JP5148553B2 (en) | COMPOSITE MATERIAL FOR ELECTRODE, PROCESS FOR PRODUCING THE SAME AND ALKALINE STORAGE BATTERY USING THE SA | |
JP2002304991A (en) | Nickel electrode for alkaline storage battery, and alkaline storage battery | |
JP3114402B2 (en) | Manufacturing method of alkaline storage battery | |
JP3794176B2 (en) | Non-sintered positive electrode for alkaline storage battery and alkaline storage battery using the same | |
JP2001266867A (en) | Alkaline storage battery and positive electrode for alkaline storage battery | |
JP2001043855A (en) | Non-sintered nickel electrode for alkali storage battery | |
JPH10326616A (en) | Alkaline storage battery | |
JP2003249215A (en) | Method for producing positive electrode active material for alkaline storage battery and alkaline storage battery using positive electrode active material obtained by this method | |
JP2002358957A (en) | Nickel pole for alkaline storage battery and alkaline storage battery | |
JP5309479B2 (en) | Alkaline storage battery | |
JPH10294109A (en) | Nonsintered nickel pole for alkaline storage battery | |
JP2002260648A (en) | Positive electrode for nickel-metal hydride secondary battery, method of manufacturing the same, nickel-metal hydride secondary battery incorporating the positive electrode | |
JP3433043B2 (en) | Non-sintered nickel electrode for alkaline storage batteries | |
JP2013211122A (en) | Alkaline storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071127 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20071212 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110329 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110628 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110920 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120221 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120305 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150330 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |