JP2002293977A - Method for producing preliminarily foamed particle of thermoplastic polyester-based resin - Google Patents
Method for producing preliminarily foamed particle of thermoplastic polyester-based resinInfo
- Publication number
- JP2002293977A JP2002293977A JP2001100802A JP2001100802A JP2002293977A JP 2002293977 A JP2002293977 A JP 2002293977A JP 2001100802 A JP2001100802 A JP 2001100802A JP 2001100802 A JP2001100802 A JP 2001100802A JP 2002293977 A JP2002293977 A JP 2002293977A
- Authority
- JP
- Japan
- Prior art keywords
- expanded particles
- temperature
- density
- particles
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、熱可塑性ポリエス
テル系樹脂の予備発泡粒子の製造方法に関する。更に詳
しくは、本発明は、型内発泡成形に好適に使用できる低
密度な熱可塑性ポリエステル系樹脂予備発泡粒子の製造
方法に関する。The present invention relates to a method for producing pre-expanded particles of a thermoplastic polyester resin. More specifically, the present invention relates to a method for producing low-density thermoplastic polyester resin pre-expanded particles that can be suitably used for in-mold foam molding.
【0002】[0002]
【従来の技術】熱可塑性ポリエステル系樹脂は剛性が大
きく、形状安定性がよく、耐薬品性等にも優れるとい
う、ポリスチレンやポリエチレンには見られない優れた
性質を有している。そこで熱可塑性ポリエステル系樹脂
を発泡させて、軽量で、しかも耐熱性、断熱性、緩衝性
等にも優れた発泡成形体を製造することが企図されてい
る。特に、より低密度な発泡粒子、例えば、0.037
g/cm3を下回るような予備発泡粒子は、軽量断熱材
や構造部材の芯材用途等に用いることができるため求め
られていた。2. Description of the Related Art Thermoplastic polyester resins have excellent properties not found in polystyrene and polyethylene, such as high rigidity, good shape stability, and excellent chemical resistance. Therefore, it has been proposed to foam a thermoplastic polyester-based resin to produce a foamed molded article which is lightweight and excellent in heat resistance, heat insulating properties, cushioning properties and the like. In particular, lower density foamed particles, for example 0.037
Pre-expanded particles having a particle size of less than g / cm 3 have been demanded because they can be used for lightweight heat insulating materials, core materials for structural members, and the like.
【0003】熱可塑性ポリエステル系樹脂の型内発泡成
形体の製造方法として、例えば、熱可塑性ポリエステル
系樹脂の予備発泡粒子の結晶化ピーク温度を130℃〜
180℃とすることで、融着性に優れた型内発泡成形体
を得る方法が知られている。特にその密度が0.1g/
cm3以下であるような低密度の型内発泡成形体を得る
場合、例えば、押出発泡等で1次発泡粒子を作成後、加
圧した無機ガス中に保持して含浸した後加熱再発泡する
工程を複数回繰り返すことで、0.1g/cm 3以下の
低密度な予備発泡粒子を作ることができることは知られ
ている。このような方法は、任意の密度の予備発泡粒子
を得るための簡便な方法として有用であるが、一回の再
発泡工程で予備発泡粒子を低密度化するには限界があ
り、この工程を繰り返し行うことが必要であった。In-mold foaming of thermoplastic polyester resin
As a method for producing the shape, for example, thermoplastic polyester
Crystallization peak temperature of pre-expanded particles
In-mold foamed product excellent in fusion bonding property at 180 ° C
Is known. In particular, the density is 0.1 g /
cmThreeObtain a low-density in-mold foam molded article as follows
In this case, for example, after the primary expanded particles are formed by extrusion foaming or the like,
Heat re-foaming after impregnating while holding in pressurized inorganic gas
0.1g / cm by repeating the process several times Threebelow
It is known that low density pre-expanded particles can be made
ing. Such a method involves pre-expanded particles of any density
Is useful as a convenient way to obtain
There is a limit to reducing the density of pre-expanded particles in the expansion process.
Therefore, it was necessary to repeat this step.
【0004】[0004]
【発明が解決しようとする課題】このように再発泡する
工程を複数回繰り返す方法は、コストアップにもなる
し、再発泡を繰り返す度に、予備発泡粒子の結晶化度が
高くなり、型内発泡成形における融着性に悪影響を与え
易く、再発泡を繰り返すたびに良好な性質の成形体が得
にくくなるという問題を生じる。本発明はこのような問
題を解決し、より少ない再発泡工程、好ましくは1回の
再発泡工程によって、より低密度、例えば、0.037
g/cm3を下回るような予備発泡粒子を容易に製造で
きる予備発泡粒子の製造方法を提供することを目的とす
る。The method of repeating the step of re-expanding a plurality of times as described above also increases the cost, and the crystallinity of the pre-expanded particles increases each time re-expansion is repeated. There is a problem that the fusion-bonding property in the foam molding tends to be adversely affected, and it becomes difficult to obtain a molded article having good properties each time re-foaming is repeated. The present invention solves such problems and requires less re-foaming steps, preferably one re-foaming step, resulting in lower densities, for example 0.037.
An object of the present invention is to provide a method for producing pre-expanded particles that can easily produce pre-expanded particles of less than g / cm 3 .
【0005】[0005]
【課題を解決するための手段】上記した問題点について
本発明の発明者らは鋭意検討した結果、上記課題を解決
するためには、そのような条件よりも、含浸させる前の
一次発泡粒子の温度を調節することが、非常に大事であ
ることを見出し、本発明に至った。かくして本発明によ
れば、熱可塑性ポリエステル系樹脂の一次発泡粒子を加
圧ガス中に保持してガスを気相含浸させ、その後加熱し
て再発泡させるに際して、ガスを含浸する前の一次発泡
粒子の温度が含浸時の温度より5℃以上低いことを特徴
とする熱可塑性ポリエステル系樹脂予備発泡粒子の製造
方法が提供される。上記方法によれば、汎用の含浸設備
を用いて、低密度な予備発泡粒子を得ることができる。Means for Solving the Problems As a result of the inventors of the present invention diligently examining the above-mentioned problems, in order to solve the above-mentioned problems, the primary foamed particles before impregnation were more satisfactorily devised than under such conditions. Controlling the temperature was found to be very important, and led to the present invention. Thus, according to the present invention, when the primary expanded particles of the thermoplastic polyester resin are held in a pressurized gas and the gas is impregnated in the gas phase, and then heated and re-expanded, the primary expanded particles before the gas is impregnated. Is lower than the temperature at the time of impregnation by 5 ° C. or more, and a method for producing thermoplastic polyester-based resin pre-expanded particles is provided. According to the above method, low-density pre-expanded particles can be obtained using a general-purpose impregnating equipment.
【0006】[0006]
【発明の実施の形態】以下に、本発明を詳細に説明す
る。本発明で用いられる熱可塑性ポリエステル系樹脂
は、芳香族ジカルボン酸と二価のアルコールとからつく
られた高分子量の鎖状ポリエステルである。芳香族ジカ
ルボン酸としては、テレフタル酸のほかに、イソフタル
酸、2,6−ナフタレンジカルボン酸、ジフェニルエー
テルジカルボン酸、ジフェノキシジカルボン酸等が挙げ
られる。また、二価のアルコールとしては、エチレング
リコールのほかに、シクロヘキサンジメタノール、α−
ブチレングリコール(1,2−ブタンジオール)、β−
ブチレングリコール(1,3−ブタンジオール)、テト
ラメチレングリコール(1,4−ブタンジオール)、
2,3−ブチレングリコール(2,3−ブタンジオー
ル)、ネオペンチルグリコール等が挙げられる。また、
芳香族ジカルボン酸の一部にトリメリット酸又はピロメ
リット酸等のトリ又はテトラカルボン酸を用いたり、二
価のアルコールの一部にグリセリン又はペンタエリスリ
トール等の三価又は四価のアルコールを用いてもよい。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The thermoplastic polyester resin used in the present invention is a high-molecular-weight chain polyester made from an aromatic dicarboxylic acid and a dihydric alcohol. Examples of the aromatic dicarboxylic acid include, in addition to terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, diphenylether dicarboxylic acid, diphenoxydicarboxylic acid, and the like. As the dihydric alcohol, in addition to ethylene glycol, cyclohexane dimethanol, α-
Butylene glycol (1,2-butanediol), β-
Butylene glycol (1,3-butanediol), tetramethylene glycol (1,4-butanediol),
Examples thereof include 2,3-butylene glycol (2,3-butanediol) and neopentyl glycol. Also,
Using a tri- or tetracarboxylic acid such as trimellitic acid or pyromellitic acid as a part of the aromatic dicarboxylic acid, or using a trihydric or tetrahydric alcohol such as glycerin or pentaerythritol as a part of the dihydric alcohol Is also good.
【0007】これら芳香族ジカルボン酸と二価アルコー
ルとから作られた高分子量で鎖状ポリエステルは、例え
ばポリエチレンテレフタレート樹脂として市販されてい
る。しかし、融着性に優れた熱可塑性ポリエステル系樹
脂の予備発泡粒子を得るためには、ジカルボン酸として
イソフタル酸を使用するか、あるいはジオールとしてシ
クロヘキサンジメタノール使用するか、またはこの両者
を併用するとともに、いずれか一方を単独で使用する場
合はその単独での含有割合を、また両者を併用する場合
はその合計割合を、それぞれ全成分中の0.5〜10重
量%の範囲に限定した熱可塑性ポリエステル系樹脂を用
いることが好ましい。その際、上記の各成分を所定の割
合、つまり前記のようにイソフタル酸及び/又はシクロ
ヘキサンジメタノールを、総量で0.5〜10重量%の
範囲で含有した原料を、従来同様に重縮合反応させるこ
とによって製造された熱可塑性ポリエステル系樹脂を使
用しても構わないし、イソフタル酸及び/又はシクロヘ
キサンジメタノールの含有割合の異なる2種以上の熱可
塑性ポリエステル系樹脂を、その全成分中に占めるイソ
フタル酸及び/又はシクロヘキサンジメタノールの含有
割合が、総量で0.5〜10重量%の範囲内となるよう
に配合し、例えば押出機等を用いて、加熱下で溶融、混
合することによって製造しても構わない。[0007] High-molecular-weight linear polyesters made from these aromatic dicarboxylic acids and dihydric alcohols are commercially available, for example, as polyethylene terephthalate resins. However, in order to obtain pre-expanded particles of a thermoplastic polyester resin having excellent fusibility, use isophthalic acid as a dicarboxylic acid, or use cyclohexane dimethanol as a diol, or a combination of both. When either one is used alone, the content of the single component is used alone, and when both are used in combination, the total content is limited to a range of 0.5 to 10% by weight of all components. It is preferable to use a polyester resin. At that time, a raw material containing the above-mentioned components in a predetermined ratio, that is, isophthalic acid and / or cyclohexanedimethanol in a total amount of 0.5 to 10% by weight as described above, is subjected to a polycondensation reaction as in the past. It is possible to use a thermoplastic polyester resin produced by the above-mentioned method, or to use isophthalic acid and / or two or more thermoplastic polyester resins having different content ratios of cyclohexanedimethanol in all the components. It is manufactured by blending so that the content ratio of acid and / or cyclohexane dimethanol is in the range of 0.5 to 10% by weight in total, and melting and mixing under heating using, for example, an extruder. It does not matter.
【0008】この方法によれば、予備発泡粒子の製造段
階で、イソフタル酸及び/又はシクロヘキサンジメタノ
ールの含有割合の異なる2種以上の熱可塑性ポリエステ
ル系樹脂の配合割合を変更するだけで、製造された予備
発泡粒子における上記両成分の含有割合を調整できる。
このため、樹脂の合成段階で両成分の含有割合を調整す
る場合に比べて調整作業を簡略化でき、仕様の変更等に
柔軟に対応できるようになるという利点がある。また、
例えば配合する熱可塑性ポリエステル系樹脂の1種とし
て、使用済みのペットボトル等から回収、再生した材料
等を使用することにより、資源の有効な再利用化とゴミ
の減量化、ならびに予備発泡粒子の低コスト化を図るこ
とが可能となるという利点もある。なお上記の方法にお
いては、2種以上の熱可塑性ポリエステル系樹脂間での
エステル交換反応により各樹脂がアロイ化して均一な熱
可塑性ポリエステル系樹脂となるように、加熱下で十分
に溶融、混合してやるのが好ましい。According to this method, the pre-expanded particles can be produced only by changing the mixing ratio of two or more thermoplastic polyester resins having different contents of isophthalic acid and / or cyclohexane dimethanol. The content ratio of both components in the pre-expanded particles can be adjusted.
For this reason, there is an advantage that the adjustment operation can be simplified as compared with the case where the content ratio of both components is adjusted at the resin synthesis stage, and the specification can be flexibly changed. Also,
For example, by using materials recovered and reclaimed from used PET bottles and the like as one type of thermoplastic polyester resin to be blended, effective reuse of resources and reduction of dust, and reduction of pre-expanded particles There is also an advantage that cost can be reduced. In the above method, the two resins are melted and mixed sufficiently under heating so that each resin is alloyed by a transesterification reaction between two or more kinds of thermoplastic polyester resins to form a uniform thermoplastic polyester resin. Is preferred.
【0009】ここで、押出機等を用いて高圧溶融下、熱
可塑性ポリエステル系樹脂を、発泡剤と混合した後一次
発泡させ、次いで切断し、再発泡させて本発明の予備発
泡粒子を製造する場合には、上記のように2種以上の樹
脂の溶融、混合による均一な熱可塑性ポリエステル系樹
脂の作製を、少なくとも一次発泡粒子製造時の発泡剤の
混合に先だって押出機中で行い、その後連続して一次発
泡粒子を製造することが、効率的であり好ましい。ただ
し、あらかじめ別の装置を用いて2種以上の樹脂を溶
融、混合して作製しておいた均一な熱可塑性ポリエステ
ル系樹脂を押出機に投入して、本発明の予備発泡粒子を
製造しても構わない。Here, the thermoplastic polyester-based resin is mixed with a foaming agent under high-pressure melting using an extruder or the like, then primary-foamed, then cut and re-foamed to produce the pre-expanded particles of the present invention. In this case, the production of a uniform thermoplastic polyester-based resin by melting and mixing two or more resins as described above is performed in an extruder at least prior to mixing of a blowing agent at the time of production of primary expanded particles, and then continuously. It is efficient and preferable to produce primary expanded particles. However, a uniform thermoplastic polyester-based resin prepared by melting and mixing two or more resins in advance using another apparatus is put into an extruder to produce pre-expanded particles of the present invention. No problem.
【0010】熱可塑性ポリエステル系樹脂の一次発泡粒
子は、熱可塑性ポリエステル系樹脂と発泡剤とを高温、
高圧下で溶融混合し、発泡させることにより得ることが
できる。例えば、押出機を用いた押出発泡法が効率的で
あり、好適に採用される。使用できる押出機は、特に限
定されず、十分な溶融、混合能力を有する押出機が好適
であり、通常この種の押出発泡法に使用される単軸押出
機、二軸押出機等や、これらを連結したタンデム型の押
出機が挙げられる。押出機の口金としてはいろいろなも
のを使用することができる。例えば、円環状の口金、フ
ラット口金、ノズル口金、更には複数のノズルが配置さ
れたマルチノズル口金等が挙げられる。これらの口金を
使用して、シート状、板状、ロッド状等の、種々の形状
の発泡体を作ることができる。発泡体を、上述した所定
の形状とするためには、いろいろな方法が採用される。[0010] The primary expanded particles of the thermoplastic polyester resin are obtained by heating the thermoplastic polyester resin and a foaming agent at a high temperature.
It can be obtained by melt-mixing under high pressure and foaming. For example, an extrusion foaming method using an extruder is efficient and preferably employed. The extruder that can be used is not particularly limited, and an extruder having a sufficient melting and mixing ability is suitable, and a single-screw extruder, a twin-screw extruder, or the like usually used for this type of extrusion foaming method, And a tandem-type extruder in which are connected. Various extruders can be used. For example, an annular base, a flat base, a nozzle base, and a multi-nozzle base provided with a plurality of nozzles may be used. Using these bases, foams of various shapes such as sheet, plate, rod, etc. can be produced. Various methods are employed for forming the foam into the above-mentioned predetermined shape.
【0011】例えばシート状の発泡体を得るには、円環
状の口金から押し出された円筒状の発泡体を、マンドレ
ル上を進行させてシート状としたり、フラット口金より
押し出された厚みのある板状の発泡体を、チルロールに
よりシート状としたりすればよい。また厚みのある板状
の発泡体を得るためには、一対の金属板に密接させなが
ら進行させて、所定の厚みとする方法等が採用される。
発泡体の冷却方法としては、空冷や水冷のほか、温度調
整された冷却装置に接触させる等のいろいろな方法を用
いることができる。発泡体の冷却はできる限り速やかに
行い、一次発泡粒子の結晶化が過度に進行するのを抑制
することが重要である。このようにして製造した各種形
状の発泡体を適宜、切断して円柱状、角状、チップ状等
とすることで、一次発泡粒子が完成する。For example, in order to obtain a sheet-like foam, a cylindrical foam extruded from an annular base is formed into a sheet by advancing on a mandrel, or a thick plate extruded from a flat base. The foam may be formed into a sheet by a chill roll. In addition, in order to obtain a thick plate-like foam, a method in which the foam is advanced while being brought into close contact with a pair of metal plates to obtain a predetermined thickness is employed.
As a method for cooling the foam, various methods such as air cooling and water cooling, and contact with a temperature-controlled cooling device can be used. It is important to cool the foam as quickly as possible and to suppress excessive crystallization of the primary foam particles. Primary foam particles are completed by appropriately cutting the foams of various shapes manufactured as described above into a columnar shape, a square shape, a chip shape, or the like.
【0012】上記発泡体の冷却と切断は、種々のタイミ
ングで行うことができる。例えば口金から押し出された
発泡体を、発泡中ないし発泡完了後の任意の時点で水中
に通す等して冷却した後、ペレタイザー等を用いて所定
の形状、大きさに切断してもよい。また口金から押し出
された、発泡完了直前もしくは発泡完了直後でかつ冷却
前の発泡体をすぐさま切断した後、冷却してもよい。更
にシート状に押し出された発泡体は、一旦巻き取り機等
によってロール状に巻き取って保管した後、粉砕機や切
断機にて切断してもよい。本発明の一次発泡粒子の大き
さは、平均粒径で表しておよそ0.5〜5mm程度が好
ましい。また、本発明の一次発泡粒子の結晶化度は、お
よそ1〜8%程度であるのが好ましい。The cooling and cutting of the foam can be performed at various timings. For example, the foam extruded from the die may be cooled by passing it through water at any time during or after foaming, and then cut into a predetermined shape and size using a pelletizer or the like. Alternatively, the foam that has been extruded from the die, immediately before the completion of foaming or immediately after the completion of foaming, and immediately before cooling may be cut and then cooled. Further, the foam extruded in a sheet shape may be once wound up in a roll shape by a winder or the like, stored, and then cut by a crusher or a cutting machine. The size of the primary foamed particles of the present invention is preferably about 0.5 to 5 mm as an average particle size. The crystallinity of the primary expanded particles of the present invention is preferably about 1 to 8%.
【0013】一次発泡粒子の結晶化度が8%を超える
と、後の工程で加熱膨張させ発泡成形する際に二次発泡
力が弱くなるとともに、一次発泡粒子から得られる予備
発泡粒子同士の融着性が十分でないために、機械的強度
の弱い発泡成形体となってしまうおそれがある。また結
晶化度が1%より低くなると、一次発泡粒子をつくる際
に、まだ余熱をもっている一次発泡粒子同士が合着しや
すくなって好ましくない。なお、一次発泡粒子の結晶化
度は、上記の範囲内でも特に1〜7%程度であるのが好
ましく、1〜6%程度であるのが更に好ましい。結晶化
度(%)は、先に述べた結晶化ピーク温度の測定と同様
に、示差走査熱量計(DSC)を使用して、日本工業規
格JIS K7121所載の測定方法に準じて測定した
冷結晶化熱量と、融解熱量とから、次式によって求めら
れる。If the degree of crystallinity of the primary expanded particles exceeds 8%, the secondary expansion force will be weakened in the subsequent step of expanding by heating and foaming, and the fusion of the pre-expanded particles obtained from the primary expanded particles will be reduced. Since the adhesiveness is not sufficient, there is a possibility that a foamed molded article having low mechanical strength may be obtained. On the other hand, if the crystallinity is lower than 1%, the primary foamed particles still having residual heat tend to coalesce when forming the primary foamed particles, which is not preferable. In addition, the crystallinity of the primary expanded particles is particularly preferably about 1 to 7%, and more preferably about 1 to 6%, within the above range. The crystallinity (%) was measured using a differential scanning calorimeter (DSC) in the same manner as in the measurement of the crystallization peak temperature described above, according to the measurement method described in Japanese Industrial Standards JIS K7121. It is determined from the heat of crystallization and the heat of fusion by the following equation.
【0014】[0014]
【数1】 (Equation 1)
【0015】なお、式中の完全結晶PETのモルあたり
の融解熱量は、高分子データハンドブック〔培風館発
行〕の記載から26.9kJとする。具体的には、測定
試料としての所定量の一次発泡粒子をDSCの測定容器
に充てんして、10℃/分の昇温速度で昇温しながら冷
結晶化熱量と融解熱量とを測定し、その測定結果から、
上記式に基づいて一次発泡粒子の結晶化度が求められ
る。一次発泡粒子の連続気泡率は、5〜35%に調整す
ることが好ましい。一次発泡粒子の連続気泡率が35%
を超えると、再発泡性が低くなり、低密度化が困難とな
る恐れがあるため好ましくない。一方、5%未満では型
内発泡成形時の発泡成形体の収縮が大きくなるため好ま
しくない。The heat of fusion per mole of the perfectly crystalline PET in the formula is 26.9 kJ from the description in the Polymer Data Handbook [published by Baifukan]. Specifically, a predetermined amount of primary expanded particles as a measurement sample is filled in a DSC measurement container, and the heat of cold crystallization and the heat of fusion are measured while heating at a heating rate of 10 ° C./min, From the measurement results,
The crystallinity of the primary expanded particles is determined based on the above equation. The open cell ratio of the primary expanded particles is preferably adjusted to 5 to 35%. 35% open cell ratio of primary expanded particles
Exceeding the range is not preferred because the re-foaming property may be low and it may be difficult to reduce the density. On the other hand, if it is less than 5%, the shrinkage of the foam molded article during in-mold foam molding is undesirably increased.
【0016】また、一次発泡粒子の密度(嵩密度)は
0.11〜0.15g/cm3の範囲に調整することが
好ましい。0.15g/cm3より大きい場合では気泡
膜強度が強く再発泡しにくいため好ましくない。また
0.11g/cm3より小さい場合では気泡が破れるた
め連続気泡率が高くなり、やはり低密度化しにくい結果
となるため好ましくない。一次発泡粒子には、いろいろ
な添加剤を添加してもよい。添加剤としては、発泡剤の
他に、例えば気泡調整剤、難燃剤、着色剤等が挙げられ
る。また、熱可塑性ポリエステル系樹脂の溶融特性を改
良するために、グリシジルフタレートのようなエポキシ
化合物、ピロメリット酸二無水物のような酸無水物、炭
酸ナトリウムのようなI、II族の金属化合物、スルホ
ン酸金属塩化合物等を改質剤として単体、もしくは二種
以上混合して添加することができる。特にこれらの改質
剤は、一次発泡粒子の再発泡性を改善させるだけでな
く、一次発泡粒子の独立気泡率を向上させるため、一次
発泡粒子の膨張力を大きくできるので有効である。The density (bulk density) of the primary expanded particles is preferably adjusted in the range of 0.11 to 0.15 g / cm 3 . If it is larger than 0.15 g / cm 3, it is not preferable because the cell membrane strength is high and it is difficult to re-foam. If it is less than 0.11 g / cm 3 , the cells are broken, so that the ratio of open cells becomes high. Various additives may be added to the primary expanded particles. Examples of the additive include, in addition to the foaming agent, for example, a foam regulator, a flame retardant, a colorant, and the like. Further, in order to improve the melting properties of the thermoplastic polyester resin, epoxy compounds such as glycidyl phthalate, acid anhydrides such as pyromellitic dianhydride, Group I and II metal compounds such as sodium carbonate, A metal sulfonate compound or the like can be added as a modifier alone or as a mixture of two or more. In particular, these modifiers are effective because they not only improve the re-foamability of the primary expanded particles, but also increase the expansion force of the primary expanded particles in order to increase the closed cell ratio of the primary expanded particles.
【0017】本発明で使用できる発泡剤としては、大別
すると、熱可塑性ポリエステル系樹脂の軟化点以上の温
度で分解してガスを発生する固体化合物、加熱すると熱
可塑性ポリエステル系樹脂内で気化する液体、加圧下で
熱可塑性ポリエステル系樹脂に混合させ得る不活性な気
体等が挙げられる。固体化合物としては、例えばアゾジ
カルボンアミド、ジニトロソペンタメチレンテトラミ
ン、ヒドラゾルジカルボンアミド、重炭酸ナトリウム等
が挙げられる。また、気化する液体としては、例えばプ
ロパン、n−ブタン、イソブタン、n−ぺンタン、イソ
ペンタン、へキサンのような飽和脂肪族炭化水素、べン
ゼン、キシレン、トルエンのような芳香族炭化水素、塩
化メチル、フレオン(登録商標)のようなハロゲン化炭
化水素、ジメチルエーテル、メチル−tert−ブチル
エーテルのようなエーテル化合物等が挙げられる。The blowing agent which can be used in the present invention is roughly classified into a solid compound which decomposes at a temperature higher than the softening point of the thermoplastic polyester resin to generate gas, and which is vaporized in the thermoplastic polyester resin when heated. Examples thereof include a liquid and an inert gas that can be mixed with the thermoplastic polyester resin under pressure. Examples of the solid compound include azodicarbonamide, dinitrosopentamethylenetetramine, hydrazoldicarbonamide, sodium bicarbonate and the like. Examples of the liquid to be vaporized include saturated aliphatic hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane and hexane; aromatic hydrocarbons such as benzene, xylene and toluene; Examples thereof include halogenated hydrocarbons such as methyl and Freon (registered trademark), and ether compounds such as dimethyl ether and methyl-tert-butyl ether.
【0018】更に、不活性な気体としては、例えば二酸
化炭素、窒素等が挙げられる。なお、熱可塑性ポリエス
テル系樹脂を、押出機を用いて高圧溶融下、発泡剤と混
合し、押し出して一次発泡させた後、切断して一次発泡
粒子を製造する場合には、押出機の口金から押し出され
た瞬間に気化して溶融樹脂を発泡させるとともに、当該
溶融樹脂の熱を奪う発泡剤を使用することが好ましい。
そのような発泡剤としては、例えば飽和脂肪族炭化水
素、ハロゲン化炭化水素等が挙げられる。これらの発泡
剤は、溶融した熱可塑性ポリエステル系樹脂を冷却する
作用をし、一次発泡粒子の結晶化度を低く抑える効果が
あるため好ましい。Further, examples of the inert gas include carbon dioxide, nitrogen and the like. When the thermoplastic polyester resin is mixed with a foaming agent under high pressure melting using an extruder, extruded and primarily foamed, and then cut to produce primary foamed particles, from the die of the extruder, It is preferable to use a foaming agent that vaporizes the molten resin at the moment of being extruded and foams the molten resin, and also removes the heat of the molten resin.
Such foaming agents include, for example, saturated aliphatic hydrocarbons, halogenated hydrocarbons, and the like. These foaming agents are preferable because they act to cool the molten thermoplastic polyester resin and have an effect of suppressing the crystallinity of the primary foamed particles to a low level.
【0019】また熱可塑性ポリエステル系樹脂には、そ
の結晶性や結晶化の速度に大きな影響を及ぼさない範囲
で、例えばポリプロピレン系樹脂等のポリオレフィン系
樹脂、ポリエステル系等の熱可塑性エラストマー、ポリ
カーボネート、アイオノマー等を添加してもよい。かく
して得られた一次発泡粒子は、押出発泡の後、48時間
以上、熟成させることが好ましい。発泡後の冷却によっ
て、形成された気泡の内部は減圧状態になるが、その後
空気が入っていくことにより、減圧状態は解消され、気
泡膜強度も上昇する。これが熟成であるが、熟成時間が
短いと、減圧度がまだ高く十分な気泡膜強度が得られて
いないため、再発泡時の発泡性が低くなり低密度な予備
発泡粒子を得ることが困難である。The thermoplastic polyester resin may be, for example, a polyolefin resin such as a polypropylene resin, a thermoplastic elastomer such as a polyester resin, a polycarbonate or an ionomer as long as the crystallinity and the rate of crystallization are not significantly affected. Etc. may be added. The thus obtained primary expanded particles are preferably aged for 48 hours or more after extrusion foaming. By the cooling after the foaming, the inside of the formed bubble is reduced in pressure. However, when air enters thereafter, the reduced pressure is eliminated and the strength of the bubble film increases. This is aging, but if the aging time is short, the degree of decompression is not yet high and sufficient foam film strength has not been obtained, so it is difficult to obtain low-density pre-expanded particles due to low foamability during refoaming. is there.
【0020】本発明では、ガスの含浸前の一次発泡粒子
の温度が含浸時の温度より5℃以上低くなるような条件
下に、一次発泡粒子を保持することが必要であり、5℃
以上低くすることにより、一回の再発泡工程で一次発泡
粒子の密度に対して、予備発泡粒子の密度を約1/4以
下に下げることができる。ここで、含浸前の温度は、含
浸時の温度より約10℃以上低いことが好ましく、約1
5〜100℃低い温度範囲がより好ましい。再発泡性
は、圧入されたガス量の影響を大きく受けるが、熱可塑
性ポリエステル系樹脂からなる一次発泡粒子は、温度の
上昇と共に柔らかくなる性質を有するため、内圧付与を
行う場合、加圧により一次発泡粒子は潰されて体積が小
さくなり、粒子に入るガス量が低下するため、結果とし
て再発泡性が低下すると考えられる。そこで、一次発泡
粒子の潰れを低減し、非常に低密度な予備発泡粒子を得
るには、ガス含浸前の一次発泡粒子の温度を、−50〜
20℃の温度範囲に調整することが好ましく、−45〜
15℃の温度範囲が更に好ましく、−40〜10℃の温
度範囲が特に好ましい。In the present invention, it is necessary to maintain the primary expanded particles under such a condition that the temperature of the primary expanded particles before the gas impregnation becomes lower than the temperature at the time of the impregnation by 5 ° C. or more.
By making the density lower, the density of the pre-expanded particles can be reduced to about 1/4 or less of the density of the primary expanded particles in one re-expansion step. Here, the temperature before the impregnation is preferably about 10 ° C. or lower than the temperature at the time of the impregnation.
A temperature range lower by 5 to 100C is more preferable. Refoamability is greatly affected by the amount of gas injected, but primary expanded particles made of a thermoplastic polyester resin have a property of becoming softer as the temperature rises. It is considered that the foamed particles are crushed and reduced in volume, and the amount of gas entering the particles is reduced. Therefore, in order to reduce the collapse of the primary expanded particles and obtain very low-density pre-expanded particles, the temperature of the primary expanded particles before gas impregnation is set to -50 to
It is preferable to adjust the temperature to 20 ° C.,
A temperature range of 15 ° C is more preferred, and a temperature range of -40 to 10 ° C is particularly preferred.
【0021】予備発泡粒子の温度が20℃を超えると、
樹脂が比較的柔らかくなっており、前述した通り、ガス
含浸時の圧力により粒子が潰れるため、ガスの入る空間
が少なく、含浸ガス量が少なくなり、再発泡性が低下す
る恐れがある。−50〜20℃の範囲では比較的樹脂は
硬くなっているため、含浸時に粒子が潰れにくくその中
に多くの気体を圧入することができるため、低密度な予
備発泡粒子を得ることができると考えられる。−50℃
未満でも粒子が潰れることはないが、市販されている多
くの冷凍設備はそれ以下の温度に下げることができない
ため、これ以下の温度に下げるのはコストアップにな
る。安定した低密度の予備発泡粒子を得るためには、温
度管理された場所にガス含浸前の一次発泡粒子を保管す
ることが望ましい。一次発泡粒子の温度を均一にするた
めには、例えば保冷庫で保管すれば低温で安定させるこ
とができる。本明細書でいう一次発泡粒子の温度は、粒
子の表面の温度である。When the temperature of the pre-expanded particles exceeds 20 ° C.,
Since the resin is relatively soft and the particles are crushed by the pressure at the time of gas impregnation as described above, there is a possibility that the space into which the gas enters is small, the amount of the impregnated gas is reduced, and the re-foaming property is reduced. In the range of −50 to 20 ° C., since the resin is relatively hard, the particles are hardly crushed during the impregnation, and a large amount of gas can be injected into the particles, so that low-density pre-expanded particles can be obtained. Conceivable. -50 ° C
If the temperature is less than this, the particles will not be crushed, but since many commercially available refrigeration equipment cannot be lowered to a temperature lower than this, lowering the temperature below this increases the cost. In order to obtain stable low-density pre-expanded particles, it is desirable to store the primary expanded particles before gas impregnation in a place where the temperature is controlled. In order to make the temperature of the primary expanded particles uniform, for example, if the particles are stored in a cool box, they can be stabilized at a low temperature. The temperature of the primary expanded particles referred to herein is the temperature of the surface of the particles.
【0022】ガス含浸に使用するガス種は特に制限はな
いが、炭酸ガス、窒素、空気等の無機ガスが好ましい。
ガス含浸は、ゲージ圧で0.1〜10MPaが好まし
く、0.1〜1MPa程度がより好ましい。0.1MP
a未満ではその効果は小さいし、10MPaを超える圧
力で含浸を行うためには、更に高圧での使用が可能な設
備が必要になり、コストアップになるし、作業に危険を
伴うため好ましくない。含浸時間については、1〜24
時間程度が望ましい。1時間未満では含浸が十分ではな
く、予備発泡粒子の密度が高くなるため好ましくない。
再発泡時の加熱温度は55〜90℃程度であるのが好ま
しい。55℃未満では、再発泡の速度が遅すぎて目的の
密度に到達する前に、含浸させたガスが逸散するため密
度が高くなるため好ましくない。90℃を超えると粒子
同士が結合し易くなり、また結晶化度の上昇も顕著にな
るため後の発泡成形工程を考えると好ましくない。The type of gas used for gas impregnation is not particularly limited, but inorganic gases such as carbon dioxide, nitrogen and air are preferred.
The gas impregnation is preferably performed at a gauge pressure of 0.1 to 10 MPa, more preferably about 0.1 to 1 MPa. 0.1MP
If it is less than a, the effect is small, and in order to perform impregnation at a pressure exceeding 10 MPa, equipment that can be used at a higher pressure is required, which increases the cost and is dangerous because the operation involves danger. About impregnation time, 1-24
Time is desirable. If the time is less than 1 hour, the impregnation is not sufficient and the density of the pre-expanded particles increases, which is not preferable.
The heating temperature at the time of refoaming is preferably about 55 to 90 ° C. If the temperature is lower than 55 ° C., the re-foaming speed is too slow and the impregnated gas escapes before the target density is reached. If the temperature exceeds 90 ° C., the particles are likely to be bonded to each other, and the crystallinity is significantly increased.
【0023】本発明によれば、一回の再発泡工程によっ
て0.023〜0.037g/cm 3程度の低密度の予
備発泡粒子を得ることができる。得られた低密度な熱可
塑性ポリエステル系樹脂の予備発泡粒子は先に述べたよ
うな型内発泡成形方法、つまり、閉鎖しうるが密閉し得
ない金型内に予備発泡粒子を充填し、加熱媒体として蒸
気を導入して2次発泡させ、発泡粒子同士を熱融着させ
ることで、型内発泡成形体を得ることができる。得られ
た成形体に収縮が見られる場合は、経日と共に、減圧状
態の気泡の中に空気が浸入するいわゆる熟成をさせるこ
とで良好な成形体とすることもできるし、収縮した成形
体を加圧ガス中に保持することで強制的に熟成を促進さ
せ良好な成形体とすることもできる。また、金型内に予
備発泡粒子を充填する前に、予備発泡粒子を加圧された
ガス中に保持することで、ガスを含浸(内圧付与)さ
せ、発泡粒子に十分な発泡力を付与することで、より外
観美麗で融着性にも優れた成形体を得ることができる。
その際、予備発泡粒子の吸引、金型への充填、成形を自
動で行う自動成形機を使用することで、より効率的に、
低密度な型内発泡成形体を得ることができる。According to the present invention, a single refoaming step
0.023-0.037 g / cm ThreeLow density
Pre-expanded particles can be obtained. Obtained low-density heat
The pre-expanded particles of plastic polyester resin are described above.
In-mold foam molding method, that is, can be closed but can be closed
Fill the pre-expanded particles into a mold that does not
Air is introduced to cause secondary foaming, and the foamed particles are thermally fused to each other.
By doing so, an in-mold foam molded article can be obtained. Obtained
If shrinkage is observed in the molded body,
Soaking air into the air bubbles
It is possible to make a good molded body with
Maintaining body in pressurized gas forcibly accelerates ripening
It is also possible to obtain a good molded product. In addition,
Pre-expanded particles were pressurized before filling with expanded particles
By holding in the gas, the gas is impregnated (internal pressure is applied).
And give the foaming particles sufficient foaming power
It is possible to obtain a molded article having a beautiful appearance and excellent fusion property.
At this time, suction of pre-expanded particles, filling into the mold, and molding are performed automatically.
By using an automatic molding machine that performs motion,
A low-density in-mold foam molded article can be obtained.
【0024】[0024]
【実施例】以下に、実施例、比較例を挙げて、この発明
の優れた点を具体的に説明する。なお、使用した熱可塑
性ポリエステル系樹脂の結晶化ピーク温度及び製造され
た予備発泡粒子の結晶化度は、いずれも前述したように
日本工業規格JIS K7121所載の測定方法に準じ
て求めた。また、イソフタル酸及び/又はシクロヘキサ
ンジメタノールの含有割合及び嵩密度は、それぞれ下記
の方法で測定した。EXAMPLES The advantages of the present invention will be specifically described below with reference to examples and comparative examples. In addition, the crystallization peak temperature of the thermoplastic polyester resin used and the crystallinity of the produced pre-expanded particles were both determined according to the measurement method described in Japanese Industrial Standard JIS K7121 as described above. The content ratio and bulk density of isophthalic acid and / or cyclohexanedimethanol were measured by the following methods, respectively.
【0025】(イソフタル酸の含有割合の測定)試料約
100mgを耐圧テフロン(登録商標)容器中に秤量
後、和光純薬工業社製の吸光分析用ジメチルスルホキシ
ド10mlと、5N水酸化ナトリウム−メタノール溶液
6mlとを加えた後、上記耐圧テフロン容器をSUS製
の耐圧加熱容器に入れて確実に密閉後、100℃で15
時間加熱した。次に、加熱後の耐圧加熱容器を室温冷却
し、完全に冷却した状態で、耐圧テフロン容器を取り出
し、内容物を200mlビーカーに移して150ml程
度まで蒸留水を加えた。次に、内容物が完全に溶解した
ことを確認後、塩酸にてpH6.5〜7.5に中和し、
中和後200mlまでメスアップしたものを更に蒸留水
で10倍に希釈して試料溶液とした。(Measurement of Isophthalic Acid Content Ratio) Approximately 100 mg of a sample was weighed into a pressure-resistant Teflon (registered trademark) container, and then 10 ml of dimethyl sulfoxide for absorption analysis manufactured by Wako Pure Chemical Industries, Ltd. and a 5N sodium hydroxide-methanol solution were used. After adding 6 ml, the pressure-resistant Teflon container is put into a pressure-resistant heating container made of SUS and securely sealed.
Heated for hours. Next, the pressure-resistant heating container after heating was cooled to room temperature, and in a state of being completely cooled, the pressure-resistant Teflon container was taken out, the content was transferred to a 200 ml beaker, and distilled water was added to about 150 ml. Next, after confirming that the contents were completely dissolved, the solution was neutralized to pH 6.5 to 7.5 with hydrochloric acid.
After neutralization, the volume of the sample was increased to 200 ml and further diluted 10 times with distilled water to obtain a sample solution.
【0026】次に、この試料溶液と、イソフタル酸標準
溶液とを用いて、高速液体クロマトグラフ(HPLC)
装置にて下記の条件で測定を行った。イソフタル酸標準
溶液としては、東京化成工業社製のイソフタル酸試薬を
蒸留水で溶解したものを使用した。 装置:Waters HPLC LC−module1 カラム:GL社製 Inertsil ODS−25μ
m(4.6×250) カラム温度:23℃ 常温移動相:0.1%リン酸/アセトニトリル=80/
20 流速:0.5ml/分 分析時間:50分 注入量:50μl 検出波長:210nmNext, using this sample solution and an isophthalic acid standard solution, high performance liquid chromatography (HPLC)
The measurement was performed by the apparatus under the following conditions. As the isophthalic acid standard solution, a solution obtained by dissolving an isophthalic acid reagent manufactured by Tokyo Chemical Industry Co., Ltd. in distilled water was used. Apparatus: Waters HPLC LC-module1 Column: Inertsil ODS-25μ manufactured by GL
m (4.6 × 250) Column temperature: 23 ° C. Room temperature mobile phase: 0.1% phosphoric acid / acetonitrile = 80 /
20 Flow rate: 0.5 ml / min Analysis time: 50 min Injection volume: 50 μl Detection wavelength: 210 nm
【0027】次に、標準溶液から得たイソフタル酸のピ
ーク面積をX軸に、濃度をY軸にとって検量線を作成
し、得られた検量線を使用して、試料溶液中のイソフタ
ル酸の濃度(μg/ml)を算出した。そして上記濃度
から、次式を使用して熱可塑性ポリエステル系樹脂中の
イソフタル酸(IPA)の含有割合(重量%)を計算し
た。Next, a calibration curve was prepared using the peak area of isophthalic acid obtained from the standard solution on the X axis and the concentration on the Y axis, and using the obtained calibration curve, the concentration of isophthalic acid in the sample solution was determined. (Μg / ml) was calculated. Then, the content ratio (% by weight) of isophthalic acid (IPA) in the thermoplastic polyester resin was calculated from the above concentration using the following equation.
【0028】[0028]
【数2】 (Equation 2)
【0029】(シクロヘキサンジメタノールの含有割合
の測定)試料約100mgを耐圧テフロン容器中に秤量
後、和光純薬工業社製の吸光分析用ジメチルスルホキシ
ド10mlと、5N水酸化ナトリウム−メタノール溶液
6mlとを加えた後、上記耐圧テフロン容器をSUS製
の耐圧加熱容器に入れて確実に密閉後、100℃で15
時間加熱した。次に、加熱後の耐圧加熱容器を室温冷却
し、完全に冷却した状態で、耐圧テフロン容器を取り出
し、内容物を100mlビーカーに移して70ml程度
まで特級試薬メタノールを加えた。次に、内容物が完全
に溶解したことを確認後、塩酸にてpH6.5〜7.5
に中和し、中和後100mlまでメスアップしたものを
更に特級試薬アセトンで10倍に希釈して試料溶液とし
た。次に、この試料溶液と、シクロヘキサンジメタノー
ル標準溶液とをそれぞれ別個に10ml遠心管中に採取
し、遠心分離しながら溶媒を蒸発乾固させた後、東京化
成工業社製のTMS化剤0.2mlを加えて60℃で1
時間加熱した。(Measurement of content ratio of cyclohexane dimethanol) About 100 mg of a sample was weighed in a pressure-resistant Teflon container, and 10 ml of dimethyl sulfoxide for absorption analysis manufactured by Wako Pure Chemical Industries, Ltd. and 6 ml of a 5N sodium hydroxide-methanol solution were added. After the addition, place the above pressure-resistant Teflon container in a SUS pressure-resistant heating container and securely seal it.
Heated for hours. Next, the pressure-resistant heating container after heating was cooled to room temperature, and in a state of being completely cooled, the pressure-resistant Teflon container was taken out, the content was transferred to a 100 ml beaker, and a special-grade reagent methanol was added to about 70 ml. Next, after confirming that the contents were completely dissolved, the pH was adjusted to 6.5 to 7.5 with hydrochloric acid.
The sample was further diluted to 10 ml with a special-grade reagent acetone to obtain a sample solution. Next, the sample solution and the cyclohexanedimethanol standard solution were separately collected in 10 ml centrifuge tubes, and the solvent was evaporated to dryness while centrifuging. Add 2 ml and add 1 at 60 ° C.
Heated for hours.
【0030】そして加熱後の液を、ガスクロマトグラフ
(GC)装置を用いて、下記の条件で測定した。 装置:Perkin Elmer GC Autosy
stem カラム:DB−5(0.2mmφ×30m×0.25μ
m) オーブン温度:100℃(2分間)〜R1〜200℃〜
R2〜320℃(5分間) 昇温速度:R1=10℃/分、R2=40℃/分 分析時間:20分間 注入温度:300℃ 検出器:FID(300℃) ガス圧力:18psi 次に、標準溶液から得たシクロヘキサンジメタノールの
TMS化物のピーク面積をX軸に、濃度をY軸にとって
検量線を作成し、得られた検量線を使用して、試料溶液
中のシクロヘキサンジメタノールの濃度(μg/ml)
を算出した。そして上記濃度から、次式を使用して熱可
塑性ポリエステル系樹脂中のシクロヘキサンジメタノー
ル(CHDM)の含有割合(重量%)を計算した。The heated liquid was measured using a gas chromatograph (GC) under the following conditions. Equipment: Perkin Elmer GC Autosy
stem column: DB-5 (0.2 mmφ × 30 m × 0.25 μ)
m) Oven temperature: 100 ° C (for 2 minutes)-R1-200 ° C-
R2-320 ° C. (5 minutes) Heating rate: R1 = 10 ° C./min, R2 = 40 ° C./min Analysis time: 20 minutes Injection temperature: 300 ° C. Detector: FID (300 ° C.) Gas pressure: 18 psi A calibration curve is created using the peak area of the TMS compound of cyclohexanedimethanol obtained from the standard solution on the X axis and the concentration on the Y axis, and using the obtained calibration curve, the concentration of cyclohexanedimethanol in the sample solution ( μg / ml)
Was calculated. From the above concentration, the content (% by weight) of cyclohexanedimethanol (CHDM) in the thermoplastic polyester resin was calculated using the following equation.
【0031】[0031]
【数3】 (Equation 3)
【0032】(嵩密度の測定)日本工業規格JIS K
8767に所載の方法に準拠して、次式により、発泡体
としての予備発泡粒子、及び発泡成形体の嵩密度(g/
cm3)を求めた。(Measurement of Bulk Density) Japanese Industrial Standard JIS K
According to the method described in No. 8767, the pre-expanded particles as a foam and the bulk density (g /
cm 3 ).
【0033】[0033]
【数4】 (Equation 4)
【0034】(融着率の測定)各実施例、比較例の予備
発泡粒子から製造した発泡成形体を折り曲げて厚み方向
に破断させた後、破断面に存在する全ての発泡粒子の個
数と、そのうち粒子自体が材料破壊した発泡粒子の個数
とを計数した。そして次式により、粒子同士の融着性の
基準となる融着率(%)を求めた。(Measurement of fusion rate) After the foam molded article produced from the pre-expanded particles of each of Examples and Comparative Examples was bent and broken in the thickness direction, the number of all expanded particles present in the fractured surface was determined. Among them, the number of expanded particles in which the material itself was broken was counted. Then, a fusion rate (%), which is a reference of the fusion property between the particles, was determined by the following equation.
【0035】[0035]
【数5】 (Equation 5)
【0036】(連続気泡率)メスシリンダー内に所定量
の水を入れ、次いでこの水に、所定量の予備発泡粒子を
完全に水没させた際の水位の上昇量、すなわち水の体積
増加量を、予備発泡粒子の見かけ密度V1として求め
た。また同じ予備発泡粒子の閉鎖気泡部分の体積V
2を、空気比較式比重計(東京サイエンス社製、空気比
較比重計1000型)を用いて測定した。そして下式に
より、予備発泡粒子の連続気泡率を求めた。 連続気泡率(%)=(V1−V2)/V1×100(Continuous Bubble Ratio) A predetermined amount of water is put into a measuring cylinder, and then the rise in water level when a predetermined amount of pre-expanded particles are completely submerged in this water, that is, the volume increase of water is measured. It was determined as the apparent density V 1 of the pre-expanded particles. In addition, the volume V of the closed cell portion of the same pre-expanded particles
2 was measured using an air comparison hydrometer (manufactured by Tokyo Science Co., Ltd., air comparison hydrometer 1000 type). Then, the open cell ratio of the pre-expanded particles was determined by the following equation. Open cell ratio (%) = (V 1 −V 2 ) / V 1 × 100
【0037】(予備発泡粒子の温度測定)予備発泡粒子
の表面の温度を、微小表面用温度センサ(理化工業社
製)を用いて測定した。(Measurement of Temperature of Pre-expanded Particles) The temperature of the surface of the pre-expanded particles was measured by using a micro surface temperature sensor (manufactured by Rika Kogyo Co., Ltd.).
【0038】実施例1 エチレングリコール、シクロヘキサンジメタノールとテ
レフタル酸とを重縮合反応させて合成された熱可塑性ポ
リエステル系樹脂100重量部と、改質剤としてのピロ
メリット酸二無水物0.15重量部と、改質助剤として
の炭酸ナトリウム0.03重量部とを押出機(口径:6
5mm、L/D:35)に投入した。次いで、投入物を
バレル温度270〜280℃の条件で溶融、混合しなが
ら、バレルの途中に接続した圧入管から、発泡剤として
のブタンを混合物に対して1.1重量%の割合で圧入し
た。次に、溶融状態の混合物を、バレルの先端に接続し
たマルチノズル金型から押し出して一次発泡させた後、
直ちに冷却水槽で冷却した。そして冷却されたストラン
ド状の発泡体を十分に水切りした後、ペレタイザーを用
いて小粒状に切断して一次発泡粒子を製造した。Example 1 100 parts by weight of a thermoplastic polyester resin synthesized by polycondensation reaction of ethylene glycol, cyclohexane dimethanol and terephthalic acid, and 0.15 parts by weight of pyromellitic dianhydride as a modifier Parts and 0.03 parts by weight of sodium carbonate as a reforming aid were extruded (caliber: 6
5 mm, L / D: 35). Next, while the input material was melted and mixed under the condition of a barrel temperature of 270 to 280 ° C., butane as a blowing agent was injected at a ratio of 1.1% by weight to the mixture from a press-fitting tube connected in the middle of the barrel. . Next, after the mixture in the molten state is extruded from the multi-nozzle mold connected to the tip of the barrel to cause primary foaming,
It was immediately cooled in a cooling water bath. After the cooled strand-shaped foam was sufficiently drained, it was cut into small particles using a pelletizer to produce primary expanded particles.
【0039】得られた一次発泡粒子の嵩密度は0.14
g/cm3、結晶化度は2.7%、連続気泡率は17.
0%、CHDMの含有量は0.9重量%で結晶化ピーク
温度は136.7℃であった。一次発泡粒子製造後、J
IS Z8703により、23℃に管理された室内で1
20時間保管し、熟成を完了させた。熟成が完了した一
次発泡粒子を、−42℃の温度に調整した冷凍庫中で3
6時間保管した。この時の一次発泡粒子表面の温度は−
40℃であった。その後、直ちに密閉容器に入れ、空気
を0.95MPaの圧力で圧入して10時間保持した。
この時の内圧付与温度は23℃であった。その後、密閉
容器から取り出し、攪拌翼のついた再発泡装置中で水蒸
気/空気混合加熱媒体によって、加熱温度68℃、加熱
時間3分の条件で加熱し、再発泡させて予備発泡粒子を
得た。得られた予備発泡粒子の密度は0.0240g/
cm3と低密度であった。The bulk density of the obtained primary expanded particles is 0.14.
g / cm 3 , crystallinity 2.7%, open cell rate 17.
The content of CHDM was 0%, the content of CHDM was 0.9% by weight, and the crystallization peak temperature was 136.7 ° C. After the production of primary expanded particles, J
According to IS Z8703, one room temperature is controlled at 23 ° C.
It was stored for 20 hours to complete aging. The aged primary expanded particles were placed in a freezer adjusted to a temperature of -42 ° C for 3 hours.
Stored for 6 hours. At this time, the temperature of the surface of the primary expanded particles is-
40 ° C. Then, the container was immediately placed in a closed container, and air was injected at a pressure of 0.95 MPa and held for 10 hours.
The internal pressure application temperature at this time was 23 ° C. Thereafter, the mixture was taken out of the closed container, heated in a re-foaming device equipped with a stirring blade with a steam / air mixed heating medium at a heating temperature of 68 ° C. for a heating time of 3 minutes, and re-foamed to obtain pre-foamed particles. . The density of the obtained pre-expanded particles is 0.0240 g /
The density was as low as cm 3 .
【0040】この予備発泡粒子を、金型内に充填する前
に、予備発泡粒子を0.2MPaに加圧された炭酸ガス
中に2時間保持することで、ガスを含浸(内圧付与)さ
せ、予備発泡粒子に十分な発泡力を付与した後、予備発
泡粒子は自動吸引により成形機の金型内に充填され、
0.06MPaで15秒の加熱を行った後、冷却して取
り出し、発泡成形体を得た。得られた成形体の密度は
0.0245g/cm3と低く、融着率90%で外観も
美麗な成形体であった。Before filling the pre-expanded particles into a mold, the pre-expanded particles are kept in carbon dioxide gas pressurized to 0.2 MPa for 2 hours to impregnate the gas (apply the internal pressure). After giving sufficient foaming power to the pre-expanded particles, the pre-expanded particles are filled into the mold of the molding machine by automatic suction,
After heating at 0.06 MPa for 15 seconds, it was cooled and taken out to obtain a foamed molded product. The density of the obtained molded article was as low as 0.0245 g / cm 3, and it was a molded article having a beautiful appearance with a fusion rate of 90%.
【0041】実施例2 エチレングリコールとイソフタル酸、テレフタル酸とを
重縮合反応させて合成された熱可塑性ポリエステル系樹
脂100重量部を用いたこと以外は、実施例1と同様に
して一次発泡粒子を作成した。得られた一次発泡粒子の
嵩密度は0.14g/cm3、結晶化度は4.5%、連
続気泡率は16.0%、IPA含有量は1.5重量%で
結晶化ピーク温度は135.1℃であった。一次発泡粒
子製造後、23℃に管理された室内で120時間保管
し、熟成を完了させた。熟成が完了した一次発泡粒子
を、−17℃の温度に調整した冷凍庫中で36時間保管
した。この時の一次発泡粒子表面の温度は−15℃であ
った。その後、直ちに密閉容器に入れ、空気を0.95
MPaの圧力で圧入して10時間保持した。この時の内
圧付与温度は23℃であった。その後、密閉容器から取
り出し、攪拌翼のついた再発泡装置中で水蒸気/空気混
合加熱媒体によって、加熱温度68℃、加熱時間3分の
条件で加熱し、再発泡させて予備発泡粒子を得た。得ら
れた予備発泡粒子の密度は0.0245g/cm3と低
密度であった。この予備発泡粒子を用いて、実施例1と
同様にして発泡成形体を得た。発泡体の密度は、0.0
250g/cm3と低く、融着率90%で外観も美麗な
成形体であった。Example 2 Primary expanded particles were prepared in the same manner as in Example 1 except that 100 parts by weight of a thermoplastic polyester resin synthesized by polycondensation reaction of ethylene glycol with isophthalic acid and terephthalic acid was used. Created. The bulk density of the obtained primary expanded particles is 0.14 g / cm 3 , the degree of crystallinity is 4.5%, the open cell ratio is 16.0%, the IPA content is 1.5% by weight, and the crystallization peak temperature is 135.1 ° C. After the production of the primary expanded particles, the particles were stored in a room maintained at 23 ° C. for 120 hours to complete aging. The matured primary expanded particles were stored for 36 hours in a freezer adjusted to a temperature of -17 ° C. At this time, the temperature of the surface of the primary expanded particles was −15 ° C. Then, immediately put in a closed container, air was 0.95
It was press-fitted at a pressure of MPa and maintained for 10 hours. The internal pressure application temperature at this time was 23 ° C. Then, it was taken out of the closed container, heated in a refoaming device equipped with stirring blades with a steam / air mixed heating medium at a heating temperature of 68 ° C. for a heating time of 3 minutes, and refoamed to obtain pre-foamed particles. . The density of the obtained pre-expanded particles was as low as 0.0245 g / cm 3 . Using the pre-expanded particles, a foam molded article was obtained in the same manner as in Example 1. The density of the foam is 0.0
The molded product was as low as 250 g / cm 3 , had a fusion rate of 90%, and had a beautiful appearance.
【0042】実施例3 保管する温度を3℃としたこと以外は実施例2と同様に
して再発泡させた。3℃に保管しておいた一次発泡粒子
表面の温度は5℃であった。得られた予備発泡粒子の密
度は0.0275g/cm3と低密度であった。この予
備発泡粒子を用いて、実施例1と同様にして発泡成形体
を得た。発泡体の密度は、0.0280g/cm3と低
く、融着率90%で外観も美麗な成形体であった。Example 3 Refoaming was carried out in the same manner as in Example 2 except that the storage temperature was 3 ° C. The temperature of the surface of the primary expanded particles stored at 3 ° C. was 5 ° C. The density of the obtained pre-expanded particles was as low as 0.0275 g / cm 3 . Using the pre-expanded particles, a foam molded article was obtained in the same manner as in Example 1. The foam had a low density of 0.0280 g / cm 3 , a fusion rate of 90%, and a beautiful appearance.
【0043】実施例4 熟成させるときの温度を5℃としたこと以外は実施例3
と同様にして再発泡させた。得られた予備発泡粒子の密
度は0.0270g/cm3と低密度であり、熟成温度
の違いによる再発泡密度への影響は見られなかった。こ
の予備発泡粒子を用いて、実施例1と同様にして発泡成
形体を得た。発泡体の密度は、0.0275g/cm3
と低く、融着率90%で外観も美麗な成形体であった。Example 4 Example 3 was carried out except that the aging temperature was 5 ° C.
It was refoamed in the same manner as described above. The density of the obtained pre-expanded particles was as low as 0.0270 g / cm 3, and there was no effect on the re-expanded density due to the difference in aging temperature. Using the pre-expanded particles, a foam molded article was obtained in the same manner as in Example 1. The density of the foam is 0.0275 g / cm 3
It was a molded article having a low fusion rate of 90% and a beautiful appearance.
【0044】実施例5 熟成させるときの温度を40℃としたこと以外は実施例
3と同様にして再発泡させた。得られた予備発泡粒子の
密度は0.0285g/cm3と低密度であり、熟成温
度の違いによる再発泡密度への影響は見られなかった。
この予備発泡粒子を用いて、実施例1と同様にして発泡
成形体を得た。発泡体の密度は、0.0290g/cm
3と低く、融着率90%で外観も美麗な成形体であっ
た。Example 5 Refoaming was carried out in the same manner as in Example 3 except that the aging temperature was 40 ° C. The density of the obtained pre-expanded particles was as low as 0.0285 g / cm 3, and there was no effect on the re-expanded density due to the difference in aging temperature.
Using the pre-expanded particles, a foam molded article was obtained in the same manner as in Example 1. The density of the foam is 0.0290 g / cm
The molded product was as low as 3 and had a fusion rate of 90% and a beautiful appearance.
【0045】実施例6 圧入する空気の圧力を0.6MPaとしたこと以外は、
実施例2と同様にして再発泡させた。得られた予備発泡
粒子の密度は0.0325g/cm3と低密度であっ
た。この予備発泡粒子を用いて、実施例1と同様にして
発泡成形体を得た。発泡体の密度は、0.0330g/
cm3と低く、融着率80%で外観も美麗な成形体であ
った。Example 6 Except that the pressure of the air to be injected was set to 0.6 MPa,
Refoaming was carried out in the same manner as in Example 2. The density of the obtained pre-expanded particles was as low as 0.0325 g / cm 3 . Using the pre-expanded particles, a foam molded article was obtained in the same manner as in Example 1. The density of the foam is 0.0330 g /
The molded article was as low as 3 cm 3, and had a fusion rate of 80% and a beautiful appearance.
【0046】比較例1 保管する温度を23℃としたこと以外は実施例2と同様
にして再発泡させた。23℃に保管しておいた一次発泡
粒子の表面の温度は23℃であった。得られた予備発泡
粒子の密度は0.0380g/cm3と高く、低密度な
予備発泡粒子を得ることはできなかった。この予備発泡
粒子を用いて、実施例1と同様にして発泡成形体を得
た。融着率80%で外観も美麗な成形体であったが、発
泡体の密度は、0.0385g/cm3と高かった。Comparative Example 1 Refoaming was carried out in the same manner as in Example 2 except that the storage temperature was 23 ° C. The temperature of the surface of the primary expanded particles stored at 23 ° C. was 23 ° C. The density of the obtained pre-expanded particles was as high as 0.0380 g / cm 3, and low-density pre-expanded particles could not be obtained. Using the pre-expanded particles, a foam molded article was obtained in the same manner as in Example 1. Although the molded article had a beautiful fusion appearance with a fusion rate of 80%, the density of the foam was as high as 0.0385 g / cm 3 .
【0047】比較例2 保管する温度を37℃としたこと以外は実施例2と同様
にして再発泡させた。37℃に保管しておいた一次発泡
粒子の表面の温度は35℃であった。得られた予備発泡
粒子の密度は0.0455g/cm3と高く、低密度な
予備発泡粒子を得ることはできなかった。この予備発泡
粒子を用いて、実施例1と同様にして発泡成形体を得
た。融着率70%で外観も美麗な成形体であったが、発
泡体の密度は、0.0462g/cm3と高かった。Comparative Example 2 Refoaming was carried out in the same manner as in Example 2 except that the storage temperature was 37 ° C. The temperature of the surface of the primary expanded particles stored at 37 ° C. was 35 ° C. The density of the obtained pre-expanded particles was as high as 0.0455 g / cm 3, and low-density pre-expanded particles could not be obtained. Using the pre-expanded particles, a foam molded article was obtained in the same manner as in Example 1. Although the molded article had a beautiful fusion appearance with a fusion rate of 70%, the density of the foam was as high as 0.0462 g / cm 3 .
【0048】比較例3 熟成させる時の温度を40℃としたこと以外は、比較例
1と同様にして再発泡させた。得られた予備発泡粒子の
密度は0.0390g/cm3と高く、低密度な予備発
泡粒子を得ることはできなかった。この予備発泡粒子を
用いて、実施例1と同様にして発泡成形体を得た。融着
率80%で外観も美麗な成形体であったが、発泡体の密
度は、0.0395g/cm3と高かった。Comparative Example 3 Refoaming was carried out in the same manner as in Comparative Example 1 except that the aging temperature was 40 ° C. The density of the obtained pre-expanded particles was as high as 0.0390 g / cm 3, and low-density pre-expanded particles could not be obtained. Using the pre-expanded particles, a foam molded article was obtained in the same manner as in Example 1. The molded article had a fusion rate of 80% and a beautiful appearance, but the density of the foam was as high as 0.0395 g / cm 3 .
【0049】比較例4 内圧付与時の温度を5℃としたこと以外は、比較例2と
同様にして再発泡させた。得られた予備発泡粒子の密度
は0.0430g/cm3と高く、低密度な予備発泡粒
子を得ることはできなかった。この予備発泡粒子を用い
て、実施例1と同様にして発泡成形体を得た。融着率8
0%で外観も美麗な成形体であったが、発泡体の密度
は、0.0435g/cm3と高かった。Comparative Example 4 Refoaming was carried out in the same manner as in Comparative Example 2 except that the temperature during application of the internal pressure was 5 ° C. The density of the obtained pre-expanded particles was as high as 0.0430 g / cm 3, and low-density pre-expanded particles could not be obtained. Using the pre-expanded particles, a foam molded article was obtained in the same manner as in Example 1. Fusion rate 8
At 0%, the molded article had a beautiful appearance, but the density of the foam was as high as 0.0435 g / cm 3 .
【0050】[0050]
【表1】 [Table 1]
【0051】実施例に見られるように、ガスの含浸前の
一次発泡粒子の温度が含浸時の温度より5℃以上低いこ
とにより、予備発泡粒子の低密度化が実現された。この
低密度な予備発泡粒子を用いて得られる発泡成形体は、
外観良好で融着率80%以上と、融着性にも優れたもの
であった。得られた成形体の密度は予備発泡粒子の密度
と同様の低密度なものであった。比較例に見られるよう
に、ガスの含浸前の一次発泡粒子の温度が含浸時の温度
と同程度か、高い場合、予備発泡粒子の再発泡率が低く
なる傾向が確認された。As can be seen from the examples, the density of the pre-expanded particles was reduced by lowering the temperature of the primary expanded particles before the gas impregnation by 5 ° C. or more than the temperature at the time of the impregnation. An expanded molded article obtained using the low-density pre-expanded particles is:
The appearance was good, the fusion rate was 80% or more, and the fusion property was excellent. The density of the obtained molded article was as low as the density of the pre-expanded particles. As seen from the comparative example, when the temperature of the primary expanded particles before the gas impregnation was equal to or higher than the temperature at the time of the impregnation, the re-expansion ratio of the pre-expanded particles tended to decrease.
【0052】[0052]
【発明の効果】以上、詳述したように本発明によれば、
ガスの含浸前の一次発泡粒子の温度を含浸時の温度より
5℃以上低くすることで、より高倍率に再発泡すること
が可能となり、特に一回に再発泡工程によって約1/4
の密度にまで低密度化することができるので、再発泡工
程をより少ない回数とすることが可能となり、予備発泡
粒子の結晶化度をより抑制した予備発泡粒子、換言する
とより発泡成形性に優れた予備発泡粒子を製造すること
ができる。As described in detail above, according to the present invention,
By lowering the temperature of the primary expanded particles before the gas impregnation by 5 ° C. or more from the temperature at the time of the impregnation, it is possible to re-expand at a higher magnification.
Since the density can be reduced to the density of the pre-expanded particles, it is possible to reduce the number of times of the re-expansion step, and to suppress the crystallinity of the pre-expanded particles more, in other words, to be more excellent in foam moldability. Pre-expanded particles can be produced.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 樽本 裕之 奈良県奈良市白毫寺町81 Fターム(参考) 4F074 AA65 BA32 BA33 CA23 CB53 CC04X CC04Y CC32X CC32Y CC34X CC34Y CC45 CC46 DA02 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroyuki Tarumoto 81 Faku-term, Hakushoji-cho, Nara City, Nara Prefecture 4F074 AA65 BA32 BA33 CA23 CB53 CC04X CC04Y CC32X CC32Y CC34X CC34Y CC45 CC46 DA02
Claims (3)
粒子を加圧ガス中に保持してガスを気相含浸させ、その
後加熱して再発泡させるに際して、ガスを含浸する前の
一次発泡粒子の温度が含浸時の温度より5℃以上低いこ
とを特徴とする熱可塑性ポリエステル系樹脂予備発泡粒
子の製造方法。When the gas is impregnated with a gas by holding the primary expanded particles of a thermoplastic polyester resin in a pressurized gas and then re-expanded by heating, the temperature of the primary expanded particles before the gas is impregnated. Is 5 ° C. or more lower than the temperature at the time of impregnation.
50〜20℃である請求項1に記載の製造方法。2. The temperature of the primary expanded particles before gas impregnation is-
The production method according to claim 1, wherein the temperature is 50 to 20C.
aである請求項1又は2に記載の製造方法。3. The pressure during gas impregnation is 0.1 to 10 MPa.
The production method according to claim 1 or 2, which is a.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001100802A JP3705748B2 (en) | 2001-03-30 | 2001-03-30 | Method for producing pre-expanded particles of thermoplastic polyester resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001100802A JP3705748B2 (en) | 2001-03-30 | 2001-03-30 | Method for producing pre-expanded particles of thermoplastic polyester resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002293977A true JP2002293977A (en) | 2002-10-09 |
JP3705748B2 JP3705748B2 (en) | 2005-10-12 |
Family
ID=18954213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001100802A Expired - Fee Related JP3705748B2 (en) | 2001-03-30 | 2001-03-30 | Method for producing pre-expanded particles of thermoplastic polyester resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3705748B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013031769A1 (en) * | 2011-08-29 | 2013-03-07 | 積水化成品工業株式会社 | Aromatic polyester-based resin foam particles for in-mold foam molding, method for producing same, in-mold foam molded body, composite structural member, and member for automobile |
WO2013088728A1 (en) * | 2011-12-16 | 2013-06-20 | 中本パックス株式会社 | Heat-resistant food container, and manufacturing method for same |
JP2014080022A (en) * | 2012-09-28 | 2014-05-08 | Sekisui Plastics Co Ltd | Foamed body for composite body, composite body and member for composing transportation equipment |
JP2015178553A (en) * | 2014-03-19 | 2015-10-08 | 積水化成品工業株式会社 | Aromatic polyester-based resin foam particle, method of producing aromatic polyester-based resin foam particle and molding |
TWI579205B (en) * | 2012-12-14 | 2017-04-21 | 中本包裝股份有限公司 | Heat-resistant food container and its manufacturing method |
-
2001
- 2001-03-30 JP JP2001100802A patent/JP3705748B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013031769A1 (en) * | 2011-08-29 | 2013-03-07 | 積水化成品工業株式会社 | Aromatic polyester-based resin foam particles for in-mold foam molding, method for producing same, in-mold foam molded body, composite structural member, and member for automobile |
WO2013088728A1 (en) * | 2011-12-16 | 2013-06-20 | 中本パックス株式会社 | Heat-resistant food container, and manufacturing method for same |
CN103826980A (en) * | 2011-12-16 | 2014-05-28 | 中本包装株式会社 | Heat-resistant food container, and manufacturing method for same |
JP5675982B2 (en) * | 2011-12-16 | 2015-02-25 | 中本パックス株式会社 | Heat resistant food container and manufacturing method thereof |
US9828163B2 (en) | 2011-12-16 | 2017-11-28 | Nakamoto Packs Co., Ltd. | Heat-resistant food container and its manufacturing method |
JP2014080022A (en) * | 2012-09-28 | 2014-05-08 | Sekisui Plastics Co Ltd | Foamed body for composite body, composite body and member for composing transportation equipment |
TWI579205B (en) * | 2012-12-14 | 2017-04-21 | 中本包裝股份有限公司 | Heat-resistant food container and its manufacturing method |
JP2015178553A (en) * | 2014-03-19 | 2015-10-08 | 積水化成品工業株式会社 | Aromatic polyester-based resin foam particle, method of producing aromatic polyester-based resin foam particle and molding |
Also Published As
Publication number | Publication date |
---|---|
JP3705748B2 (en) | 2005-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100436101B1 (en) | Method for producing foamed-in-mold product of aromatic polyester based resin | |
EP1160274B1 (en) | Pre-expanded particles of crystalline aromatic polyester-based resin, and in-mold expanded product and expanded laminate using the same | |
JP3705748B2 (en) | Method for producing pre-expanded particles of thermoplastic polyester resin | |
JP3631942B2 (en) | Method for producing pre-expanded particles of aromatic polyester resin | |
JP3631943B2 (en) | Method for producing pre-expanded particles of aromatic polyester resin | |
JP2001027387A (en) | Pipe heat retaining material | |
JP3594877B2 (en) | Method for producing aromatic polyester resin laminate | |
JP3722727B2 (en) | In-mold foam molded article of thermoplastic polyester resin, its production method and its use | |
JP3527662B2 (en) | Pre-expanded thermoplastic polyester resin particles, process for producing the same, and foamed molded article using the same | |
JP3532789B2 (en) | Pre-expanded particles of thermoplastic polyester resin | |
JP3704047B2 (en) | Pre-expanded particles of thermoplastic polyester resin and method for producing the same | |
JP3453539B2 (en) | Aromatic polyester resin foam molding and aromatic polyester resin prefoam used for molding | |
JP2001269960A (en) | Method for manufacturing in-mold foam molding made from aromatic polyester-based resin | |
JP3640596B2 (en) | Aromatic polyester resin pre-expanded particles for in-mold foam molding | |
JP3488400B2 (en) | Insulation material for floor heating and floor heating device using it | |
JP3721017B2 (en) | Thermoplastic polyester resin foam and method for producing the same | |
JP3631940B2 (en) | Aromatic polyester resin pre-expanded particles and foamed moldings using the same | |
JP2001018247A (en) | Core material for bumper and bumper using core material | |
JP2001081793A (en) | Wall surface construction material and wall surface structure | |
JP2001026217A (en) | Sun visor | |
JP2001329100A (en) | Aromatic polyester resin prefoamed particle and foamed molded product using the same | |
JP2001019788A (en) | Buffer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050705 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050726 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3705748 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080805 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090805 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100805 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100805 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110805 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120805 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120805 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130805 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130805 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140805 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |