[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002292484A - Device for processing groove using laser - Google Patents

Device for processing groove using laser

Info

Publication number
JP2002292484A
JP2002292484A JP2001100672A JP2001100672A JP2002292484A JP 2002292484 A JP2002292484 A JP 2002292484A JP 2001100672 A JP2001100672 A JP 2001100672A JP 2001100672 A JP2001100672 A JP 2001100672A JP 2002292484 A JP2002292484 A JP 2002292484A
Authority
JP
Japan
Prior art keywords
processing
groove
laser
assist gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001100672A
Other languages
Japanese (ja)
Inventor
Hideyuki Hamamura
秀行 濱村
Tatsuhiko Sakai
辰彦 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001100672A priority Critical patent/JP2002292484A/en
Publication of JP2002292484A publication Critical patent/JP2002292484A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for processing a groove using laser capable of realizing processing of a uniform groove without a projection in high speed linear scanning laser groove processing. SOLUTION: A cyclical groove is formed on the surface of steel plate by linear scan processing with laser beam in substantially the vertical direction against the rolling direction and in the device for processing the groove using laser on an oriented magnetic steel plate which improves an iron loss characteristic, a processing assist gas supply nozzle 2 is arranged in the in-plane including an incident axis A and a scan direction axis, and the forming angle B between an assist gas flow central axis and the scan direction axis is set smaller than 90 deg.. In the device for processing the groove, the assist gas pressure composition in the laser beam scanning direction is preferably 0.06 MPa to 0.15 MPa in the processing point. Further, in the device for processing the groove, array nozzles are used and blowing pressure and flow volume of two or more nozzles are independently controlled so that the pressure in the processing point is constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ加工により
溝を形成する溝加工装置で、特に、電磁鋼板表面にレー
ザ加工により溝を形成することで、歪み取り焼鈍に耐え
得る磁気特性の優れた方向性電磁鋼板を製造する方法及
び装置に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a groove forming apparatus for forming grooves by laser processing, and more particularly, to forming grooves by laser processing on the surface of an electromagnetic steel sheet to provide an excellent magnetic property capable of withstanding strain relief annealing. The present invention relates to a method and an apparatus for manufacturing a grain-oriented electrical steel sheet.

【0002】[0002]

【従来の技術】方向性電磁鋼板は鉄損を低減すること
が、エネルギー節約の観点から要望されている。その方
法として、レーザ照射により磁区を細分化する方法が、
既に、特公昭58−26405号公報に開示されてい
る。この方法による鉄損の低減は、レーザビームを照射
することによって生じる熱衝撃波の反力によって、方向
性電磁鋼板に応力歪みを導入し、磁区を細分化すること
によりヒステリシス損失の増加を抑えたまま渦電流損失
の低下を図るものである。
2. Description of the Related Art Oriented electrical steel sheets are required to reduce iron loss from the viewpoint of energy saving. As a method, a method of subdividing magnetic domains by laser irradiation,
It has already been disclosed in Japanese Patent Publication No. 58-26405. The reduction of iron loss by this method reduces the loss of hysteresis by introducing stress strain into the grain-oriented electrical steel sheet by the reaction force of the thermal shock wave generated by irradiating the laser beam and subdividing the magnetic domains. The purpose is to reduce eddy current loss.

【0003】しかし、この方法では、レーザ照射により
導入した歪みが焼鈍時に消失し、磁区細分化効果が失わ
れるという問題がある。したがって、この方法は、歪取
り焼鈍を必要としない積鉄芯トランス用としては使用で
きるが、歪取り焼鈍処理を必要とする巻鉄芯トランス用
としては使用できない。そこで、鉄損値低減効果が歪取
り焼鈍後も残るようにした方向性電磁鋼板の磁気特性改
善方法として、鋼板に応力歪レベルを超える形状変化を
与えて透磁率を変化させ、磁区を細分化する方法がさま
ざまに提案されている。たとえば、歯形ロールで鋼板を
押圧し、溝状または点状の凹みを鋼板表面に形成する方
法(特公昭63−44804号公報参照)、化学的エッ
チングによる凹みを鋼板表面に形成する方法(米国特許
第4750949号明細書参照)、あるいは、QスイッチCO2
ーザで鋼板表面に溝または櫛形溝を形成する方法(特開
平7−220913号公報参照)などが提案されてい
る。
However, in this method, there is a problem that the strain introduced by laser irradiation disappears during annealing, and the magnetic domain refining effect is lost. Therefore, this method can be used for an iron core transformer that does not require strain relief annealing, but cannot be used for a wound iron core transformer that requires strain relief annealing. Therefore, as a method for improving the magnetic properties of grain-oriented electrical steel sheets in which the iron loss value reduction effect remains even after strain relief annealing, the steel sheet is given a shape change exceeding the stress strain level to change the magnetic permeability, and the magnetic domains are subdivided. Various methods have been proposed. For example, a method in which a steel sheet is pressed with a toothed roll to form a groove-like or dot-like depression in the surface of the steel sheet (see Japanese Patent Publication No. 63-48404), and a method in which a depression by chemical etching is formed in the steel sheet surface (US Pat. No. 4,750,949), or a method of forming grooves or comb grooves on the surface of a steel plate by using a Q-switched CO 2 laser (see Japanese Patent Application Laid-Open No. 7-220913).

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来技術
のうち、歯形ロールを用いる機械的方法は、電磁鋼板の
硬度が高いため歯形が短期間で摩耗する。また、十分な
鉄損値の改善は得られない。さらに、高速処理という観
点、たとえば、ライン速度100mpmを実現すること
は困難である。
However, among the above-mentioned prior arts, the mechanical method using a toothed roll wears the tooth shape in a short time because the hardness of the magnetic steel sheet is high. Further, a sufficient improvement in iron loss value cannot be obtained. Further, it is difficult to realize a high-speed processing, for example, a line speed of 100 mpm.

【0005】化学的エッチングによる方法は、歯形が磨
耗するという問題はないが、機械的方法に比べて工程が
複雑になる問題がある。さらに、QスイッチCO2レーザ
で鋼板に溝、櫛形溝を形成する方法は、非接触で凹みを
形成するため、歯形が磨耗するという問題や、工程が複
雑になるという問題がなく、高速処理も可能であるが、
レーザ加工特有の突起発生という問題がある。
The method using chemical etching does not have the problem of abrasion of the tooth profile, but has the problem that the process is more complicated than the mechanical method. Furthermore, the method of forming grooves and comb grooves on a steel plate using a Q-switched CO 2 laser does not cause the problem of wear of the tooth profile and the complicated process because the dent is formed in a non-contact manner. It is possible,
There is a problem that projections are peculiar to laser processing.

【0006】レーザ加工で突起が発生するメカニズム
は、レーザは非常にエネルギー密度の高い熱源であるた
め、対象物である鉄の照射部は、短時間で溶融温度域を
越え蒸発温度域まで加熱されるため蒸発し、突起は生じ
にくいが、一般的に、照射ビームにはエネルギー分布が
あるので、蒸発温度域に達しない部分が生じてしまい、
溶融温度域にとどまる部分ができ、この部分の溶融物か
アシストガスや加工反力により溝から押し出され、これ
が表面突起となる。特に、アシストガス条件が加工結
果、突起発生に重大な影響を及ぼすが、この条件を規定
した公知情報はない。
The mechanism by which projections are formed by laser processing is that, since a laser is a heat source having a very high energy density, an irradiated portion of iron, which is an object, is heated in a short period of time beyond a melting temperature range to an evaporation temperature range. Therefore, it is difficult to produce projections, but in general, there is an energy distribution in the irradiation beam, so there is a portion that does not reach the evaporation temperature range,
A portion that remains in the melting temperature range is formed, and the melt in this portion is pushed out of the groove by the assist gas or the processing reaction force, and this becomes a surface protrusion. In particular, the assist gas condition has a significant effect on the processing result and the projections, but there is no known information defining this condition.

【0007】電磁鋼板はトランスを形成するため、鋼板
を積み重ねて使用される。鋼板表面に突起や変形が生じ
ると、積層する際に板間に空隙が生じてしまい占積率が
低下してしまったり、突起が絶縁層を破り絶縁破壊の原
因ともなる。したがって、電磁鋼板では、突起や変形は
許されない。鋼板速度100mpmという前提を置く
と、溝を圧延方向とほぼ垂直に形成するためには、ビー
ム走査加工速度20m/s以上、走査幅10mm以上で
積層特性を低下させる突起が生じないことが要求され
る。
The electromagnetic steel sheet is used by stacking steel sheets to form a transformer. When protrusions or deformations occur on the surface of the steel sheet, voids are generated between the plates during lamination, resulting in a decrease in the space factor, or the protrusions break the insulating layer and cause dielectric breakdown. Therefore, protrusions and deformations are not allowed in the magnetic steel sheet. Assuming that the steel sheet speed is 100 mpm, in order to form the groove almost perpendicular to the rolling direction, it is required that a beam scanning processing speed of 20 m / s or more and a scanning width of 10 mm or more do not produce projections that degrade the lamination characteristics. You.

【0008】従来このような特殊な加工に適した加工装
置はなかった。また、レーザ加工で、一般的な同軸ガス
流ノズルを使用すると、溶融物の飛散が顕著となるとと
もに、10mm以上の走査加工では、加工点での背圧が
変化してしまい、均一な溝加工は不可能である。本発明
は、レーザ加工により溝を形成する製造装置、特に、レ
ーザ溝加工による磁気特性の優れた方向性電磁鋼板の製
造方法において、高速線状走査レーザ加工でも、均一で
突起の無いレーザ溝加工方法と装置を提供する。
Conventionally, there is no processing apparatus suitable for such special processing. Further, when a general coaxial gas flow nozzle is used in laser processing, the scattering of the melt becomes remarkable, and in the case of scanning processing of 10 mm or more, the back pressure at the processing point changes, and uniform groove processing is performed. Is impossible. The present invention relates to a manufacturing apparatus for forming grooves by laser processing, particularly, a method for manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties by laser groove processing. Methods and apparatus are provided.

【0009】[0009]

【課題を解決するための手段】本発明は、レーザ加工に
より溝を形成する製造装置、特に、レーザビームの線状
走査加工により、鋼板表面に圧延方向とほぼ垂直な方向
に周期的な溝を形成し、鉄損特性を改善する方向性電磁
鋼板の製造装置における溝加工装置において、レーザビ
ームの鋼板への入射軸と走査方向軸を含む面内に加工ア
シストガスノズルが配置され、アシストガス流中心軸と
走査方向軸との成す角が90°より小さいことを特徴と
するレーザによる溝加工装置である。
SUMMARY OF THE INVENTION The present invention relates to a manufacturing apparatus for forming grooves by laser processing, and more particularly, to a method for forming periodic grooves on a steel sheet surface in a direction substantially perpendicular to the rolling direction by linear scanning of a laser beam. In a grooving device in a grain-oriented electrical steel sheet manufacturing apparatus that forms and improves iron loss characteristics, a processing assist gas nozzle is arranged in a plane including an axis of incidence of a laser beam on a steel sheet and an axis in a scanning direction, and the center of the assist gas flow is formed. A groove processing apparatus using a laser, wherein an angle between an axis and a scanning direction axis is smaller than 90 °.

【0010】また、本発明は、上記溝加工装置におい
て、レーザビーム走査方向のアシストガス圧力成分が、
加工点において、0.06MPa以上0.15MPa以下で
あることを特徴とするレーザによる溝加工装置である。
また、本発明は、上記溝加工装置において、2個以上の
ノズルがレーザビーム走査方向に配列され、各ノズルの
背圧すなわち噴出圧・流量を独立して制御する圧力制御
装置を備えることを特徴とするレーザによる溝加工装置
である。
Further, according to the present invention, in the above groove processing apparatus, the assist gas pressure component in the laser beam scanning direction is:
A groove processing apparatus using a laser, wherein the processing point is 0.06 MPa or more and 0.15 MPa or less.
Further, the present invention is characterized in that in the above groove processing apparatus, two or more nozzles are arranged in a laser beam scanning direction, and a pressure control device that independently controls a back pressure of each nozzle, that is, a jet pressure and a flow rate, is provided. Is a groove processing apparatus using a laser.

【0011】[0011]

【発明の実施の形態】以下に図面を用いて、本発明の実
施形態を説明する。図1は、本発明のレーザによる溝加
工装置とそれに用いるアシストガスノズルの構成図であ
る。レーザ発振器3は、CO2レーザ発振器である。レー
ザ発振器から出射されたレーザビームLBはビーム走査
装置、例えば、ポリゴンミラー4に入射する。ポリゴン
ミラー4を回転してレーザビームLBを電磁鋼板1の板
幅方向Bに走査する。ついで、レーザビームLBを集光
レンズ5、あるいは、放物面鏡を用いて、電磁鋼板1の
表面に集光する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a laser groove processing apparatus of the present invention and an assist gas nozzle used for the apparatus. The laser oscillator 3 is a CO 2 laser oscillator. The laser beam LB emitted from the laser oscillator enters a beam scanning device, for example, a polygon mirror 4. The polygon mirror 4 is rotated to scan the laser beam LB in the width direction B of the electromagnetic steel sheet 1. Next, the laser beam LB is focused on the surface of the magnetic steel sheet 1 using the focusing lens 5 or a parabolic mirror.

【0012】走査速度はポリゴンミラー4の回転速度、
走査距離は集光レンズ5あるいは放物面鏡の大きさによ
って調節する。アシストガス供給ノズル2は、加工アシ
ストガスを供給するアレイノズルであり、レーザビーム
入射光軸A、レーザビーム走査方向軸B、および、これ
らの成す面S上に配置されている。ノズル噴出中心軸C
と電磁鋼板1上のレーザビーム走査方向軸Bの成す角度
をθ、圧力をPとすると、圧力は主にPの走査方向成分
Py(=P・cosθ)、鋼板板厚方向成分Pz(=P・s
inθ)とから成る。それぞれの圧力は、角度θ、ノズル
2と鋼板1の距離および圧力制御装置6、例えば、減圧
弁等により噴出圧、流量によって決まる。
The scanning speed is the rotation speed of the polygon mirror 4,
The scanning distance is adjusted by the size of the condenser lens 5 or the parabolic mirror. The assist gas supply nozzle 2 is an array nozzle that supplies a processing assist gas, and is arranged on a laser beam incident optical axis A, a laser beam scanning direction axis B, and a plane S formed by these. Nozzle ejection center axis C
When the angle between the laser beam scanning direction axis B on the magnetic steel sheet 1 and θ is P and the pressure is P, the pressure is mainly the scanning direction component Py (= P · cos θ) of P and the steel sheet thickness direction component Pz (= P・ S
inθ). Each pressure is determined by the angle θ, the distance between the nozzle 2 and the steel plate 1, and the ejection pressure and flow rate by the pressure control device 6, for example, a pressure reducing valve.

【0013】図2は、従来ノズル、つまり同軸ノズルで
の構成図で、圧力は、走査方向成分Pyは0で、主にP
z成分のみである。図3は、走査方向に垂直な方向から
アシストガスを供給する系(以下「横ブロー」と記述す
る)での構成図で、圧力は、走査方向成分Pyは0で、
主に鋼板板厚方向成分Pzと鋼板圧延方向成分Pxとか
ら成る。
FIG. 2 is a diagram showing a configuration of a conventional nozzle, that is, a coaxial nozzle.
There is only the z component. FIG. 3 is a configuration diagram of a system (hereinafter, referred to as “lateral blow”) for supplying an assist gas from a direction perpendicular to the scanning direction.
It mainly comprises a steel sheet thickness direction component Pz and a steel sheet rolling direction component Px.

【0014】これら3種類のノズル配置による加工性を
比較した。その結果、図4(b)のように、同軸ノズル
では溶融物による突起7が顕著となった。これは、溝内
部に生じた溶融物を鋼板板厚方向成分Pzによって掘り
起こすためと考えられる。また、図4(c)のように、
横ブローは溝内部に生じた溶融物を鋼板圧延方向成分P
xによって掘り起こすため溶融物が偏り、やはり突起7
が生じる。
The workability of these three types of nozzle arrangements was compared. As a result, as shown in FIG. 4B, the protrusions 7 due to the molten material became prominent in the coaxial nozzle. It is considered that this is because the melt generated inside the groove is dug up by the steel plate thickness direction component Pz. Also, as shown in FIG.
Lateral blow is used to convert the melt generated inside the groove into a steel sheet rolling direction component P.
The melt is biased because it is excavated by x
Occurs.

【0015】一方、図4(a)に示す本発明の場合は、
溝と同方向の走査方向成分Pyが主であるので、溶融物
を掘り起こさず、吹き飛ばし圧力が高いので溶融物は遠
くに飛散し、鋼板板厚方向成分Pzによって生じる突起
の数も少なく、簡単に除去できる。さらに、溝と同方向
のブローなので、溝底の溶融物の偏在もない。図1の構
成において、単一ノズルを用いた時の加工点における走
査方向圧力成分Pyと突起を調べた結果が、図5であ
る。突起の評価は、電磁鋼板の表面状態を評価するため
に用いられている“すべり試験”によるものである。こ
れは、3枚の電磁鋼板を積み重ね、荷重を加えた状態で
中央の1枚を引き抜く時に生じる引張り荷重の最大ピー
クと最小ピークの差分で表面状態を評価する方法であ
る。
On the other hand, in the case of the present invention shown in FIG.
Since the scanning direction component Py in the same direction as the groove is mainly used, the melt is not dug up, and the blowing pressure is high, so that the melt scatters far away, and the number of projections caused by the steel plate thickness direction component Pz is small, so that it is easy. Can be removed. Furthermore, since the blow is in the same direction as the groove, there is no uneven distribution of the melt at the groove bottom. FIG. 5 shows the result of examining the scanning direction pressure component Py and the projection at the processing point when a single nozzle is used in the configuration of FIG. The evaluation of the protrusions is based on a “slip test” used to evaluate the surface condition of the magnetic steel sheet. This is a method in which three electromagnetic steel sheets are stacked, and a surface state is evaluated based on a difference between a maximum peak and a minimum peak of a tensile load generated when a central sheet is pulled out with a load applied.

【0016】実験の結果、この引張り荷重のピークの大
きさが5.0N以下であれば、通常の後処理により積層
特性に問題ないことが確認できていることから、アシス
トガス圧力の走査方向圧力成分Pyが、加工点において
0.06MPa以上0.15MPa以下であれば突起は0と
考えてよく、よって、アシストガス圧力成分はこの範囲
である必要がある。
As a result of the experiment, if the magnitude of the peak of the tensile load is 5.0 N or less, it has been confirmed that there is no problem in the lamination characteristics by ordinary post-processing. If the component Py is 0.06 MPa or more and 0.15 MPa or less at the processing point, the protrusion may be considered to be 0, and therefore, the assist gas pressure component needs to be in this range.

【0017】これは、アシストガス圧力成分が0.06
MPa未満の場合、圧力は、溝と同方向の走査方向成分P
yが主であるので、溶融物は掘り起こさないが、吹き飛
ばし圧力が低いことにより溶融物を遠くに飛散できない
ことと、加工反力が相対的に大きくなるため突起が生じ
ることが考えられるからである。一方、アシストガス圧
力成分が0.15MPaを超える場合、圧力は、溝と同方
向の走査方向成分Pyが主であるので、溶融物を掘り起
こさず、吹き飛ばし圧力が高いので溶融物は遠くに飛散
するが、相対的に、鋼板板厚方向圧力成分Pzが大きく
なり、これによって、過剰に溶融物が掘り起こされ、溝
周辺に突起が生じると考えられる。
This is because the assist gas pressure component is 0.06
If the pressure is less than MPa, the pressure is the scanning direction component P in the same direction as the groove.
Since y is mainly used, the melt is not excavated, but it is considered that the melt cannot be scattered far away due to the low blowing pressure, and that a projection is generated because the processing reaction force becomes relatively large. . On the other hand, when the assist gas pressure component exceeds 0.15 MPa, the pressure is mainly the scanning direction component Py in the same direction as the groove, so that the melt does not dig up and the blowout pressure is high, so that the melt scatters far away. However, it is considered that the pressure component Pz in the thickness direction of the steel sheet relatively increases, whereby the melt is excessively dug up and a projection is formed around the groove.

【0018】図6に、アレイノズルをフラットノズルと
同じ形状で各ノズルの背圧(噴出圧、流量に影響する)
を独立して制御する圧力制御装置6を備えた本発明の実
施例を示す。この装置の特徴は、電磁鋼板1までの距離
やノズルの角度を変えても、噴出圧、流量を制御するこ
とにより、走査幅にわたって、加工点での圧力を均一に
できることである。そのため、突起を生じない均一な加
工が可能となる。各アシストガス供給ノズル2の制御
は、あらかじめノズルの鋼板までの距離とノズルの角度
より算出されたテーブルにしたがい、減圧弁9による噴
出圧、流量の調整で行う。
FIG. 6 shows that the array nozzle has the same shape as the flat nozzle, and the back pressure of each nozzle (affects the ejection pressure and flow rate).
1 shows an embodiment of the present invention including a pressure control device 6 for independently controlling the pressure. The feature of this apparatus is that even if the distance to the electromagnetic steel sheet 1 or the angle of the nozzle is changed, the pressure at the processing point can be made uniform over the scanning width by controlling the ejection pressure and the flow rate. For this reason, uniform processing without forming protrusions becomes possible. Control of each assist gas supply nozzle 2 is performed by adjusting the ejection pressure and flow rate by the pressure reducing valve 9 according to a table calculated in advance from the distance of the nozzle to the steel plate and the angle of the nozzle.

【0019】表1はその例で、ノズルの傾きを30°、
中央のノズルの鋼板までの距離を50mmと設定した場
合における距離および流量と走査方向圧力成分Pyのピ
ーク値との関係である。図7に、各ノズルを表1におい
て※印を付した設定での背圧分布を示す。走査幅全長に
わたり、加工点の背圧をほぼ均一に分布させることがで
きる。その結果として、このノズルを用いることによ
り、30mm走査幅での均一な加工を実現することができ
た。
Table 1 shows an example in which the nozzle inclination is 30 °,
It is a relationship between the distance and the flow rate and the peak value of the scanning direction pressure component Py when the distance of the central nozzle to the steel plate is set to 50 mm. FIG. 7 shows the back pressure distribution when each nozzle is marked with * in Table 1. The back pressure at the processing point can be distributed almost uniformly over the entire scanning width. As a result, by using this nozzle, it was possible to realize uniform processing with a scanning width of 30 mm.

【0020】[0020]

【表1】 [Table 1]

【0021】対比のため、従来型ノズルとして、単一ノ
ズルならびにフラットノズルでの加工特性を評価した。
図8に示すように、単一ノズルでは、図5で示した加工
性に優れる走査方向圧力成分Pyが実現できる領域は、
図9に示すように、6mm程度である。したがって、そ
れ以上の幅の線状走査では背圧が小さいため、突起が発
生し、加工性が不均一となる。
For comparison, the processing characteristics of a single nozzle and a flat nozzle as a conventional nozzle were evaluated.
As shown in FIG. 8, in the single nozzle, the region in which the scanning direction pressure component Py excellent in the workability shown in FIG.
As shown in FIG. 9, it is about 6 mm. Therefore, in the linear scanning with a width larger than that, the back pressure is small, so that a projection is generated and the workability becomes nonuniform.

【0022】また、図10に示したフラットノズルの場
合、図11に示すように、傾きのない時は、均一な背圧
分布を形成できるが、ノズルを傾けると、噴出口先端と
加工点の距離が変化してしまい、その結果、背圧分布も
傾斜を持つこととなり、加工性に優れる背圧の範囲に抑
えることは難しく、突起の発生は避けられない。図12
に、本発明のアレイノズル、単一ノズル、フラットノズ
ルそれぞれの加工特性、突起発生状況を示す。本発明の
アレイ型ノズルを用いた場合のみ、走査幅全域にわたり
突起を抑制した加工が実現できた。
In the case of the flat nozzle shown in FIG. 10, as shown in FIG. 11, when there is no inclination, a uniform back pressure distribution can be formed. The distance changes, and as a result, the back pressure distribution also has a slope, and it is difficult to suppress the back pressure in a range of the back pressure that is excellent in workability, and the occurrence of projections is inevitable. FIG.
The processing characteristics of the array nozzle, the single nozzle, and the flat nozzle according to the present invention, and the state of projection occurrence are shown in FIG. Only when the array-type nozzle of the present invention was used, processing in which protrusions were suppressed over the entire scanning width could be realized.

【0023】なお、フラットノズルで噴出口から加工点
までの距離を一定にすることも可能であるが、角度の変
更ができない点、アシストガス流の干渉、具体的には、
加工点下流において走査方向圧力成分Pyが低くなる点
で劣る。これに対し、本発明では、角度の変更が容易で
あり、アシストガス流の干渉の補正も可能である。
Although the flat nozzle can keep the distance from the injection port to the processing point constant, the angle cannot be changed, the interference of the assist gas flow, specifically,
This is inferior in that the scanning direction pressure component Py becomes lower downstream of the processing point. On the other hand, in the present invention, the angle can be easily changed, and the interference of the assist gas flow can be corrected.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
高速線状走査レーザ溝加工において、均一で突起の無い
溝加工が可能となる。その結果、例えば磁気特性の優れ
た方向性電磁鋼板の製造の高速化が可能となる。
As described above, according to the present invention,
In high-speed linear scanning laser grooving, uniform grooving without protrusions becomes possible. As a result, for example, it is possible to speed up the production of a grain-oriented electrical steel sheet having excellent magnetic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のレーザによる溝加工方法とそれに用い
るアシストガスノズルの構成を示す説明図である。
FIG. 1 is an explanatory view showing a configuration of a groove processing method using a laser according to the present invention and an assist gas nozzle used therein.

【図2】従来の同軸ノズルを用いたレーザによる溝加工
方法の構成を示す説明図である。
FIG. 2 is an explanatory diagram showing a configuration of a conventional groove processing method using a laser using a coaxial nozzle.

【図3】横方向ブローノズルを用いたレーザによる溝加
工方法の構成を示す説明図である。
FIG. 3 is an explanatory view showing a configuration of a groove processing method using a laser using a horizontal blow nozzle.

【図4】アシストガスノズルとして(a)本発明、
(b)従来の同軸、(c)横ブローを用いたレーザによ
る溝加工表面の比較模式図である。
FIG. 4 shows (a) the present invention as an assist gas nozzle;
It is a comparative schematic diagram of the groove processing surface by the laser using (b) conventional coaxial and (c) horizontal blow.

【図5】図1の構成において、単一ノズルを用いた時の
圧力の走査方向成分Pyと突起の関係を示す説明図であ
る。
FIG. 5 is an explanatory diagram showing a relationship between a scanning direction component Py of pressure and a projection when a single nozzle is used in the configuration of FIG. 1;

【図6】本発明におけるアシストガスノズルの構成を示
す説明図である。
FIG. 6 is an explanatory diagram showing a configuration of an assist gas nozzle according to the present invention.

【図7】図6の構成において、各ノズルの流量を表1内
の網掛けした設定で実施した時の圧力分布を示す説明図
である。
FIG. 7 is an explanatory diagram showing a pressure distribution when the flow rate of each nozzle is set in a shaded setting in Table 1 in the configuration of FIG. 6;

【図8】従来型の単一ノズルの構成を示す説明図であ
る。
FIG. 8 is an explanatory diagram showing a configuration of a conventional single nozzle.

【図9】従来型の単一ノズルを用いた時の圧力分布を示
す説明図である。
FIG. 9 is an explanatory diagram showing a pressure distribution when a conventional single nozzle is used.

【図10】従来型のフラットノズルの構成を示す説明図
である。
FIG. 10 is an explanatory diagram showing a configuration of a conventional flat nozzle.

【図11】従来型のフラットノズルを用いた時の圧力分
布を示す説明図である。
FIG. 11 is an explanatory diagram showing a pressure distribution when a conventional flat nozzle is used.

【図12】アシストガス供給ノズルとして(a)本発
明、(b)従来型の単一ノズル、(c)従来型のフラッ
トノズルを用いたレーザによる溝加工表面の比較模式図
である。
FIGS. 12A and 12B are schematic diagrams of a grooved surface by laser using (a) the present invention, (b) a conventional single nozzle, and (c) a conventional flat nozzle as assist gas supply nozzles.

【符号の説明】[Explanation of symbols]

1…電磁鋼板 2…アシストガス供給ノズル 3…レーザ発振器 4…ポリゴンミラー 5…集光レンズ 6…圧力制御装置 7…突起 8…流量計 9…減圧弁 A…レーザビーム入射光軸 B…レーザビーム走査方向(板幅方向) C…アシストガス供給ノズル噴射中心軸 S…AとBとからなる平面 P…アシストガスによる背圧 Px…背圧Pの鋼板圧延方向成分 Py… 背圧Pの走査(板幅)方向成分 Pz…背圧Pの鋼板板厚方向成分 LB…レーザビーム θ…AとCの成す角 DESCRIPTION OF SYMBOLS 1 ... Electromagnetic steel sheet 2 ... Assist gas supply nozzle 3 ... Laser oscillator 4 ... Polygon mirror 5 ... Condensing lens 6 ... Pressure control device 7 ... Protrusion 8 ... Flow meter 9 ... Reducing valve A ... Laser beam incident optical axis B ... Laser beam Scanning direction (board width direction) C: central axis of assist gas supply nozzle injection S: plane composed of A and B P: back pressure by assist gas Px: component of back pressure P in rolling direction of steel sheet Py: scanning of back pressure P ( Plate width direction component Pz ... Thickness component of steel plate in back pressure P LB ... Laser beam θ ... Angle between A and C

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4E068 AD00 CH02 CH05 CH07 DA14 DB01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4E068 AD00 CH02 CH05 CH07 DA14 DB01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 レーザビームの線状走査加工により、鋼
板表面に圧延方向とほぼ垂直な方向に周期的な溝を形成
する溝加工装置において、レーザビームの鋼板への入射
軸と走査方向軸を含む面内に加工アシストガス供給ノズ
ルが配置され、アシストガス流中心軸と走査方向軸との
成す角が90°より小さいことを特徴とするレーザによ
る溝加工装置。
1. A groove processing apparatus for forming a periodic groove in a direction substantially perpendicular to a rolling direction on a surface of a steel sheet by linear scanning processing of a laser beam, wherein an axis of incidence of the laser beam on the steel sheet and an axis of the scanning direction are set. A machining assist gas supply nozzle is disposed in a plane including the assist gas flow, and an angle between a center axis of the assist gas flow and a scanning direction axis is smaller than 90 °.
【請求項2】 レーザビーム走査方向のアシストガス圧
力成分が、加工点において、0.06MPa以上0.15
MPa以下であることを特徴とする請求項1記載のレーザ
による溝加工装置。
2. An assist gas pressure component in a laser beam scanning direction is not less than 0.06 MPa and not more than 0.15 MPa at a processing point.
2. The groove processing apparatus using a laser according to claim 1, wherein the pressure is equal to or less than MPa.
【請求項3】 前記加工アシストガス供給ノズルがアレ
イノズルであり、各ノズルの背圧を独立して制御する圧
力制御装置を備えることを特徴とする請求項1または2
記載のレーザによる溝加工装置。
3. The processing assist gas supply nozzle is an array nozzle, and is provided with a pressure control device for independently controlling the back pressure of each nozzle.
A groove processing apparatus using the laser described in the above.
JP2001100672A 2001-03-30 2001-03-30 Device for processing groove using laser Withdrawn JP2002292484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001100672A JP2002292484A (en) 2001-03-30 2001-03-30 Device for processing groove using laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001100672A JP2002292484A (en) 2001-03-30 2001-03-30 Device for processing groove using laser

Publications (1)

Publication Number Publication Date
JP2002292484A true JP2002292484A (en) 2002-10-08

Family

ID=18954092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001100672A Withdrawn JP2002292484A (en) 2001-03-30 2001-03-30 Device for processing groove using laser

Country Status (1)

Country Link
JP (1) JP2002292484A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008030079B3 (en) * 2008-06-25 2009-08-20 Trumpf Werkzeugmaschinen Gmbh + Co. Kg A method for reducing the adhesion of slag when piercing a laser beam into a workpiece and laser processing head
JP2012087332A (en) * 2010-10-15 2012-05-10 Nippon Steel Corp Method for producing grain-oriented electromagnetic steel sheet
CN102834529A (en) * 2010-04-01 2012-12-19 新日本制铁株式会社 Directional electromagnetic steel plate and method for manufacturing same
JP2015510543A (en) * 2011-12-29 2015-04-09 ポスコ Electric steel sheet and manufacturing method thereof
JP2016532776A (en) * 2013-07-24 2016-10-20 ポスコPosco Oriented electrical steel sheet and manufacturing method thereof
WO2016171130A1 (en) * 2015-04-20 2016-10-27 新日鐵住金株式会社 Oriented magnetic steel plate
US20170057016A1 (en) * 2015-08-26 2017-03-02 Electro Scientific Industries, Inc. Laser scan sequencing and direction with respect to gas flow
WO2018117641A1 (en) * 2016-12-22 2018-06-28 주식회사 포스코 Grain-oriented electrical steel sheet and magnetic domain refinement method therefor
IT201700103664A1 (en) * 2017-09-15 2019-03-15 M Pix Srl Method and Equipment for the Deep Marking of Metal Materials
JP2019508578A (en) * 2015-12-24 2019-03-28 ポスコPosco Oriented electrical steel sheet and manufacturing method thereof
WO2019156220A1 (en) * 2018-02-08 2019-08-15 日本製鉄株式会社 Grain-oriented electrical steel sheet
JP2020138226A (en) * 2019-03-01 2020-09-03 日本製鉄株式会社 Grooving device
US10804015B2 (en) 2011-12-29 2020-10-13 Posco Electrical steel sheet and method for manufacturing the same
WO2020230816A1 (en) 2019-05-14 2020-11-19 日本製鉄株式会社 Groove processing device and groove processing method
WO2020230821A1 (en) 2019-05-14 2020-11-19 日本製鉄株式会社 Groove processing device and groove processing method

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008030079B3 (en) * 2008-06-25 2009-08-20 Trumpf Werkzeugmaschinen Gmbh + Co. Kg A method for reducing the adhesion of slag when piercing a laser beam into a workpiece and laser processing head
WO2009156081A1 (en) * 2008-06-25 2009-12-30 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method of reducing the attachment of slag when piercing a workpiece with a laser beam, and laser machining head
CN102066039A (en) * 2008-06-25 2011-05-18 通快机床两合公司 Method of reducing the attachment of slag when piercing a workpiece with a laser beam, and laser machining head
US20110114610A1 (en) * 2008-06-25 2011-05-19 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Controlling Slag Adhesion When Piercing a Workpiece With a Laser Beam
CN106181044B (en) * 2010-04-01 2019-04-09 新日铁住金株式会社 Grain-oriented magnetic steel sheet and its manufacturing method
CN102834529A (en) * 2010-04-01 2012-12-19 新日本制铁株式会社 Directional electromagnetic steel plate and method for manufacturing same
JP5234222B2 (en) * 2010-04-01 2013-07-10 新日鐵住金株式会社 Oriented electrical steel sheet and manufacturing method thereof
US9139886B2 (en) 2010-04-01 2015-09-22 Nippon Steel & Sumitomo Metal Corporation Grain-oriented electrical steel sheet and method for producing same
EP2554685B1 (en) * 2010-04-01 2016-07-27 Nippon Steel & Sumitomo Metal Corporation Grain oriented electrical steel sheet and method for manufacturing same
CN106181044A (en) * 2010-04-01 2016-12-07 新日铁住金株式会社 Grain-oriented magnetic steel sheet and manufacture method thereof
JP2012087332A (en) * 2010-10-15 2012-05-10 Nippon Steel Corp Method for producing grain-oriented electromagnetic steel sheet
JP2015510543A (en) * 2011-12-29 2015-04-09 ポスコ Electric steel sheet and manufacturing method thereof
EP2799560A4 (en) * 2011-12-29 2016-03-16 Posco Electric mattress and method for manufacturing same
US10804015B2 (en) 2011-12-29 2020-10-13 Posco Electrical steel sheet and method for manufacturing the same
JP2016532776A (en) * 2013-07-24 2016-10-20 ポスコPosco Oriented electrical steel sheet and manufacturing method thereof
EP3025797A4 (en) * 2013-07-24 2017-02-08 Posco Grain-oriented electrical steel sheet and method for manufacturing same
US10793929B2 (en) 2013-07-24 2020-10-06 Posco Grain-oriented electrical steel sheet and method for manufacturing same
WO2016171130A1 (en) * 2015-04-20 2016-10-27 新日鐵住金株式会社 Oriented magnetic steel plate
JPWO2016171130A1 (en) * 2015-04-20 2017-12-21 新日鐵住金株式会社 Oriented electrical steel sheet
CN107250392A (en) * 2015-04-20 2017-10-13 新日铁住金株式会社 Grain-oriented magnetic steel sheet
US10675714B2 (en) 2015-04-20 2020-06-09 Nippon Steel Corporation Grain-oriented electrical steel sheet
CN107850554A (en) * 2015-08-26 2018-03-27 伊雷克托科学工业股份有限公司 Relative to the radium-shine scanning sequencing of air-flow and direction
CN107850554B (en) * 2015-08-26 2021-09-07 伊雷克托科学工业股份有限公司 Laser scan sequencing and direction with respect to airflow
US20170057016A1 (en) * 2015-08-26 2017-03-02 Electro Scientific Industries, Inc. Laser scan sequencing and direction with respect to gas flow
US10328529B2 (en) * 2015-08-26 2019-06-25 Electro Scientific Industries, Inc Laser scan sequencing and direction with respect to gas flow
JP2019508578A (en) * 2015-12-24 2019-03-28 ポスコPosco Oriented electrical steel sheet and manufacturing method thereof
JP7068171B2 (en) 2015-12-24 2022-05-16 ポスコ Directional electrical steel sheet and its manufacturing method
US12123065B2 (en) 2015-12-24 2024-10-22 Posco Co., Ltd Grain-oriented electrical steel sheet and method for manufacturing same
WO2018117641A1 (en) * 2016-12-22 2018-06-28 주식회사 포스코 Grain-oriented electrical steel sheet and magnetic domain refinement method therefor
CN110088308A (en) * 2016-12-22 2019-08-02 Posco公司 Oriented electrical steel and its magnetic domain thinning method
US11318562B2 (en) 2016-12-22 2022-05-03 Posco Grain-oriented electrical steel sheet and magnetic domain refinement method therefor
CN110088308B (en) * 2016-12-22 2022-03-04 Posco公司 Oriented electrical steel sheet and method for refining magnetic domain thereof
US11772199B2 (en) 2016-12-22 2023-10-03 Posco Grain-oriented electrical steel sheet and magnetic domain refinement method therefor
WO2019053504A1 (en) * 2017-09-15 2019-03-21 M-Pix Srl Method and apparatus for deep marking metallic materials with a movable nozzle for the emission of gas
IT201700103664A1 (en) * 2017-09-15 2019-03-15 M Pix Srl Method and Equipment for the Deep Marking of Metal Materials
JPWO2019156220A1 (en) * 2018-02-08 2021-02-04 日本製鉄株式会社 Directional electrical steel sheet
US11551838B2 (en) 2018-02-08 2023-01-10 Nippon Steel Corporation Grain-oriented electrical steel sheet
WO2019156220A1 (en) * 2018-02-08 2019-08-15 日本製鉄株式会社 Grain-oriented electrical steel sheet
JP7010311B2 (en) 2018-02-08 2022-02-10 日本製鉄株式会社 Directional electrical steel sheet
JP7192575B2 (en) 2019-03-01 2022-12-20 日本製鉄株式会社 Grooving equipment
JP2020138226A (en) * 2019-03-01 2020-09-03 日本製鉄株式会社 Grooving device
KR20220005084A (en) 2019-05-14 2022-01-12 닛폰세이테츠 가부시키가이샤 Grooving device and grooving method
EP3970904A4 (en) * 2019-05-14 2022-07-20 Nippon Steel Corporation Groove processing device and groove processing method
KR20210150560A (en) 2019-05-14 2021-12-10 닛폰세이테츠 가부시키가이샤 Grooving device and grooving method
WO2020230821A1 (en) 2019-05-14 2020-11-19 日本製鉄株式会社 Groove processing device and groove processing method
WO2020230816A1 (en) 2019-05-14 2020-11-19 日本製鉄株式会社 Groove processing device and groove processing method

Similar Documents

Publication Publication Date Title
JP5423646B2 (en) Method for producing grain-oriented electrical steel sheet
JP2002292484A (en) Device for processing groove using laser
JP6293067B2 (en) Oriented electrical steel sheet with low iron loss and high magnetic flux density
JP5234222B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101203286B1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet whose magnetic domains are controlled by laser beam application
JP4319715B2 (en) Unidirectional electrical steel sheet with excellent magnetic properties and manufacturing method thereof
KR101681822B1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
KR100973391B1 (en) Low core loss grain-oriented electrical steel sheet and method for producing the same
JP4846429B2 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
RU2548544C2 (en) Method of fast laser denting
KR20190137097A (en) Laser-etched grain-oriented silicon steel resistant to stress relaxation annealing and method of manufacturing the same
EP1953249A1 (en) Production method and production system of directional electromagnetic steel plate having excellent magnetic characteristics
KR102507090B1 (en) Method for producing stress-relaxed-annealing-resistant low iron loss-grain-oriented silicon steel
WO2017017908A1 (en) Linear groove forming method and linear grooves forming apparatus
KR20050115285A (en) Grain-oriented magnetic steel sheet excellent in magnetic characteristic and its manufacturing method
KR20150012205A (en) Grain-oriented electrical steel sheet and method for manufacturing the same
RU2749826C1 (en) Electrical anisotropic steel sheet
JP7562280B2 (en) Wound iron core, method for manufacturing wound iron core, and device for manufacturing wound iron core
JP4091749B2 (en) Oriented electrical steel sheet with excellent magnetic properties
KR20190126089A (en) Directional silicon steel with low core loss and method of manufacturing the same
JP2004056090A (en) Grain oriented magnetic steel sheet excellent in magnetic property and its production
EP1149924B1 (en) Grain-oriented electrical steel sheet excellent in magnetic properties
JP2002121618A (en) Manufacturing apparatus for grain-oriented silicon steel plate excellent in magnetic characteristic
KR101676628B1 (en) Grain-orientied electrical steel sheet and method for manufacturing the same
WO2024012439A1 (en) Laser scribing method for low-iron-loss oriented silicon steel plate, and oriented silicon steel plate

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603