[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002284583A - Method for spraying refractory and spray material used for its method - Google Patents

Method for spraying refractory and spray material used for its method

Info

Publication number
JP2002284583A
JP2002284583A JP2001088646A JP2001088646A JP2002284583A JP 2002284583 A JP2002284583 A JP 2002284583A JP 2001088646 A JP2001088646 A JP 2001088646A JP 2001088646 A JP2001088646 A JP 2001088646A JP 2002284583 A JP2002284583 A JP 2002284583A
Authority
JP
Japan
Prior art keywords
mass
fine powder
refractory
alumina
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001088646A
Other languages
Japanese (ja)
Inventor
Toichi Shirama
統一 白曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2001088646A priority Critical patent/JP2002284583A/en
Publication of JP2002284583A publication Critical patent/JP2002284583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for spraying a refractory that prevents peel damage of a spray application body. SOLUTION: In the refractory spray method that sprays a spray material, which is adjusted as sludge-like in advance by adding application moisture, by adding a quick setting admixture into a nozzle or a delivery pipe under pressure, a refractory aggregate composition used for the refractory spray method comprises a volatilized silica of 6 to 18 mass %, a calcined alumina of 1 to 7 mass %, a sintered alumina fine powder and/or an electromelted alumina fine powder of 10 to 30 mass % having a particle size of 75 μm or smaller and the remains composed of a refractory aggregate other than above. Further, in above refractory aggregate, the effect becomes bigger when a mass ratio of calcined alumina/volatilized silica is in the range of 1 to 0.1 and calcined alumina + (sintered alumina fine powder and/or electromelted alumina fine powder)}/volatilized silica is in the range of 2 to 5. Furthermore, it is preferable to add the quick setting admixture into the nozzle or the delivery pipe under pressure on the condition of mixing with the refractory fine powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、耐火物吹付け施工
方法とそれに使用する吹付材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractory spraying method and a spray material used for the method.

【従来の技術】高温炉、溶融金属容器、溶融金属処理装
置等の内張りあるいはその補修手段として、耐火物吹付
けが行われている。吹付け方法のひとつに、施工水分を
予め添加して泥しょう状に調整した吹付材を、ノズル内
にて急結剤を添加して吹付ける方法がある。例えば特開
平10−182246号公報、特開平10−95678
号公報等(同公報の内容で記述される凝集剤は、急結剤
と同意語である。)のとおりである。この方法は、吹付
材に施工水分を予め添加していることで、例えばノズル
内で施工水分を添加する乾式吹付け方法に比べて発塵が
少なく、施工時の作業環境に優れている。また、ノズル
内で急結剤を添加するため、吹付材の貯留中の硬化、圧
送管内での吹付材の硬化によるノズル閉塞といった問題
もない。
2. Description of the Related Art A refractory is sprayed as a lining for a high-temperature furnace, a molten metal container, a molten metal processing apparatus or the like or as a means for repairing the lining. As one of the spraying methods, there is a method of spraying a spraying material, which has been adjusted into a slurry by previously adding construction moisture, by adding a quick-setting agent in a nozzle. For example, JP-A-10-182246 and JP-A-10-95678
And the like (the coagulant described in the content of the publication is synonymous with the quick-setting agent). In this method, since the working water is added to the spray material in advance, dust generation is smaller than in a dry spray method in which the working water is added in a nozzle, for example, and the working environment during the working is excellent. Further, since the quick-setting agent is added in the nozzle, there is no problem such as hardening during storage of the spray material and nozzle blockage due to hardening of the spray material in the pressure pipe.

【発明が解決しようとする課題】前記吹付け方法におい
て使用される吹付材は、主骨材に揮発シリカおよび仮焼
アルミナを組み合わせたものが一般的な材質である。吹
付材において要求される特性として、耐食性、付着性お
よび耐ハクリ性が挙げられる。揮発シリカと仮焼アルミ
ナはいずれも超微粉であり、吹付材の流動性を付与する
ことにより、吹付材の施工水分を低減するいわゆる減水
剤として作用し、吹付け施工体を緻密化してその耐食性
を向上させる効果をもつ。また、揮発シリカは急結剤と
反応し、吹付材の付着性を向上させる。しかし、揮発シ
リカおよび仮焼アルミナはその反応の高さから、これを
含む吹付材は過焼結に伴う焼結収縮および亀裂発生によ
ってハクリ損傷が生じ易い。吹付材はいかに耐食性およ
び付着性にすぐれていても、耐ハクリ性に劣る材質では
その効力を発揮できない。本発明は、泥しょう状に調整
した吹付材をノズル内にて急結剤を添加して吹付ける耐
火物吹付け方法において、その施工性を損なうことな
く、かつ吹付材の寿命を決定づける耐ハクリ性の改善を
図ることを目的としている。
The spraying material used in the above-mentioned spraying method is a general material obtained by combining volatile silica and calcined alumina with a main aggregate. Properties required for the spray material include corrosion resistance, adhesion, and peel resistance. Both volatile silica and calcined alumina are ultra-fine powders. By imparting the fluidity of the sprayed material, it acts as a so-called water reducing agent to reduce the construction moisture of the sprayed material. Has the effect of improving In addition, the volatile silica reacts with the quick setting agent to improve the adhesion of the spray material. However, volatile silica and calcined alumina have a high reaction rate, and a spraying material containing the same is liable to cause peeling damage due to sintering shrinkage and crack generation accompanying oversintering. No matter how excellent the spraying material is in corrosion resistance and adhesion, a material having poor peel resistance cannot exert its effect. The present invention relates to a refractory spraying method in which a spray material adjusted in a slurry form is sprayed by adding a quick-setting agent in a nozzle, and in which a spray-resistant material that determines the life of the spray material without impairing its workability. The purpose is to improve the sexuality.

【課題を解決するための手段】本発明の特徴とするとこ
ろは、施工水分を添加して予め泥しょう状に調整した吹
付材を、ノズル内または圧送管内にて急結剤を添加して
吹付ける耐火物吹付け方法において、吹付材の耐火骨材
組成を、揮発シリカ6〜13質量%、仮焼アルミナ1〜
7質量%、粒径75m以下の焼結アルミナ微粉および/
または電融アルミナ微粉10〜30質量%、残部が前記
以外の耐火骨材とした耐火物吹付け方法と、それに使用
する吹付材である。吹付材の耐ハクリ性の向上には、焼
結収縮の抑制として、揮発シリカと仮焼アルミナのいず
れかの使用量を減らすことが考えられる。そこで従来技
術では、揮発シリカを減らしている。揮発シリカはSi
系低融物を生成し易く、使用量が多いと吹付材の耐
食性が低下するためである。本発明で使用する吹付材
は、従来の観点とは逆に仮焼アルミナの使用量を低減
し、その一方で粒径75μm以下の焼結アルミナおよび
/または電融アルミナの微粉(以下、アルミナ微粉と称
す。)を10〜30質量%組み合わせる。揮発シリカは
反応性が高く、アルミナ原料と反応してムライト(3A
・SiO)を生成する。このムライトの生成
に伴う体積膨張によって、揮発シリカおよび仮焼アルミ
ナの使用による焼結収縮を抑制する。また、ムライトの
生成は吹付材組織のガラス化を低減し、亀裂発生が抑制
される。本発明では、粒径75μm以下のアルミナ微粉
を10〜30質量%組み合わせたことで、揮発シリカの
周囲に十分な量のアルミナ微粉が存在する。これによ
り、焼結収縮の抑制に作用する前記のムライト生成が促
進される。焼結アルミナまたは電融アルミナであるアル
ミナ微粉は、仮焼アルミナに比べて化学的に安定であ
り、本発明のように使用量が多くても焼結収縮の原因と
なる過焼結を生じることもない。本発明において吹付材
の耐ハクリ性の効果は、吹付材組成が質量比で仮焼アル
ミナ/揮発シリカが1〜0.1、[仮焼アルミナ+(焼
結アルミナ微粉および/または電融アルミナ微粉)]/
揮発シリカが2〜5とした場合において、一層効果的で
ある。急結剤をノズル内または圧送管内で添加しての吹
き付けは、吹付材が急結剤と十分に混合されないまま吹
付けられる問題がある。本発明で使用する吹付材は、揮
発シリカの使用量が多いことで施工水添加後の泥しょう
状態において粘ちょうとなり、急結剤が混合され難い。
急結剤の混合が不十分になると付着性が低下する。ま
た、組織の不均一から耐食性低下の原因となる。本発明
において、急結剤の添加を耐火物微粉と混合して行う
と、ノズル内または圧送管内において吹付材に耐火物微
粉が分け入って、吹付材に対する急結剤の混合が均一化
する。また、吹付材組織自体が、仮焼アルミナを低減し
てアルミナ微粉の使用量を多くしたことにより、組織が
粗であり、急結剤と混合がされやすい。
A feature of the present invention is that a spraying material, which has been prepared in advance into a slurry by adding working water, is sprayed by adding a quick-setting agent in a nozzle or a pressure feed pipe. In the refractory spraying method to be applied, the composition of the refractory aggregate of the sprayed material is 6 to 13% by mass of volatile silica,
7 mass%, sintered alumina fine powder having a particle size of 75 m or less and / or
Alternatively, it is a refractory spraying method using 10 to 30% by mass of the fused alumina fine powder and the rest being other refractory aggregates, and a spraying material used therefor. In order to improve the peeling resistance of the sprayed material, it is conceivable to reduce the amount of either volatile silica or calcined alumina to suppress sintering shrinkage. Therefore, in the prior art, the volatile silica is reduced. Volatile silica is Si
This is because an O 2 -based low melt is easily generated, and when the amount used is large, the corrosion resistance of the sprayed material is reduced. The spraying material used in the present invention reduces the amount of calcined alumina, contrary to the conventional viewpoint, and on the other hand, fine powder of sintered alumina and / or fused alumina having a particle size of 75 μm or less (hereinafter, alumina fine powder) ) Is combined with 10 to 30% by mass. Volatile silica is highly reactive and reacts with alumina materials to form mullite (3A).
l 2 O 3 · SiO 2 ). The volume expansion accompanying the formation of mullite suppresses sintering shrinkage due to the use of volatile silica and calcined alumina. Further, the generation of mullite reduces the vitrification of the sprayed material structure, and suppresses the occurrence of cracks. In the present invention, a sufficient amount of alumina fine powder is present around the volatile silica by combining 10 to 30% by mass of alumina fine powder having a particle size of 75 μm or less. This promotes the formation of mullite, which acts to suppress sintering shrinkage. Alumina fine powder, which is sintered alumina or electrofused alumina, is chemically more stable than calcined alumina, and may cause over-sintering that causes sintering shrinkage even when used in a large amount as in the present invention. Nor. In the present invention, the effect of anti-spraying property of the spray material is as follows: the spray material composition has a mass ratio of calcined alumina / volatile silica of 1 to 0.1, [calcined alumina + (sintered alumina fine powder and / or fused alumina fine powder). )] /
It is more effective when the volatile silica is 2 to 5. Spraying by adding a quick-setting agent in a nozzle or a pressure feed pipe has a problem that the spraying material is sprayed without being sufficiently mixed with the quick-setting agent. The spraying material used in the present invention becomes viscous in a muddy state after the addition of construction water due to the large amount of volatile silica used, and it is difficult for the quick-setting agent to be mixed.
Insufficient mixing of the quick-setting agent results in poor adhesion. In addition, the unevenness of the structure causes a reduction in corrosion resistance. In the present invention, when the addition of the quick-setting agent is performed by mixing with the refractory fine powder, the refractory fine powder is divided into the spray material in the nozzle or the pressure feed pipe, and the mixing of the quick-setting agent with the spray material becomes uniform. Further, the structure of the spray material itself is coarse because the calcined alumina is reduced and the amount of the alumina fine powder used is increased, and the spray material is easily mixed with the quick setting agent.

【発明の実施の形態】本発明で使用する吹付材におい
て、耐火骨材の一部に使用する揮発シリカは、例えばシ
リコンまたは珪素合金製造の際の副産物として得られ
る、平均粒子径が一般に1μm以下、比表面積が5〜4
0m/g程度の超微粉シリカであり、非晶質であるこ
とから反応性に富んでいる。シリカフラワー、マイクロ
シリカなどの商品名で市販されている。純度はSiO
換算で90質量%以上である。揮発シリカは吹付材の減
水剤としての効果と付着性向上、さらには周辺のアルミ
ナ微粉と反応してムライトを生成する事による焼結収縮
抑制の効果をもつ。耐火骨材中に占める割合は、6質量
%未満では前記効果が発揮できない。13質量%を超え
ると吹付材組成中の超微粉量が過多となり、焼結収縮お
よび耐食性低下を招く。さらに好ましくは6〜10質量
%である。一方、仮焼アルミナはバイヤー法で得られた
水酸化アルミニウムを1000〜1300℃程度の低温
域で焼成したものである。α-Alを主成分とし
ている。耐火物への添加はこれを粉砕して使用される
が、強焼されていないために粉砕によって自ずと平均粒
子径10μm以下の超微粉として得られる。仮焼アルミ
ナは吹付材の減水剤およびマトリックス部の密充填化に
作用し、施工性向上の効果をもつ。純度はAl
算で98質量%以上のものが好ましい。耐火骨材中に占
める割合は、1質量%未満では施工性向上効果に劣る。
7質量%を超えると吹付材の過焼結によってハクリ損傷
の原因となる焼結収縮および亀裂が生じる。さらに好ま
しくは1〜5質量%である。粒径75μm以下のアルミ
ナ微粉は揮発シリカと反応し、ムライト生成に伴う体積
膨張で吹付材の焼結収縮を抑制する。粉砕によって粒度
調整された焼結アルミナおよび/または電融アルミナで
あって、純度はAl換算で95質量%以上のもの
を使用する。耐火骨材中に占めるこの粒径75μm以下
のアルミナ微粉の割合は、10質量%未満ではムライト
生成が不十分となって耐ハクリ性の効果が得られない。
30質量%を超えると吹付材の流動性が低下するため、
施工水分を増量しなければならず、吹付施工体が多孔質
となって耐食性に劣る。アルミナ微粉の粒径75μm以
下の単位はJISふるい目開きによるものである。粒径
75μm以下であれば、さらに例えば45μm以下、3
2μm以下といった粒径でもよい。また、付着性および
耐ハクリ性の効果において、質量比で仮焼アルミナ/揮
発シリカが1〜0.1、仮焼アルミナ+アルミナ微粉/
揮発シリカが2〜5の比率が最も好ましい。仮焼アルミ
ナ/揮発シリカの質量比が1を超えると焼結収縮が大き
くなり、耐ハクリ性に劣る傾向にある。0.1未満では
流動性に劣り、施工性が低下傾向にある。より適正な比
は1〜0.5である。(仮焼アルミナ+アルミナ微粉)
/揮発シリカの質量比では、2未満でも焼結収縮が大き
くなる。5を超える場合は、流動性に劣り、施工性が低
下傾向にある。吹付材組成において、前記した揮発シリ
カ、仮焼アルミナおよび75μm以下のアルミナ微粉以
外の耐火骨材は特に限定されるものではないが、例えば
焼結アルミナ、電融アルミナ、ボーキサイト、ばん土頁
岩、ムライト、けい石、シャモット、アンダルサイト、
ろう石、炭化珪素、溶融シリカ、マグネシア、マグネシ
ア−カルシア、Al−MgO系スピネル、クロム
鉱、シリマナイト等から選ばれる一種以上とする。ま
た、さらにジルコニア、炭素、粘土、軽焼マグネシア、
ピッチ等をから選ばれる一種以上を組み合わせてもよ
い。揮発シリカ、仮焼アルミナおよび75μm以下のア
ルミナ微粉以外の骨材の割合は特に限定されない。吹付
材の流動性・充填性等を考慮して粗粒、中粒、微粒に適
宜調整する。吹付材は耐火骨材以外に、結合剤・有機繊
維・分散剤(解こう剤)等を配合することが一般的である
が、その具体的種類、割合ともに従来方法と特に変わり
ない。必要によっては、金属繊維、金属粉、増粘剤、軽
量剤、硬化促進剤、硬化遅延剤等を組み合わせてもよ
い。結合剤としては、例えばアルミナセメント、マグネ
シアセメント等が挙げられる。その添加割合は耐火骨材
100質量%に対し、結合剤の種類に応じて外掛け1〜
15質量%の範囲で調整するのが好ましい。ノズル部で
添加する急結剤の添加量が多い場合は、結合剤は必ずし
も添加する必要はない。有機繊維は付着性向上の効果を
持ち、その具体例としてはポリプロピレン、ナイロン、
PVA、ポリエチレン、アクリル、ポリエステル、パル
プなどである。金属繊維の具体例は、ステンレス鋼、
鉄、アルミニウムなどである。その最適な添加割合は、
繊維の材質によって異なる。耐火性骨材100質量%に
対して外掛けで有機繊維は0.05〜1質量%、金属繊
維は0.5〜7質量%が好ましい。分散剤としては、吹
付材の流動性を向上させる効果を持つ。その具体例とし
ては、トリポリリン酸ソーダ、ヘキサメタリン酸ソー
ダ、ポリアクリル酸ソーダ、ポリアクリルリン酸ソー
ダ、ポリカルボン酸、リグニンスルホン酸ソーダなどで
ある。好ましい添加量は、耐火骨材100質量%対し外
掛け0.01〜1質量%である。金属粉の具体例は、ア
ルミニウム、シリコン、フェロシリコン、アルミニウム
合金、シリコン合金等である。その添加量は、耐火骨材
100質量%対し外掛け0.01質量%が好ましい。増
粘剤としては、ベントナイト、CMC、イソブチレン無
水マレイン酸強重合物等であり、その添加割合は耐火骨
材100質量%対し、外掛け5質量%以下が好ましい。
以上の配合物よりなる吹付材は、施工水分の添加で予め
泥しょう状に調整したものを吹付ける。その際の施工水
分量は、吹付材組成全体に対し外掛け5〜15質量%が
好ましい。ノズル部にて添加する急結剤は液状、粉末の
いずれでもよい。液状急結剤としては、アルミン酸ソー
ダ、アルミン酸カリウム、ケイ酸ソーダ、リン酸ソーダ
等の水溶液である。また、これらの液状急結剤は、必要
によりカチオン系あるいはアニオン系等の凝集剤を組み
合わせる。粉末急結剤としては、例えばアルミン酸ソー
ダ、アルミン酸カリウム、ケイ酸ソーダ、リン酸ソー
ダ、炭酸ソーダ、塩化カルシウム、水酸化カルシウム、
酸化カルシウム、アルミン酸カルシウム、水酸化マグネ
シウム、ポルトランドセメント、硫酸ばん土等から選ば
れる一種以上である。粉末急結剤を耐火物微粉と混合し
て添加する場合、粉末急結剤と組み合わせる耐火物微粉
は、耐火骨材として前記に例示した耐火材質から選択使
用することができる。この耐火物微粉の粒径は、例えば
1mm以下の範囲内で平均0.05〜0.5mmの微粉
に調整して使用する。平均粒径が小さ過ぎると圧搾空気
の風圧に影響され、吹付材に対する連続的かつ安定した
添加の効果が得られ難くなる。したがって、揮発シリ
カ、仮焼アルミナといった超微粉の使用は好ましくな
い。ノズル部で添加する粉末急結剤と耐火物微粉との割
合は、例えば粉末急結剤を15〜80質量%とし、残部
を耐火物微粉とする。粉末急結剤が15質量%未満では
急結剤としての効果が不十分となって、吹付材の付着性
が劣る傾向となる。急結剤が80質量%を超えると、吹
付材に対する急結剤の分散性に劣る。施工水分の添加で
泥しょう状に調整した吹付材(施工水分を含む)に対す
る急結剤の添加割合は、吹付材の付着性の面から、急結
剤の固形分換算で0.5〜5質量%が好ましい。図1
は、本発明による吹付け方法における吹付け装置のイメ
ージである。施工水分の添加で予め泥しょう状に調整し
た吹付材を、圧送管(5)を介してノズル(1)内に圧
送する。吹付材はノズル(1)先端近傍に接続した急結
剤導入管(2)から圧搾空気をもって急結剤を添加しつ
つ、ノズルから噴出される。そして、吹付け対象の壁面
(3)に吹付け施工体(4)を形成する。同図では急結
剤の添加をノズル(1)内としているが、ノズル(1)
後方の圧送管(5)内でもよい。圧送管での添加では、
急結剤添加後の吹付材が、ノズルから噴出するまでの距
離が長くなり、その分、吹付材と急結剤との混合がより
確実となる。吹付材に対する粉末急結剤と耐火物微粉と
の混合物の添加は、圧縮空気をもって行う。また、図に
は示していないが、吹付材のノズルに対する供給は、ス
クイズ式、スクリュー式、ピストン式、ロータリー式等
の圧送装置を用いる。
BEST MODE FOR CARRYING OUT THE INVENTION In the spraying material used in the present invention, volatile silica used as a part of a refractory aggregate is, for example, an average particle size of 1 μm or less, which is obtained as a by-product in the production of silicon or silicon alloy. , Specific surface area is 5-4
It is ultrafine silica powder of about 0 m 2 / g, and is highly reactive because it is amorphous. It is commercially available under trade names such as silica flower and micro silica. Purity is SiO 2
It is 90% by mass or more in conversion. The volatile silica has an effect as a water reducing agent of the spraying material and an improvement in adhesion, and further has an effect of suppressing sintering shrinkage by forming mullite by reacting with peripheral alumina fine powder. If the proportion in the refractory aggregate is less than 6% by mass, the above effect cannot be exhibited. If it exceeds 13% by mass, the amount of the ultrafine powder in the composition of the sprayed material becomes excessive, resulting in sintering shrinkage and reduction in corrosion resistance. More preferably, it is 6 to 10% by mass. On the other hand, calcined alumina is obtained by firing aluminum hydroxide obtained by the Bayer method in a low temperature range of about 1000 to 1300 ° C. α-Al 2 O 3 as a main component. The refractory is used by pulverizing it, but since it is not strongly fired, it is naturally obtained as an ultrafine powder having an average particle diameter of 10 μm or less by pulverization. The calcined alumina acts on the water reducing agent of the spray material and the close packing of the matrix portion, and has an effect of improving workability. The purity is preferably 98% by mass or more in terms of Al 2 O 3 . If the proportion in the refractory aggregate is less than 1% by mass, the effect of improving workability is poor.
If the content exceeds 7% by mass, over-sintering of the sprayed material causes sintering shrinkage and cracks which cause peeling damage. More preferably, it is 1 to 5% by mass. Alumina fine powder having a particle size of 75 μm or less reacts with volatile silica, and suppresses sintering shrinkage of the sprayed material by volume expansion accompanying mullite generation. Sintered alumina and / or electrofused alumina whose particle size has been adjusted by pulverization and having a purity of 95% by mass or more in terms of Al 2 O 3 are used. If the proportion of the alumina fine powder having a particle size of 75 μm or less in the refractory aggregate is less than 10% by mass, mullite is insufficiently generated, and the effect of peel resistance cannot be obtained.
If it exceeds 30% by mass, the fluidity of the spray material will decrease,
The construction water must be increased, and the spray construction body becomes porous, resulting in poor corrosion resistance. The unit of the alumina fine powder having a particle diameter of 75 μm or less is based on JIS sieve opening. If the particle diameter is 75 μm or less, for example, 45 μm or less,
The particle size may be 2 μm or less. In addition, in terms of the effects of adhesion and peeling resistance, the calcined alumina / volatile silica is 1 to 0.1 by mass ratio, and calcined alumina + alumina fine powder /
Most preferred is a ratio of volatile silica of 2-5. When the mass ratio of calcined alumina / volatile silica exceeds 1, sintering shrinkage tends to be large and the peel resistance tends to be poor. If it is less than 0.1, the fluidity is poor, and the workability tends to decrease. A more appropriate ratio is between 1 and 0.5. (Calcined alumina + alumina fine powder)
Even when the mass ratio of / volatile silica is less than 2, sintering shrinkage increases. If it exceeds 5, the fluidity is poor, and the workability tends to decrease. In the spray material composition, refractory aggregates other than the above-mentioned volatile silica, calcined alumina, and alumina fine powder of 75 μm or less are not particularly limited. For example, sintered alumina, fused alumina, bauxite, clay shale, mullite , Silica, chamotte, andalusite,
Pyrophyllite, silicon carbide, fused silica, magnesia, magnesia - calcia, Al 2 O 3 -MgO spinel, chromium ore, and one or more selected from sillimanite like. In addition, zirconia, carbon, clay, light burned magnesia,
One or more types selected from pitches and the like may be combined. The ratio of aggregates other than volatile silica, calcined alumina and alumina fine powder of 75 μm or less is not particularly limited. It is appropriately adjusted to coarse particles, medium particles, and fine particles in consideration of the fluidity and the filling property of the spray material. The spraying material generally contains a binder, an organic fiber, a dispersant (peptizer), etc. in addition to the refractory aggregate, but the specific type and ratio are not particularly different from those of the conventional method. If necessary, a metal fiber, a metal powder, a thickener, a lightening agent, a curing accelerator, a curing retarder and the like may be combined. Examples of the binder include alumina cement and magnesia cement. The addition ratio is 1 to 100% by mass of the refractory aggregate, and 1 to 4 depending on the type of the binder.
It is preferable to adjust within the range of 15% by mass. When the amount of the quick setting agent added at the nozzle portion is large, it is not always necessary to add the binder. Organic fibers have the effect of improving adhesion, and specific examples thereof include polypropylene, nylon,
PVA, polyethylene, acrylic, polyester, pulp and the like. Specific examples of metal fibers are stainless steel,
Iron, aluminum and the like. The optimal addition ratio is
Depends on the fiber material. The organic fiber is preferably 0.05 to 1% by mass and the metal fiber is preferably 0.5 to 7% by mass based on 100% by mass of the refractory aggregate. The dispersant has the effect of improving the flowability of the spray material. Specific examples thereof include sodium tripolyphosphate, sodium hexametaphosphate, sodium polyacrylate, sodium polyacrylate, polycarboxylic acid, and sodium ligninsulfonate. A preferable addition amount is 0.01 to 1% by mass based on 100% by mass of the refractory aggregate. Specific examples of the metal powder include aluminum, silicon, ferrosilicon, aluminum alloy, and silicon alloy. The addition amount is preferably 0.01% by mass based on 100% by mass of the refractory aggregate. Examples of the thickener include bentonite, CMC, isobutylene maleic anhydride strong polymer and the like, and the addition ratio thereof is preferably 5% by mass or less based on 100% by mass of the refractory aggregate.
The spraying material composed of the above-mentioned composition is sprayed beforehand adjusted in a sludge state by adding construction moisture. In this case, the construction moisture content is preferably 5 to 15% by mass of the outer spray composition as a whole. The quick setting agent added at the nozzle portion may be either liquid or powder. The liquid quick-setting agent is an aqueous solution of sodium aluminate, potassium aluminate, sodium silicate, sodium phosphate and the like. These liquid quick-setting agents are combined with a cationic or anionic flocculant, if necessary. Examples of powder quick setting agents include sodium aluminate, potassium aluminate, sodium silicate, sodium phosphate, sodium carbonate, calcium chloride, calcium hydroxide,
One or more selected from calcium oxide, calcium aluminate, magnesium hydroxide, Portland cement, sodium sulfate, and the like. When the powder quick setting agent is mixed with the refractory fine powder and added, the refractory fine powder combined with the powder quick setting agent can be selected from the refractory materials exemplified above as the refractory aggregate. The particle size of the refractory fine powder is adjusted to, for example, 0.05 to 0.5 mm on average within a range of 1 mm or less for use. If the average particle size is too small, it is affected by the wind pressure of the compressed air, and it is difficult to obtain the effect of continuous and stable addition to the spray material. Therefore, use of ultrafine powder such as volatile silica and calcined alumina is not preferable. The ratio of the powder quick-setting admixture and the refractory fine powder to be added at the nozzle portion is, for example, 15 to 80% by mass of the powder quick-setting admixture, and the remainder is refractory fine powder. If the powder quick-setting agent is less than 15% by mass, the effect as a quick-setting agent is insufficient, and the adhesion of the spray material tends to be poor. When the setting agent exceeds 80% by mass, the dispersibility of the setting agent in the spray material is poor. The proportion of the quick-setting agent added to the spray material (including the working water) adjusted into a slurry by adding the working water is 0.5 to 5 in terms of the solid content of the quick-setting agent from the viewpoint of the adhesion of the spray material. % By mass is preferred. Figure 1
3 is an image of a spray device in a spray method according to the present invention. The spraying material, which has been adjusted in advance into a slurry by adding the working moisture, is pumped into the nozzle (1) through the pumping pipe (5). The spray material is ejected from the nozzle while adding the quick-setting agent with compressed air from a quick-setting agent introduction pipe (2) connected near the tip of the nozzle (1). Then, a spray construction body (4) is formed on the wall surface (3) to be sprayed. In the same figure, the addition of the quick setting agent is in the nozzle (1),
It may be in the rear pumping tube (5). In the case of addition in the pumping pipe,
The distance until the spray material after the addition of the quick-setting agent is ejected from the nozzle becomes longer, and accordingly, the mixing of the spray material and the quick-setting agent becomes more reliable. The addition of the mixture of the powder quick setting agent and the refractory fine powder to the spraying material is performed with compressed air. Although not shown in the figure, a squeeze-type, screw-type, piston-type, rotary-type, or other pressure-feeding device is used to supply the spray material to the nozzle.

【実施例】以下に本発明実施例およびその比較例を示
す。表1、表2は、各例で使用した吹付材組成、急結剤
およびその試験結果である。なお各例で規定した耐火原
料の粒径は、揮発シリカおよび仮焼アルミナについては
レーザー回折法、他の粗粒、微粒の耐火原料の粒径はJ
ISふるい目開きに準じたものである。
Examples Examples of the present invention and comparative examples are shown below. Tables 1 and 2 show the composition of the spraying material, the quick setting agent and the test results used in each example. The particle size of the refractory raw material specified in each example is determined by the laser diffraction method for volatile silica and calcined alumina.
It conforms to the IS sieve opening.

【表1】 [Table 1]

【表2】 吹付けでは、施工水分を外掛け10質量%添加して予め
泥しょう状に調整した吹付材を、スクイズ式圧送ポンプ
にて圧送し、ノズル内で急結剤を圧搾空気にて外掛け1
〜2質量%(急結剤と耐火物微粉とを混合して添加する
場合、耐火物微粉を除いた割合)添加し、耐火物垂直壁
に吹付けた。付着性の試験は、吹付材の付着率を求め
た。耐食性は、吹付施工体から切り出した試験片を溶融
スラグおよび銑鉄よりなる侵食剤をもって回転侵食試験
で測定した。結果は比較例1の侵食寸法を100とした
指数で示し、数値が小さいほど耐食性に優れる。耐ハク
リ性の指標として、残存線変化率と耐スポーリング性を
求めた。残存線変化率は、吹付け施工体から切り出した
試験片を1450℃×3hrs加熱し、加熱前の寸法に
対する加熱後の残存線変化率を百分率で表したものであ
る。残存変化率が小さいほど焼結収縮が小さいから、耐
ハクリ性に優れる。耐スポール性は、吹付け施工体から
切り出した試験片を1450℃×3hrs加熱した後、
急冷して熱衝撃を与え、弾性率の低下度合いで評価し
た。試験値は、熱衝撃を与える前の弾性率を100とし
て、熱衝撃を与えた後の弾性率を指数で表したものであ
り、数値が大きいほど耐スポール性は高い。施工性は、
吹付材の材料圧送内での流動性および圧送管閉塞の程度
等から総合的に評価し、A〜Dの4段階で表示した。A
が最も施工性に優れ、Dが最も施工性に劣る。実機試験
では、製鉄産業で使用される混銑車において、その内張
りに対する吹付け補修を行った。約100mmの厚さに
吹付け、混銑車の稼動によって補修前の内張り層が露出
するまでの耐用チャージ数を求めた。試験数値がないも
のは試験しなかったものである。表1、表2の結果か
ら、本発明の実施例はいずれも付着性および耐ハクリ性
においてそん色がない。一部の実施れいにおいては、揮
発シリカの使用量が多いことで耐食性に顕著な効果がな
いが、本発明がもつ耐ハクリ性によって結局は実機試験
での耐用性において格段に優れている。本発明の実施例
のうち、表2に示す実施例10〜18は、急結剤を耐火
微粉と混合した状態で添加したものである。吹付材の各
特性がさらに優れていることが確認される。これに対し
比較例1は、揮発シリカを配合しているが仮焼アルミナ
を配合しない吹付材を使用したものであり、耐スポール
性および施工性に劣る。比較例2は、仮焼アルミナを配
合しているが揮発シリカの使用量が過多であり、耐焼結
収縮性、耐スポール性および施工性に劣る。仮焼アルミ
ナは配合しているものの、揮発シリカの割合が少ない比
較例3は、耐焼結収縮性、耐スポール性および施工性に
劣る。仮焼アルミナの割合が多過ぎる比較例4、アルミ
ナ微粉の使用量が少ない比較例5は、いずれも耐焼結収
縮性および耐スポール性に劣る。図2は、前記した実施
例2の吹付け施工方法において、揮発シリカの使用量を
3、8、15質量%に変化させた各吹付材3種につい
て、仮焼アルミナの使用量と吹付材の残存線変化率との
関係を示したグラフである。なお、この場合、揮発シリ
カ量および仮焼アルミナ量の変化に合わせて75μm以
下の焼結アルミナ微粉量を増減させ、揮発シリカ量、仮
焼アルミナ量と75μm以下の焼結アルミナ微粉量との
合量を32質量%に調整した。このグラフの結果から
も、揮発シリカ、仮焼アルミナ量およびアルミナ微粉の
割合が本発明の範囲内の吹付材において、焼結収縮の抑
制に効果的であることが確認される。以上の実施例では
吹付け対象壁面が室温の状態で行ったが、本発明の方法
は、炉壁の熱間補修のように高温状態の壁面に対しても
同様の効果を得ることができる。本発明の吹付け方法は
例えば溶銑鍋、混銑車、混銑炉、高炉樋等の溶銑容器あ
るいは溶銑樋の内張りあるいはその補修に好適であり、
溶鋼容器にも適用可能である。
[Table 2] In the spraying, the spraying material, which has been prepared in a sludge form by adding 10% by mass of construction moisture to the outside, is pumped by a squeeze-type pump, and the quick-setting agent in the nozzle is enveloped by compressed air.
22% by mass (when mixing and adding a quick-setting admixture and refractory fine powder, the proportion excluding the refractory fine powder) was added and sprayed on the refractory vertical wall. In the adhesion test, the adhesion rate of the spray material was determined. The corrosion resistance was measured by a rotary erosion test on a test piece cut out from the sprayed construction body using an erosion agent composed of molten slag and pig iron. The results are shown as an index with the erosion dimension of Comparative Example 1 being 100, and the smaller the numerical value, the better the corrosion resistance. The residual line change rate and the spalling resistance were determined as indices of the peeling resistance. The residual line change rate is obtained by heating a test piece cut out from a sprayed body at 1450 ° C. × 3 hrs and expressing the residual line change rate after heating with respect to the dimension before heating in percentage. The smaller the residual change rate is, the smaller the sintering shrinkage is. The spall resistance was obtained by heating a test piece cut from a sprayed body at 1450 ° C. × 3 hrs.
It was quenched to give a thermal shock, and the degree of decrease in the elastic modulus was evaluated. The test value is an index of the elastic modulus after the application of the thermal shock, assuming that the elastic modulus before the application of the thermal shock is 100. The larger the numerical value, the higher the spall resistance. Workability is
It was comprehensively evaluated from the fluidity of the sprayed material in the material pumping and the degree of clogging of the pumping pipe, and was displayed in four stages of A to D. A
Is the most excellent in workability, and D is the lowest in workability. In the actual machine test, spray repair was performed on the lining of a mixed iron vehicle used in the steelmaking industry. It was sprayed to a thickness of about 100 mm, and the number of durable charges until the liner before repair was exposed by the operation of the mixed iron wheel was determined. Those with no test values were not tested. From the results shown in Tables 1 and 2, none of the examples of the present invention has the same color in adhesion and peel resistance. In some implementations, the use of a large amount of volatile silica has no remarkable effect on corrosion resistance, but the peel resistance of the present invention ultimately results in much better durability in actual machine tests. Among the examples of the present invention, Examples 10 to 18 shown in Table 2 are those in which the quick setting agent is added in a state of being mixed with the refractory fine powder. It is confirmed that each property of the spray material is more excellent. On the other hand, Comparative Example 1 uses a spraying material that contains volatile silica but does not contain calcined alumina, and is inferior in spall resistance and workability. In Comparative Example 2, although calcined alumina was added, the amount of volatile silica used was excessive, and the sintering shrinkage resistance, spall resistance, and workability were poor. Comparative Example 3, in which the calcined alumina was blended but the proportion of volatile silica was small, was inferior in sintering shrinkage resistance, spall resistance, and workability. Comparative Example 4 in which the proportion of calcined alumina is too large and Comparative Example 5 in which the amount of the alumina fine powder used is small are all inferior in sintering shrinkage resistance and spall resistance. FIG. 2 shows the amount of calcined alumina and the amount of the sprayed material in each of the three sprayed materials in which the amount of the volatile silica used was changed to 3, 8, and 15% by mass in the spraying method of Example 2 described above. It is the graph which showed the relationship with the residual line change rate. In this case, the amount of the fine alumina powder having a particle size of 75 μm or less is increased or decreased in accordance with the change in the amount of the volatile silica and the amount of the calcined alumina. The amount was adjusted to 32% by weight. From the results of this graph, it is confirmed that in the spray material in which the amount of the volatile silica, the amount of the calcined alumina, and the ratio of the alumina fine powder are within the range of the present invention, the sintering shrinkage is effective. In the above embodiments, the spraying target wall surface is at room temperature. However, the method of the present invention can obtain the same effect on a high-temperature wall surface as in hot repair of a furnace wall. The spraying method of the present invention is suitable for lining or repairing a hot metal vessel or a hot metal gutter such as a hot metal ladle, a mixed iron wheel, a mixed iron furnace, a blast furnace gutter,
It is also applicable to molten steel containers.

【効果】本発明は以上の実施例の試験結果が示すよう
に、泥しょう状に調整した吹付材をノズル内にて急結剤
を添加して吹付ける耐火物吹付け方法において、その施
工性を損なうことなく、かつ吹付材の寿命を決定づける
耐ハクリ性を大幅に改善することができる。その結果、
本発明の耐火物吹付け方法によれば、施工に伴う工数お
よび吹付材の使用量が低減し、同時に施工対象設備の稼
動率向上に大きく貢献する。
[Effect] As shown by the test results of the above examples, the present invention relates to a refractory spraying method in which a spray material adjusted in a slurry form is sprayed by adding a quick-setting agent in a nozzle. , And the peel resistance that determines the life of the sprayed material can be greatly improved. as a result,
ADVANTAGE OF THE INVENTION According to the refractory spraying method of this invention, the man-hour and the usage of the spraying material accompanying construction are reduced, and at the same time, it greatly contributes to the improvement of the operation rate of the installation target equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の吹付け方法のイメージ図である。FIG. 1 is an image diagram of a spraying method of the present invention.

【図2】吹付材の材質と残存線変化率との関係を示した
グラフである。
FIG. 2 is a graph showing a relationship between a material of a spray material and a residual line change rate.

【符号の説明】[Explanation of symbols]

1 ノズル 2 急結剤供給管 3 壁面 4 吹付け施工体 5 圧送管 DESCRIPTION OF SYMBOLS 1 Nozzle 2 Quick-setting agent supply pipe 3 Wall surface 4 Spray construction body 5 Pumping pipe

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 施工水分を添加して予め泥しょう状に調
整した吹付材を、ノズル内または圧送管内にて急結剤を
添加して吹付ける耐火物吹付け方法において、吹付材の
耐火骨材組成を、揮発シリカ6〜13質量%、仮焼アル
ミナ1〜7質量%、粒径75μm以下の焼結アルミナ微
粉および/または電融アルミナ微粉10〜30質量%、
残部が前記以外の耐火骨材とした、耐火物吹付け方法。
1. A refractory spraying method for spraying a spraying material which has been prepared in advance into a sludge state by adding working water and adding a quick-setting agent in a nozzle or a pressure feed pipe. The material composition is 6 to 13% by mass of volatile silica, 1 to 7% by mass of calcined alumina, 10 to 30% by mass of sintered alumina fine powder having a particle size of 75 μm or less and / or electrofused alumina fine powder,
A refractory spraying method in which the remainder is made of other refractory aggregate.
【請求項2】 施工水分を添加して予め泥しょう状に調
整した吹付材をノズル内または圧送管内にて急結剤を添
加して吹付ける耐火物吹付け方法において、吹付材の耐
火骨材組成を、揮発シリカ6〜13質量%、仮焼アルミ
ナ1〜7質量%、粒径75μm以下の焼結アルミナ微粉
および/または電融アルミナ微粉10〜30質量%、残
部が前記以外の耐火骨材とし、且つ前記した耐火骨材に
ついて、質量比で仮焼アルミナ/揮発シリカが1〜0.
1、[仮焼アルミナ+(焼結アルミナ微粉および/また
は電融アルミナ微粉)]/揮発シリカが2〜5とした耐
火物吹付け方法。
2. A refractory spraying method for spraying a spraying material which has been preliminarily adjusted into a sludge state by adding working water and adding a quick-setting agent in a nozzle or a pressure feed pipe. The composition is 6 to 13% by mass of volatile silica, 1 to 7% by mass of calcined alumina, 10 to 30% by mass of sintered alumina fine powder and / or electrofused alumina fine powder having a particle size of 75 μm or less, and the remainder is a refractory aggregate other than the above. And the calcined alumina / volatile silica in a mass ratio of 1 to 0.
1, [calcined alumina + (sintered alumina fine powder and / or fused alumina fine powder)] / a refractory spraying method in which the volatile silica is 2 to 5.
【請求項3】 ノズル内または圧送管内にて添加する急
結剤を耐火物微粉と混合して行う請求項1または2記載
の耐火物吹付け方法。
3. The refractory spraying method according to claim 1, wherein the quick-setting agent added in the nozzle or the pressure feed pipe is mixed with the refractory fine powder.
【請求項4】 揮発シリカ6〜13質量%、仮焼アルミ
ナ1〜7質量%、粒径75μm以下の焼結アルミナ微粉
および/または電融アルミナ微粉10〜30質量%、残
部が前記以外の耐火骨材とした吹付材。
4 to 13% by mass of volatile silica, 1 to 7% by mass of calcined alumina, 10 to 30% by mass of sintered alumina fine powder and / or electrofused alumina fine powder having a particle size of 75 μm or less, with the remainder being refractory other than the above. Spraying material used as aggregate.
【請求項5】 揮発シリカ6〜13質量%、仮焼アルミ
ナ1〜7質量%、粒径75μm以下の焼結アルミナ微粉
および/または電融アルミナ微粉10〜30質量%、残
部が前記以外の耐火骨材とし、且つ前記した耐火骨材に
ついて、質量比で仮焼アルミナ/揮発シリカが1〜0.
1、[仮焼アルミナ+(焼結アルミナ微粉および/また
は電融アルミナ微粉)]/揮発シリカが2〜5とした請
求項4記載の吹付材。
5 to 13% by mass of volatile silica, 1 to 7% by mass of calcined alumina, 10 to 30% by mass of sintered alumina fine powder and / or electrofused alumina fine powder having a particle size of 75 μm or less, with the remainder being refractory other than the above. As for the aggregate, the calcined alumina / volatile silica is 1 to 0.
The spraying material according to claim 4, wherein the ratio of [calcined alumina + (sintered alumina fine powder and / or fused alumina fine powder)] / volatile silica is 2 to 5.
JP2001088646A 2001-03-26 2001-03-26 Method for spraying refractory and spray material used for its method Pending JP2002284583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001088646A JP2002284583A (en) 2001-03-26 2001-03-26 Method for spraying refractory and spray material used for its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001088646A JP2002284583A (en) 2001-03-26 2001-03-26 Method for spraying refractory and spray material used for its method

Publications (1)

Publication Number Publication Date
JP2002284583A true JP2002284583A (en) 2002-10-03

Family

ID=18943709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001088646A Pending JP2002284583A (en) 2001-03-26 2001-03-26 Method for spraying refractory and spray material used for its method

Country Status (1)

Country Link
JP (1) JP2002284583A (en)

Similar Documents

Publication Publication Date Title
JP2002241182A (en) Monolithic refractory composition
JP2001114571A (en) Castable refractory for trough of blast furnace
JP4351526B2 (en) Unshaped refractories for wet spraying with used refractories
JP4382930B2 (en) Refractory spraying method and refractory spraying material
JP3046251B2 (en) Wet spraying method of dense pouring refractory composition
JP2003321276A (en) Silicon carbide material for monolithic refractory excellent in driability and monolithic refractory material
JP2604310B2 (en) Pouring refractories
KR20050006119A (en) Unshaped refractory composition
JP2002284583A (en) Method for spraying refractory and spray material used for its method
JP2000178074A (en) Castable refractory for blast furnace tapping spout
EP0798279B1 (en) Wet-gunning method
JP2831976B2 (en) Wet spraying method
JPH06256064A (en) Dense castable refractory low in water content and capable of being cast
JP3790621B2 (en) Refractory spraying method
JP2934620B1 (en) Irregular refractories for wet spraying
JP4456193B2 (en) Refractory spraying method
JP3790622B2 (en) Refractory spray construction method and spray material used in this method
JPH09165272A (en) Spraying material for maintenance of industrial kiln
JP2000226268A (en) Method of refractory material spraying work and spray refractory material to be used therefor
JPH09183674A (en) Monolithic refractory for flowing-in working
JPH0725668A (en) Refractory for casting work
JP3981433B2 (en) Refractory spraying method
JPS59137367A (en) Magnesia alumina castable refractories
JP2001048662A (en) Method for spraying refractory and spraying material used for the same
JP2002187781A (en) Wet spraying material