[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002270869A - Solar battery - Google Patents

Solar battery

Info

Publication number
JP2002270869A
JP2002270869A JP2001069088A JP2001069088A JP2002270869A JP 2002270869 A JP2002270869 A JP 2002270869A JP 2001069088 A JP2001069088 A JP 2001069088A JP 2001069088 A JP2001069088 A JP 2001069088A JP 2002270869 A JP2002270869 A JP 2002270869A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride film
main surface
texture
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001069088A
Other languages
Japanese (ja)
Inventor
Takenori Watabe
武紀 渡部
Hiroyuki Otsuka
寛之 大塚
Masatoshi Takahashi
正俊 高橋
Satoyuki Ikushima
聡之 生島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2001069088A priority Critical patent/JP2002270869A/en
Publication of JP2002270869A publication Critical patent/JP2002270869A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize an efficient solar battery by devising the formation form of a silicon nitride film that is formed as a rear surface passivation film by considering the interference between reflection light on the surface of a rear surface metal electrode layer and reflection light at the boundary of a silicon single-crystal substrate and the silicon nitride film. SOLUTION: When no texture mainly composed of 111} face is formed on both the reverse surface MPP and the light reception surface MPS of the silicon single crystal substrate 3 in the rear surface structure of the solar battery 1, the film thickness of the silicon nitride film 4 at the rear surface side is set to 40 nm-220 nm. Also, when texture formation is made only at the side of the light reception surface MPS, the film thickness of the silicon nitride film 4 at the rear surface side is set to 100 nm-300 nm. Further, when texture formation is made on both the rear surface MPP and the light reception surface MPS, the film thickness of the silicon nitride film 4 at the rear surface side is set to 40 nm-230 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン単結晶を
用いた太陽電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell using a silicon single crystal.

【0002】[0002]

【従来の技術】シリコン単結晶を用いた太陽電池におい
ては、照射された光エネルギーを如何に効率よく電気エ
ネルギーに変換するかが重要な技術的課題の一つであ
る。一般に研磨により平滑化されたシリコン単結晶基板
の表面は、光の反射率が高く、光エネルギーの損失要因
となる(以下、反射損失という)。他方、ドーパント濃
度がそれほど高くないシリコン単結晶基板は光の透過率
が比較的高く、受光面(本明細書では、基板の第二主表
面としている)から基板内に入射した光が、裏面側(本
明細書では、基板の第一主表面としている)透過してし
まうと、これも光エネルギーの損失要因となる(以下、
透過損失という)。
2. Description of the Related Art In a solar cell using a silicon single crystal, one of the important technical issues is how to efficiently convert irradiated light energy into electric energy. Generally, the surface of a silicon single crystal substrate that has been smoothed by polishing has a high light reflectance, which causes a loss of light energy (hereinafter referred to as reflection loss). On the other hand, a silicon single crystal substrate whose dopant concentration is not so high has relatively high light transmittance, and light incident on the substrate from the light receiving surface (in this specification, the second main surface of the substrate) is applied to the back surface side. When transmitted (in the present specification, it is referred to as the first main surface of the substrate), this also causes a loss of light energy (hereinafter, referred to as the first main surface).
Transmission loss).

【0003】このうち、受光面側の反射損失を低減する
ための改良としては、該受光面側に反射防止膜を形成す
る方法もあるが、最近では、異方性エッチングを用いた
シリコン単結晶基板の面粗し処理、いわゆるテクスチャ
処理も用いられることが多い。これは、シリコン単結晶
の(100)面を、ヒドラジン水溶液や水酸化ナトリウ
ムなどのエッチング液を用いて異方性エッチングするこ
とにより、種々の方位を持つ{111}面を優先的に露
出させた面粗し構造(以下、テクスチャという)であ
る。入射光は、このテクスチャの凹凸により乱反射さ
れ、受光面と全反射条件を満たす光束が減少する結果、
基板内への光の入射効率が高められて受光面側での反射
損失を低減できる。なお、テクスチャは裏面側にも形成
することができ、これにより、裏面側での反射光を散乱
させ、受光面側から再び電池外へ抜けることによる損失
を抑制することができる。
[0003] Among them, as an improvement for reducing the reflection loss on the light receiving surface side, there is a method of forming an antireflection film on the light receiving surface side. Recently, however, a silicon single crystal using anisotropic etching has been used. A substrate surface roughening process, a so-called texture process, is often used. In this method, {111} planes having various orientations are preferentially exposed by anisotropically etching the (100) plane of a silicon single crystal using an etching solution such as hydrazine aqueous solution or sodium hydroxide. This is a roughened structure (hereinafter referred to as texture). The incident light is irregularly reflected by the unevenness of the texture, and as a result, the light flux satisfying the light receiving surface and the total reflection condition is reduced.
The efficiency of light incidence on the substrate is increased, and reflection loss on the light receiving surface side can be reduced. The texture can also be formed on the back surface side, whereby the light reflected on the back surface side can be scattered, and the loss due to the light receiving surface going out of the battery again can be suppressed.

【0004】他方、透過損失低減のための改良として、
裏面側に反射膜を形成して、該裏面から抜けようとする
光を逆反射させて基板内へ戻す方法が提案されている。
このような反射膜として、裏面全面を覆う金属電極層
(以下、裏面金属電極層という)が用いられる。ただ
し、シリコン単結晶基板の主表面に金属電極層を直接接
触させた場合、光生成キャリアの表面再結合による損失
が大きくなるので、金属電極層とシリコン単結晶基板と
の間には、パッシベーション膜として例えば窒化シリコ
ン膜が形成される。この場合、金属電極層と、下地とな
るシリコン単結晶基板とのコンタクトは、窒化シリコン
膜にフォトリソグラフィーあるいは機械的処理によりあ
けられた導通貫通部を介して確保される。
On the other hand, as an improvement for reducing transmission loss,
A method has been proposed in which a reflective film is formed on the back surface side, and the light that is going to escape from the back surface is reflected back and returned into the substrate.
As such a reflective film, a metal electrode layer covering the entire back surface (hereinafter, referred to as a back metal electrode layer) is used. However, if the metal electrode layer is brought into direct contact with the main surface of the silicon single crystal substrate, the loss due to surface recombination of photogenerated carriers increases, so the passivation film is provided between the metal electrode layer and the silicon single crystal substrate. For example, a silicon nitride film is formed. In this case, the contact between the metal electrode layer and the underlying silicon single crystal substrate is ensured through a conductive through-hole formed in the silicon nitride film by photolithography or mechanical processing.

【0005】[0005]

【発明が解決しようとする課題】ここで、受光面側から
入射した光は、裏面金属電極層と、シリコン単結晶基板
/窒化シリコン膜境界との2つの面で反射されるが、こ
のうち裏面金属電極層で反射される光は、境界で屈折し
た後、入射時に1回、反射時に1回の都合2回、窒化シ
リコン膜内を透過する結果、境界反射光との間に光路差
を生じて干渉を起こす。そして、この干渉が太陽電池の
変換効率に及ぼす影響については従来、何ら技術上の考
慮が払われることがなかった。
Here, the light incident from the light receiving surface side is reflected by two surfaces of the back surface metal electrode layer and the boundary between the silicon single crystal substrate and the silicon nitride film. The light reflected by the metal electrode layer is refracted at the boundary and then transmitted through the silicon nitride film once at the time of incidence and once at the time of reflection, resulting in an optical path difference with the boundary reflected light. Cause interference. Conventionally, no technical consideration has been given to the effect of this interference on the conversion efficiency of the solar cell.

【0006】本発明の課題は、裏面パッシベーション膜
として形成する窒化シリコン膜の形成形態を、裏面金属
電極層での反射光とシリコン単結晶基板/窒化シリコン
膜境界での反射光との干渉を考慮に入れて工夫すること
により、より高効率の太陽電池を具現することにある。
An object of the present invention is to provide a method of forming a silicon nitride film to be formed as a back surface passivation film in consideration of interference between reflected light at the back metal electrode layer and light reflected at the silicon single crystal substrate / silicon nitride film boundary. It is intended to realize a solar cell with higher efficiency by devising the solar cell.

【0007】[0007]

【課題を解決するための手段及び作用・効果】上記課題
を解決するために、本発明の太陽電池の第一の構成は、
結晶主軸方向が<100>であり、かつ、第一主表面と
第二主表面とのいずれにも{111}面を主体とするテ
クスチャが形成されていないシリコン単結晶基板の、第
二主表面を受光面とし、他方、裏面側となる第一主表面
に、窒化シリコン膜が40〜220nmの厚さにて形成
され、さらに、該窒化シリコン膜を覆う形で裏面金属電
極層が形成されてなることを特徴とする。
Means for Solving the Problems and Actions / Effects In order to solve the above problems, a first configuration of a solar cell according to the present invention comprises:
A second main surface of a silicon single crystal substrate having a crystal main axis direction of <100> and having neither a first main surface nor a second main surface having a texture mainly composed of a {111} plane. On the other hand, a silicon nitride film having a thickness of 40 to 220 nm is formed on the first main surface on the back surface side, and a back metal electrode layer is formed so as to cover the silicon nitride film. It is characterized by becoming.

【0008】また、第二の構成は、結晶主軸方向が<1
00>であり、かつ、第一主表面には{111}面を主
体とするテクスチャが形成されず、第二主表面にはテク
スチャの形成されたシリコン単結晶基板の、第二主表面
を受光面とし、他方、裏面側となる第一主表面に、窒化
シリコン膜が100nm〜300nmの厚さにて形成さ
れ、さらに、該窒化シリコン膜を覆う形で裏面金属電極
層が形成されてなることを特徴とする。
In the second configuration, the crystal main axis direction is <1.
00>, a texture mainly composed of the {111} plane is not formed on the first main surface, and the second main surface of the silicon single crystal substrate on which the texture is formed is received on the second main surface. A silicon nitride film having a thickness of 100 nm to 300 nm is formed on the first main surface on the other side, and a back metal electrode layer is formed so as to cover the silicon nitride film. It is characterized by.

【0009】さらに、第三の構成は、結晶主軸方向が<
100>であり、かつ、第一主表面と第二主表面とのい
ずれにも{111}面を主体とするテクスチャが形成さ
れたシリコン単結晶基板の、第二主表面を受光面とし、
他方、裏面側となる第一主表面に、窒化シリコン膜が4
0nm〜230nmの厚さにて形成され、さらに、該窒
化シリコン膜を覆う形で裏面金属電極層が形成されてな
ることを特徴とする。
Further, in the third configuration, the crystal main axis direction is <
100>, and the second main surface of the silicon single crystal substrate in which the texture mainly composed of the {111} plane is formed on both the first main surface and the second main surface is defined as a light receiving surface;
On the other hand, a silicon nitride film
It is formed in a thickness of 0 nm to 230 nm, and a back metal electrode layer is formed so as to cover the silicon nitride film.

【0010】結晶主軸方向が<100>であるシリコン
単結晶基板を用いた太陽電池の場合、裏面に形成する窒
化シリコン膜の膜厚は、パッシベーション膜としての機
能確保を行なうのに十分な厚さを選択しなければならな
いのはもちろんである。この厚さの下限値は、トンネル
電流による光生成キャリアの表面再結抑制の観点から、
おおむね20nm程度と見積もることができる。しか
し、本発明者らが詳細に検討したところ、該下限値とは
無関係に定まる特有の膜厚範囲で窒化シリコン膜を形成
することにより、裏面金属電極層による内部反射効率ひ
いては太陽電池の光/エネルギーの変換効率を向上でき
る事実を見出し、上記本発明を完成するに至ったのであ
る。
In the case of a solar cell using a silicon single crystal substrate whose main crystal axis direction is <100>, the thickness of the silicon nitride film formed on the back surface is sufficient to ensure the function as a passivation film. Of course you have to choose The lower limit of this thickness is determined from the viewpoint of suppressing surface recombination of photogenerated carriers due to tunnel current.
It can be estimated to be about 20 nm. However, the present inventors have examined in detail that the formation of the silicon nitride film in a specific film thickness range determined independently of the lower limit value allows the internal reflection efficiency of the back metal electrode layer, and thus the light / They have found that the energy conversion efficiency can be improved, and have completed the present invention.

【0011】そして、窒化シリコン膜の上記特有の膜厚
範囲は、シリコン単結晶基板の第一主表面(裏面側)及
び第二主表面(受光面側)にテクスチャを形成するか否
かにより、異なるものとなる。第一の構成は第一主表面
及び第二主表面のいずれにもテクスチャを形成しない場
合であり、窒化シリコン膜の最適膜厚範囲は40〜22
0nmである。膜厚がこの範囲の上限値を超えても、下
限値未満となっても、いずれも内部反射効率向上効果が
見込めなくなる。
The specific thickness range of the silicon nitride film depends on whether or not texture is formed on the first main surface (back surface side) and the second main surface (light receiving surface side) of the silicon single crystal substrate. Will be different. The first configuration is a case where no texture is formed on either the first main surface or the second main surface, and the optimum thickness range of the silicon nitride film is 40 to 22.
0 nm. Even if the film thickness exceeds the upper limit or falls below the lower limit of this range, the effect of improving the internal reflection efficiency cannot be expected in any case.

【0012】また、第二の構成では、第二主表面側にの
みテクスチャが形成された場合であり、窒化シリコン膜
の最適膜厚範囲は100〜300nmである。膜厚がこ
の範囲の下限値未満となった場合、内部反射効率向上効
果が見込めなくなる。他方、上限値は、窒化シリコン膜
の形成時間やコストの問題を考慮して定められたもので
ある。
In the second configuration, the texture is formed only on the second main surface side, and the optimum thickness range of the silicon nitride film is 100 to 300 nm. If the film thickness is less than the lower limit of this range, the effect of improving internal reflection efficiency cannot be expected. On the other hand, the upper limit is determined in consideration of the formation time and cost of the silicon nitride film.

【0013】さらに第三の構成は、第一主表面と第二主
表面との双方にテクスチャが形成された場合であり、窒
化シリコン膜の最適膜厚範囲は40〜230nmであ
る。膜厚がこの範囲の上限値を超えても、下限値未満と
なっても、いずれも内部反射効率向上効果が見込めなく
なる。
A third configuration is a case where texture is formed on both the first main surface and the second main surface, and the optimum thickness range of the silicon nitride film is 40 to 230 nm. Even if the film thickness exceeds the upper limit or falls below the lower limit of this range, the effect of improving the internal reflection efficiency cannot be expected in any case.

【0014】内部反射効率向上の観点において、裏面側
の窒化シリコン膜に最適の膜厚範囲が存在する事実に
は、前記のとおり、裏面金属電極層と、シリコン単結晶
基板/窒化シリコン膜境界との各面で反射する光(以
下、金属面反射光及び膜境界反射光という)の干渉効果
が関係している。すなわち、金属面反射光と膜境界反射
光とが窒化シリコン膜内にて干渉を起こす場合、シリコ
ン単結晶基板と窒化シリコン膜との屈折率の相違から、
上記2つの光の干渉状態は窒化シリコン膜の膜厚によっ
て変化する。そして、ある特定の膜厚範囲において、金
属面反射光と膜境界反射光とが強め合う条件が成立し、
内部反射効率が向上するものと考えられる。
As described above, the fact that the silicon nitride film on the back side has an optimum thickness range from the viewpoint of improving the internal reflection efficiency is based on the fact that the backside metal electrode layer, the silicon single crystal substrate / silicon nitride film boundary, (Hereinafter, referred to as metal surface reflected light and film boundary reflected light). That is, when the metal surface reflection light and the film boundary reflection light cause interference in the silicon nitride film, the difference in the refractive index between the silicon single crystal substrate and the silicon nitride film causes
The interference state between the two lights changes depending on the thickness of the silicon nitride film. Then, in a specific film thickness range, a condition for strengthening the metal surface reflected light and the film boundary reflected light is satisfied,
It is considered that the internal reflection efficiency is improved.

【0015】[0015]

【発明の実施の形態】本発明の実施の形態を、図面を用
いて説明する。図1は本発明の太陽電池の一実施例を示
すものである。該太陽電池1は、結晶主軸が<100>
のp型シリコン単結晶基板3の第二主表面MPSを受光
面側として、ここにn型ドーパンを拡散させたエミッタ
層42を形成することによりp−n接合部48が形成さ
れ、さらに、酸化膜43、電極44及び反射防止膜47
がこの順序で形成されている。受光面側の電極44は、
p−n接合部48への光の入射効率を高めるために、例
えば図2に示すようなフィンガー電極とされ、さらに、
内部抵抗低減のため適当な間隔で太いバスバー電極が設
けられる。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of the solar cell of the present invention. The solar cell 1 has a crystal main axis of <100>.
The second main surface MPS of the p-type silicon single crystal substrate 3 is used as a light receiving surface side, and an emitter layer 42 in which an n-type dopant is diffused is formed here, thereby forming a pn junction portion 48 and further oxidizing. Film 43, electrode 44 and antireflection film 47
Are formed in this order. The electrode 44 on the light receiving surface side
In order to increase the efficiency of light incidence on the pn junction 48, for example, a finger electrode as shown in FIG.
Thick busbar electrodes are provided at appropriate intervals to reduce internal resistance.

【0016】他方、図3に示すように、裏面側となる第
一主表面MPPには窒化シリコン膜4が形成され、さら
に、該窒化シリコン膜4を覆う形で裏面金属電極層5が
形成されている。裏面金属電極層5は第一主表面MPP
の略全面を覆うもので、例えばアルミ蒸着層として構成
される。裏面金属電極層5は、該窒化シリコン膜4を膜
厚方向に貫通するコンタクト貫通部6を介して、下地と
なるシリコン単結晶基板3(シリコン半導体層)と導通
させるようにしている。コンタクト貫通部6は、フォト
リソグラフィーで形成してもよいが、本実施形態では、
機械加工による溝部あるいはレーザー加工による孔とさ
れている。
On the other hand, as shown in FIG. 3, a silicon nitride film 4 is formed on the first main surface MPP on the back surface side, and a back metal electrode layer 5 is formed so as to cover the silicon nitride film 4. ing. The back metal electrode layer 5 is the first main surface MPP
And is formed, for example, as an aluminum vapor-deposited layer. The back metal electrode layer 5 is electrically connected to the underlying silicon single crystal substrate 3 (silicon semiconductor layer) through a contact penetrating portion 6 penetrating the silicon nitride film 4 in the thickness direction. Although the contact penetration portion 6 may be formed by photolithography, in the present embodiment,
It is a groove formed by machining or a hole formed by laser processing.

【0017】シリコン単結晶基板3の第一主表面MPP
及び第二主表面MPSの一方又は双方には、反射防止用
のテクスチャを形成することができる。該テクスチャ
は、例えば、図5に示すように、外面が(111)面の
多数のピラミッド状突起からなるランダムテクスチャで
ある。ただし、このテクスチャは省略することももちろ
ん可能である。シリコン単結晶基板3の、テクスチャを
形成した主表面の面粗さはJIS:B0601(198
2)に規定された中心線平均粗さRaにて0.5〜50
μm程度となる。他方、形成しない場合は、例えば化学
研磨面であり、中心線平均粗さRaにて0.5μm以下
となる。
First main surface MPP of silicon single crystal substrate 3
A texture for antireflection can be formed on one or both of the first and second main surfaces MPS. The texture is, for example, a random texture composed of a large number of pyramid-shaped protrusions having an outer surface of a (111) plane, as shown in FIG. However, it is of course possible to omit this texture. The surface roughness of the textured main surface of the silicon single crystal substrate 3 is JIS: B0601 (198
The center line average roughness Ra specified in 2) is 0.5 to 50.
It is about μm. On the other hand, when it is not formed, it is, for example, a chemically polished surface and has a center line average roughness Ra of 0.5 μm or less.

【0018】そして、既に説明した通り、図1において
第一主表面MPP及び第二主表面MPSのいずれにもテ
クスチャを形成しない場合、図3において、窒化シリコ
ン膜の最適膜厚tの範囲は40〜220nmである。ま
た、第二主表面MPS側にのみテクスチャが形成される
場合、窒化シリコン膜3の最適膜厚範囲tは100〜3
00nmである。さらに、第一主表面MPPと第二主表
面MPSとの双方にテクスチャが形成される場合、窒化
シリコン膜の最適膜厚範囲は40〜230nmである。
As described above, when the texture is not formed on either the first main surface MPP or the second main surface MPS in FIG. 1, the optimum thickness t range of the silicon nitride film is 40 in FIG. 220220 nm. When the texture is formed only on the second main surface MPS side, the optimum thickness range t of the silicon nitride film 3 is 100 to 3
00 nm. Further, when the texture is formed on both the first main surface MPP and the second main surface MPS, the optimum thickness range of the silicon nitride film is 40 to 230 nm.

【0019】以下、太陽電池1の製造工程を主に裏面側
について説明する。ただし、本発明は、この方法で作製
された太陽電池に限られるものではない。まず、図4
(a)に示すように、高純度シリコンにホウ素あるいは
ガリウムのようなIII族元素をドープし、比抵抗0.
5〜5Ω・cmとした、切断状態のシリコン単結晶基板
3に対し、公知の方法により、水酸化カリウム水溶液、
もしくは水酸化ナトリウム水溶液に一定時間浸漬し、ダ
メージ層を除去した後、テクスチャ形成を行なう。シリ
コン単結晶基板3は、CZ法、FZ法いずれの方法によ
って作製されてもよいが、機械的強度の面から、CZ法
で作製されるのが望ましい。
Hereinafter, the manufacturing process of the solar cell 1 will be described mainly on the back side. However, the present invention is not limited to a solar cell manufactured by this method. First, FIG.
As shown in (a), high-purity silicon is doped with a group III element such as boron or gallium, and the specific resistance is set to 0.1.
An aqueous potassium hydroxide solution is applied to the cut silicon single crystal substrate 3 having a thickness of 5 to 5 Ω · cm by a known method.
Alternatively, after immersing in a sodium hydroxide aqueous solution for a certain period of time to remove the damaged layer, texture formation is performed. The silicon single crystal substrate 3 may be manufactured by any of the CZ method and the FZ method, but is preferably manufactured by the CZ method from the viewpoint of mechanical strength.

【0020】テクスチャ形成後、塩酸、硫酸、硝酸、ふ
っ酸等、もしくはこれらの混合液の酸性水溶液中でシリ
コン単結晶基板3を洗浄するが、経済的及び効率的見地
から、塩酸中での洗浄が好ましい。場合により、このテ
クスチャ形成工程を省略してもよい。次に、図4(b)
に示すように、基板3の第一主表面(以下、裏面と称す
る)上に、公知の方法により窒化シリコン膜4を形成す
る。窒化シリコン膜形成プロセスは、常圧熱CVD法、
減圧熱CVD法、光CVD法等、いずれの方法も可能で
あるが、350〜400℃程度の低温プロセスで、か
つ、小さな表面再結合速度を達成可能な、プラズマCV
D法で作製するのが好ましい。
After the texture is formed, the silicon single crystal substrate 3 is washed in an acidic aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid or the like, or a mixture thereof. From the viewpoint of economy and efficiency, the silicon single crystal substrate 3 is washed in hydrochloric acid. Is preferred. In some cases, this texture forming step may be omitted. Next, FIG.
As shown in FIG. 1, a silicon nitride film 4 is formed on a first main surface (hereinafter, referred to as a back surface) of a substrate 3 by a known method. The silicon nitride film forming process includes a normal pressure thermal CVD method,
Any method such as a low pressure thermal CVD method and a photo CVD method can be used.
It is preferable to prepare by Method D.

【0021】この窒化シリコン膜4は、リンの拡散マス
クとしても効果的であることから、この段階で、この基
板の第二主表面MPS上に、オキシ塩化リンを用いた気
相拡散法によりエミッタ層を形成してもよい。拡散マス
クとしての効果を高めるため、2枚のシリコン単結晶基
板3の窒化シリコン膜4を形成した面同士を重ねあわ
せ、2枚一組で拡散ボートに並べて気相拡散するのが好
ましい。そして、オキシ塩化リン雰囲気中で、約850
℃で熱処理し、第二主表面MPSにn型エミッタ層を形
成する。形成したエミッタ層の深さは約0.5μmと
し、シート抵抗は40〜100Ω/□とする。
Since the silicon nitride film 4 is also effective as a phosphorus diffusion mask, at this stage, an emitter is formed on the second main surface MPS of the substrate by a vapor phase diffusion method using phosphorus oxychloride. A layer may be formed. In order to enhance the effect as a diffusion mask, it is preferable that the surfaces of the two silicon single crystal substrates 3 on which the silicon nitride films 4 are formed are overlapped, and a pair of the two silicon single crystal substrates is arranged in a diffusion boat to perform gas phase diffusion. And about 850 in a phosphorus oxychloride atmosphere.
C. to form an n-type emitter layer on the second main surface MPS. The depth of the formed emitter layer is about 0.5 μm, and the sheet resistance is 40 to 100Ω / □.

【0022】そして、図4(c)に示すように、この基
板3の裏面にコンタクト貫通部としての溝もしくは孔を
形成する。例えば溝6を形成する場合は、高速回転刃1
3を用いて刻設される。高速回転刃は、直径103m
m、長さ165mmの円筒部に100〜200本の凹凸
形成刃が取り付けられている。刃の高さは例えば50〜
100μm、刃の幅及び刃の間隔は数百μm程度とす
る。刃の表面には、直径5μm〜10μmのダイヤモン
ド砥粒が満遍なく電着されている。この高速回転刃13
を用い、切削液を噴射しながら1秒間に約1〜4cmの
速度で基板に溝入れ加工を行なう。高速回転刃13は、
ダイサーもしくはワイヤーソーでも代用が可能である。
溝6の深さが略5〜50μmとなるよう回転刃装置を微
調整する。
Then, as shown in FIG. 4C, a groove or a hole as a contact penetrating portion is formed on the back surface of the substrate 3. For example, when forming the groove 6, the high-speed rotary blade 1
3 is engraved. High-speed rotary blade has a diameter of 103m
100 to 200 uneven forming blades are attached to a cylindrical portion having a length of 165 mm and a length of 165 mm. The height of the blade is, for example, 50-
100 μm, the width of the blade and the interval between the blades are about several hundred μm. Diamond abrasive grains having a diameter of 5 μm to 10 μm are uniformly electrodeposited on the surface of the blade. This high-speed rotary blade 13
And grooving the substrate at a speed of about 1 to 4 cm per second while spraying a cutting fluid. The high-speed rotary blade 13
A dicer or wire saw can be used instead.
The rotary blade device is finely adjusted so that the depth of the groove 6 is approximately 5 to 50 μm.

【0023】他方、溝6に代えて孔を形成する場合は、
レーザービームが好適に用いられる。レーザーとしては
炭酸ガスレーザー、アルゴンレーザー、YAGレーザ
ー、ルビーレーザー、エキシマレーザー等が容易に用い
られる。中でも、KrF等のエキシマレーザーやNd:
YAGレーザーが最適である。孔の平面形状は、円形、
楕円形あるいは矩形等を採用できる。なお、開口部を設
ける際のレーザーの照射条件は、レーザーの種類や絶縁
層の膜厚、さらに開口部の径等によって適宜決められ
る。例えば、パルス発振を利用する場合、周波数は1H
z〜100kHzが好ましく、レーザーの平均出力とし
ては10mW〜1kWの範囲とするのが好ましい。
On the other hand, when a hole is formed instead of the groove 6,
Laser beams are preferably used. As the laser, a carbon dioxide laser, an argon laser, a YAG laser, a ruby laser, an excimer laser, or the like is easily used. Among them, excimer laser such as KrF and Nd:
A YAG laser is optimal. The plane shape of the hole is circular,
An oval or rectangular shape can be adopted. Note that the laser irradiation conditions for providing the opening are appropriately determined depending on the type of laser, the thickness of the insulating layer, the diameter of the opening, and the like. For example, when using pulse oscillation, the frequency is 1H
z to 100 kHz is preferable, and the average output of the laser is preferably in the range of 10 mW to 1 kW.

【0024】溝6や孔等のコンタクト貫通部を形成後、
図4(d)に示すように、同一面(第一主表面側)に裏
面金属電極層5を例えば0.5〜2μm形成する。電極
には銀や銅等の金属を用いることもできるが、経済性、
加工性の観点からアルミが最も好ましい。金属層の堆積
は、スパッタ法、真空蒸着法、スクリーン印刷法等いず
れの方法でも可能である。裏面金属電極層5はコンタク
ト貫通部を充填しつつ第一主表面MPPに一様に堆積さ
れる。
After forming the contact penetrating portions such as the grooves 6 and the holes,
As shown in FIG. 4D, a back metal electrode layer 5 is formed on the same surface (first main surface side), for example, in a thickness of 0.5 to 2 μm. Although metals such as silver and copper can be used for the electrodes,
Aluminum is most preferable from the viewpoint of workability. The metal layer can be deposited by any method such as a sputtering method, a vacuum evaporation method, and a screen printing method. The back metal electrode layer 5 is uniformly deposited on the first main surface MPP while filling the contact through portions.

【0025】この後、公知の方法により、図1の第二主
表面MPS(受光面)側の反射防止膜47及び電極44
の形成を行なう。反射防止膜47には、酸化シリコン、
窒化シリコンをはじめ、酸化セリウム、アルミナ、二酸
化錫、二酸化チタン、フッ化マグネシウム、酸化タンタ
ル等、及びこれらを二種組み合わせた二層膜が使用さ
れ、いずれを用いても問題ない。その成膜には、PVD
法、CVD法等が用いられ、いずれの方法でも可能であ
る。高効率太陽電池作製のためには、窒化シリコンをリ
モートプラズマCVD法で形成したものが、小さな表面
再結合速度が達成可能であり、好ましい。他方、電極4
4は蒸着法、メッキ法、印刷法等で作製される。いずれ
の方法を用いても構わないが、低コストで高スループッ
トのためには、印刷法が好ましい。例えば、銀粉末及び
ガラスフリットを有機物バインダと混合した銀ペースト
を用いて電極パターンをスクリーン印刷した後、熱処理
して電極とする。なお、第一主表面MPP側の処理と第
二主表面MPS側の処理の順序は逆であっても、何ら問
題はない。
Thereafter, the antireflection film 47 and the electrode 44 on the second main surface MPS (light receiving surface) side of FIG.
Is formed. Silicon oxide,
In addition to silicon nitride, cerium oxide, alumina, tin dioxide, titanium dioxide, magnesium fluoride, tantalum oxide, and the like, and a two-layer film obtained by combining two kinds of these are used, and any of them can be used without any problem. The film is formed by PVD
Method, a CVD method, or the like is used, and any method is possible. For manufacturing a high-efficiency solar cell, silicon nitride formed by a remote plasma CVD method is preferable because a small surface recombination rate can be achieved. On the other hand, electrode 4
4 is manufactured by a vapor deposition method, a plating method, a printing method, or the like. Either method may be used, but a printing method is preferable for low cost and high throughput. For example, an electrode pattern is screen-printed using a silver paste in which silver powder and glass frit are mixed with an organic binder, and then heat-treated to form an electrode. Note that there is no problem even if the order of the processing on the first main surface MPP side and the processing on the second main surface MPS side are reversed.

【0026】第一主表面MPP側の窒化シリコン膜4の
厚さは、シリコン単結晶基板3へのテクスチャ形成の有
無により、前記の各最適膜厚範囲に調整されている。こ
の膜厚範囲の妥当性は後述の実験結果のみならず、以下
のような屈折・反射理論に基づく計算結果からも支持さ
れるものである。まず、第二主表面MPS側から入射し
た光の、第一主表面MPP側での反射率を、屈折・反射
理論により計算する。概要は以下の通りである。まず、
2つの異なる媒質中を伝播する光、すなわち電磁波の反
射の法則及び屈折の法則は、マクスウェルの方程式が媒
質の境界にて満たすべき電束密度、磁束密度、電場及び
磁場の各境界条件から一義的に導き出すことができる。
その導出過程は一般的な光学あるいは電磁気学の教科書
に示されているものであって、極めて周知であるから、
詳細な説明は省略する(例えば、朝倉現代物理講座2:
電磁気学I(松田 久著:1980年:朝倉書店)63
〜68頁参照)。その結果を示せば、光の入射角、屈折
角及び反射角をそれぞれθ、β及びγとすれば、反射の
法則は、 θ=γ ‥‥ であり、屈折の法則(いわゆるスネルの法則)は、 sinθ/sinβ=n2/n1 ‥‥ である。なお、境界を挟んで光の入射側にある媒質(こ
の場合、シリコン単結晶)を媒質1、透過側にある媒質
(この場合、窒化シリコン)を媒質2として、n1及び
n2は、媒質1及び媒質2の屈折率である。シリコン単
結晶の屈折率n1は3.52を採用し、窒化シリコンの
屈折率n2は2.00を採用する。
The thickness of the silicon nitride film 4 on the first main surface MPP side is adjusted to each of the aforementioned optimum film thickness ranges depending on whether or not a texture is formed on the silicon single crystal substrate 3. The validity of this film thickness range is supported not only by the experimental results described later but also by the calculation results based on the following refraction / reflection theory. First, the reflectance of light incident from the second main surface MPS side on the first main surface MPP side is calculated by refraction / reflection theory. The outline is as follows. First,
The laws of reflection and refraction of light propagating in two different media, that is, electromagnetic waves, are uniquely defined by the Maxwell's equations from the boundary conditions of electric flux density, magnetic flux density, electric field and magnetic field to be satisfied at the boundary of the medium. Can be derived.
The derivation process is described in a general textbook on optics or electromagnetics, and is very well known.
Detailed description is omitted (for example, Asakura Modern Physics Course 2:
Electromagnetics I (Hisashi Matsuda: 1980: Asakura Shoten) 63
Pp. 68). As a result, if the incident angle, refraction angle, and reflection angle of light are θ, β, and γ, respectively, then the law of reflection is θ = γ 、, and the law of refraction (so-called Snell's law) is , Sin θ / sin β = n2 / n1 ‥‥. The medium on the light incident side (in this case, silicon single crystal) with the boundary therebetween as the medium 1 and the medium on the transmission side (in this case, silicon nitride) as the medium 2, and n 1 and n 2 are the medium 1 and the medium 1. This is the refractive index of the medium 2. The refractive index n1 of silicon single crystal is 3.52, and the refractive index n2 of silicon nitride is 2.00.

【0027】周知のフレネルの公式に上記スネルの法則
を適用して、入射光と反射光の強度(電場又は磁場のい
ずれかの強度として表すことができる)を計算すればシ
リコン単結晶基板3と窒化シリコン膜4との境界反射の
反射率を求めることができる。他方、裏面金属電極層5
と窒化シリコン膜4との境界での、裏面金属電極層5側
への光の浸透及び屈折の影響は小さいと考えられるが、
ここでは複素屈折率(吸収係数)を導入して微調整した。
By applying the above Snell's law to the well-known Fresnel's formula and calculating the intensity of incident light and reflected light (which can be expressed as either an electric field or a magnetic field), the silicon single crystal substrate 3 The reflectance of the boundary reflection with the silicon nitride film 4 can be obtained. On the other hand, the back metal electrode layer 5
It is thought that the influence of light penetration and refraction on the back metal electrode layer 5 side at the boundary between the silicon nitride film 4 and the silicon nitride film 4 is small.
Here, fine adjustment was made by introducing a complex refractive index (absorption coefficient).

【0028】図6は、入射角θをパラメータとして、シ
リコン単結晶基板3と窒化シリコン膜4との境界反射の
反射率が、窒化シリコン膜の厚さに応じてどのように変
化するかを計算した結果である(入射波長は1200n
mとしている)。θが全反射の臨界角34.6°以下で
あれば、金属面からの反射光との干渉効果により、反射
率に極大値が生ずる。そして、第二主表面MPSに到達
する長波長光の一部はこの反射率でシリコン単結晶基板
3の内部に再び戻される。次に、光キャリア生成割合の
内部反射率依存性を、シリコン単結晶基板3の厚さをパ
ラメータとして計算した結果を図7に示す。基板厚さが
小さいほど内部反射率の効果は顕著であり、内部反射率
が93%を超えると光キャリア生成割合は急増する。す
なわち、高出力太陽電池のためには、93%以上の内部
反射率を有する構造を太陽電池の裏面に施せばよく、こ
れに対応する窒化シリコン膜厚は図6より求めることが
可能である。つまり、テクスチャを有さないシリコン太
陽電池の場合は、図6のθ=0°に対応し、窒化シリコ
ン膜厚が40〜220nmの範囲であればよいことがわ
かる。
FIG. 6 shows how the reflectance of the boundary reflection between the silicon single crystal substrate 3 and the silicon nitride film 4 changes according to the thickness of the silicon nitride film using the incident angle θ as a parameter. (The incident wavelength is 1200 n
m). If θ is equal to or less than the critical angle of total reflection of 34.6 °, a maximum value occurs in the reflectance due to an interference effect with light reflected from the metal surface. Then, part of the long-wavelength light reaching the second main surface MPS is returned to the inside of the silicon single crystal substrate 3 again with this reflectance. Next, FIG. 7 shows the result of calculating the dependency of the photocarrier generation ratio on the internal reflectance using the thickness of the silicon single crystal substrate 3 as a parameter. The effect of the internal reflectance is more remarkable as the substrate thickness is smaller. When the internal reflectance exceeds 93%, the generation ratio of photocarriers increases rapidly. That is, for a high-output solar cell, a structure having an internal reflectivity of 93% or more may be provided on the back surface of the solar cell, and the corresponding silicon nitride film thickness can be obtained from FIG. In other words, in the case of a silicon solar cell having no texture, it can be understood that θ = 0 ° in FIG. 6 corresponds to a silicon nitride film thickness of 40 to 220 nm.

【0029】次に、第二主表面(受光面)MPS側にテ
クスチャがある場合を考える。テクスチャは、シリコン
単結晶の{100}面及び{111}面のエッチング速
度の違いを利用して形成されるもので、図5に示すよう
に、大きさ数μm〜数十μm程度の正ピラミッド構造を
ランダムに形成したものである。この構造はシリコン単
結晶の等価な{111}面で構成されるため、ピラミッ
ドの斜面が第二主表面MPSと成す角αは54.7°と
なる。一方、シリコンの屈折率は、長波長で3.52で
あるから、前記スネルの法則を用いれば、入射角θ=4
1.3°の角度で裏面に入射することが、簡単な計算か
ら導き出される。従って、第二主表面(受光面)MPS
にテクスチャを有し、第一主表面(裏面)MPPが平坦
な太陽電池の、最適窒化シリコン膜厚範囲は、図6のθ
=41.3°に対応し、略100nm以上であればよい
ことがわかる。
Next, consider the case where there is a texture on the second main surface (light receiving surface) MPS side. The texture is formed using the difference in the etching rate between the {100} plane and the {111} plane of the silicon single crystal, and as shown in FIG. 5, a regular pyramid having a size of several μm to several tens μm. The structure is formed randomly. Since this structure is composed of an equivalent {111} plane of silicon single crystal, the angle α formed by the slope of the pyramid with the second main surface MPS is 54.7 °. On the other hand, since the refractive index of silicon is 3.52 at a long wavelength, using the Snell's law, the incident angle θ = 4.
The incidence on the back side at an angle of 1.3 ° is derived from a simple calculation. Therefore, the second main surface (light receiving surface) MPS
The optimum silicon nitride film thickness range of a solar cell having a texture and a flat first main surface (rear surface) MPP is θ in FIG.
= 41.3 °, which indicates that it is sufficient if the thickness is approximately 100 nm or more.

【0030】最後に、両面にテクスチャを有する場合
は、第二主表面(受光面)MPSのテクスチャのピラミ
ッドがランダムに配列していることにより均一に分散さ
れ、光が第一主表面(裏面)MPPに入射角41.3°
で一様に入射すると仮定する。第一主表面MPPのテク
スチャのピラミッド各面には、入射光の55.4%が入
射角13.4°で、44.6%が64.3°で入射する
ことが、第一主表面MPP上に直立する単純な正四角錘
を考えることで算出できる。図6から、θ=13.4°
およびθ=64.3°がともに93%を超える窒化シリ
コン膜厚は略40〜230nmの範囲であることがわか
る。
Finally, when the texture is provided on both surfaces, the pyramids of the texture of the second main surface (light receiving surface) MPS are randomly arranged, so that the pyramids are uniformly dispersed, and light is dispersed on the first main surface (back surface). 41.3 ° incident angle on MPP
Suppose that the incident light is uniform. In each of the pyramids of the texture of the first main surface MPP, 55.4% of the incident light is incident at an incident angle of 13.4 ° and 44.6% is incident at 64.3 °. It can be calculated by considering a simple square pyramid that stands upright. From FIG. 6, θ = 13.4 °
It can be seen that the thickness of silicon nitride in which both θ and 64.3 ° exceed 93% is in the range of approximately 40 to 230 nm.

【0031】[0031]

【実施例】(実施例1)厚さ150μmの、ホウ素をド
ーパントとしたp型シリコン単結晶基板(結晶主軸方向
<100>:切断上がり状態:比抵抗1Ω・cm)を2
枚、水酸化カリウム水溶液に浸漬し、両面にテクスチャ
を形成した。次に、第一主表面(裏面)上に、窒化シリ
コン膜を各々150、300nm成膜後、市販のダイサ
ーを用いて、コンタクト貫通部としての平行溝を形成し
た。この上に全面にアルミを堆積して裏面金属電極層と
した。他方、第二主表面(受光面)には、前記の方法に
より、エミッタ層、反射防止膜、フィンガー電極、バス
バー電極を順次形成し、太陽電池試験品を作製した。
(Example 1) A p-type silicon single crystal substrate having a thickness of 150 μm and using boron as a dopant (crystal main axis direction <100>: cut-up state: specific resistance 1 Ω · cm) was used.
The sheets were immersed in an aqueous solution of potassium hydroxide to form a texture on both sides. Next, a silicon nitride film was formed on the first main surface (rear surface) to a thickness of 150 nm and 300 nm, respectively, and then a parallel groove was formed as a contact penetrating portion using a commercially available dicer. Aluminum was deposited on the entire surface to form a back metal electrode layer. On the other hand, on the second main surface (light receiving surface), an emitter layer, an antireflection film, a finger electrode, and a bus bar electrode were sequentially formed by the above-described method, to produce a solar cell test product.

【0032】得られた太陽電池試験品は、山下電装社製
のソーラーシミュレータ(YSS−80)を用い、標準
条件下でこれら太陽電池のI−V特性を測定し、変換効
率を求めた。結果を表1に示す。
Using a solar simulator (YSS-80) manufactured by Yamashita Electric Equipment Co., Ltd., the obtained solar cell test product was measured for the IV characteristics of these solar cells under standard conditions to determine the conversion efficiency. Table 1 shows the results.

【0033】[0033]

【表1】 [Table 1]

【0034】窒化シリコン膜厚150nmの太陽電池に
おいては、300nmの場合に比べ、短絡電流が増加
し、変換効率が高くなっていることがわかる。
It can be seen that in the solar cell having a silicon nitride film thickness of 150 nm, the short-circuit current is increased and the conversion efficiency is higher than in the case of 300 nm.

【0035】(実施例2)両面にテクスチャを有しない
シリコン単結晶基板を用いた以外は、実施例1と全く同
様に作製した太陽電池試験品を用意し、同様の測定を行
なった。結果を表2に示す。
(Example 2) A solar cell test sample produced in exactly the same manner as in Example 1 except that a silicon single crystal substrate having no texture on both sides was used, and the same measurement was performed. Table 2 shows the results.

【0036】[0036]

【表2】 [Table 2]

【0037】窒化シリコン厚150nmの太陽電池は、
300nmの場合に比べて高い変換効率を示すことがわ
かる。
A solar cell having a silicon nitride thickness of 150 nm
It can be seen that the conversion efficiency is higher than that of 300 nm.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の太陽電池の一例を示す断面模式図。FIG. 1 is a schematic cross-sectional view illustrating an example of a solar cell of the present invention.

【図2】受光面側の電極形成形態の一例を示す斜視図。FIG. 2 is a perspective view showing an example of an electrode formation form on a light receiving surface side.

【図3】図1の太陽電池の裏面側の構造を拡大して示す
断面模式図。
FIG. 3 is a schematic cross-sectional view showing, on an enlarged scale, a structure on the back surface side of the solar cell of FIG. 1;

【図4】図3の裏面構造の形成工程を示す説明図。FIG. 4 is an explanatory view showing a step of forming the back surface structure of FIG. 3;

【図5】テクスチャの形態の一例を示す斜視図。FIG. 5 is a perspective view showing an example of a texture form.

【図6】各種入射角における裏面内部反射率と、窒化シ
リコン膜厚と関係を計算した結果を示す図。
FIG. 6 is a view showing a calculation result of a relationship between a back surface internal reflectance at various incident angles and a silicon nitride film thickness.

【図7】裏面内部反射率と光キャリア生成割合との関係
を、シリコン単結晶基板の種々の厚さについて計算した
結果を示す図。
FIG. 7 is a diagram showing a result of calculating a relationship between a back surface internal reflectance and a photocarrier generation ratio for various thicknesses of a silicon single crystal substrate.

【符号の説明】[Explanation of symbols]

1 太陽電池 MPP 第一主表面 MPS 第二主表面 4 窒化シリコン膜 5 裏面金属電極層 DESCRIPTION OF SYMBOLS 1 Solar cell MPP 1st main surface MPS 2nd main surface 4 Silicon nitride film 5 Back metal electrode layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大塚 寛之 群馬県安中市磯部2丁目13番1号 信越半 導体株式会社半導体磯部研究所内 (72)発明者 高橋 正俊 群馬県安中市磯部2丁目13番1号 信越半 導体株式会社半導体磯部研究所内 (72)発明者 生島 聡之 群馬県安中市磯部2丁目13番1号 信越半 導体株式会社半導体磯部研究所内 Fターム(参考) 5F051 AA02 CB27 FA06 FA15 FA18 FA23  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroyuki Otsuka 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Semiconductor Semiconductor Isobe Research Laboratory (72) Inventor Masatoshi Takahashi 2-chome, Isobe, Annaka-shi, Gunma 13-1 Shin-Etsu Semiconductor Co., Ltd. Semiconductor Isobe Laboratory (72) Inventor Toshiyuki Ikushima 2-3-1 Isobe, Annaka-shi, Gunma Shin-Etsu Semiconductor Co., Ltd. Semiconductor Isobe Laboratory F-term (reference) 5F051 AA02 CB27 FA06 FA15 FA18 FA23

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 結晶主軸方向が<100>であり、か
つ、第一主表面と第二主表面とのいずれにも{111}
面を主体とするテクスチャが形成されていないシリコン
単結晶基板の、前記第二主表面を受光面とし、他方、裏
面側となる前記第一主表面に、窒化シリコン膜が40〜
220nmの厚さにて形成され、さらに、該窒化シリコ
ン膜を覆う形で裏面金属電極層が形成されてなることを
特徴とする太陽電池。
1. The crystal main axis direction is <100>, and both the first main surface and the second main surface have {111}.
In the silicon single crystal substrate in which the texture mainly composed of a surface is not formed, the second main surface is used as a light receiving surface, and on the other hand, a silicon nitride film is 40 to
A solar cell having a thickness of 220 nm and a back metal electrode layer formed so as to cover the silicon nitride film.
【請求項2】 結晶主軸方向が<100>であり、か
つ、第一主表面には{111}面を主体とするテクスチ
ャが形成されず、第二主表面には前記テクスチャの形成
されたシリコン単結晶基板の、前記第二主表面を受光面
とし、他方、裏面側となる前記第一主表面に、窒化シリ
コン膜が100nm〜300nmの厚さにて形成され、
さらに、該窒化シリコン膜を覆う形で裏面金属電極層が
形成されてなることを特徴とする太陽電池。
2. The crystal main axis direction is <100>, and a texture mainly composed of {111} planes is not formed on a first main surface, and the silicon on which the texture is formed is formed on a second main surface. A silicon nitride film having a thickness of 100 nm to 300 nm is formed on the first main surface, which is a back surface side, of the single crystal substrate;
A solar cell, further comprising a back metal electrode layer formed so as to cover the silicon nitride film.
【請求項3】 結晶主軸方向が<100>であり、か
つ、第一主表面と第二主表面とのいずれにも{111}
面を主体とするテクスチャが形成されたシリコン単結晶
基板の、前記第二主表面を受光面とし、他方、裏面側と
なる前記第一主表面に、窒化シリコン膜が40nm〜2
30nmの厚さにて形成され、さらに、該窒化シリコン
膜を覆う形で裏面金属電極層が形成されてなることを特
徴とする太陽電池。
3. The crystal main axis direction is <100>, and both the first main surface and the second main surface have {111}.
The second main surface of the silicon single crystal substrate on which a texture mainly composed of a surface is formed is a light receiving surface, and a silicon nitride film is 40 nm to 2 nm on the first main surface on the back surface side.
A solar cell having a thickness of 30 nm and a back metal electrode layer formed so as to cover the silicon nitride film.
JP2001069088A 2001-03-12 2001-03-12 Solar battery Pending JP2002270869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001069088A JP2002270869A (en) 2001-03-12 2001-03-12 Solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001069088A JP2002270869A (en) 2001-03-12 2001-03-12 Solar battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008097001A Division JP5186673B2 (en) 2008-04-03 2008-04-03 Manufacturing method of solar cell

Publications (1)

Publication Number Publication Date
JP2002270869A true JP2002270869A (en) 2002-09-20

Family

ID=18927171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001069088A Pending JP2002270869A (en) 2001-03-12 2001-03-12 Solar battery

Country Status (1)

Country Link
JP (1) JP2002270869A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347339A (en) * 2004-05-31 2005-12-15 Shin Etsu Handotai Co Ltd Solar battery and manufacturing method therefor
JP2006080450A (en) * 2004-09-13 2006-03-23 Sharp Corp Solar battery manufacturing method
WO2009078417A1 (en) * 2007-12-18 2009-06-25 Sumitomo Chemical Company, Limited Photovoltaic cell
WO2010064303A1 (en) * 2008-12-02 2010-06-10 三菱電機株式会社 Method for manufacturing solar battery cell
WO2011002130A1 (en) 2009-06-29 2011-01-06 Lg Electronics Inc. Solar cell and method of manufacturing the same
JP2011512689A (en) * 2008-02-20 2011-04-21 サンパワー コーポレイション Front contact solar cell with emitter
JP2011520277A (en) * 2008-05-07 2011-07-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for producing single crystal solar cell
KR20120026777A (en) * 2010-09-10 2012-03-20 엘지전자 주식회사 Solar cell and method for manufacturing the same
WO2012039388A1 (en) * 2010-09-21 2012-03-29 株式会社ピーアイ技術研究所 Polyimide resin composition for use in forming reverse reflecting layer in photovoltaic cell and method of forming reverse reflecting layer in photovoltaic cell used therewith
WO2013099805A1 (en) * 2011-12-27 2013-07-04 シャープ株式会社 Method for manufacturing solar cell
JP2015156511A (en) * 2015-04-24 2015-08-27 信越化学工業株式会社 Method of manufacturing solar cell, and solar cell
US9871156B2 (en) 2012-02-10 2018-01-16 Shin-Etsu Chemical Co., Ltd. Solar cell and method of manufacturing the same
JP2018037549A (en) * 2016-08-31 2018-03-08 株式会社マテリアル・コンセプト Solar battery and method for manufacturing the same
US10121915B2 (en) 2010-08-27 2018-11-06 Lg Electronics Inc. Solar cell and manufacturing method thereof
KR20200053655A (en) * 2009-09-18 2020-05-18 신에쓰 가가꾸 고교 가부시끼가이샤 Solar cell, method for manufacturing solar cell, and solar cell module

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347339A (en) * 2004-05-31 2005-12-15 Shin Etsu Handotai Co Ltd Solar battery and manufacturing method therefor
JP2006080450A (en) * 2004-09-13 2006-03-23 Sharp Corp Solar battery manufacturing method
WO2009078417A1 (en) * 2007-12-18 2009-06-25 Sumitomo Chemical Company, Limited Photovoltaic cell
JP2014150276A (en) * 2008-02-20 2014-08-21 Sunpower Corp Front contact solar cell with emitter
JP2011512689A (en) * 2008-02-20 2011-04-21 サンパワー コーポレイション Front contact solar cell with emitter
JP2011520277A (en) * 2008-05-07 2011-07-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for producing single crystal solar cell
US8377734B2 (en) 2008-12-02 2013-02-19 Mitsubishi Electric Corporation Method for manufacturing solar battery cell
WO2010064303A1 (en) * 2008-12-02 2010-06-10 三菱電機株式会社 Method for manufacturing solar battery cell
EP2365534A4 (en) * 2008-12-02 2014-04-02 Mitsubishi Electric Corp Method for manufacturing solar battery cell
JP5197760B2 (en) * 2008-12-02 2013-05-15 三菱電機株式会社 Method for manufacturing solar battery cell
EP2356693A4 (en) * 2009-06-29 2013-09-18 Lg Electronics Inc Solar cell and method of manufacturing the same
EP3379583A1 (en) * 2009-06-29 2018-09-26 LG Electronics Inc. Solar cell and method of manufacturing the same
WO2011002130A1 (en) 2009-06-29 2011-01-06 Lg Electronics Inc. Solar cell and method of manufacturing the same
US8723018B2 (en) 2009-06-29 2014-05-13 Lg Electronics Inc. Solar cell and method of manufacturing the same
EP2356693A1 (en) * 2009-06-29 2011-08-17 LG Electronics Inc. Solar cell and method of manufacturing the same
KR102247785B1 (en) 2009-09-18 2021-05-20 신에쓰 가가꾸 고교 가부시끼가이샤 Solar cell, method for manufacturing solar cell, and solar cell module
KR20200053655A (en) * 2009-09-18 2020-05-18 신에쓰 가가꾸 고교 가부시끼가이샤 Solar cell, method for manufacturing solar cell, and solar cell module
US10121915B2 (en) 2010-08-27 2018-11-06 Lg Electronics Inc. Solar cell and manufacturing method thereof
KR101699315B1 (en) * 2010-09-10 2017-01-24 엘지전자 주식회사 Solar cell and method for manufacturing the same
KR20120026777A (en) * 2010-09-10 2012-03-20 엘지전자 주식회사 Solar cell and method for manufacturing the same
WO2012039388A1 (en) * 2010-09-21 2012-03-29 株式会社ピーアイ技術研究所 Polyimide resin composition for use in forming reverse reflecting layer in photovoltaic cell and method of forming reverse reflecting layer in photovoltaic cell used therewith
US9287424B2 (en) 2010-09-21 2016-03-15 Pi R&D Co., Ltd. Polyimide resin composition for use in forming reverse reflecting layer in photovoltaic cell and method of forming reverse reflecting layer in photovoltaic cell used therewith
JP2012069592A (en) * 2010-09-21 2012-04-05 Pi R & D Co Ltd Polyimide resin composition for forming rear reflective layer of fuel cell and method for forming rear reflective layer of fuel cell using the same
WO2013099805A1 (en) * 2011-12-27 2013-07-04 シャープ株式会社 Method for manufacturing solar cell
US9871156B2 (en) 2012-02-10 2018-01-16 Shin-Etsu Chemical Co., Ltd. Solar cell and method of manufacturing the same
JP2015156511A (en) * 2015-04-24 2015-08-27 信越化学工業株式会社 Method of manufacturing solar cell, and solar cell
JP2018037549A (en) * 2016-08-31 2018-03-08 株式会社マテリアル・コンセプト Solar battery and method for manufacturing the same
JP7064823B2 (en) 2016-08-31 2022-05-11 株式会社マテリアル・コンセプト Solar cells and their manufacturing methods
US11404597B2 (en) 2016-08-31 2022-08-02 Material Concept, Inc. Solar cell and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP5868503B2 (en) Solar cell and method for manufacturing the same
JP5186673B2 (en) Manufacturing method of solar cell
JP2002270869A (en) Solar battery
WO2002061851A1 (en) Solar cell and method for producing the same
JP4963866B2 (en) Method for manufacturing photoelectric conversion element
JP6091458B2 (en) Photoelectric conversion device and manufacturing method thereof
JP5737204B2 (en) Solar cell and manufacturing method thereof
EP2509117A1 (en) Photoelectric conversion module, method for manufacturing same, and power generation device
US9018520B2 (en) Solar cell and manufacturing method thereof
JP6423373B2 (en) Photoelectric conversion element and solar cell module including the same
JP4340031B2 (en) Surface roughening method for solar cell substrate
JP2016122749A (en) Solar battery element and solar battery module
TWI401810B (en) Solar cell
CN105957921B (en) A kind of method that utilization printing technology prepares N-type silicon IBC solar cells
JP2011228529A (en) Solar battery cell and manufacturing method thereof
JP5375414B2 (en) Solar cell and manufacturing method thereof
WO2012117558A1 (en) Photovoltaic device, manufacturing method therefor, and photovoltaic module
JP6529743B2 (en) Photoelectric conversion element
JPH11307792A (en) Solar cell element
JP2013119512A (en) Method for producing glass substrate and method for producing solar cell
JP2010034231A (en) Thin-film solar cell and surface electrode for thin-film solar cell
JP2010034230A (en) Thin-film solar cell and surface electrode for thin-film solar cell
JP2010027744A (en) Method for forming diffusion layer on substrate
WO2011048656A1 (en) Method for roughening substrate surface, and method for manufacturing photovoltaic device
JP2005327871A (en) Solar battery and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080411

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080509