[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002267278A - Cooler of refrigerator - Google Patents

Cooler of refrigerator

Info

Publication number
JP2002267278A
JP2002267278A JP2001068975A JP2001068975A JP2002267278A JP 2002267278 A JP2002267278 A JP 2002267278A JP 2001068975 A JP2001068975 A JP 2001068975A JP 2001068975 A JP2001068975 A JP 2001068975A JP 2002267278 A JP2002267278 A JP 2002267278A
Authority
JP
Japan
Prior art keywords
return pipe
refrigerator
decompressor
refrigerant
refrigerant return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001068975A
Other languages
Japanese (ja)
Inventor
Nobuo Ohashi
伸夫 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2001068975A priority Critical patent/JP2002267278A/en
Publication of JP2002267278A publication Critical patent/JP2002267278A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a cooler of a refrigerator from which a harmful substance, i.e., lead, is eliminated. SOLUTION: A pressure-reducing device 8, provided with a planar part on the outer surface and a refrigerant return pipe 9 provided with a planar part on the outer surface are arranged juxtaposed, jointed and heat is exchanged between them so as to obtain the cooler of a refrigerator which does not contain lead.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は冷蔵庫などの冷却装
置に関する。
The present invention relates to a cooling device such as a refrigerator.

【0002】[0002]

【従来の技術】近年、使用済み家電製品の廃棄による環
境破壊が問題になりつつある。
2. Description of the Related Art In recent years, environmental destruction due to disposal of used home electric appliances has become a problem.

【0003】従来、冷蔵庫の冷却装置は特開昭59−1
16788号公報に記載されたものが知られている。
Conventionally, refrigerators for cooling refrigerators are disclosed in
What is described in 16788 gazette is known.

【0004】以下、図面を参照しながら上記従来の冷蔵
庫の冷却装置について説明を行なう。
Hereinafter, the conventional refrigerator cooling device will be described with reference to the drawings.

【0005】図11は従来の冷蔵庫の冷却装置を示すも
のである。図11において1は圧縮機、2は凝縮器、3
は減圧器、4は蒸発器、5は冷媒戻り管である。それら
を配管6で連結し、上記の順で冷却サイクルを形成し、
冷媒が循環する。
FIG. 11 shows a conventional refrigerator cooling device. In FIG. 11, 1 is a compressor, 2 is a condenser, 3
Is a decompressor, 4 is an evaporator, and 5 is a refrigerant return pipe. They are connected by a pipe 6 to form a cooling cycle in the above order,
Refrigerant circulates.

【0006】以上のように構成された冷蔵庫の冷却装置
について、以下その動作を説明する。
The operation of the refrigerator having the above-described structure will be described below.

【0007】まず、圧縮機1を出た高温高圧の冷媒は、
気体状態で凝縮器2で放熱され、つぎの減圧器3をへて
液状態になり、蒸発器4で蒸発し、再び気体となる。こ
の時の気化熱を蒸発器4の周囲より吸収するため冷気と
なり、冷蔵庫庫内(図示せず)は冷却される。また、気
化した冷媒は冷媒戻り管5を通り圧縮機1に戻り、上記
のサイクルを繰り返す。
First, the high-temperature and high-pressure refrigerant leaving the compressor 1 is:
In the gas state, heat is radiated by the condenser 2, passes through the next decompressor 3, turns into a liquid state, evaporates in the evaporator 4, and turns into gas again. The heat of vaporization at this time is absorbed from the periphery of the evaporator 4 and becomes cool air, so that the inside of the refrigerator (not shown) is cooled. The vaporized refrigerant returns to the compressor 1 through the refrigerant return pipe 5, and repeats the above cycle.

【0008】外気温が高く、食品の出し入れ回数の多い
夏場を基準として冷媒量を決定している場合、外気温が
低く、食品の出し入れ回数の少ない冬場には、冷媒の必
要蒸発量が少なくなり、余剰の冷媒が液のまま圧縮機1
にもどってしまうことになる。液体は気体に比較して圧
縮しても体積減少が少ないので、長期間こういった液圧
縮を繰り返していると圧縮機1内部のピストン(図示せ
ず)やシール材(図示せず)の耐久性に影響する。
When the refrigerant amount is determined on the basis of the summer time when the outside air temperature is high and the food is frequently taken in and out, the required evaporation amount of the refrigerant is small in the winter time when the outside air temperature is low and the food is frequently taken in and out. Compressor 1 with the surplus refrigerant remaining liquid
You will be back. Since the volume of the liquid is smaller than that of the gas when it is compressed, if the liquid is repeatedly compressed for a long time, the durability of the piston (not shown) and the sealing material (not shown) inside the compressor 1 is increased. Affects gender.

【0009】また、夏場等外気温が高い場合、凝縮器2
の能力が不足し、冷媒の液化が十分おこなわれないた
め、蒸発器3での冷媒気化量が不足し冷凍能力不足にな
ることがある。
When the outside temperature is high such as in summer, the condenser 2
Is insufficient and the refrigerant is not sufficiently liquefied, so that the refrigerant vaporization amount in the evaporator 3 may be insufficient and the refrigeration capacity may be insufficient.

【0010】このため、減圧器3と冷媒戻り管5を接合
し熱交換することにより、減圧器3で冷媒の液化を促進
し、冷媒戻り管5での余剰の液冷媒の気化を促進する。
For this reason, by joining the decompressor 3 and the refrigerant return pipe 5 and exchanging heat, liquefaction of the refrigerant is promoted by the decompressor 3 and vaporization of excess liquid refrigerant in the refrigerant return pipe 5 is promoted.

【0011】減圧器3と冷媒戻り管5の接合には、安価
で作業性のよい錫ー鉛はんだ7を使用している。
For joining the pressure reducer 3 and the refrigerant return pipe 5, a tin-lead solder 7 which is inexpensive and has good workability is used.

【0012】[0012]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、錫ー鉛はんだ中には有害物質である鉛が
37〜50%含まれているため、家庭や事業所で不要に
なった冷蔵庫が廃棄されたのち、土壌や水質が鉛で汚染
させるという問題があった。
However, in the above-described structure, the tin-lead solder contains 37 to 50% of lead, which is a harmful substance. There was a problem that soil and water quality were contaminated with lead after being discarded.

【0013】錫―鉛はんだ以外の、鉛を含まないろう材
では、融点が高く作業性が悪く、ホットメルト接着剤な
どの接着剤では熱伝導が悪く、熱交換効果が悪いため、
いずれも冷却装置には適用できない。
[0013] Lead-free brazing materials other than tin-lead solders have high melting points and poor workability, and adhesives such as hot melt adhesives have poor heat conduction and poor heat exchange effects.
Neither can be applied to cooling devices.

【0014】本発明は上記問題点に鑑み、有害物質であ
る鉛を含有しない冷蔵庫の冷却装置を提供するものであ
る。
The present invention has been made in view of the above problems, and has as its object to provide a refrigerator for refrigerators which does not contain lead which is a harmful substance.

【0015】[0015]

【課題を解決するための手段】本発明の請求項1に記載
の発明は、圧縮機と凝縮器と減圧器と蒸発器と冷媒戻り
管とそれらを接続する配管からなる冷凍サイクルにおい
て、前記減圧器と冷媒戻り管を並列に配置し、それぞれ
の外表面に平面部を設けて接合し、熱交換したものであ
り、従来のはんだ成分である鉛を廃止することとなる。
According to a first aspect of the present invention, there is provided a refrigeration cycle comprising a compressor, a condenser, a decompressor, an evaporator, a refrigerant return pipe, and a pipe connecting them. The device and the refrigerant return pipe are arranged in parallel, and a flat portion is provided on each outer surface and joined, and heat exchange is performed, so that lead, which is a conventional solder component, is eliminated.

【0016】本発明の請求項2に記載の発明は、圧縮機
と凝縮器と減圧器と蒸発器と冷媒戻り管とそれらを接続
する配管からなる冷凍サイクルにおいて、前記減圧器と
冷媒戻り管を並列に配置し、それぞれの両端の所定長を
除く外表面に平面部を設けて接合したものであり、前後
の配管作業性を向上する効果もある。これは管の断面形
状が平面部をもつ半円形では、接続する管との挿入方向
が規制されるが、管の断面が円形であれば方向の規制が
ないことによる。
According to a second aspect of the present invention, there is provided a refrigeration cycle comprising a compressor, a condenser, a decompressor, an evaporator, a refrigerant return pipe, and a pipe connecting them, wherein the decompressor and the refrigerant return pipe are connected to each other. They are arranged in parallel, and are joined by providing a flat portion on the outer surface except for a predetermined length at each end, thereby improving the workability of piping before and after. This is because the insertion direction of the tube to be connected is restricted when the cross-sectional shape of the tube is a semicircle having a flat portion, but the direction is not restricted when the cross-section of the tube is circular.

【0017】本発明の請求項3に記載の発明は、圧縮機
と凝縮器と減圧器と蒸発器と冷媒戻り管とそれらを接続
する配管からなり、前記減圧器と冷媒戻り管を並列に配
置し、それぞれの外表面に平面部を設けてホットメルト
接着剤で接合したものであり、さらに、熱交換効率を向
上する効果もある。これは、平面部接合による熱交換面
積の拡大による。
The invention according to claim 3 of the present invention comprises a compressor, a condenser, a decompressor, an evaporator, a refrigerant return pipe, and a pipe connecting them, and the pressure reducer and the refrigerant return pipe are arranged in parallel. In addition, a flat portion is provided on each outer surface and joined with a hot melt adhesive, and further, there is an effect of improving heat exchange efficiency. This is due to the expansion of the heat exchange area due to the flat portion joining.

【0018】さらに、接合作業の自動化が可能となる。
これは、近年ホットメルトアプリケーターの性能が向上
し、温度制御、塗工場所の制御の信頼性が増したことに
よる。
Furthermore, the joining operation can be automated.
This is because the performance of hot melt applicators has improved in recent years, and the reliability of temperature control and control of coating plants has increased.

【0019】本発明の請求項4に記載の発明は、圧縮機
と凝縮器と減圧器と蒸発器と冷媒戻り管とそれらを接続
する配管からなり、前記減圧器と冷媒戻り管を並列に配
置し、それぞれの外表面に平面部を設けて超音波溶着で
接合したものであり、平面部接合による熱交換面積の拡
大と外表面が溶着により一体化することができる。
The invention according to claim 4 of the present invention comprises a compressor, a condenser, a decompressor, an evaporator, a refrigerant return pipe, and a pipe connecting them, and the decompressor and the refrigerant return pipe are arranged in parallel. In addition, a flat portion is provided on each outer surface and joined by ultrasonic welding, so that the heat exchange area can be increased by joining the flat portions and the outer surfaces can be integrated by welding.

【0020】さらに、溶着の場合その管自体が接着剤の
役目をするので特別な付加材料を必要としないので、接
合のための付加材が不要となる。
Further, in the case of welding, since the tube itself functions as an adhesive, no special additional material is required, so that an additional material for joining is not required.

【0021】本発明の請求項5に記載の発明は、圧縮機
と凝縮器と減圧器と蒸発器と冷媒戻り管とそれらを接続
する配管からなり、前記減圧器と冷媒戻り管を並列に配
置し、それぞれの外表面に平面部を設けて金属箔巻付で
接合したものであり、熱交換効率を向上させることがで
きる。
The invention according to claim 5 of the present invention comprises a compressor, a condenser, a decompressor, an evaporator, a refrigerant return pipe and a pipe connecting them, and the decompressor and the refrigerant return pipe are arranged in parallel. In addition, a flat portion is provided on each of the outer surfaces and joined by winding a metal foil, so that the heat exchange efficiency can be improved.

【0022】さらに、接合作業に特殊な装置を使用しな
いので作業場所が制限されないという効果もある。
Further, since a special device is not used for the joining operation, there is also an effect that the working place is not limited.

【0023】[0023]

【発明の実施の形態】以下、本発明による冷蔵庫の冷却
装置の実施の形態について、図面を参照しながら説明す
る。なお、従来と同一構成については、同一符号を付し
て詳細説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a refrigerator for a refrigerator according to the present invention will be described below with reference to the drawings. In addition, about the same structure as a conventional one, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

【0024】(実施の形態1)図1は、本発明の実施の
形態1による冷蔵庫の冷却装置の冷媒回路図である。
(Embodiment 1) FIG. 1 is a refrigerant circuit diagram of a refrigerator for a refrigerator according to Embodiment 1 of the present invention.

【0025】図2は、本発明の実施の形態1による冷蔵
庫の冷却装置の熱交換部のA−A断面図である。
FIG. 2 is a sectional view taken along the line AA of the heat exchange part of the refrigerator of the refrigerator according to the first embodiment of the present invention.

【0026】まず、圧縮機1を出た高温高圧の冷媒は、
気体状態で凝縮器2で放熱され、つぎの外表面に平面部
を設けた減圧器8をへて液状態になり、蒸発器4で蒸発
し、再び気体となる。この時の気化熱を蒸発器4の周囲
より吸収するため冷気となり、冷蔵庫庫内(図示せず)
は冷却される。また、気化した冷媒は外表面に平面部を
設けた冷媒戻り管9を通り圧縮機1に戻り、上記のサイ
クルを繰り返す。
First, the high-temperature and high-pressure refrigerant leaving the compressor 1 is:
In the gas state, heat is radiated by the condenser 2, passes through a decompressor 8 provided with a flat surface portion on the outer surface, and becomes a liquid state, evaporates in the evaporator 4, and becomes gas again. The heat of vaporization at this time is absorbed from the periphery of the evaporator 4 and becomes cold air, so that the inside of the refrigerator is not shown (not shown).
Is cooled. Further, the vaporized refrigerant returns to the compressor 1 through the refrigerant return pipe 9 having a flat surface portion on the outer surface, and repeats the above cycle.

【0027】図1において、外表面に平面部を設けた減
圧器8と外表面に平面部を設けた冷媒戻り管9を接合し
熱交換することにより、外表面に平面部を設けた減圧器
8で冷媒の液化を促進し、外表面に平面部を設けた冷媒
戻り管9での余剰冷媒の気化を促進する。
In FIG. 1, a decompressor 8 having a flat portion on its outer surface is joined to a pressure reducing device 8 having a flat portion on its outer surface and a refrigerant return pipe 9 having a flat portion on its outer surface for heat exchange. 8 promotes the liquefaction of the refrigerant, and promotes the vaporization of the surplus refrigerant in the refrigerant return pipe 9 provided with a flat portion on the outer surface.

【0028】本実施の形態では外表面に平面部を設けた
減圧器8と外表面に平面部を設けた冷媒戻り管9とを接
合したので従来のはんだ成分である鉛を廃止することが
できる。
In this embodiment, since the pressure reducing device 8 having a flat surface portion on the outer surface and the refrigerant return pipe 9 having the flat surface portion on the outer surface are joined, lead, which is a conventional solder component, can be eliminated. .

【0029】(実施の形態2)図3は、本発明の実施の
形態2による冷蔵庫の冷却装置の冷媒回路図である。
(Embodiment 2) FIG. 3 is a refrigerant circuit diagram of a refrigerator for a refrigerator according to Embodiment 2 of the present invention.

【0030】図4は、本発明の実施の形態2による冷蔵
庫の冷却装置の熱交換部のB−B断面図である。
FIG. 4 is a sectional view taken along line BB of the heat exchange unit of the refrigerator of the refrigerator according to the second embodiment of the present invention.

【0031】まず、圧縮機1を出た高温高圧の冷媒は、
気体状態で凝縮器2で放熱され、つぎの両端の所定長を
除く外表面に平面部を設けた減圧器10をへて液状態に
なり、蒸発器4で蒸発し、再び気体となる。この時の気
化熱を蒸発器4の周囲より吸収するため冷気となり、冷
蔵庫庫内(図示せず)は冷却される。また、気化した冷
媒は両端の所定長を除く外表面に平面部を設けた冷媒戻
り管11を通り圧縮機1に戻り、上記のサイクルを繰り
返す。
First, the high-temperature and high-pressure refrigerant leaving the compressor 1 is:
In the gas state, the heat is radiated by the condenser 2, passes through a decompressor 10 having a flat surface portion on the outer surface except for a predetermined length at both ends, and becomes a liquid state, and is evaporated by the evaporator 4 to become a gas again. The heat of vaporization at this time is absorbed from the periphery of the evaporator 4 and becomes cool air, so that the interior of the refrigerator (not shown) is cooled. Further, the vaporized refrigerant returns to the compressor 1 through the refrigerant return pipe 11 provided with a flat portion on the outer surface excluding a predetermined length at both ends, and repeats the above cycle.

【0032】図3において、両端の所定長を除く外表面
に平面部を設けた減圧器10と両端の所定長を除く外表
面に平面部を設けた冷媒戻り管11を接合し熱交換する
ことにより、両端の所定長を除く外表面に平面部を設け
た減圧器10で冷媒の液化を促進し、両端の所定長を除
く外表面に平面部を設けた冷媒戻り管11での余剰冷媒
の気化を促進する。
In FIG. 3, a decompressor 10 provided with a flat portion on the outer surface excluding a predetermined length at both ends and a refrigerant return pipe 11 provided with a flat portion on the outer surface excluding a predetermined length at both ends are joined to exchange heat. Thereby, the liquefaction of the refrigerant is promoted by the decompressor 10 provided with a flat portion on the outer surface excluding a predetermined length at both ends, and excess refrigerant in the refrigerant return pipe 11 provided with a flat portion on the outer surface excluding the predetermined length at both ends is promoted. Promotes vaporization.

【0033】上記減圧器10および冷媒戻り管11の両
端については円形になっている。これにより冷媒の循環
経路上、減圧器10の上流である凝縮器2および下流で
ある蒸発器4との配管接続作業性が向上する。これは配
管断面が円形になることにより挿入時の方向性がなくな
るからである。同様に冷媒戻り管11の上流である蒸発
器4および下流である圧縮機1との配管接続作業性も向
上する。
Both ends of the pressure reducer 10 and the refrigerant return pipe 11 are circular. Thereby, the pipe connection workability between the condenser 2 upstream of the pressure reducer 10 and the evaporator 4 downstream of the pressure reducer 10 on the refrigerant circulation path is improved. This is because the circular cross section of the pipe eliminates the directionality at the time of insertion. Similarly, the pipe connection workability between the evaporator 4 upstream of the refrigerant return pipe 11 and the compressor 1 downstream is also improved.

【0034】当社の実験では、所定長として20mmの
断面が円形の部分を設けたが加工条件で他の寸法でも同
様の効果が得られる。本実施例では両端の所定長を除く
外表面に平面部を設けた減圧器10と両端の所定長を除
く外表面に平面部を設けた冷媒戻り管11とを接合した
ので従来のはんだ成分である鉛を廃止することができ
る。
In our experiments, a section having a predetermined length of 20 mm and a circular section was provided, but similar effects can be obtained with other dimensions under processing conditions. In this embodiment, the decompressor 10 having a flat portion on the outer surface excluding the predetermined length at both ends and the refrigerant return pipe 11 having the flat portion on the outer surface excluding the predetermined length at both ends are joined together. Some lead can be abolished.

【0035】(実施の形態3)図5は、本発明の実施の
形態3による冷蔵庫の冷却装置の冷媒回路図である。
(Embodiment 3) FIG. 5 is a refrigerant circuit diagram of a refrigerator for a refrigerator according to Embodiment 3 of the present invention.

【0036】図6は、本発明の実施の形態3による冷蔵
庫の冷却装置の熱交換部のC−C断面図である。
FIG. 6 is a cross-sectional view taken along the line CC of the heat exchange section of the refrigerator of the refrigerator according to the third embodiment of the present invention.

【0037】まず、圧縮機1を出た高温高圧の冷媒は、
気体状態で凝縮器2で放熱され、つぎの外表面に平面部
を設けた減圧器8をへて液状態になり、蒸発器4で蒸発
し、再び気体となる。この時の気化熱を蒸発器4の周囲
より吸収するため冷気となり、冷蔵庫庫内(図示せず)
は冷却される。また、気化した冷媒は外表面に平面部を
設けた冷媒戻り管9を通り圧縮機1に戻り、上記のサイ
クルを繰り返す。
First, the high-temperature and high-pressure refrigerant leaving the compressor 1 is:
In the gas state, heat is radiated by the condenser 2, passes through a decompressor 8 provided with a flat surface portion on the outer surface, and becomes a liquid state, evaporates in the evaporator 4, and becomes gas again. The heat of vaporization at this time is absorbed from the periphery of the evaporator 4 and becomes cold air, so that the inside of the refrigerator is not shown (not shown).
Is cooled. Further, the vaporized refrigerant returns to the compressor 1 through the refrigerant return pipe 9 having a flat surface portion on the outer surface, and repeats the above cycle.

【0038】図7において、外表面に平面部を設けた減
圧器8と外表面に平面部を設けた冷媒戻り管9をホット
メルト接着剤12を用いて接合し熱交換することによ
り、外表面に平面部を設けた減圧器8で冷媒の液化を促
進し、外表面に平面部を設けた冷媒戻り管9での余剰冷
媒の気化を促進する。
In FIG. 7, a decompressor 8 having a flat surface portion on the outer surface and a refrigerant return pipe 9 having a flat surface portion on the outer surface are joined by using a hot-melt adhesive 12 and heat exchange is performed. The liquefaction of the refrigerant is promoted by the decompressor 8 provided with a flat portion on the outside, and the vaporization of excess refrigerant in the refrigerant return pipe 9 provided with the flat portion on the outer surface is promoted.

【0039】本実施の形態では外表面に平面部を設けた
減圧器8と外表面に平面部を設けた冷媒戻り管9との接
合にホットメルト接着剤12を使用したので従来のはん
だ成分である鉛を廃止することができる。
In this embodiment, since the hot melt adhesive 12 is used for joining the pressure reducing device 8 having the flat surface portion to the refrigerant return pipe 9 having the flat surface portion on the outer surface, the conventional solder component is used. Some lead can be abolished.

【0040】また、接合部の面積が増大するので熱交換
効率を向上する効果もある。
Further, since the area of the joint is increased, there is also an effect of improving the heat exchange efficiency.

【0041】さらに、ホットメルト接着剤に良熱伝導材
を添加することにより、熱交換効率を向上することがで
きる。当社の実験では、良熱伝導材としてはカーボンブ
ラックなどを使用し,従来の鉛含有はんだより熱交換効
率の向上が見られた。
Further, the heat exchange efficiency can be improved by adding a good heat conductive material to the hot melt adhesive. In our experiments, carbon black was used as a good thermal conductive material, and the heat exchange efficiency was improved compared to conventional lead-containing solder.

【0042】また、外表面に平面部を設けた減圧器8お
よび外表面に平面部を設けた冷媒戻り管9の両端の所定
長の断面形状を円形にすれば実施例2の効果も得られ
る。
The effect of the second embodiment can also be obtained by making the cross sections of both ends of the decompressor 8 having a flat portion on the outer surface and the refrigerant return pipe 9 having the flat portion on the outer surface circular. .

【0043】(実施の形態4)図7は、本発明の実施の
形態4による冷蔵庫の冷却装置の冷媒回路図である。
(Embodiment 4) FIG. 7 is a refrigerant circuit diagram of a refrigerator cooling device according to Embodiment 4 of the present invention.

【0044】図8は、本発明の実施の形態4による冷蔵
庫の冷却装置の熱交換部のD−D断面図である。
FIG. 8 is a sectional view taken along the line DD of the heat exchange part of the refrigerator of the refrigerator according to the fourth embodiment of the present invention.

【0045】まず、圧縮機1を出た高温高圧の冷媒は、
気体状態で凝縮器2で放熱され、つぎの外表面に平面部
を設けた減圧器8をへて液状態になり、蒸発器4で蒸発
し、再び気体となる。この時の気化熱を蒸発器4の周囲
より吸収するため冷気となり、冷蔵庫庫内(図示せず)
は冷却される。また、気化した冷媒は外表面に平面部を
設けた冷媒戻り管9を通り圧縮機1に戻り、上記のサイ
クルを繰り返す。
First, the high-temperature and high-pressure refrigerant leaving the compressor 1 is:
In the gas state, the heat is radiated by the condenser 2, passes through a decompressor 8 provided with a flat portion on the outer surface, and becomes a liquid state, evaporates in the evaporator 4, and turns into a gas again. The heat of vaporization at this time is absorbed from the periphery of the evaporator 4 and becomes cold air, so that the inside of the refrigerator is not shown (not shown).
Is cooled. The vaporized refrigerant returns to the compressor 1 through the refrigerant return pipe 9 having a flat surface portion on the outer surface, and repeats the above cycle.

【0046】図9において、外表面に平面部を設けた減
圧器8と外表面に平面部を設けた冷媒戻り管9を超音波
溶着13を用いて接合し熱交換することにより、外表面
に平面部を設けた減圧器8で冷媒の液化を促進し、外表
面に平面部を設けた冷媒戻り管9での余剰冷媒の気化を
促進する。
In FIG. 9, a decompressor 8 having a flat surface portion on the outer surface and a refrigerant return pipe 9 having a flat surface portion on the outer surface are joined by ultrasonic welding 13 to perform heat exchange, so that the outer surface is formed. The liquefaction of the refrigerant is promoted by the decompressor 8 provided with the flat part, and the vaporization of the surplus refrigerant in the refrigerant return pipe 9 provided with the flat part on the outer surface is promoted.

【0047】本実施例では外表面に平面部を設けた減圧
器8と外表面に平面部を設けた冷媒戻り管9との接合に
超音波溶着13を使用したので従来のはんだ成分である
鉛を廃止することができる。
In this embodiment, since the ultrasonic welding 13 is used for joining the decompressor 8 having the flat surface portion to the refrigerant return pipe 9 having the flat surface portion, the conventional solder component lead is used. Can be abolished.

【0048】また、接合部の面積が増大するので熱交換
効率を向上する効果もある。
Further, since the area of the joint is increased, there is also an effect of improving the heat exchange efficiency.

【0049】超音波溶着の場合、それぞれの材料を超音
波による振動で溶融し、お互い接合する技術であり、接
着剤などの付加材料が不要という効果がある。
In the case of ultrasonic welding, each material is melted by ultrasonic vibration and joined together, and has the effect that no additional material such as an adhesive is required.

【0050】また、外表面に平面部を設けた減圧器8お
よび外表面に平面部を設けた冷媒戻り管9の両端の所定
長の断面形状を円形にすれば実施の形態2の効果も得ら
れる。
The effects of the second embodiment can be obtained by making the cross sections of predetermined lengths at both ends of the decompressor 8 having the flat surface on the outer surface and the refrigerant return pipe 9 having the flat surface on the outer surface circular. Can be

【0051】(実施の形態5)図9は、本発明の実施の
形態5による冷蔵庫の冷却装置の冷媒回路図である。
(Embodiment 5) FIG. 9 is a refrigerant circuit diagram of a refrigerator for a refrigerator according to Embodiment 5 of the present invention.

【0052】図10は、本発明の実施の形態5による冷
蔵庫の冷却装置の熱交換部のE−E断面図である。
FIG. 10 is a sectional view taken along the line EE of the heat exchange section of the refrigerator of the refrigerator according to the fifth embodiment of the present invention.

【0053】まず、圧縮機1を出た高温高圧の冷媒は、
気体状態で凝縮器2で放熱され、つぎの外表面に平面部
を設けた減圧器8をへて液状態になり、蒸発器4で蒸発
し、再び気体となる。この時の気化熱を蒸発器4の周囲
より吸収するため冷気となり、冷蔵庫庫内(図示せず)
は冷却される。また、気化した冷媒は外表面に平面部を
設けた冷媒戻り管9を通り圧縮機1に戻り、上記のサイ
クルを繰り返す。
First, the high-temperature and high-pressure refrigerant leaving the compressor 1
In the gas state, the heat is radiated by the condenser 2, passes through a decompressor 8 provided with a flat portion on the outer surface, and becomes a liquid state, evaporates in the evaporator 4, and turns into a gas again. The heat of vaporization at this time is absorbed from the periphery of the evaporator 4 and becomes cold air, so that the inside of the refrigerator is not shown (not shown).
Is cooled. Further, the vaporized refrigerant returns to the compressor 1 through the refrigerant return pipe 9 having a flat surface portion on the outer surface, and repeats the above cycle.

【0054】図11において、外表面に平面部を設けた
減圧器8と外表面に平面部を設けた冷媒戻り管9を金属
箔14を用いて巻付接合し熱交換することにより、外表
面に平面部を設けた減圧器8で冷媒の液化を促進し、外
表面に平面部を設けた冷媒戻り管9での余剰冷媒の気化
を促進する。
In FIG. 11, a pressure reducer 8 having a flat surface portion on the outer surface and a refrigerant return pipe 9 having a flat surface portion on the outer surface are wrapped and joined using a metal foil 14 and heat exchange is performed. The liquefaction of the refrigerant is promoted by the decompressor 8 provided with a flat portion on the outside, and the vaporization of excess refrigerant in the refrigerant return pipe 9 provided with the flat portion on the outer surface is promoted.

【0055】当社では、金属箔14として厚さ30〜1
00ミクロンの銅箔、あるいは30〜100ミクロンの
アルミ箔を適用した。銅箔の場合熱伝導が良好であると
いう長所がある。アルミ箔の場合、軽量であり、家庭用
ホイルなどで工業的に量産されているため安価であると
いう長所がある。
In our company, the metal foil 14 has a thickness of 30 to 1
A copper foil of 00 microns or an aluminum foil of 30 to 100 microns was applied. Copper foil has an advantage of good heat conduction. Aluminum foil has the advantage of being lightweight and inexpensive because it is mass-produced industrially in household foils and the like.

【0056】いずれの場合も巻付作業性向上のため金属
箔14の片面に粘着加工しても同等の効果が得られる。
In any case, the same effect can be obtained even if one side of the metal foil 14 is subjected to adhesive processing in order to improve winding workability.

【0057】本実施の形態では外表面に平面部を設けた
減圧器8と外表面に平面部を設けた冷媒戻り管9との接
合に金属箔14を使用したので従来のはんだ成分である
鉛を廃止することができる。
In this embodiment, since the metal foil 14 is used for joining the pressure reducing device 8 having the flat surface portion to the refrigerant return pipe 9 having the flat surface portion on the outer surface, lead which is a conventional solder component is used. Can be abolished.

【0058】また、接合部の面積が増大するので熱交換
効率を向上する効果もある。金属箔巻付の場合、特別な
装置を必要としないので作業場所を選ばないという効果
もある。
Further, since the area of the joint is increased, there is also an effect of improving the heat exchange efficiency. In the case of wrapping metal foil, there is also an effect that no special device is required, so that a work place can be selected.

【0059】また、外表面に平面部を設けた減圧器8お
よび外表面に平面部を設けた冷媒戻り管9の両端の所定
長の断面形状を円形にすれば実施の形態2と同様の効果
も得られる。
The same effect as in the second embodiment can be obtained by making the cross sections of the predetermined lengths at both ends of the decompressor 8 having the flat portion on the outer surface and the refrigerant return pipe 9 having the flat portion on the outer surface circular. Is also obtained.

【0060】[0060]

【発明の効果】以上説明したように請求項1に記載の発
明は、外表面に平面部を設けた減圧器と外表面に平面部
を設けた冷媒戻り管を接合し、熱交換したことにより、
冷却装置中の鉛を廃止することができる。
As described above, the first aspect of the present invention is based on the fact that a decompressor having an outer surface provided with a flat portion and a refrigerant return pipe having an outer surface provided with a flat portion are joined and subjected to heat exchange. ,
Lead in the cooling device can be eliminated.

【0061】また、請求項2に記載の発明は両端の所定
長を除く外表面に平面部を設けた減圧器と両端の所定長
を除く外表面に平面部を設けた冷媒戻り管を接合し、熱
交換したことにより、冷却装置中の鉛を廃止することが
できる。また配管処理の作業性を向上させることができ
る。
According to a second aspect of the present invention, a pressure reducer having a flat portion on the outer surface excluding a predetermined length at both ends and a refrigerant return pipe having a flat portion on the outer surface excluding a predetermined length at both ends are joined. By exchanging heat, lead in the cooling device can be eliminated. In addition, the workability of the piping treatment can be improved.

【0062】また、請求項3に記載の発明は請求項1ま
たは2記載の発明に加えて、圧縮機と凝縮器と減圧器と
蒸発器と冷媒戻り管とそれらを接続する配管からなる冷
凍サイクルにおいて、前記減圧器と冷媒戻り管を並列に
配置し、ホットメルト接着剤で接合したものであり、熱
交換したことにより、冷却装置中の鉛を廃止することが
できる。
According to a third aspect of the present invention, in addition to the first or second aspect, a refrigeration cycle comprising a compressor, a condenser, a decompressor, an evaporator, a refrigerant return pipe, and piping connecting them. In the above, the decompressor and the refrigerant return pipe are arranged in parallel, and are joined with a hot melt adhesive. By exchanging heat, lead in the cooling device can be eliminated.

【0063】また、請求項4に記載の発明は請求項1ま
たは2記載の発明に加えて、圧縮機と凝縮器と減圧器と
蒸発器と冷媒戻り管とそれらを接続する配管からなる冷
凍サイクルにおいて、前記減圧器と冷媒戻り管を並列に
配置し、超音波溶着で接合したものであり、冷却装置中
の鉛を廃止することができる。また、接合のための付加
材料を廃止することができる。
A fourth aspect of the present invention is a refrigeration cycle comprising a compressor, a condenser, a decompressor, an evaporator, a refrigerant return pipe, and a pipe connecting them, in addition to the first or second aspect. In the above, the decompressor and the refrigerant return pipe are arranged in parallel and joined by ultrasonic welding, so that lead in the cooling device can be eliminated. Further, additional materials for joining can be eliminated.

【0064】また、請求項5に記載の発明は請求項1ま
たは2記載の発明に加えて、圧縮機と凝縮器と減圧器と
蒸発器と冷媒戻り管とそれらを接続する配管からなる冷
凍サイクルにおいて、前記減圧器と冷媒戻り管を並列に
配置し、金属箔で巻付接合したものであり、冷却装置中
の鉛を廃止することができる。また接合のための特別な
装置が不要となり工数、材料費を低減できる。
A fifth aspect of the present invention is a refrigeration cycle comprising a compressor, a condenser, a decompressor, an evaporator, a refrigerant return pipe, and a pipe connecting them, in addition to the first or second aspect of the present invention. In the above, the pressure reducer and the refrigerant return pipe are arranged in parallel, and are wound and joined with a metal foil, so that lead in the cooling device can be eliminated. In addition, a special device for joining is not required, thereby reducing man-hours and material costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による冷蔵庫の冷却装置の実施の形態1
の冷媒回路図
FIG. 1 is a first embodiment of a refrigerator for a refrigerator according to the present invention.
Refrigerant circuit diagram

【図2】本発明による冷蔵庫の冷却装置の実施の形態1
の熱交換部のA−A断面図
FIG. 2 is a first embodiment of a refrigerator for a refrigerator according to the present invention.
AA sectional view of the heat exchange section of FIG.

【図3】本発明による冷蔵庫の冷却装置の実施の形態2
の冷媒回路図
FIG. 3 is a second embodiment of a refrigerator for a refrigerator according to the present invention;
Refrigerant circuit diagram

【図4】本発明による冷蔵庫の冷却装置の実施の形態2
の熱交換部のB−B断面図
FIG. 4 is a second embodiment of a refrigerator for a refrigerator according to the present invention.
BB sectional view of the heat exchange section of FIG.

【図5】本発明による冷蔵庫の冷却装置の実施の形態3
の冷媒回路図
FIG. 5 is a third embodiment of a refrigerator for a refrigerator according to the present invention.
Refrigerant circuit diagram

【図6】本発明による冷蔵庫の冷却装置の実施の形態3
の熱交換部のC−C断面図
FIG. 6 is a third embodiment of a refrigerator for a refrigerator according to the present invention.
CC sectional view of the heat exchange section of FIG.

【図7】本発明による冷蔵庫の冷却装置の実施の形態4
の冷媒回路図
FIG. 7 is a fourth embodiment of a refrigerator for a refrigerator according to the present invention.
Refrigerant circuit diagram

【図8】本発明による冷蔵庫の冷却装置の実施の形態4
の熱交換部のD−D断面図
FIG. 8 is a fourth embodiment of a refrigerator for a refrigerator according to the present invention.
DD sectional view of the heat exchange section of FIG.

【図9】本発明による冷蔵庫の冷却装置の実施の形態5
の冷媒回路図
FIG. 9 is a fifth embodiment of a refrigerator for a refrigerator according to the present invention.
Refrigerant circuit diagram

【図10】本発明による冷蔵庫の冷却装置の実施の形態
5の熱交換部のE−E断面図
FIG. 10 is a sectional view taken along the line EE of the heat exchange unit of the refrigerator according to the fifth embodiment of the present invention.

【図11】従来の冷蔵庫の冷却装置の冷媒回路図FIG. 11 is a refrigerant circuit diagram of a conventional refrigerator cooling device.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 4 蒸発器 6 配管 8 減圧器 9 冷媒戻り管 10 減圧器 11 冷媒戻り管 12 ホットメルト接着剤 13 超音波溶着 14 金属箔 REFERENCE SIGNS LIST 1 compressor 2 condenser 4 evaporator 6 piping 8 pressure reducer 9 refrigerant return pipe 10 pressure reducer 11 refrigerant return pipe 12 hot melt adhesive 13 ultrasonic welding 14 metal foil

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と凝縮器と減圧器と蒸発器と冷媒
戻り管とそれらを接続する配管からなる冷凍サイクルに
おいて、前記減圧器と前記冷媒戻り管を並列に配置し、
それぞれの外表面に平面部を設けて接合したことを特徴
とした冷蔵庫の冷却装置。
1. In a refrigeration cycle including a compressor, a condenser, a decompressor, an evaporator, a refrigerant return pipe, and a pipe connecting them, the decompressor and the refrigerant return pipe are arranged in parallel,
A refrigerator for a refrigerator, wherein a flat portion is provided on each outer surface and joined.
【請求項2】 圧縮機と凝縮器と減圧器と蒸発器と冷媒
戻り管とそれらを接続する配管からなる冷凍サイクルに
おいて、前記減圧器と冷媒戻り管を並列に配置し、それ
ぞれの両端の所定長を除く外表面に平面部を設けて接合
したことを特徴とした冷蔵庫の冷却装置。
2. In a refrigeration cycle comprising a compressor, a condenser, a decompressor, an evaporator, a refrigerant return pipe, and a pipe connecting them, the decompressor and the refrigerant return pipe are arranged in parallel, and predetermined ends of respective ends thereof are provided. A cooling device for a refrigerator, wherein a flat portion is provided on an outer surface excluding a length and joined.
【請求項3】 圧縮機と凝縮器と減圧器と蒸発器と冷媒
戻り管とそれらを接続する配管からなる冷凍サイクルに
おいて、前記減圧器と冷媒戻り管を並列に配置し、ホッ
トメルト接着剤で接合した請求項1または2に記載の冷
蔵庫の冷却装置。
3. In a refrigeration cycle comprising a compressor, a condenser, a decompressor, an evaporator, a refrigerant return pipe, and a pipe connecting them, the decompressor and the refrigerant return pipe are arranged in parallel, and a hot melt adhesive is used. The refrigerator cooling device according to claim 1, wherein the cooling device is joined.
【請求項4】 圧縮機と凝縮器と減圧器と蒸発器と冷媒
戻り管とそれらを接続する配管からなる冷凍サイクルに
おいて、前記減圧器と冷媒戻り管を並列に配置し、超音
波溶着で接合した請求項1または2に記載の冷蔵庫の冷
却装置。
4. In a refrigeration cycle comprising a compressor, a condenser, a decompressor, an evaporator, a refrigerant return pipe, and a pipe connecting them, the decompressor and the refrigerant return pipe are arranged in parallel and joined by ultrasonic welding. The refrigerator for a refrigerator according to claim 1 or 2.
【請求項5】 圧縮機と凝縮器と減圧器と蒸発器と冷媒
戻り管とそれらを接続する配管からなる冷凍サイクルに
おいて、前記減圧器と冷媒戻り管を並列に配置し、金属
箔で巻付接合したことを特徴とした請求項1または2に
記載の冷蔵庫の冷却装置。
5. A refrigeration cycle comprising a compressor, a condenser, a decompressor, an evaporator, a refrigerant return pipe, and a pipe connecting them, wherein the decompressor and the refrigerant return pipe are arranged in parallel and wound with metal foil. 3. The refrigerator according to claim 1, wherein the refrigerator is joined.
JP2001068975A 2001-03-12 2001-03-12 Cooler of refrigerator Pending JP2002267278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001068975A JP2002267278A (en) 2001-03-12 2001-03-12 Cooler of refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001068975A JP2002267278A (en) 2001-03-12 2001-03-12 Cooler of refrigerator

Publications (1)

Publication Number Publication Date
JP2002267278A true JP2002267278A (en) 2002-09-18

Family

ID=18927083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001068975A Pending JP2002267278A (en) 2001-03-12 2001-03-12 Cooler of refrigerator

Country Status (1)

Country Link
JP (1) JP2002267278A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052484A1 (en) * 2003-11-28 2005-06-09 BSH Bosch und Siemens Hausgeräte GmbH Suction-throttle pipe for a refrigerating appliance, and device for the production thereof
EP1782000A1 (en) * 2004-07-09 2007-05-09 Junjie Gu Refrigeration system
DE102014011030A1 (en) * 2014-05-13 2015-11-19 Liebherr-Hausgeräte Ochsenhausen GmbH Fridge and / or freezer
WO2015176939A1 (en) * 2014-05-20 2015-11-26 BSH Hausgeräte GmbH Refrigeration machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052484A1 (en) * 2003-11-28 2005-06-09 BSH Bosch und Siemens Hausgeräte GmbH Suction-throttle pipe for a refrigerating appliance, and device for the production thereof
EP1782000A1 (en) * 2004-07-09 2007-05-09 Junjie Gu Refrigeration system
EP1782000A4 (en) * 2004-07-09 2007-10-10 Junjie Gu Refrigeration system
US7685839B2 (en) 2004-07-09 2010-03-30 Junjie Gu Refrigeration system
DE102014011030A1 (en) * 2014-05-13 2015-11-19 Liebherr-Hausgeräte Ochsenhausen GmbH Fridge and / or freezer
WO2015176939A1 (en) * 2014-05-20 2015-11-26 BSH Hausgeräte GmbH Refrigeration machine

Similar Documents

Publication Publication Date Title
US4147037A (en) High efficiency heat exchange for refrigeration suction line/capillary tube assembly
US7306027B2 (en) Fluid-containing cooling plate for an electronic component
JP4874422B2 (en) Suction pipe assembly and manufacturing method thereof
JP5045795B2 (en) Ejector and manufacturing method of ejector
KR101938713B1 (en) Refrigerator
JP4196774B2 (en) Internal heat exchanger
JP5798445B2 (en) Refrigeration cycle heat exchanger, refrigerator, and refrigeration cycle heat exchanger manufacturing method
KR20100038548A (en) Suction pipe assembly and method for manufacturing suction pipe assembly
JP2002267278A (en) Cooler of refrigerator
JP2009248169A (en) Manufacturing method of cold plate
JP2016099037A (en) Heat exchanger of refrigeration cycle device
JP4980128B2 (en) Heat exchanger and refrigeration circuit using the heat exchanger
JP2000283664A (en) Heat exchanging pipe of refrigeration cycle and method of manufacture of heat exchange pipe
JP3899173B2 (en) Heat exchanger
JP2005265269A (en) Heat exchange pipe for refrigerating cycle
JP2001108333A (en) Heat exchanging structure of refrigeration circuit
JP2003251459A (en) Heat exchanger of refrigerator
KR20130114522A (en) Suction pipe assembly having spirally wound capillary tube and method for manufacturing suction pipe assembly
JP3007455B2 (en) Refrigeration cycle device
JP2013221697A (en) Refrigerator
KR20110045132A (en) Structure for joining of sustion pipe and capillary tube pipe
WO1998035191A1 (en) Evaporator making method, such evaporator and use thereof
KR200391531Y1 (en) Combination apparatus of capillary tube and suction pipe for refrigerating cycle
KR20240051445A (en) Integral pipe for refrigerating cycle, manufacturing system and method thereof
EP3370015A1 (en) Cooling device, refrigeration cycle device, and method for producing cooling device