[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002265221A - Oxide superconductor single crystal grain aggregate, target material and production process of the same target material - Google Patents

Oxide superconductor single crystal grain aggregate, target material and production process of the same target material

Info

Publication number
JP2002265221A
JP2002265221A JP2001065224A JP2001065224A JP2002265221A JP 2002265221 A JP2002265221 A JP 2002265221A JP 2001065224 A JP2001065224 A JP 2001065224A JP 2001065224 A JP2001065224 A JP 2001065224A JP 2002265221 A JP2002265221 A JP 2002265221A
Authority
JP
Japan
Prior art keywords
oxide superconductor
single crystal
substrate
aggregate
crystal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001065224A
Other languages
Japanese (ja)
Other versions
JP4470008B2 (en
Inventor
Masakazu Kawahara
正和 川原
Shuichi Kobayashi
秀一 小早志
Shigeo Nagaya
重夫 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Dowa Mining Co Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP2001065224A priority Critical patent/JP4470008B2/en
Publication of JP2002265221A publication Critical patent/JP2002265221A/en
Application granted granted Critical
Publication of JP4470008B2 publication Critical patent/JP4470008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxide superconductor target material 10 capable of stabilizing the mount of a scattered raw material in a thin film production process by an ion- beam-assisted vapor deposition method or sputtering method and also to provide a production process of the target material 10. SOLUTION: The formation process of an oxide superconductor 20 which consists of this oxide superconductor single crystal grain aggregate and has a >=95% relative density and in which each of the single crystal grains has a >=0.5 mm grain size and is oriented along the c-axis having a <=5 deg. inclination in relation to the c-axis of any of the other single crystal grains, comprises using a substrate containing another oxide superconductor having a higher melting point than that of the objective oxide superconductor 20 to be formed, as a prepared substrate 30, bringing the prepared substrate 30 into contact with the surface of a melt of a raw material for the oxide superconductor 20 and pulling the substrate 30 from the melt, to form the objective oxide superconductor single crystal grains 1, 2, 3, 4, or the like, on the surface of the substrate 30, wherein, when this target material 10 is produced by using the oxide superconductor 20, the amount of a scattered raw material can be stabilized in a thin film production process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高密度で配向の揃
った酸化物超電導体、およびその製造方法並びに前記酸
化物超電導体から製造したターゲット材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconductor having a high density and uniform orientation, a method for producing the same, and a target material produced from the oxide superconductor.

【0002】[0002]

【従来の技術】従来、実用的な酸化物超電導長尺線材を
引くための酸化物超電導体薄膜を製造するには、CVD
法、レーザー蒸着法、反応性蒸着法、スパッタリング
法、等が用いられている。このうち、スパッタリング
法、レーザー蒸着法ではターゲット材にイオンまたはレ
ーザー光を照射して、ターゲット材を構成する原子また
は分子を叩き出し、所望の基板上に薄膜を形成させよう
とするものである。このターゲット材として用いられる
酸化物超電導体は、少なくとも20mm角以上、または
20mmφ以上のサイズが求められるため、焼結法、ま
たはホットプレス焼成法で製造されるのが一般的であ
る。
2. Description of the Related Art Conventionally, in order to produce a thin oxide superconductor thin film for drawing a practical oxide superconducting long wire, CVD has been used.
Method, a laser deposition method, a reactive deposition method, a sputtering method, and the like are used. Among them, in the sputtering method and the laser vapor deposition method, ions or laser light is irradiated to a target material to strike out atoms or molecules constituting the target material, thereby forming a thin film on a desired substrate. Since the oxide superconductor used as the target material is required to have a size of at least 20 mm square or more or 20 mmφ or more, it is generally manufactured by a sintering method or a hot press firing method.

【0003】ここで、焼結法とは、酸化物超電導体の構
成元素の酸化物もしくは酸化物形成化合物(炭酸塩、硝
酸塩、等)の粉末を仮焼した後、成型用バインダーを添
加して成形し焼結させる方法である。ホットプレス焼成
法とは前記構成元素の粉末または成形体を型に入れ、高
温高圧で焼成する方法である。
[0003] Here, the sintering method refers to calcining a powder of an oxide or an oxide-forming compound (carbonate, nitrate, etc.) of a constituent element of an oxide superconductor and then adding a molding binder. It is a method of molding and sintering. The hot press firing method is a method in which a powder or a compact of the above-mentioned constituent element is put in a mold and fired at high temperature and high pressure.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記、従来の
技術には次のような問題点があることが本発明者らによ
って明らかにされた。すなわち、焼結法においては成形
体の成形性を向上させるため、バインダーの添加が不可
欠であるが、このバインダーは焼結中に分解するため、
その分解ガスによって焼結後の成形体に割れや反りが生
じることがある。
However, it has been found by the present inventors that the above-mentioned prior art has the following problems. That is, in the sintering method, the addition of a binder is indispensable in order to improve the moldability of the molded body, but since the binder is decomposed during sintering,
The decomposition gas may cause cracks or warpage in the sintered body after sintering.

【0005】一方、ホットプレス焼成法においてはプレ
スの際に用いるカーボン製の型材からカーボンが融出
し、焼結後の成形体に不純物として混入することがあ
る。また、焼結法およびホットプレス焼成法の共通の問
題点として、作製されたターゲット材を用いて薄膜製造
する際、原料の飛散量が安定しないため、得られた薄膜
の膜厚が不均一となり、その結果、超電導特性等が不均
一となることがあった。
[0005] On the other hand, in the hot press firing method, carbon may be melted from a carbon mold used in pressing and may be mixed as an impurity into a compact after sintering. In addition, as a common problem of the sintering method and the hot press firing method, when a thin film is manufactured using the manufactured target material, the scattering amount of the raw material is not stable, so that the thickness of the obtained thin film becomes uneven. As a result, the superconducting characteristics and the like sometimes become non-uniform.

【0006】ここで、これらの問題点の解決策として、
酸化物超電導体の単結晶をターゲット材として用いるこ
とが考えられる。しかし、前記単結晶体は結晶の成長に
多大な時間を要するため、原料融液と坩堝との反応によ
り原料融液の組成ずれが発生する。このため前記単結晶
をターゲット材として必要なサイズまで成長させること
は行われていなかった。
Here, as a solution to these problems,
It is conceivable to use a single crystal of an oxide superconductor as a target material. However, since the single crystal requires a great deal of time to grow the crystal, a reaction between the raw material melt and the crucible causes a composition deviation of the raw material melt. Therefore, the single crystal has not been grown to a required size as a target material.

【0007】本発明は上述の背景のもとでなされたもの
であり、バインダーや成形型を使用していないため、反
りや割れが無く不純物濃度が低く、且つ相対密度も高い
が、作製に伴う作業性やコストの点でも実用の域に達し
ている酸化物超電導体、およびこの酸化物超電導体から
作製された、スパッタの際に原料飛散量の安定性を図る
ことのできる酸化物超電導体のターゲット材、並びにそ
の製造方法を提供することを目的とする。
[0007] The present invention has been made under the above-mentioned background, and since no binder or mold is used, there is no warpage or cracking, the impurity concentration is low, and the relative density is high. Oxide superconductors that have reached practical levels in terms of workability and cost, and oxide superconductors made from this oxide superconductor that can stabilize the amount of material scattered during sputtering. An object of the present invention is to provide a target material and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上述の課題を解決するた
め、本発明者らが鋭意研究した結果、良好な超電導特性
を有する薄膜を成膜するために、ターゲット材として用
いられる酸化物超電導体が満たすべき要件が明らかとな
った。 1.酸化物超電導体の成形体に割れや反りがあると、タ
ーゲット材を製造することができない。よって、成形体
の製造過程においてバインダーを使用しないことが好ま
しい。 2.酸化物超電導体の成形体中に不純物が混入している
と、成膜された超電導薄膜の特性が安定しないことか
ら、高温高圧下において型材等は使用しないしないこと
が好ましい。 3.ターゲット材を用いた成膜の際、原料の飛散量を安
定させるためには、ターゲット材を構成する酸化物超電
導体において結晶粒の粒子径は0.5mm以上に大型化
し、全体の理論密度を100%としたときの相対密度は
95%以上あることが好ましい。さらに、各々の結晶粒
において、相互のa軸またはb軸が、90°±5°また
は180°±5°の角度をなしていること、相互のc軸
の傾角は5°以下で配向していることが好ましい。 4.ターゲット材としても使用可能なサイズとして、少
なくとも20mm角以上または20mmφ以上、好まし
くは50mm角または50mmφ以上の酸化物超電導体
を、作業性良く低コストで製造できることが好ましい。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted intensive studies and as a result, have found that an oxide superconductor used as a target material for forming a thin film having good superconducting properties. The requirements to be fulfilled became clear. 1. If the molded product of the oxide superconductor has cracks or warpage, the target material cannot be manufactured. Therefore, it is preferable not to use a binder in the manufacturing process of the molded article. 2. If impurities are mixed in the oxide superconductor compact, the characteristics of the formed superconducting thin film are not stable. Therefore, it is preferable not to use a mold or the like under high temperature and high pressure. 3. In film formation using the target material, in order to stabilize the scattering amount of the raw material, in the oxide superconductor constituting the target material, the crystal grain size is increased to 0.5 mm or more, and the overall theoretical density is increased. It is preferable that the relative density when it is 100% is 95% or more. Furthermore, in each crystal grain, the mutual a-axis or the b-axis forms an angle of 90 ° ± 5 ° or 180 ° ± 5 °, and the inclination of the mutual c-axis is oriented at 5 ° or less. Is preferred. 4. As a size that can be used as a target material, it is preferable that an oxide superconductor having a size of at least 20 mm square or more or 20 mm φ or more, preferably 50 mm square or 50 mm φ or more can be manufactured with good workability and low cost.

【0009】前記1〜3の要件を満たすためには、前記
構成元素の粉末にバインダーを加え焼結する方法、また
は型に入れてホットプレスする方法ではなく、前記構成
元素の粉末を高温で溶融させこの融液から酸化物超電導
体を引き上げる方法が好ましい。しかしここで前記単結
晶体を引き上げるような工程を採ると、前述したように
結晶成長に多大の時間を要するため、必要な面積を有す
る結晶を得ることができず、前記4.の要件を満たすこ
とができない。
In order to satisfy the requirements of the above items 1 to 3, it is not a method of adding a binder to the powder of the constituent elements and sintering, or a method of hot pressing in a mold, but melting the powder of the constituent elements at a high temperature. A preferred method is to pull the oxide superconductor from this melt. However, if a step of pulling the single crystal body is adopted here, a large amount of time is required for crystal growth as described above, and a crystal having a required area cannot be obtained. Can not meet the requirements.

【0010】ここで本発明者らは数々の試行錯誤を重ね
た結果、画期的な酸化物超電導体の引き上げ方法に想達
した。すなわち、製造目的とする酸化物超電導体より高
い融点を有し、前記目的とする酸化物超電導体融液と接
触しても融解しないc軸に配向した酸化物超電導体の薄
膜、厚膜、または製造目的とする酸化物超電導体と同等
以上の融点を有する酸化物超電導体の溶融体、であって
所望の酸化物超電導体と同様以上のサイズを有するもの
を基板として準備した。次に、この基板を前記融液の表
面に接触させた後引き上げたところ、基板上に目的とす
る酸化物超電導体の単結晶粒子の集合体を生成させるこ
とができた。こうして得られた、目的とする酸化物超電
導体の単結晶粒子の集合体をターゲット材に加工したと
ころ、前記1〜4の要件を全て満たすことを見出し、本
発明を完成した。
[0010] Here, as a result of repeated trial and error, the present inventors have come up with a revolutionary method of pulling up an oxide superconductor. That is, a thin film, a thick film, or a c-axis oriented oxide superconductor that has a higher melting point than the intended oxide superconductor and does not melt even when in contact with the target oxide superconductor melt. A melt of an oxide superconductor having a melting point equal to or higher than the oxide superconductor to be manufactured, which had a size equal to or higher than the desired oxide superconductor, was prepared as a substrate. Next, when the substrate was brought into contact with the surface of the melt and then pulled up, a target aggregate of single crystal particles of the oxide superconductor could be formed on the substrate. The obtained aggregate of single crystal particles of the oxide superconductor thus obtained was processed into a target material. As a result, it was found that all of the above requirements 1 to 4 were satisfied, and the present invention was completed.

【0011】すなわち、上述の課題を解決するための第
1の発明は、酸化物超電導体単結晶粒子の集合体であっ
て、95%以上の相対密度を有し、前記酸化物超電導体
単結晶粒子の粒径は0.5mm以上であり、前記酸化物
超電導体単結晶粒子は相互のa軸またはb軸が、90°
±5°または180°±5°の角度をなしており、相互
のc軸の傾角は5°以下であるようにならんで配向し、
ターゲット材として使用可能なサイズを有していること
を特徴とする酸化物超電導体単結晶粒子の集合体であ
る。
That is, a first invention for solving the above-mentioned problem is an aggregate of oxide superconductor single crystal particles, which has a relative density of 95% or more, and has a relative density of 95% or more. The particle diameter of the particles is 0.5 mm or more, the oxide superconductor single crystal particles, the mutual a-axis or b-axis, 90 °
The angle is ± 5 ° or 180 ° ± 5 °, and the mutual c-axis tilt angles are less than or equal to 5 °.
An aggregate of single crystal oxide superconductor particles having a size usable as a target material.

【0012】第2の発明は、所望の面積を有するc軸に
配向した酸化物超電導体の、薄膜、厚膜または溶融体の
いずれかの表面より成長した酸化物超電導体単結晶粒子
の集合体であって、95%以上の相対密度を有し、前記
酸化物超電導体単結晶粒子の粒径は0.5mm以上であ
り、前記酸化物超電導体単結晶粒子はc軸に配向し、タ
ーゲット材として使用可能なサイズを有していることを
特徴とする酸化物超電導体である。
According to a second aspect of the present invention, there is provided an aggregate of oxide superconductor single-crystal particles grown from the surface of any of a thin film, a thick film and a melt of a c-axis oriented oxide superconductor having a desired area. Wherein the oxide superconductor single crystal particles have a relative density of 95% or more, the particle size of the oxide superconductor single crystal particles is 0.5 mm or more, the oxide superconductor single crystal particles An oxide superconductor having a size that can be used as an oxide superconductor.

【0013】第2の発明は、所望の面積を有するc軸に
配向した酸化物超電導体の、薄膜、厚膜または溶融体の
いずれかの表面より成長した酸化物超電導体単結晶粒子
の集合体であって、95%以上の相対密度を有し、前記
酸化物超電導体単結晶粒子の粒径は0.5mm以上であ
り、前記酸化物超電導体単結晶粒子において、相互のc
軸の傾角は5°以下であるようにならんで配向している
ことを特徴とする酸化物超電導体単結晶粒子の集合体で
ある。
According to a second aspect of the present invention, there is provided an aggregate of oxide superconductor single crystal particles of a c-axis-oriented oxide superconductor having a desired area and grown from a surface of any of a thin film, a thick film and a melt. Having a relative density of 95% or more, a particle size of the oxide superconductor single crystal particles is 0.5 mm or more, and a mutual c
An aggregate of single crystal oxide superconductor particles, characterized in that the axes are oriented so that the inclination angle is 5 ° or less.

【0014】第3の発明は、第1または第2の発明に記
載の酸化物超電導体単結晶粒子の集合体から作製したこ
とを特徴とするターゲット材である。
According to a third aspect of the present invention, there is provided a target material produced from the aggregate of the oxide superconductor single crystal particles according to the first or second aspect.

【0015】第4の発明は、第1または第2の発明に記
載の酸化物超電導体単結晶粒子の集合体を構成する酸化
物超電導体より高い融点を有する酸化物超電導体を含む
基板を準備し、前記基板の表面を、適宜に調製された原
料融液の表面に接触させた後、引き上げることで、前記
基板の表面へ第1の発明に記載の酸化物超電導体単結晶
粒子の集合体を形成することを特徴とする酸化物超電導
体単結晶粒子の集合体の製造方法である。
According to a fourth aspect of the present invention, there is provided a substrate including an oxide superconductor having a higher melting point than the oxide superconductor constituting the aggregate of the oxide superconductor single crystal particles according to the first or second aspect. Then, after bringing the surface of the substrate into contact with the surface of the appropriately prepared raw material melt, the aggregate of the oxide superconductor single-crystal particles according to the first aspect of the present invention is applied to the surface of the substrate by pulling up. And a method for producing an aggregate of oxide superconductor single crystal particles.

【0016】第5の発明は、前記基板として、セラミッ
ク基板上に、酸化物超電導体を成膜したもの用いること
を特徴とする第4の発明に記載の酸化物超電導体単結晶
粒子の集合体の製造方法である。
According to a fifth aspect of the present invention, there is provided an aggregate of single crystal particles of an oxide superconductor according to the fourth aspect, wherein the substrate is formed by depositing an oxide superconductor on a ceramic substrate. It is a manufacturing method of.

【0017】第6の発明は、前記基板として、セラミッ
ク基板上に、第1または第2の発明に記載の酸化物超電
導体単結晶粒子の集合体を構成する酸化物超電導体より
高い融点を有する酸化物超電導体を成膜したものを用い
ることを特徴とする第4の発明に記載の酸化物超電導体
単結晶粒子の集合体の製造方法である。
According to a sixth aspect of the invention, as the substrate, the ceramic substrate has a higher melting point than the oxide superconductor constituting the aggregate of the oxide superconductor single crystal particles according to the first or second aspect. The method for producing an aggregate of single crystal particles of an oxide superconductor according to the fourth invention, characterized in that an oxide superconductor formed into a film is used.

【0018】第7の発明は、溶融法で製造されたREB
aCuO系の材料を基板として用いて、前記基板の表面
を、適宜に調製された原料融液の表面に接触させた後、
引き上げることで、前記基板の表面へ酸化物超電導体単
結晶粒子を形成することを特徴とする酸化物超電導体の
製造方法である。
The seventh invention relates to a REB manufactured by a melting method.
After using the aCuO-based material as a substrate and bringing the surface of the substrate into contact with the surface of a suitably prepared raw material melt,
A method for producing an oxide superconductor, comprising forming oxide superconductor single crystal particles on the surface of the substrate by pulling up the substrate.

【0019】第8の発明は、前記基板の表面を、適宜に
調製された原料融液の表面に接触させた後、引き上げる
際、前記融液から前記基板へ向けて1〜100℃/cm
の温度勾配をもうけたことを特徴とする第4〜第7の発
明のいずれかに記載の酸化物超電導体単結晶粒子の集合
体の製造方法である。
According to an eighth aspect of the present invention, the surface of the substrate is brought into contact with the surface of a suitably prepared raw material melt and then pulled up from the melt to the substrate at a temperature of 1 to 100 ° C./cm.
The method for producing an aggregate of single crystal oxide superconductor particles according to any one of the fourth to seventh inventions, wherein a temperature gradient is provided.

【0020】第9の発明は、前記原料融液を調製する
際、融解される原料元素と同様の元素からなる坩堝を用
いることを特徴とする第4〜第8の発明のいずれかに記
載の酸化物超電導体単結晶粒子の集合体の製造方法であ
る。
A ninth aspect of the present invention is the method according to any one of the fourth to eighth aspects, wherein, when preparing the raw material melt, a crucible made of the same element as the raw material element to be melted is used. This is a method for producing an aggregate of oxide superconductor single crystal particles.

【0021】第10の発明は、第3の発明に記載のター
ゲット材を用いて成膜したことを特徴とする酸化物超電
導体薄膜である。
According to a tenth aspect, there is provided an oxide superconductor thin film formed by using the target material according to the third aspect.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図1を参照しながら説明する。図1は、後述する実
施例2において作製された酸化物超電導体ターゲット材
の外観斜視図である。図1において、酸化物超電導体タ
ーゲット材10とは、酸化物超電導体の単結晶体1、
2、3、4、…の集合体20を後述する準備された成形
体30上に成長させた後、成形したものである。まず、
準備された成形体30について説明する。準備された成
形体30とは、作製目的である酸化物超電導体の単結晶
体集合体20より高い融点を有し、前記酸化物超電導体
の単結晶体集合体20の融液と接触しても融解しない組
成を有する酸化物超電導体の成形体で、最終的に所望す
る酸化物超電導体と同様以上のサイズを有するものをい
う。この準備された成形体30としては、セラミック基
板(MgO、YSZ、(LaAlO30.3−(SrAl
0.5Ta0.530.7、Y23、SrTiO3、LaAl
3、YAlO3、LaSrAlO4、NdCaAlO4
NdGaO3、LaGaO3、LaSrGaO4等)上に
酸化物超電導体を、スパッタリング法、レーザー蒸着
法、ペースト法、有機酸塩法、等により成膜後、必要に
より焼結して得られた酸化物超電導体膜付きのセラミッ
ク基板が使用できる。また、溶融法で製造されたREB
aCuO系の材料のc軸配向面を用いることもできる。
この場合、成長する結晶もc軸配性が向上するために、
引き上げ速度を早めることができ、さらに前記酸化物超
電導体の単結晶体集合体20の融液と同等の融点を有す
る材料も使用可能となる等、好ましい実施の形態であ
る。尚、REとはYを含む希土類元素のことである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is an external perspective view of an oxide superconductor target material manufactured in Example 2 described later. In FIG. 1, an oxide superconductor target material 10 is a single crystal 1 of an oxide superconductor,
The aggregate 20 of 2, 3, 4,... Is grown on a prepared molded body 30 described later and then molded. First,
The prepared molded body 30 will be described. The prepared molded body 30 has a melting point higher than that of the oxide superconductor single-crystal aggregate 20 to be produced, and comes into contact with the melt of the oxide superconductor single-crystal aggregate 20. Refers to a molded product of an oxide superconductor having a composition that does not melt and has a size equal to or larger than the finally desired oxide superconductor. As the prepared molded body 30, a ceramic substrate (MgO, YSZ, (LaAlO 3 ) 0.3 − (SrAl
0.5 Ta 0.5 O 3 ) 0.7 , Y 2 O 3 , SrTiO 3 , LaAl
O 3 , YAlO 3 , LaSrAlO 4 , NdCaAlO 4 ,
NdGaO 3 , LaGaO 3 , LaSrGaO 4, etc.) and an oxide superconductor formed by sputtering, laser vapor deposition, paste, organic acid salt, etc., and then sintered as required. A ceramic substrate with a superconductor film can be used. REB manufactured by the melting method
A c-axis oriented plane of an aCuO-based material can also be used.
In this case, since the growing crystal also has improved c-axis alignment,
This is a preferred embodiment in that the pulling speed can be increased, and a material having a melting point equivalent to the melt of the single crystal aggregate 20 of the oxide superconductor can be used. RE is a rare earth element containing Y.

【0023】前記準備された成形体30を、前記融液の
表面に接触させた後引き上げる。この際、前記準備され
た成形体30から前記融液への温度勾配は1〜100℃
/cmとすることにより成膜速度を早く出来る点で好ま
しい。さらにこの時の引き上げ速度は0.05〜10m
m/hrであることが引き上げられる酸化物超電導体の
均一性を保つ上で好ましい。またこの引き上げの際、前
記準備された成形体30を1〜300rpmで回転させ
ながら引き上げることが、前記引き上げられる酸化物超
電導体の均一性を保つ上で好ましい。
After the prepared compact 30 is brought into contact with the surface of the melt, it is pulled up. At this time, the temperature gradient from the prepared compact 30 to the melt is 1 to 100 ° C.
/ Cm is preferable in that the film formation rate can be increased. Further, the lifting speed at this time is 0.05 to 10 m.
m / hr is preferable in order to maintain the uniformity of the pulled oxide superconductor. At the time of this pulling, it is preferable to pull up while rotating the prepared compact 30 at 1 to 300 rpm in order to maintain the uniformity of the oxide superconductor to be pulled up.

【0024】尚、前記融液を調製する際、坩堝から融液
中へ不純物が混入するのを防ぐために、坩堝の材質とし
て融液中に含まれる元素と同様の元素からなる坩堝を用
いることが好ましい。また、この引き上げ方法により作
製する酸化物超電導体ターゲット材中の希土類元素とし
ては、何れの希土類元素またはこれらの混合物を用いる
こともできるが、Nd、Sm、Gdの何れか、またはこ
れらの混合物を50at%以上含むように希土類元素を
選択すると、この酸化物超電導体ターゲット材を用いて
製造した超電導線材の高磁場中における臨界電流密度を
高めることができる。
When the melt is prepared, a crucible made of the same element as that contained in the melt may be used as a crucible material in order to prevent impurities from entering the melt from the crucible. preferable. As the rare earth element in the oxide superconductor target material produced by this pulling method, any rare earth element or a mixture thereof can be used, but any of Nd, Sm, Gd, or a mixture thereof is used. When a rare earth element is selected so as to contain 50 at% or more, the critical current density of a superconducting wire manufactured using this oxide superconductor target material in a high magnetic field can be increased.

【0025】以上の操作により、前記準備された成形体
30上に前記引き上げられた酸化物超電導体の0.5〜
10mmの単結晶体1、2、3、4、…の集合体20を
得ることができた。(以下「単結晶集合体20」と記
す。)この単結晶集合体20をXRDで分析したとこ
ろ、前記準備された成形体30上にc軸配向しており、
且つ超電導特性を示さない液相成分の成長は見られなか
った。そして各々の単結晶粒において、相互のa軸また
はb軸が、90°±5°または180°±5°の角度を
なし、このため、この単結晶集合体20の密度は、酸素
がほぼ詰まった状態の酸化物超電導体の理論密度を10
0%としたときの相対密度において95%以上であっ
た。一方、単結晶集合体20において各単結晶相互のc
軸の傾角は5°以下で配向していた。
By the above operation, 0.5-0.5 of the pulled oxide superconductor is placed on the prepared compact 30.
An aggregate 20 of 10 mm single crystal bodies 1, 2, 3, 4,... Was obtained. (Hereinafter referred to as “single crystal aggregate 20”.) When this single crystal aggregate 20 was analyzed by XRD, c-axis orientation was found on the prepared molded body 30,
In addition, no growth of liquid phase components showing no superconductivity was observed. In each single crystal grain, the a-axis or the b-axis forms an angle of 90 ° ± 5 ° or 180 ° ± 5 °, so that the density of the single crystal aggregate 20 is almost completely filled with oxygen. The theoretical density of the oxide superconductor in the
When the relative density was set to 0%, the relative density was 95% or more. On the other hand, in the single crystal aggregate 20, c
The axis was oriented at an inclination angle of 5 ° or less.

【0026】次に、この単結晶集合体20および準備さ
れた成形体30を酸化物超電導体ターゲット材1に成形
加工して、スパッタリング法およびレーザー蒸着法によ
り酸化物超電導薄膜の成膜を実施したところ、原料の飛
散量は安定していた。さらに得られた酸化物超電導薄膜
は均一な厚さを有し、不純物混入も見られないものであ
った。
Next, the single crystal aggregate 20 and the prepared compact 30 were formed into an oxide superconductor target material 1, and an oxide superconducting thin film was formed by sputtering and laser vapor deposition. However, the scattering amount of the raw material was stable. Further, the obtained oxide superconducting thin film had a uniform thickness and no impurities were found.

【0027】(実施例1)原料として純度3NのBaC
uO2とY2BaCuO5との粉体をモル比でY:Ba:
Cu=4:36:60となるように秤量、混合し坩堝内
に装填する。坩堝にはY23製のものを用い、まず10
70℃に昇温させ原料粉を融解した後、坩堝の上部が低
温側となるように上下に8℃/cmの温度勾配を加え、
坩堝内の融液の上部が1000℃となるまで降温させ
た。
(Example 1) BaC of 3N purity as a raw material
The powders of uO 2 and Y 2 BaCuO 5 are mixed in a molar ratio of Y: Ba:
Weigh and mix so that Cu = 4: 36: 60, and load into a crucible. A crucible made of Y 2 O 3 was used.
After the temperature was raised to 70 ° C. to melt the raw material powder, a temperature gradient of 8 ° C./cm was added up and down so that the upper part of the crucible was on the low temperature side,
The temperature was lowered until the upper part of the melt in the crucible reached 1000 ° C.

【0028】一方、準備された基板材として25mm角
のMgO基板を用い、その表面にYBa2Cu37酸化
物超電導体より融点の高いSmBa2Cu37-X、Nd
Ba2Cu37-X、GdBa2Cu37-X、等のペースト
剤をスプレー塗布した後、1020℃で10時間焼成し
たものを用いた。前記準備された基板材を、前記融液に
接触させた後、引き上げ速度0.5mm/hr、回転速
度100rpmの条件で、4mm程度まで引き上げを行
い、その後、引き上げ速度を10mm/hrにして融液
との切り離しを行った。その結果、前記準備された25
mm角の基板面全体に渡って、厚さ約4mm、縦横0.
6〜4mm角、相互のa軸またはb軸が、90°±5°
または180°±5°の角度をなし、相互のc軸の傾角
が5°以下である、Y1Ba2Cu3x単結晶体が並んだ
単結晶集合体を得ることができた。この単結晶集合体の
密度を測定したところ6.23g/cm3であった。こ
れは理論密度を6.34g/cm3としたときの相対密
度で約98%に相当する。
On the other hand, using a MgO substrate 25mm square as a substrate material that has been prepared, YBa 2 Cu 3 O 7 higher melting point than the oxide superconductor SmBa 2 Cu 3 O 7-X on its surface, Nd
A paste agent such as Ba 2 Cu 3 O 7 -X , GdBa 2 Cu 3 O 7 -X , etc. was spray applied, and then fired at 1020 ° C. for 10 hours. After the prepared substrate material is brought into contact with the melt, the substrate material is pulled up to about 4 mm under the conditions of a pulling speed of 0.5 mm / hr and a rotation speed of 100 rpm, and then the pulling speed is set to 10 mm / hr. Separation from the liquid was performed. As a result, the prepared 25
The thickness is about 4 mm and the height and width are 0.
6-4mm square, mutual a-axis or b-axis is 90 ° ± 5 °
Alternatively, a single crystal aggregate in which Y 1 Ba 2 Cu 3 O x single crystals are arranged at an angle of 180 ° ± 5 ° and the mutual c-axis tilt angle is 5 ° or less was obtained. When the density of this single crystal aggregate was measured, it was 6.23 g / cm 3 . This corresponds to about 98% in relative density when the theoretical density is 6.34 g / cm 3 .

【0029】得られた単結晶集合体をXRDで分析した
ところ、前記準備された基板面に垂直な方向がc軸であ
るようにc軸配向していた。またさらにICPにより組
成分析をおこなったところモル比でY:Ba:Cu=
1.01:2.02:2.97であることが判明し、不
純物も含まれていないことが確認された。
When the obtained single crystal aggregate was analyzed by XRD, it was found to be c-axis oriented such that the direction perpendicular to the prepared substrate surface was the c-axis. Further, when the composition was analyzed by ICP, the molar ratio of Y: Ba: Cu =
1.01: 2.02: 2.97, and it was confirmed that no impurities were contained.

【0030】この単結晶集合体を4枚作製し、並べて研
磨し酸化物超電導体ターゲット材に加工した。そしてY
SZの配向膜を中間層として成膜したハステロイテープ
上に、イオンビームアシスト蒸着法によりY1Ba2Cu
3x超電導薄膜の成膜を1mにわたって実施したとこ
ろ、前記準備された基板材を作製するにあたり、いずれ
のペースト材を用いたターゲット材においても、長時間
にわたり原料の飛散量が安定していた。さらに得られた
超電導薄膜はほぼ均一な厚さを有し不純物混入も見られ
ないものであった。
Four single-crystal aggregates were prepared, arranged and polished, and processed into an oxide superconductor target material. And Y
On a Hastelloy tape on which an SZ alignment film was formed as an intermediate layer, Y 1 Ba 2 Cu was deposited by an ion beam assisted vapor deposition method.
When the 3 O x superconducting thin film was formed over 1 m, the scattering amount of the raw material was stable for a long time in the target material using any of the paste materials in producing the prepared substrate material. . Further, the obtained superconducting thin film had a substantially uniform thickness and no impurity was found.

【0031】このようにして得られた超電導薄膜をXR
Dで分析したところ、Y1Ba2Cu 3xの(00n)の
配向ピークが観測された。また作製された1mのテープ
の両端に電流端子を接続して、77Kにおける臨界電流
密度を4端子法で測定したところ、外部磁場のない状態
で5×105A/cm2、外部磁場2T中で1×105
/cm2と長尺で高い臨界電流密度特性のテープ線材を
得ることができた。これは原料の飛散量が安定したため
の効果と考えられる。
The superconducting thin film thus obtained was subjected to XR
When analyzed by D, Y1BaTwoCu ThreeOx(00n)
An orientation peak was observed. 1m tape produced
Current terminals at both ends of the
Density measured by 4-terminal method, no external magnetic field
At 5 × 10FiveA / cmTwo1 × 10 in external magnetic field 2TFiveA
/ CmTwoLong and high critical current density characteristics
I got it. This is because the amount of raw material scattered was stable
Is considered to be an effect.

【0032】(実施例2)実施例1と同様にしてY23
坩堝内に組成がY:Ba:Cu=4:36:60の融液
を調製する。一方、基板材の作製は以下のように行っ
た。まずbY23、BaCO3、CuOの各原料粉末を
Y:Ba:Cu=1.8:2.4:3.4になるように
秤量した後、BaCO3、CuOのみを、880℃で3
0時間焼成してBaCuO2とCuOの仮焼粉を得た。
(モル比でBaCuO2:CuO=2.4:1.0とな
る。)
(Example 2) In the same manner as in Example 1, Y 2 O 3
A melt having a composition of Y: Ba: Cu = 4: 36: 60 is prepared in a crucible. On the other hand, the production of the substrate material was performed as follows. First, each raw material powder of bY 2 O 3 , BaCO 3 , and CuO is weighed so that Y: Ba: Cu = 1.8: 2.4: 3.4, and then only BaCO 3 and CuO are mixed at 880 ° C. 3
By calcining for 0 hour, a calcined powder of BaCuO 2 and CuO was obtained.
(The molar ratio is BaCuO 2 : CuO = 2.4: 1.0.)

【0033】次に、この仮焼粉と、前記秤量しておいた
23と、0.5wt%のPt粉末(平均粒径0.01
μm)とを混合した後、大気中900℃で10時間焼成
を行い仮焼粉を得た。この仮焼粉をライカイ機で粉砕
し、平均粒径を約2μmとし合成粉を得た。このように
して作製された合成粉を、外径53mm厚さ27mmの
デイスク状にプレス成形して前駆体を作製した。
Next, the calcined powder, the weighed Y 2 O 3, and a 0.5 wt% Pt powder (average particle size 0.01
μm) and calcined at 900 ° C. in the air for 10 hours to obtain a calcined powder. The calcined powder was pulverized with a raikai machine to obtain a synthetic powder having an average particle size of about 2 μm. The synthetic powder thus produced was press-molded into a disk having an outer diameter of 53 mm and a thickness of 27 mm to prepare a precursor.

【0034】この前駆体をY23粉末を敷いたアルミナ
基板上に載せて、2ゾーン型の炉体内に設置した。そし
て、炉体内の温度を、室温から50時間で1100℃に
昇温した後20分保持して、前駆体を半溶融状態にした
後、前駆体の上部が低温側となるように前駆体上下に5
℃/cmの温度勾配を加え、前駆体の上部温度が100
5℃となるまで10℃/minで降温した。ここで予め
溶融法にて作製しておいたNd1.8Ba2.4Cu3.4x
成の種結晶を、成長方向がc軸と平行になるように前駆
体の上部に接触させ、前駆体の上部温度を1005℃か
ら0.5℃/hrの速度で995℃まで降温した後、4
0時間温度保持し、そこからさらに925℃まで70時
間かけて徐冷した。次に、前駆体上部の温度は925℃
のままで、前駆体上下の温度勾配が0℃/cmとなるよ
うに前駆体下部側を冷却し、そこから室温まで20時間
で徐冷することによって前駆体の結晶化を行った。
This precursor was placed on an alumina substrate on which Y 2 O 3 powder was spread, and was placed in a two-zone furnace. Then, the temperature in the furnace is raised from the room temperature to 1100 ° C. in 50 hours, and then maintained for 20 minutes to bring the precursor into a semi-molten state. To 5
A temperature gradient of 100 ° C./cm was applied and the top temperature of the precursor was 100
The temperature was lowered at 10 ° C./min until the temperature reached 5 ° C. Here, a seed crystal having a composition of Nd 1.8 Ba 2.4 Cu 3.4 O x prepared in advance by a melting method is brought into contact with the upper part of the precursor so that the growth direction is parallel to the c-axis. Was cooled from 1005 ° C. to 995 ° C. at a rate of 0.5 ° C./hr.
The temperature was maintained for 0 hour, and then gradually cooled to 925 ° C. over 70 hours. Next, the temperature of the upper part of the precursor was 925 ° C.
In this state, the lower part of the precursor was cooled such that the temperature gradient between the upper and lower parts of the precursor was 0 ° C./cm, and the precursor was crystallized by gradually cooling it to room temperature in 20 hours.

【0035】この前駆体の結晶を切断して断面をEPM
Aで観察したところ、Y1Ba2Cu 37-x相中に0.1
〜30μm程度のY2BaCuO5相が微細に分散してい
た。また、種結晶を反映して、ディスク状をした前駆体
の結晶の軸方向がc軸であるように結晶全体が配向して
いた。得られた前駆体の結晶を、厚さ方向がc軸となる
ように25mm角、厚さ5mmに加工し、これを基板材
とした。
The crystal of this precursor is cut and the cross section is EPM.
Observed at A, Y1BaTwoCu ThreeO7-x0.1 in phase
Y of about 30 μmTwoBaCuOFivePhases are finely dispersed
Was. Also, the disk-shaped precursor reflecting the seed crystal
The whole crystal is oriented so that the axial direction of the crystal is the c-axis.
Was. The thickness of the obtained precursor crystal is c-axis.
To a 25 mm square and 5 mm thick,
And

【0036】次に、この基板材を白金線で固定し、前
記、組成がY:Ba:Cu=4:36:60の融液の融
液面に接触させ、引き上げ速度1mm/hr、回転速度
100rpmの条件で4mm程度まで引き上げをおこな
った後、引き上げ速度を10mm/hrにして融液との
切り離しを行った。その結果、前記準備された25mm
角の基板面全体に渡って厚さ約4mm、縦横0.6〜4
mm角、相互のa軸またはb軸が、90°±5°または
180°±5°の角度をなし、相互のc軸の傾角が5°
以下であるように並んだY1Ba2Cu3x単結晶集合体
を得ることができた。この単結晶集合体の密度を測定し
たところ6.22g/cm3であった。これは理論密度
を6.34g/cm3としたときの相対密度で約98%
に相当する。
Next, this substrate material was fixed with a platinum wire, brought into contact with the melt surface of the melt having the composition of Y: Ba: Cu = 4: 36: 60, and a pulling speed of 1 mm / hr and a rotation speed of After pulling up to about 4 mm under the condition of 100 rpm, the pulling speed was set to 10 mm / hr, and separation from the melt was performed. As a result, the prepared 25 mm
Approximately 4 mm thick, 0.6 to 4 mm across the entire board surface
mm square, mutual a-axis or b-axis forms an angle of 90 ° ± 5 ° or 180 ° ± 5 °, and mutual c-axis tilt angle is 5 °
As a result, a single crystal aggregate of Y 1 Ba 2 Cu 3 O x arranged as follows was obtained. When the density of this single crystal aggregate was measured, it was 6.22 g / cm 3 . This is about 98% relative density when the theoretical density is 6.34 g / cm 3.
Is equivalent to

【0037】得られた単結晶集合体をXRDで分析した
ところ、前記準備された基板面に垂直な方向がc軸であ
るようにc軸配向していた。またICPにより組成分析
をおこなったところ、モル比でY:Ba:Cu=0.9
9:2.01:3.00であることが判明し、不純物が
含まれていないことも確認された。
When the obtained single crystal aggregate was analyzed by XRD, it was found to be c-axis oriented so that the direction perpendicular to the prepared substrate surface was the c-axis. Further, when the composition was analyzed by ICP, the molar ratio of Y: Ba: Cu = 0.9 was obtained.
9: 2.01: 3.00, and it was also confirmed that no impurities were contained.

【0038】この単結晶集合体を4枚作製し、並べて研
磨し酸化物超電導体ターゲット材に加工した。そしてY
SZの配向膜を中間層として成膜したハステロイテープ
上にイオンビームアシスト蒸着法によりY1Ba2Cu3
x超電導薄膜の成膜を1mにわたって実施したとこ
ろ、長時間のスパッタとなったにも拘わらず原料の飛散
量は安定していた。得られた超電導薄膜はほぼ均一な膜
厚を有し、不純物混入も見られないものであった。
Four single-crystal aggregates were prepared, arranged and polished, and processed into an oxide superconductor target material. And Y
Y 1 Ba 2 Cu 3 is deposited on a Hastelloy tape having an SZ alignment film as an intermediate layer by an ion beam assisted vapor deposition method.
When the Ox superconducting thin film was formed over a length of 1 m, the amount of the scattered raw material was stable despite the long-time sputtering. The obtained superconducting thin film had a substantially uniform film thickness, and no impurity was found.

【0039】このようにして得られた超電導薄膜をXR
Dで分析したところ、Y1Ba2Cu 3xの(00n)の
配向ピークが観測された。また1mのテープの両端に電
流端子を接続して77Kにおける臨界電流密度を4端子
法で測定したところ、外部磁場のない状態で8×105
A/cm2、外部磁場2T中で1.5×105A/cm2
と、長尺で高い臨界電流密度特性のテープ線材を得るこ
とができた。これは原料の飛散量が安定したための効果
と考えられる。
The superconducting thin film thus obtained was subjected to XR
When analyzed by D, Y1BaTwoCu ThreeOx(00n)
An orientation peak was observed. Also, apply electric power to both ends of 1m tape.
Critical current density at 77K by connecting current terminals to 4 terminals
8 × 10 without external magnetic fieldFive
A / cmTwo1.5 × 10 in external magnetic field 2TFiveA / cmTwo
To obtain a long tape wire with high critical current density characteristics.
I was able to. This is because the amount of scattered raw material is stable
it is conceivable that.

【0040】(実施例3)原料として純度3NのBaC
uO2とSm2BaCuO5との粉体をモル比でSm:B
a:Cu=4:36:60となるように秤量、混合し坩
堝内に装填する。坩堝にはSm23製のものを用い、ま
ず1100℃に昇温させ原料粉を融解した後、坩堝の上
部が低温側となるように上下に8℃/cmの温度勾配を
加え、坩堝内の融液の上部が1050℃となるまで降温
させた。
Example 3 BaC of 3N purity as a raw material
The powder of uO 2 and Sm 2 BaCuO 5 is mixed in a molar ratio of Sm: B
a: Cu = 4:36:60, weigh, mix and load into crucible. A crucible made of Sm 2 O 3 was used. The temperature was first raised to 1100 ° C. to melt the raw material powder, and then a temperature gradient of 8 ° C./cm was applied up and down so that the upper part of the crucible was on the low temperature side. The temperature was lowered until the upper part of the melt inside reached 1050 ° C.

【0041】一方、基板材の作製は以下のように行っ
た。Sm23、BaCO3、CuOの各原料粉末をS
m:Ba:Cu=1.2:2.1:3.1になるように
秤量した後、BaCO3、CuOのみを、880℃で3
0時間焼成してBaCuO2とCuOの仮焼粉を得た。
(モル比でBaCuO2:CuO=2.1:1.0とし
た。) 次に、この仮焼粉と前記秤量しておいたSm2
3と、0.5wt%のPt粉末(平均粒径0.01μ
m)と、10wt%のAg粉末(平均粒径0.45μ
m)とをて混合し他後、大気中900℃で10時間焼成
を行い仮焼粉を得た。この仮焼粉をライカイ機で粉砕
し、平均粒径約2μmとし合成粉を得た。このようにし
て作製された合成粉を外径53mm厚さ27mmのデイ
スク状にプレス成形して前駆体を作製した。
On the other hand, the production of the substrate material was performed as follows. Each raw material powder of Sm 2 O 3 , BaCO 3 , CuO
After weighing m: Ba: Cu = 1.2: 2.1: 3.1, only BaCO 3 and CuO were mixed at 880 ° C. for 3 hours.
By calcining for 0 hour, a calcined powder of BaCuO 2 and CuO was obtained.
(The molar ratio was BaCuO 2 : CuO = 2.1: 1.0.) Next, the calcined powder and the weighed Sm 2 were measured.
O 3 and 0.5 wt% Pt powder (average particle size 0.01 μm)
m) and 10 wt% Ag powder (average particle size 0.45 μm)
m), and then calcined at 900 ° C. for 10 hours in the atmosphere to obtain a calcined powder. The calcined powder was pulverized with a raikai machine to obtain a synthetic powder having an average particle size of about 2 μm. The synthetic powder thus produced was press-molded into a disk having an outer diameter of 53 mm and a thickness of 27 mm to prepare a precursor.

【0042】そして、予め溶融法により作製したSm
1.2Ba2.1Cu3.1x組成の縦横5mm角、厚さ2mm
のペレット片をアルミナ基板上に敷き、その上にこの前
駆体を載せて2ゾーン型の炉体内に設置した。そして、
炉体内の温度を、室温から50時間で1100℃に昇温
した後20分保持して、前駆体を半溶融状態にした後、
前駆体の上部が低温側となるように上下に5℃/cmの
温度勾配を加えて前駆体の上部温度が1025℃となる
まで10℃/minで降温した。ここで予め溶融法にて
作製しておいたNd1.8Ba2.4Cu3.4x組成の種結晶
を、成長方向がc軸と平行になるように前駆体の上部に
接触させ、1025℃から0.5℃/hrの速度で10
15℃まで降温した後、40時間温度保持し、そこから
945℃まで70時間かけて徐冷した。次に、前駆体上
部の温度は945℃のままで、前駆体上下の温度勾配が
0℃/cmとなるように下部側を冷却し、そこから室温
まで20時間で徐冷することによって前駆体の結晶化を
行った。
The Sm prepared in advance by the melting method
1.2 Ba 2.1 Cu 3.1 O x composition 5mm square, 2mm thick
Was laid on an alumina substrate, and the precursor was placed thereon and placed in a two-zone furnace. And
After raising the temperature inside the furnace from room temperature to 1100 ° C. in 50 hours and holding it for 20 minutes to bring the precursor into a semi-molten state,
A temperature gradient of 5 ° C./cm was applied up and down so that the upper part of the precursor was on the low temperature side, and the temperature was lowered at 10 ° C./min until the upper part temperature of the precursor became 1025 ° C. Here, a seed crystal having a composition of Nd 1.8 Ba 2.4 Cu 3.4 O x prepared in advance by a melting method is brought into contact with the upper part of the precursor so that the growth direction is parallel to the c-axis. 10 at 5 ° C / hr
After the temperature was lowered to 15 ° C., the temperature was maintained for 40 hours, and then gradually cooled to 945 ° C. over 70 hours. Next, while keeping the temperature of the upper part of the precursor at 945 ° C., the lower part is cooled so that the temperature gradient above and below the precursor is 0 ° C./cm, and then gradually cooled to room temperature in 20 hours. Was crystallized.

【0043】この前駆体の結晶を切断して断面をEPM
Aで観察したところ、Sm1+pBa2 +q(Cu1-bAgb
37-x相中に0.1〜30μm程度のSm2+rBa
1+s(Cu 1-dAgd)O5-y相が微細に分散していた。こ
こで、p、q、r、s、yはそれぞれ−0.2〜0.2
の値であり、xは−0.2〜0.6の値であった。ま
た、b、dは0.0〜0.05の値であり、平均的には
0.008程度であった。また、種結晶を反映して、デ
ィスク状をした前駆体の結晶の軸方向がc軸であるよう
に結晶全体が配向していた。得られた結晶を厚さ方向が
c軸となるように25mm角、厚さ5mmに加工し、こ
れを基板材とした。
The crystal of this precursor was cut and the cross section was EPM.
When observed in A, Sm1 + pBaTwo + q(Cu1-bAgb)
ThreeO7-x0.1m to 30m Sm in the phase2 + rBa
1 + s(Cu 1-dAgd) O5-yThe phases were finely dispersed. This
Here, p, q, r, s, and y are -0.2 to 0.2, respectively.
And x was a value of -0.2 to 0.6. Ma
B and d are values of 0.0 to 0.05, and on average,
It was about 0.008. In addition, reflecting the seed crystal,
The axial direction of the disk-shaped precursor crystal is c-axis.
The entire crystal was oriented. The thickness direction of the obtained crystal is
It is processed into 25mm square and 5mm thick so as to be c-axis.
This was used as a substrate material.

【0044】次に、この基板材を白金線で固定し、前
記、組成がSm:Ba:Cu=4:36:60の融液の
融液面に接触させ、引き上げ速度2mm/hr、回転速
度100rpmの条件で4mm程度まで引き上げを行っ
た後、引き上げ速度を10mm/hrにして融液との切
り離しを行った。その結果、前記準備された25mmの
基板面全体に渡って厚さ約4mm、縦横0.6〜4mm
角、相互のa軸またはb軸が、90°±5°または18
0°±5°の角度をなし、相互のc軸の傾角が5°以下
である、Sm1Ba2Cu3x単結晶体が並んだ単結晶集
合体を得ることができた。この単結晶集合体の密度を測
定したところ6.65g/cm3であった。これは理論
密度を6.84g/cm3としたときの相対密度で約9
7%に相当する。得られた単結晶集合体をXRDで分析
したところ前記準備された基板面に垂直な方向がc軸で
あるようにc軸配向していた。またICPにより組成分
析をおこなったところモル比でSm:Ba:Cu=1.
03:1.99:2.98であることが判明し、不純物
が含まれていないことも確認された。
Next, this substrate material was fixed with a platinum wire, brought into contact with the melt surface of the melt having a composition of Sm: Ba: Cu = 4: 36: 60, and a lifting speed of 2 mm / hr and a rotation speed of After pulling up to about 4 mm under the condition of 100 rpm, the pulling speed was set to 10 mm / hr to separate from the melt. As a result, a thickness of about 4 mm and a height of 0.6 to 4 mm over the entire surface of the prepared 25 mm substrate
Angle, mutual a-axis or b-axis is 90 ± 5 ° or 18
A single crystal aggregate having Sm 1 Ba 2 Cu 3 O x single crystals arranged at an angle of 0 ° ± 5 ° and having a mutual c-axis tilt angle of 5 ° or less was obtained. When the density of this single crystal aggregate was measured, it was 6.65 g / cm 3 . This is a relative density of about 9 when the theoretical density is 6.84 g / cm 3.
It corresponds to 7%. When the obtained single crystal aggregate was analyzed by XRD, it was found to be c-axis oriented so that the direction perpendicular to the prepared substrate surface was the c-axis. Further, composition analysis by ICP showed that Sm: Ba: Cu = 1.
03: 1.99: 2.98, and it was also confirmed that no impurities were contained.

【0045】この単結晶集合体を4枚作製し、並べて研
磨し酸化物超電導体ターゲット材に加工した。そしてY
SZの配向膜を中間層として成膜したハステロイテープ
上にイオンビームアシスト蒸着法によりSm1Ba2Cu
3x超電導薄膜の成膜を1mにわたって実施したとこ
ろ、長時間のスパッタとなったにも拘わらず原料の飛散
量が安定していた。得られた超電導薄膜はほぼ均一な厚
さを有し、不純物混入も見られないものであった。この
ようにして得られた超電導薄膜をXRDで分析したとこ
ろ、Sm1Ba2Cu3xの(00n)の配向ピークが観
測された。また1mのテープの両端に電流端子を接続し
て77Kにおける臨界電流密度を4端子法で測定したと
ころ、外部磁場のない状態で8.5×105A/cm2
外部磁場2T中で8×105A/cm2と、長尺で高い臨
界電流密度特性のテープ線材を得ることができた。これ
は原料の飛散量が安定したための効果と考えられる。
Four single-crystal aggregates were prepared, arranged and polished, and processed into an oxide superconductor target material. And Y
Sm 1 Ba 2 Cu by ion beam assisted vapor deposition on a Hastelloy tape formed with an SZ alignment film as an intermediate layer.
When the 3 O x superconducting thin film was formed over a length of 1 m, the amount of the scattered raw material was stable in spite of long-time sputtering. The obtained superconducting thin film had a substantially uniform thickness, and no impurities were found. When the superconducting thin film thus obtained was analyzed by XRD, a (00n) orientation peak of Sm 1 Ba 2 Cu 3 O x was observed. When current terminals were connected to both ends of a 1-meter tape and the critical current density at 77 K was measured by a four-terminal method, 8.5 × 10 5 A / cm 2 without an external magnetic field was measured.
A long tape wire having a high critical current density characteristic of 8 × 10 5 A / cm 2 in an external magnetic field of 2T was obtained. This is considered to be an effect of stabilizing the amount of scattered raw materials.

【0046】(実施例4)原料として純度3NのBaC
uO2とGd2BaCuO5との粉体をモル比でGd:B
a:Cu=4:36:60となるように秤量、混合し坩
堝内に装填する。坩堝にはGd23製のものを用い、ま
ず1100℃に昇温させ原料粉を融解した後、坩堝の上
部が低温側となるように上下に8℃/cmの温度勾配を
加え、坩堝内の融液の上部が1025℃となるまで降温
させた。
(Example 4) BaC of 3N purity as a raw material
The powder of uO 2 and Gd 2 BaCuO 5 is mixed in a molar ratio of Gd: B
a: Cu = 4:36:60, weigh, mix and load into crucible. A crucible made of Gd 2 O 3 was used. First, the temperature was raised to 1100 ° C. to melt the raw material powder. The temperature was lowered until the upper part of the melt inside reached 1025 ° C.

【0047】一方、準備された基板材として、実施例3
と同様にして25mm角厚さ5mmのSm1.2Ba2.1
3.1x組成の基板材を作製した。次に、この基板材を
白金線で固定し、前記、組成がGd:Ba:Cu=4:
36:60の融液の融液面に接触させ、引き上げ速度
1.5mm/hr、回転速度100rpmの条件で4m
m程度まで引き上げを行った後、引き上げ速度を10m
m/hrにして融液との切り離しを行った。その結果、
前記準備された25mmの基板面全体に渡って厚さ約4
mm、縦横0.6〜4mm角、相互のa軸またはb軸
が、90°±5°または180°±5°の角度をなし、
相互のc軸の傾角が5°以下である、Gd1Ba2Cu3
x単結晶体が並んだ単結晶集合体を得ることができ
た。この単結晶集合体の密度を測定したところ6.87
g/cm3であった。これは理論密度を6.95g/c
3としたときの相対密度で約99%に相当する。
On the other hand, as the prepared substrate material,
Sm 1.2 Ba 2.1 C 25 mm square 5 mm thick in the same manner as
A substrate material having a u 3.1 O x composition was prepared. Next, this substrate material was fixed with a platinum wire, and the composition was Gd: Ba: Cu = 4:
A 36:60 melt was brought into contact with the melt surface, and a 4 m height was set at 1.5 mm / hr and a rotation speed of 100 rpm.
m, then raise the speed to 10m
It was cut off from the melt at m / hr. as a result,
A thickness of about 4 over the entire surface of the prepared 25 mm substrate
mm, vertical and horizontal 0.6-4mm square, mutual a-axis or b-axis make an angle of 90 ° ± 5 ° or 180 ° ± 5 °,
Gd 1 Ba 2 Cu 3 having a mutual c-axis tilt angle of 5 ° or less
A single crystal aggregate in which O x single crystals were lined up was obtained. When the density of this single crystal aggregate was measured, it was 6.87.
g / cm 3 . This gives a theoretical density of 6.95 g / c.
This corresponds to about 99% in relative density when m 3 is set.

【0048】得られた単結晶集合体をXRDで分析した
ところ、前記準備された基板面に垂直な方向がc軸であ
るようにc軸配向していた。またICPにより組成分析
をおこなったところ、モル比でGd:Ba:Cu=1.
00:1.99:3.01であることが判明し、不純物
が含まれていないことも確認された。
When the obtained single crystal aggregate was analyzed by XRD, it was found to be c-axis oriented such that the direction perpendicular to the prepared substrate surface was the c-axis. When composition analysis was performed by ICP, Gd: Ba: Cu = 1.
The ratio was found to be 00: 1.99: 3.01, and it was confirmed that no impurities were contained.

【0049】この単結晶集合体を4枚作製し、並べて研
磨して酸化物超電導体ターゲット材に加工した。そして
YSZの配向膜を中間層として成膜したハステロイテー
プ上にイオンビームアシスト蒸着法によりGd1Ba2
3x超電導薄膜の成膜を1mにわたって実施したとこ
ろ、長時間のスパッタとなったにも拘わらず原料の飛散
量は安定していた。得られた超電導薄膜はほぼ均一な膜
厚を有し、不純物混入も見られないものであった。この
ようにして得られた超電導薄膜をXRDで分析したとこ
ろ、Gd1Ba2Cu3xの(00n)の配向ピークが観
測された。また1mのテープの両端に電流端子を接続し
て77Kにおける臨界電流密度を4端子法で測定したと
ころ、外部磁場のない状態で8.0×105A/cm2
外部磁場2T中で6×105A/cm2と、長尺で高い臨
界電流密度特性のテープ線材を得ることができた。これ
は原料の飛散量が安定したための効果と考えられる。
Four single-crystal aggregates were prepared, arranged and polished, and processed into an oxide superconductor target material. Then, Gd 1 Ba 2 C was deposited on a Hastelloy tape on which an YSZ alignment film was formed as an intermediate layer by an ion beam assisted vapor deposition method.
When the u 3 O x superconducting thin film was formed over a length of 1 m, the amount of the scattered raw material was stable despite the long-time sputtering. The obtained superconducting thin film had a substantially uniform film thickness, and no impurity was found. When the superconducting thin film thus obtained was analyzed by XRD, a (00n) orientation peak of Gd 1 Ba 2 Cu 3 O x was observed. When current terminals were connected to both ends of a 1-meter tape and the critical current density at 77 K was measured by a four-terminal method, the critical current density was 8.0 × 10 5 A / cm 2 without an external magnetic field.
A long tape wire having a high critical current density characteristic of 6 × 10 5 A / cm 2 in an external magnetic field of 2T was obtained. This is considered to be an effect of stabilizing the amount of scattered raw materials.

【0050】(比較例1)原料として純度3NのY23
とBaCO3とCuOとの各原料粉末をモル比でY:B
a:Cu=1:2:3になるように秤量、混合した後、
920℃で20時間2回焼成して合成粉を得た。得られ
た合成粉を縦横50mm、厚さ3mmに成形して成形体と
し、これを930℃で30時間焼成することにより酸化
物超電導体ターゲット材を作製した。このターゲット材
の密度を測定したところ5.9g/cm3(理論密度を
6.34g/cm3としたときの相対密度で約93%)
であった。
Comparative Example 1 As a raw material, Y 2 O 3 having a purity of 3N was used.
And the raw material powders of BaCO 3 and CuO in a molar ratio of Y: B
a: After weighing and mixing so that Cu = 1: 2: 3,
The powder was fired twice at 920 ° C. for 20 hours to obtain a synthetic powder. The obtained synthetic powder was formed into a compact by molding it to a length and width of 50 mm and a thickness of 3 mm, and was fired at 930 ° C. for 30 hours to produce an oxide superconductor target material. 5.9 g / cm 3 When the density measured for the target material (about 93% of theoretical density in relative density when formed into a 6.34 g / cm 3)
Met.

【0051】このターゲット材を用いて、実施例1と同
様にYSZの配向膜を中間層として成膜したハステロイ
テープ上に、イオンビームアシスト蒸着法によりY1
2Cu3x超電導薄膜の成膜を1mにわたって実施し
た。しかしながら、ターゲットの密度が低く、さらに結
晶粒同士の結合性も不均一なために、スパッタ中の原料
の飛散量が安定せず、得られた超電導薄膜の厚さは部分
的に不均一なところがあった。また1mのテープの両端
に電流端子を接続して77Kにおける臨界電流密度を4
端子法で測定したところ、外部磁場のない状態で1×1
5A/cm2、外部磁場2T中で0.2×105A/c
2のテープ線材となった。これは原料の飛散量が安定
しなかったために、部分的に特性が低いところが発生
し、全体として特性が低くなってしまったものと考えら
れる。
Using this target material, Y 1 B was deposited on a Hastelloy tape formed with an YSZ alignment film as an intermediate layer in the same manner as in Example 1 by an ion beam assisted vapor deposition method.
The a 2 Cu 3 film formation of O x superconducting films were carried out over 1 m. However, since the density of the target is low and the bonding between the crystal grains is not uniform, the scattering amount of the raw material during sputtering is not stable, and the thickness of the obtained superconducting thin film is partially uneven. there were. The current terminals were connected to both ends of the 1m tape to increase the critical current density at 77K to 4
When measured by the terminal method, 1 × 1 without external magnetic field
0 5 A / cm 2 , 0.2 × 10 5 A / c in external magnetic field 2T
It became a tape wire the m 2. This is considered to be due to the fact that the scattering amount of the raw material was not stable, and a portion having low characteristics was partially generated, and the characteristics were lowered as a whole.

【0052】[0052]

【発明の効果】バインダーや成形型を使用していないた
め、反りや割れが無く不純物濃度が低く且つ相対密度も
高いのに加え、ターゲット材に要求されるサイズを満た
す酸化物超電導体を作製した。この酸化物超電導体は酸
化物超電導体単結晶粒子の集合体であって、95%以上
の相対密度を有し、前記酸化物超電導体単結晶粒子の粒
径は0.5mm以上であり、前記酸化物超電導体単結晶
粒子は相互のa軸またはb軸が、90°±5°または1
80°±5°の角度をなし、相互のc軸の傾角は5°以
下となるように並んでc軸に配向していることを特徴と
する酸化物超電導体であった。そして、イオンビームア
シスト法やスパッタ法等の薄膜製造方法の際に、この酸
化物超電導体より作製したターゲット材を用いると原料
飛散量の安定性が図れるという効果が得られた。
According to the present invention, an oxide superconductor satisfying the size required for the target material is produced in addition to the fact that no binder or a mold is used, so that there is no warpage or cracking, the impurity concentration is low and the relative density is high. . The oxide superconductor is an aggregate of oxide superconductor single crystal particles, has a relative density of 95% or more, the particle size of the oxide superconductor single crystal particles is 0.5 mm or more, The oxide superconductor single crystal particles have a mutual a-axis or b-axis of 90 ° ± 5 ° or 1 °.
The oxide superconductor was characterized by forming an angle of 80 ° ± 5 ° and being aligned with the c-axis side by side so that the mutual c-axis tilt angle was 5 ° or less. Then, when a thin film manufacturing method such as an ion beam assist method or a sputtering method is used, the use of a target material manufactured from this oxide superconductor has the effect of stabilizing the scattering amount of the raw material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る酸化物超電導体の
斜視図である。
FIG. 1 is a perspective view of an oxide superconductor according to an embodiment of the present invention.

【符号の説明】 1.2.3.4.… 酸化物超電導体の単結晶体 10. 酸化物超電導体ターゲット材 20. 酸化物超電導体の単結晶体集合体 30. 準備された成形体[Explanation of Signs] 1.2.3.4. ... Single crystal of oxide superconductor Oxide superconductor target material 20. 30. Single crystal aggregate of oxide superconductor Prepared molded body

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C30B 29/22 501 C30B 29/22 501H H01B 13/00 565 H01B 13/00 565D H01L 39/24 ZAA H01L 39/24 ZAAB (72)発明者 小早志 秀一 東京都千代田区丸の内一丁目8番2号 同 和鉱業株式会社内 (72)発明者 長屋 重夫 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社内 Fターム(参考) 4G047 JA01 JA03 JB02 JB03 JC02 KE05 KE07 KG01 4G077 AA02 AA03 AA08 AB02 BC53 CF10 DA14 ED04 ED05 ED06 EE06 EG02 HA08 PJ01 PJ04 4K029 BA50 BC04 CA01 CA05 DB05 DB20 DC05 DC08 4M113 AD36 AD37 AD39 BA04 BA09 BA21 CA34 5G321 AA01 CA04 CA27 DB28 DB30──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C30B 29/22 501 C30B 29/22 501H H01B 13/00 565 H01B 13/00 565D H01L 39/24 ZAA H01L 39 / 24 ZAAB (72) Inventor Shuichi Kobayashi 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. 1 F-term in Chubu Electric Power Co., Inc. (Reference) 4G047 JA01 JA03 JB02 JB03 JC02 KE05 KE07 KG01 4G077 AA02 AA03 AA08 AB02 BC53 CF10 DA14 ED04 ED05 ED06 EE06 EG02 HA08 PJ01 PJ04 4K029 BA50 BC04 AD05 DB05 AD05 BA09 BA21 CA34 5G321 AA01 CA04 CA27 DB28 DB30

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導体単結晶粒子の集合体であ
って、95%以上の相対密度を有し、前記酸化物超電導
体単結晶粒子の粒径は0.5mm以上であり、前記酸化
物超電導体単結晶粒子は相互のa軸またはb軸が、90
°±5°または180°±5°の角度をなしており、相
互のc軸の傾角は5°以下であるようにならんで配向
し、 ターゲット材として使用可能なサイズを有していること
を特徴とする酸化物超電導体単結晶粒子の集合体。
1. An aggregate of oxide superconductor single crystal particles having a relative density of 95% or more, wherein the oxide superconductor single crystal particles have a particle size of 0.5 mm or more, and Superconducting single crystal particles have a mutual a-axis or b-axis of 90
° ± 5 ° or 180 ° ± 5 °, and the c-axis tilt angle is less than or equal to 5 ° so that they are oriented and have a size that can be used as a target material. An aggregate of single crystal oxide superconductor particles.
【請求項2】 所望の面積を有するc軸に配向した酸化
物超電導体の、薄膜、厚膜または溶融体のいずれかの表
面より成長した酸化物超電導体単結晶粒子の集合体であ
って、95%以上の相対密度を有し、前記酸化物超電導
体単結晶粒子の粒径は0.5mm以上であり、前記酸化
物超電導体単結晶粒子において、相互のc軸の傾角は5
°以下であるようにならんで配向していることを特徴と
する酸化物超電導体単結晶粒子の集合体。
2. An aggregate of oxide superconductor single crystal particles grown from any surface of a thin film, a thick film or a melt of an oxide superconductor having a desired area and oriented in the c-axis, The oxide superconductor single crystal particles have a relative density of 95% or more, the particle size of the oxide superconductor single crystal particles is 0.5 mm or more, and the c-axis tilt angle of the oxide superconductor single crystal particles is 5
An aggregate of single crystal oxide superconductor particles, characterized in that they are oriented so as to be less than or equal to °.
【請求項3】 請求項1または2に記載の酸化物超電導
体単結晶粒子の集合体から作製したことを特徴とするタ
ーゲット材。
3. A target material produced from an aggregate of the oxide superconductor single crystal particles according to claim 1.
【請求項4】 請求項1または2に記載の酸化物超電導
体単結晶粒子の集合体を構成する酸化物超電導体より高
い融点を有する酸化物超電導体を含む基板を準備し、 前記基板の表面を、適宜に調製された原料融液の表面に
接触させた後、引き上げることで、前記基板の表面へ請
求項1に記載の酸化物超電導体単結晶粒子の集合体を形
成することを特徴とする酸化物超電導体単結晶粒子の集
合体の製造方法。
4. A substrate comprising an oxide superconductor having a higher melting point than the oxide superconductor constituting the aggregate of the oxide superconductor single crystal particles according to claim 1 or 2, wherein a surface of the substrate is provided. Is brought into contact with the surface of the appropriately prepared raw material melt and then pulled up to form an aggregate of the oxide superconductor single crystal particles according to claim 1 on the surface of the substrate. For producing an aggregate of single crystal oxide superconductor particles to be formed.
【請求項5】 前記基板として、セラミック基板上に、
酸化物超電導体を成膜したものを用いることを特徴とす
る請求項4に記載の酸化物超電導体単結晶粒子の集合体
の製造方法。
5. The method according to claim 5, wherein the substrate is a ceramic substrate.
The method for producing an aggregate of oxide superconductor single-crystal particles according to claim 4, wherein an oxide superconductor formed into a film is used.
【請求項6】前記基板として、セラミック基板上に、請
求項1または2に記載の酸化物超電導体単結晶粒子の集
合体を構成する酸化物超電導体より高い融点を有する酸
化物超電導体を成膜したものを用いることを特徴とする
請求項4に記載の酸化物超電導体単結晶粒子の集合体の
製造方法。
6. An oxide superconductor having a higher melting point than an oxide superconductor constituting an aggregate of the oxide superconductor single crystal particles according to claim 1 or 2 is formed on a ceramic substrate as the substrate. The method for producing an aggregate of oxide superconductor single crystal particles according to claim 4, wherein a film is used.
【請求項7】 溶融法で製造されたREBaCuO系の
材料を基板として用いて、前記基板の表面を、適宜に調
製された原料融液の表面に接触させた後、引き上げるこ
とで、前記基板の表面へ酸化物超電導体単結晶粒子を形
成することを特徴とする酸化物超電導体の製造方法。
7. Using a REBaCuO-based material produced by a melting method as a substrate, bringing the surface of the substrate into contact with the surface of a suitably prepared raw material melt, and then pulling up the substrate, thereby lifting the substrate. A method for producing an oxide superconductor, comprising forming oxide superconductor single crystal particles on a surface.
【請求項8】 前記基板の表面を、適宜に調製された原
料融液の表面に接触させた後、引き上げる際、前記融液
から前記基板へ向けて1〜100℃/cmの温度勾配を
もうけたことを特徴とする請求項4〜7のいずれかに記
載の酸化物超電導体単結晶粒子の集合体の製造方法。
8. After bringing the surface of the substrate into contact with the surface of a suitably prepared raw material melt and then pulling it up, a temperature gradient of 1 to 100 ° C./cm is formed from the melt toward the substrate. The method for producing an aggregate of oxide superconductor single crystal particles according to any one of claims 4 to 7, wherein:
【請求項9】 前記原料融液を調製する際、融解される
原料元素と同様の元素からなる坩堝を用いることを特徴
とする請求項4〜8のいずれかに記載の酸化物超電導体
単結晶粒子の集合体の製造方法。
9. The oxide superconductor single crystal according to claim 4, wherein a crucible made of the same element as the raw material element to be melted is used when preparing the raw material melt. A method for producing an aggregate of particles.
【請求項10】 請求項3に記載のターゲット材を用い
て成膜したことを特徴とする酸化物超電導体薄膜。
10. An oxide superconductor thin film formed using the target material according to claim 3.
JP2001065224A 2001-03-08 2001-03-08 Target material, manufacturing method thereof, and oxide superconductor thin film Expired - Lifetime JP4470008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001065224A JP4470008B2 (en) 2001-03-08 2001-03-08 Target material, manufacturing method thereof, and oxide superconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001065224A JP4470008B2 (en) 2001-03-08 2001-03-08 Target material, manufacturing method thereof, and oxide superconductor thin film

Publications (2)

Publication Number Publication Date
JP2002265221A true JP2002265221A (en) 2002-09-18
JP4470008B2 JP4470008B2 (en) 2010-06-02

Family

ID=18923918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001065224A Expired - Lifetime JP4470008B2 (en) 2001-03-08 2001-03-08 Target material, manufacturing method thereof, and oxide superconductor thin film

Country Status (1)

Country Link
JP (1) JP4470008B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026530A1 (en) * 2005-08-31 2007-03-08 Dowa Mining Co., Ltd. Target for laser abrasion and process for producing the same
JP2007525788A (en) * 2003-06-05 2007-09-06 スーパーパワー インコーポレイテッド Ion beam assisted high temperature superconductor (HTS) deposition for thick film tapes
WO2012169449A1 (en) * 2011-06-08 2012-12-13 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing sputtering target, and method for forming thin film
JP2013136816A (en) * 2011-12-28 2013-07-11 Fujikura Ltd Method for producing target for superconductive film formation, target for superconductive film formation, and method for producing oxide superconductive conductor
JP2013155425A (en) * 2012-01-31 2013-08-15 Fujikura Ltd Target for making superconductive thin film, method of manufacturing the same, and method of manufacturing oxide superconductive wire rod
US9057126B2 (en) 2011-11-29 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target and method for manufacturing semiconductor device
US9267199B2 (en) 2013-02-28 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target, method for forming oxide film, and transistor
US9885108B2 (en) 2012-08-07 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming sputtering target
RU2822276C1 (en) * 2023-10-06 2024-07-03 Общество с ограниченной ответственностью "КРИОГЕННЫЕ ТЕХНОЛОГИИ И МАТЕРИАЛЫ" (ООО "КТМ") Method of making targets for depositing thin superconducting layers by laser pulsed sputtering

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525788A (en) * 2003-06-05 2007-09-06 スーパーパワー インコーポレイテッド Ion beam assisted high temperature superconductor (HTS) deposition for thick film tapes
US8182862B2 (en) 2003-06-05 2012-05-22 Superpower Inc. Ion beam-assisted high-temperature superconductor (HTS) deposition for thick film tape
WO2007026530A1 (en) * 2005-08-31 2007-03-08 Dowa Mining Co., Ltd. Target for laser abrasion and process for producing the same
JP2007063631A (en) * 2005-08-31 2007-03-15 Dowa Holdings Co Ltd Target for laser abrasion and manufacturing method therefor
US10889888B2 (en) 2011-06-08 2021-01-12 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing sputtering target, and method for forming thin film
TWI561655B (en) * 2011-06-08 2016-12-11 Semiconductor Energy Lab Co Ltd Sputtering target, method for manufacturing sputtering target, and method for forming thin film
US11066739B2 (en) 2011-06-08 2021-07-20 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing sputtering target, and method for forming thin film
JP2013144841A (en) * 2011-06-08 2013-07-25 Semiconductor Energy Lab Co Ltd Target, method for using the target, and method for producing semiconductor device
JP2019016812A (en) * 2011-06-08 2019-01-31 株式会社半導体エネルギー研究所 Oxide semiconductor film manufacturing method
US8889477B2 (en) 2011-06-08 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Method for forming thin film utilizing sputtering target
CN103124805A (en) * 2011-06-08 2013-05-29 株式会社半导体能源研究所 Sputtering target, method for manufacturing sputtering target, and method for forming thin film
US11959165B2 (en) 2011-06-08 2024-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor film
US9382611B2 (en) 2011-06-08 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing sputtering target, and method for forming thin film
JP2016164993A (en) * 2011-06-08 2016-09-08 株式会社半導体エネルギー研究所 Semiconductor device manufacturing method
WO2012169449A1 (en) * 2011-06-08 2012-12-13 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing sputtering target, and method for forming thin film
US9057126B2 (en) 2011-11-29 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target and method for manufacturing semiconductor device
JP2013136816A (en) * 2011-12-28 2013-07-11 Fujikura Ltd Method for producing target for superconductive film formation, target for superconductive film formation, and method for producing oxide superconductive conductor
JP2013155425A (en) * 2012-01-31 2013-08-15 Fujikura Ltd Target for making superconductive thin film, method of manufacturing the same, and method of manufacturing oxide superconductive wire rod
US9885108B2 (en) 2012-08-07 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming sputtering target
US10522347B2 (en) 2013-02-28 2019-12-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target, method for forming oxide film, and transistor
US11139166B2 (en) 2013-02-28 2021-10-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target, method for forming oxide film, and transistor
US11637015B2 (en) 2013-02-28 2023-04-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target, method for forming oxide film, and transistor
US9267199B2 (en) 2013-02-28 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target, method for forming oxide film, and transistor
US11967505B2 (en) 2013-02-28 2024-04-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target, method for forming oxide film, and transistor
RU2822276C1 (en) * 2023-10-06 2024-07-03 Общество с ограниченной ответственностью "КРИОГЕННЫЕ ТЕХНОЛОГИИ И МАТЕРИАЛЫ" (ООО "КТМ") Method of making targets for depositing thin superconducting layers by laser pulsed sputtering

Also Published As

Publication number Publication date
JP4470008B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
CA1315649C (en) Epitaxial ba-y-cu-o superconductor film
JP3089294B2 (en) Manufacturing method of superconducting tape material
US5240903A (en) Oxide superconductor comprising babo3 dispersions (where b is zr, sn, ce or ti)
US5571776A (en) Single crystalline bulk oxide superconductor and process for producing same
JP2002265221A (en) Oxide superconductor single crystal grain aggregate, target material and production process of the same target material
US5030613A (en) Epitaxial Ba--Y--Cu--O ceramic superconductor film on perovskite structure substrate
JPH06122588A (en) Preparation of oxide crystal
JPH05279028A (en) Rare-earth superconducting composition and its production
US5958840A (en) Oxide superconductor containing Ag and having substantially same crystal orientation, and method for manufacturing the same
US5413986A (en) Method for production of thin oxide superconducting film and substrate for production of the film
JP3889139B2 (en) Oxide superconductor containing silver and method for producing the same
JP3330962B2 (en) Manufacturing method of oxide superconductor
JP3471443B2 (en) Manufacturing method of oxide superconductor material
JP4669998B2 (en) Oxide superconductor and manufacturing method thereof
JP4951790B2 (en) Manufacturing method of oxide superconductivity
JP3237952B2 (en) Manufacturing method of oxide superconducting material
JP3623829B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
JP3844169B2 (en) Oxide superconductor and manufacturing method thereof
JP2000169145A (en) Oxide superconducting material and its production
JPH05286718A (en) Oxide superconductor containing rare-earth element and its production
JP2001114595A (en) High temperature oxide superconductive material and method for producing the same
JPH0829979B2 (en) Method for manufacturing Bi-based superconductor
JPS63303851A (en) Sintered body of superconducting ceramic
JPH0524825A (en) Production of rare earth-based oxide us superconductor and raw material powder therefor
JP2001180932A (en) Oxide superconductor and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150